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1. Introduction
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What we will cover

What we will cover
Mathematical background needed for the understanding
of Machine Learning techniques:

matrix and vector operations
derivative
gradient
lagrangian
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Difficulty of mathematics

Difficulty of mathematics
use of symbols that represent expressions
some symbols have different meaning depending on
the context
sometimes strict syntax and sometimes not
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Difficulty of mathematics

Example of a prime number
n is a prime number if it has only two divisors 1 and itself
(but with restriction that x 6= 1)

implies that we deal with integers
implies the notion of divisibility:

∀ n,p,q, r ∈ N

n = p × q + r

n is divisible by q if (and only if) r = 0 and p ≥ 1
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2. Matrices and vectors
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Vector

Vector
a series of values that can be identified by their index
in an array of length p

x(p) or simply x ∈ Rp

for computer scientists a 1D array of length p

x(p) = (x1, x2, . . . , xp) = [x1, x2, . . . , xp], xi ∈ R
can also be represented vertically (for
mathematicians):

x(p) = x =


x1
x2
...

xp

 , xT = [x1, x2, . . . , xp]

in this case xT (T for Transposition) will be the horizontal
representation
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Operations on vectors

Operations on vectors
vectors must have the same length
+, −, ×, /
the dot (or scalar) product of two vectors

xy = x · y = x � y = xT y =

p∑
i=1

xi × yi

norm (or length) of a vector ||x || =
√

x · x
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Example of operations on vectors

Examples of operations on vectors

x = [1,−2, 3]
y = [−1, 4,−7]
x + y = [1 + (−1),−2 + 4, 3 + (−7)] = [0, 2,−4]
x × y = [1×−1,−2× 4, 3×−7] = [−1,−8,−21]
xy = (1×−1) + (−2× 4) + (3×−7) = −30

xT y = [1,−2, 3] ·

 −1
4
−7

 = −30

Dr. Jean-Michel RICHER Data Mining - Mathematics 10 / 102



Examples of operations on vectors

Norm of a vector in 2D

x · x = (2× 2) + (3× 3)

= 4 + 9 = 13

||x || =
√

13 = 3.6055

3

2
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Matrix

Matrix
X(p) = (x1, x2, . . . , xp) where xi ∈ Rn, notation that can
lead to confusion
for computer scientists a 2D array defined by :

I n rows
I and p columns

can be seen as an array of vectors or vector of
vectors

X(n,p) =


x1

1 x2
1 . . . xp

1
x1

2 x2
2 . . . xp

2
...

. . . . . .
...

x1
n x2

n . . . xp
n

 =




x1
1

x1
2
...

x1
n




x2
1

x2
2
...

x2
n

 · · ·


xp
1

xp
2
...

xp
n




x j
i is the element in row i and column j
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Properties of matrices

Square matrices
a square matrix is such that n = p

I the diagonal is a separation line
I called lower triangular if all the entries above the main

diagonal are zero
I called upper triangular if all the entries under the main

diagonal are zero

I or In is the identity matrix

In =


1 0 . . . 0

0 1
. . .

...
...

. . . 1 0
0 . . . 0 1
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Operations on matrices

Matrix sum
matrices must have the same dimensions

X(n,p) =


x1

1 x2
1 . . . xp

1
x2

1 x2
2 . . . xp

2
...

...
. . .

...
x1

n x2
n . . . xp

n

+ Y (n,p) =


y1

1 y2
1 . . . yp

1
y2

1 y2
2 . . . yp

2
...

...
. . .

...
y1

n y2
n . . . yp

n



= Z(n,p) =


x1

1 + y1
1 x2

1 + y2
1 . . . xp

1 + yp
1

x2
1 + y1

2 x2
2 + y2

2 . . . xp
2 + yp

2
...

...
. . .

