Data Mining - Data

Dr. Jean-Michel RICHER

FACULTÉ DES SCIENCES Unité de formation et de recherche DÉPARTEMENT INFORMATIQUE

2018 jean-michel.richer@univ-angers.fr

Dr. Jean-Michel RICHER

Data Mining - Data

- 1. Introduction
- 2. Data preprocessing
- 3. CPA with R
- 4. Exercise and home work

Dr. Jean-Michel RICHER

Data Mining - Data

Definition 1

- preprocessing of data (normalization, standardization)
- sampling to train and test classifiers
- feature selection with PCA

Raw data collection

datasets are not always in good shape

- different sources of information (Database, Excel, ...)
- missing data, errors

a first pre-processing step is needed

- for example scaling, translation, and rotation of images
- rearrange, remove rows with empty data
- or imputate values, i.e. replace missing values using certain statistics (mean, most common, ...)

Dr. Jean-Michel RICHER

Normalization

Normalization and other feature scaling techniques are often mandatory in order to make comparisons between different attributes if the attributes were **measured on different scales** (e.g., temperatures in Kelvin and Celsius);

the term normalization is often used synonymous to Min-Max scaling

The scaling of attributes in a certain range, e.g., 0 to 1:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Standardization

Another common approach is **standardization** or *scaling to unit-variance*

- every sample is subtracted by the attribute's mean μ and divided by the standard deviation σ
- attributes will have the properties of a standard normal distribution ($\mu = 0$ and $\sigma = 1$)

this is done in order not to have one property which will have more influence than the others

Sampling

split the dataset into a **training** and a **test** dataset to assess precision of method (classifier)

- training dataset is used to train the model
- test dataset evaluate the performance of the final model
- be aware of overfitting: classifiers that perform well on training data but do not generalize well

Cross-Validation

most useful techniques to evaluate different combinations of

- feature (property) selection (take only intersting features)
- dimensionality reduction of learning algorithms (reduce for efficiency)

multiple flavors of cross-validation, most common is ${\bf k}\mbox{-fold}$ cross-validation

10 / 47

K-fold

the original training dataset is split into k different subsets (the so-called folds)

- one fold is retained as test set
- the other k 1 are used for training the model
- calculate the average error rate (and standard deviation) of the folds

use matrix of statistics to see if some fold is different from others

Feature Selection and Dimensionality Reduction

the key difference between the terms:

- feature selection: keep the original feature axis
- dimensionality reduction: usually involves a transformation technique

the main goals are:

- noise reduction
- increase computational efficiency by retaining only useful (discriminatory) information

avoid overfitting

Feature Selection

retain only those features that are **meaningful** and help build a *good* classifier by reducing the number of attributes (features, properties)

Linear Discriminant Analysis (LDA): supervised, computes the directions (LD) that maximize the separation between multiple classes

Principal Component Analyses (PCA): unsupervised, ignores class labels, find PC that maximize the variance in a dataset

LDA

in a nutshell

- project a feature space (a dataset of *k*-dimensional samples) onto a smaller subspace h (where $h \le k 1$)
- while maintaining the class-discriminatory information

14 / 47

PCA (Principal Component Analysis

- reduce the dimensionality of a data set consisting of a large number of interrelated variable
- retain as much as possible the variation in the data set
- achieved by transforming to a new set of uncorrelated variables (PC)
- ordered so that the first few retain most of the variation present in all of the original variables

PCA Algorithm (1/2)

- Take the whole dataset consisting of k-dimensional samples ignoring the class labels
- Compute the k-dimensional mean vector (i.e., the means for every dimension of the whole dataset)
- Compute the scatter matrix (alternatively, the covariance matrix) of the whole data set
- Compute eigenvectors (e₁, e₂,..., e_k) and corresponding eigenvalues (λ₁, λ₂,..., λ_k)

PCA Algorithm (2/2)

- Sort the eigenvectors by decreasing eigenvalues and choose h eigenvectors with the largest eigenvalues to form a k × h dimensional matrix W (where every column represents an eigenvector)
- Use this $k \times h$ eigenvector matrix to transform the samples onto the new subspace $y = W^T \times x$ (where x is a $k \times 1$ -dimensional vector representing one sample and y is the transformed $h \times 1$ -dimensional sample in the new subspace

PCA algorithm (2/2)