...
x1

n + y1
n x2

n + y2
n . . . xp

n + yp
n
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Operations on matrices

Matrix product
X(n,p)× Y (p,q) = Z(n,q)

number of columns of X = number of rows of Y

z j
i =

p∑
k=1

ak
i × bj

k

for (int i = 0; i < n; ++i)

for (int j = 0; j < q; ++j) {

double sum = 0;

for (int k = 0; k < p; ++k) {

sum += a[i][k] * b[k][j];

}

c[i][j] = sum;

}
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Operations on matrices

Matrix product
Note that generally:

AB 6= BA
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Operations on matrices

Example of matrix product

X(3, 2) =

11 12
21 22
31 32

× Y (2, 3) =

[
1 2 3
4 5 6

]
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Operations on matrices

Example of matrix product

X(3, 2) =

11 12
21 22
31 32

× Y (2, 3) =

[
1 2 3
4 5 6

]

Z(3, 3) =

11× 1 + 12× 4 11× 2 + 12× 5 11× 3 + 12× 6
21× 1 + 22× 4 11× 1 + 22× 4 21× 1 + 22× 4
31× 3 + 32× 6 31× 3 + 32× 6 31× 3 + 32× 6
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Operations on matrices

Example of matrix and vector product

X(3, 2) =

11 12
21 22
31 32

× y(2) =

[
1
2

]
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Operations on matrices

Example of matrix and vector product

X(3, 2) =

11 12
21 22
31 32

× y(2) =

[
1
2

]

Z(3, 3) =

11× 1 + 12× 2
21× 1 + 22× 2
31× 1 + 32× 2

 =

35
65
95
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Operations on matrices

Matrix transpose
to make it simple: exchange of values from both sides
of the diagonal of the matrix

X(n,p) =


x1

1 x2
1 . . . xp

1
x2

1 x2
2 . . . xp

2
...

. . . . . .
...

x1
n x2

n . . . xp
n

 X T (p,n) =


x1

1 x1
2 . . . x1

n
x2

1 x2
2 . . . x2

n
...

. . . . . .
...

xp
1 xp

2 . . . xp
n
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Operations on matrices

Matrix transpose

X(3, 3) =

11 12 13
21 22 23
31 32 33

 X T (3, 3) =

11 21 31
12 22 32
13 23 33



X(3, 5) =

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

 X T (5, 3) =


11 21 31
12 22 32
13 23 33
14 24 34
15 25 35
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Operations on matrices

Inverse of a matrix
The inverse matrix A−1 of a matrix A is such that

A−1 × A = I

and is used for example to solve linear equation systems:

A× x = b then x = A−1 × b

where x and b are vectors
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Operations on matrices

Inverse of a matrix

A(3, 3) =

 1 2 3
−1 2 −3
−7 6 −5


A−1(3, 3) =

0.125 0.4375 −0.1875
0.25 0.25 0

0.125 −0.3125 0.0625



A×

x1
x2
x3

 = b =

 14
−6
−10

 A−1b =

1
2
3
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3. Derivative
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Derivative

Derivative of f (x)
the slope of the tangent of a curve in a given point
if positive: the curve will increase
if negative: the curve will decrease
if zero: won’t increase or decrease
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Derivative

Derivative of f (x)

f(x+h)

f(x)

x+hx
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Derivative

Derivative
More formally the derivative can be defined as

limh→0
f (x + h)− f (x)

(x + h)− x
= limh→0

f (x + h)− f (x)

h

Notations:

f ′(x) or
df (x)

dx
df (x)

dx means the variation of f (x) if we increase x by a small
value
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Properties of the derivative

Property of addition and product of the derivative

(f + g)′ = f ′ + g′

(f × g)′ = f ′ × g + f × g′

As an exercise you could try to prove the result of (f × g)′
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Properties of the derivative

Property of the composition

(g ◦ f )′ = (g′ ◦ f )× f ′

in other words:

g(f (x))′ = g′(f (x))× f ′(x) (DerivComp)
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Properties of the derivative

Property of the composition
Find the derivative of

h(x) = sin(3x2 + 2)

let g(x) = sin(x), then g′(x) = cos(x)

let f (x) = 3x2 + 2, then f ′(x) = 6x

So

h′(x) = g(f (x))′ = g′(f (x))× f ′(x)

h′(x) = cos(3x2 + 2)× 6x
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Properties of the derivative

Property of the inverse function

Let f−1(x) be the inverse function of f (x), i.e. f−1(f (x)) = x

[f−1(f (x))]′ = (x)′ = 1

f−1′(f (x))× f ′(x) = 1 from (DerivComp)

f−1′(f (x)) =
1

f ′(x)
(DerivInv)

Dr. Jean-Michel RICHER Data Mining - Mathematics 30 / 102



Derivative of xn

f (x) = xn
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Derivative of xn

f (x) = xn

The derivative should have the following behaviour

X −∞ 0 ∞

x2k − 0 +

x2k+1 + 0 +

with n even (2k) or odd (2k + 1)
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Derivative of xn

(x + a)n

Remember that x0 = 1

(x + a)2 = x2 + 2ax + a2

(x + a)3 = x3 + 3ax2 + 3a2x + a3

(x + a)4 = x4 + 4ax3 + 6a2x2 + 3a3x + a4

...

(x + a)n = α0,na0xn + · · ·+ αi,jaix j + · · ·+ αn,0anx0

(x + a)n =
∑i=n

i=0,j=n−i αi,jaix j

the coefficients αi,j of aix j are given by Pascal’s triangle
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A bit of history

Blaise Pascal [fr] (1623-1662)
was a French mathematician,
physicist, inventor, writer and
catholic theologian
wrote a significant treatise on the
subject of projective geometry at
the age of 16
work on the principles of hydraulic
fluids (hydraulic press and the
syringe)
theological work, referred to
posthumously as the Pensées
(Thoughts)
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Derivative of xn

Pascal’s triangle

n xn axn−1 . . .
0 1 0
1 1 1 0
2 1 2 1 0
3 1 3 3 1 0
4 1 4 6 4 1

Obviously, the coefficient α1,n−1 of axn−1 is n
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn

= (xn + nhxn−1 + α2,n−2h2xn−2 + . . .)− xn
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn

= (xn + nhxn−1 + α2,n−2h2xn−2 + . . .)− xn

= nhxn−1 + α2,n−2h2xn−2 + . . .
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn

= (xn + nhxn−1 + α2,n−2h2xn−2 + . . .)− xn

= nhxn−1 + α2,n−2h2xn−2 + . . .

f (x+h)−f (x)
h =

nhxn−1+α2,n−2h2xn−2+...

h
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn

= (xn + nhxn−1 + α2,n−2h2xn−2 + . . .)− xn

= nhxn−1 + α2,n−2h2xn−2 + . . .

f (x+h)−f (x)
h =

nhxn−1+α2,n−2h2xn−2+...

h

= nxn−1 + α2,n−2hxn−2 + . . .︸ ︷︷ ︸
0
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Derivative of xn

Derivative of xn

f (x + h)− f (x) = (x + h)n − xn

= (xn + nhxn−1 + α2,n−2h2xn−2 + . . .)− xn

= nhxn−1 + α2,n−2h2xn−2 + . . .

f (x+h)−f (x)
h =

nhxn−1+α2,n−2h2xn−2+...

h

= nxn−1 + α2,n−2hxn−2 + . . .︸ ︷︷ ︸
0

limh→0
f (x+h)−f (x)

h = nxn−1
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Function 1/x

Function 1/x
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Derivative of 1/x

f (x) = 1/x
The derivative should have the following behaviour

X −∞ 0 ∞

x − NA −

Dr. Jean-Michel RICHER Data Mining - Mathematics 38 / 102



Derivative of 1/x

Derivative of 1/x

f (x + h)− f (x) = 1
x+h −

1
x

= x−(x+h)
x(x+h)

= −h
x2+hx

f (x+h)−f (x)
h =

−h
x2+hx

h

= −h
h(x2+hx)

limh→0
f (x+h)−f (x)

h = − 1
x2
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Function log(x)

Function log(x)
ln(x) or log(x)

the natural logarithm of x is the power to which
e = 2.718281 . . . would have to be raised to equal x

for example ln(7.5) = 2.0149 . . ., because
e2.0149... = 7.5
used to replace products by sums
other functions:

logn(x) =
ln(x)

ln(n)
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Function log(x)

Function log(x)
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Derivative of log(x)

f (x) = log(x)
The derivative should have the following behaviour

X −∞ 0 ∞

x NA −∞ +
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Properties of the function log(x)

Properties of the function log(x)

log(1) = 0
log(e) = 1
log(x × y) = log(x) + log(y)
log(x/y) = log(x)− log(y)
log(xn) = n× log(x)
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Derivative of log(x)