Types of PCA

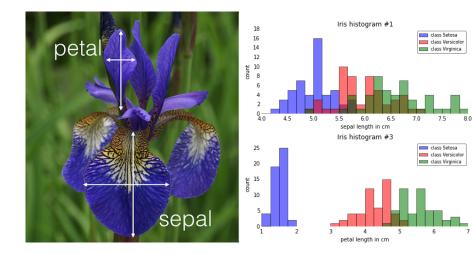
- general: apply algorithm to data (no transformation of data)
- **centered**: substract mean to initial values
- reduced: first center then reduce (if variances are significantly different, divide each variables by its standard deviation)

Dr. Jean-Michel RICHER

To have a better understanding of PCA we will use the **IRIS** flowers dataset

- 150 individuals (50 Setosa, 50 Versicolour, 50 Virginica)
- 5 properties:
 - petal length and width
 - sepal length and width (protection for the flower and support for the petals when in bloom)
 - class (Setosa, Versicolour, Virginica)

20 / 47



Dr. Jean-Michel RICHER

View the data

Dataset already present

>	head(iris)				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

> summary(iris) Sepal.Length Sepal.Width Min. :4.300 Min. 1st Qu.:5.100 Median :5.800 Mean :5.843 3rd Qu.:6.400 Max. :7.900 Species :50 setosa versicolor:50 virginica :50

:2.000 1st Qu.:2.800 Median :3.000 Mean :3.057 3rd Qu.:3.300 Max. :4,400

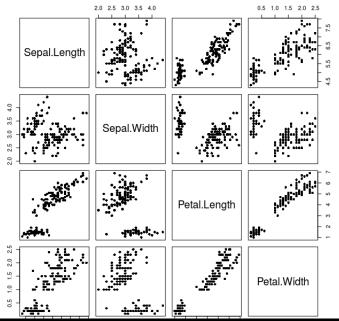
Petal.Length				
Min.	:1.000			
1st Qu.	:1.600			
Median	:4.350			
Mean	:3.758			
3rd Qu.	:5.100			
Max.	:6.900			

Petal.Width			
Min.		:0.	100
1st	Qu.	:0.	300
Medi	an	:1.	300
Mean		:1.	199
3rd	Qu.	:1.	800
Max.		:2.	500

Plot the data to have a better understanding (with hundreds of attribute this is not feasible)

```
> attach(iris)
> plot(iris[,1:4], pch=16)
```

what can we really see ?



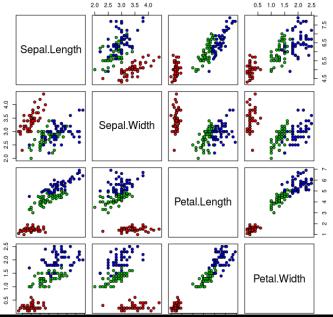
Dr. Jean-Michel RICHER

Data Mining - Data

angers

Plot in function of classes:

- > attach(iris)
- > pairs(iris[1:4],pch = 21, bg = c("red", "green3", "blue")[unclass(iris\$Species)])



Dr. Jean-Michel RICHER

Data Mining - Data

In this case

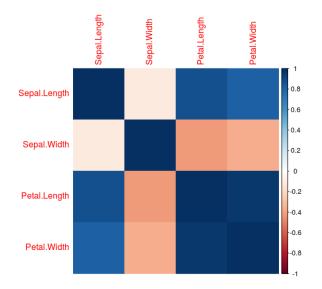
- if you compare Sepal.Length to Sepal.Width:
 - the red dots are separated from the blue and green dots
 - but it will be difficult to differentiate blue from green
- if you compare Petal.Length to Petal.Width the differentiation is simple

Correlation matrix values

> cor(iris[,1:4])					
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	
Sepal.Length	1.0000000	-0.1175698	0.8717538	0.8179411	
Sepal.Width	-0.1175698	1.0000000	-0.4284401	-0.3661259	
Petal.Length	0.8717538	-0.4284401	1.0000000	0.9628654	
Petal.Width	0.8179411	-0.3661259	0.9628654	1.0000000	

Then plot the correlation matrix

```
library(corrplot)
corrplot(cor(iris[,1:4]), method="color")
```

Dr. Jean-Michel RICHER

Correlation explanation

if the correlation value is

- close to 1, then both vectors of values are strongly correlated
- close to 0, then they are not correlated

In this example *Sepal.Length* and *Petal.Length* are strongly correlated, so it is interesting to remove one of them

What we want to know

- is there a difference between the species ?
- which properties can explain thoses differences ?

Perform the PCA with R

pca = prcomp(iris[,1:4])

The principal component are obtained with pca\$rotation

Principal components

> pca\$rotation

	PC1	PC2	PC3	PC4
Sepal.Length	0.36138659	-0.65658877	0.58202985	0.3154872
Sepal.Width	-0.08452251	-0.73016143	-0.59791083	-0.3197231
Petal.Length	0.85667061	0.17337266	-0.07623608	-0.4798390
Petal.Width	0.35828920	0.07548102	-0.54583143	0.7536574

	(0.86	\times	Petal.Length
$PC1 = \langle$	+	0.36	×	Sepal.Length
$PCI = \langle$	+	0.36	×	Petal.Width
	_			Sepal.Width

Principal components information

pca\$sdev gives the pourcentage of information in each component:

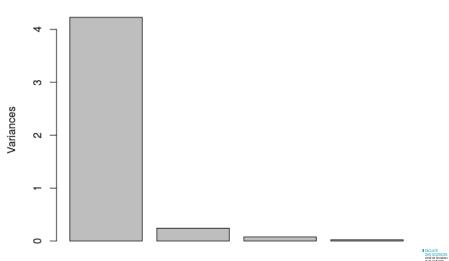
```
> pca$sdev
[1] 2.0562689 0.4926162 0.2796596 0.1543862
> 100 * pca$sdev^2 / sum(pca$sdev^2)
[1] 92.4618723 5.3066483 1.7102610 0.5212184
> sum(100 * (pca$sdev^2)[1:1] / sum(pca$sdev^2))
[1] 92.46187
> sum(100 * (pca$sdev^2)[1:2] / sum(pca$sdev^2))
[1] 97.76852
> sum(100 * (pca$sdev^2)[1:3] / sum(pca$sdev^2))
[1] 99.47878
> pca$rotation
```

Already 92% of the information is given by the first component !

Dr. Jean-Michel RICHER

Data Mining - Data

35 / 47



рса

Dr. Jean-Michel RICHER

angers

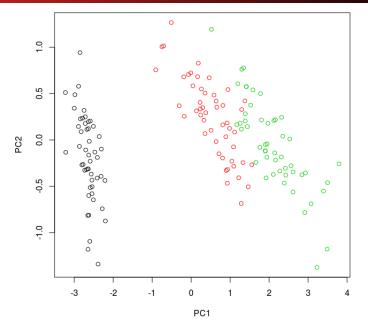
Print individuals in function of PC

```
> plot(pca$x[,1], rep(0,nrow(iris)), col=iris[,5])
```

or

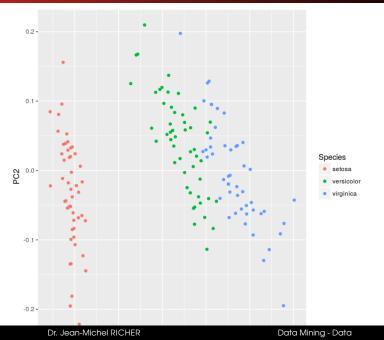
```
> library(ggfortify)
> df <- iris[c(1, 2, 3, 4)]
> autoplot(prcomp(df), data = iris, colour = 'Species')
> autoplot(prcomp(df), data = iris, colour = 'Species',
    label = TRUE, label.size = 3)
```


37 / 47



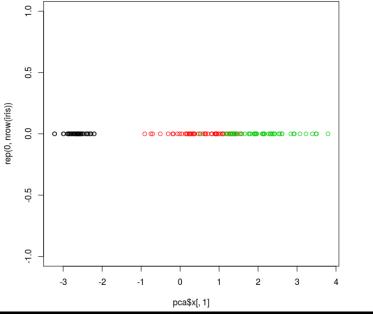
Dr. Jean-Michel RICHER

Data Mining - Data



39 / 47

angers



Dr. Jean-Michel RICHER

Data Mining - Data

angers

Final interpretation

- setosa (red) can be identified clearly
- as the PC 1 is composed of 0.86 × Petal.Length, it is the length of the petal that can help differentiate species

More information

Follow the following links

- http://www.sthda.com/english/wiki/print.php?id=206
- https://www.analyticsvidhya.com/blog/2016/03/ practical-guide-principal-component-analysis-python/

Dr. Jean-Michel RICHER

PCA with python

install the sklearn package and try to do as R

- display information: data, correlation matrix
- perform the PCA, print results
- try to plot data

PCA with Weka

- write a report explaining how to perform PCA using Weka
- give detail of each step

Dr. Jean-Michel RICHER

University of Angers - Faculty of Sciences

FACULTÉ DES SCIENCES Unité de formation et de recherche DÉPARTEMENT INFORMATIQUE

UA - Angers 2 Boulevard Lavoisier 49045 Angers Cedex 01

Tel: (+33) (0)2-41-73-50-72