Derivative of log(x)
By definition

log(a) =

∫ a

1

1
x

dx

so the derivative of log(x) is 1
x
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )

= log(1 + h
x )
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )

= log(1 + h
x )

f (x+h)−f (x)
h = 1

h × log(1 + h
x )
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )

= log(1 + h
x )

f (x+h)−f (x)
h = 1

h × log(1 + h
x )

= log((1 + h
x )

1
h )
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )

= log(1 + h
x )

f (x+h)−f (x)
h = 1

h × log(1 + h
x )

= log((1 + h
x )

1
h )

limh→0
f (x+h)−f (x)

h = log((1 + h
x )

1
h )
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Derivative of log(x)

Derivative of log(x)

f (x + h)− f (x) = log(x + h)− log(x)

= log( x+h
x )

= log(1 + h
x )

f (x+h)−f (x)
h = 1

h × log(1 + h
x )

= log((1 + h
x )

1
h )

limh→0
f (x+h)−f (x)

h = log((1 + h
x )

1
h )

= log(limh→0(1 + h
x )

1
h ) = log(e

1
x )
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Function exp(x)

Function exp(x) (Jakob Bernoulli [ch], 1654-1705)
the exponential function aka the antilogarithm
exp(x) = ex = limn→∞(1 + x

n)n

e1 = 2.718281 . . .
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A bit of history

Jakob Bernoulli [ch], 1654-1705)
family, of Belgium origin, were
refugees fleeing from persecution
by the Spanish rulers of the
Netherlands
swiss mathematician and
astronomer
theory of permutations and
combinations (Bernoulli numbers),
by which he derived the
exponential series
Law of large numbers, in statistics,
1713
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Function exp(x)

Function exp(x)
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Derivative of exp(x)

f (x) = exp(x)
The derivative should have the following behaviour

X −∞ 0 ∞

x + 1 +
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Properties of the function ex

Properties of the function ex

e0 = 1
ex > 0 ∀x
e−x = 1

ex

ex+y = ex × ey

ex−y = ex

ey

ex×y = (ex )y
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Derivative of ex

Derivative of ex

By definition log(ex ) = x . So we compute the derivative of
this last expression:

log(ex ) = x
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Derivative of ex

Derivative of ex

By definition log(ex ) = x . So we compute the derivative of
this last expression:

log(ex ) = x

(log(ex ))′ = (x)′
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Derivative of ex

Derivative of ex

By definition log(ex ) = x . So we compute the derivative of
this last expression:

log(ex ) = x

(log(ex ))′ = (x)′

1
ex × e′(x) = 1 by(DerivInv)
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Derivative of ex

Derivative of ex

By definition log(ex ) = x . So we compute the derivative of
this last expression:

log(ex ) = x

(log(ex ))′ = (x)′

1
ex × e′(x) = 1 by(DerivInv)

e′(x) = e(x)
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To sum up

Derivatives

(xn)′ = n xn−1

( 1
x )′ = − 1

x2

(log(x))′ = 1
x

(e(x))′ = ex
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4. Gradient
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Gradient

Definition of the gradient
Given a function of several variables f (x , y , z), the gradient
is the vector of the partial derivatives of f

∇f (x , y , z) = ∇f = [
∂f
∂x
,
∂f
∂y

,
∂f
∂z

]

The partial derivative ∂f
∂x is the derivative of f (x , y , z) when

y and z are considered as constants:

∂f
∂x

=
∂f (x , y , z)

∂x
=

df (x , y , z)|y,z
dx
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Gradient

Property of the gradient
the gradient ∇f gives the direction toward which you
can increase the value of the function
conversly −∇f gives the direction toward which you
can decrease the value of the function
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Use of the gradient

Finding the minimum of a function
the gradient can be used to find the minimum of a
function by progressively decreasing the coordinates
by substracting
a fraction of the value of the gradient
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Gradient

A convex quadratic function
Consider the following function:

f (x , y) = (x2 + 8× x − 4) + (y2 + 6× y − 3)

-10 -5 	0 	5 	10-10

-5

	0

	5

	10

-50
	0

	50
	100
	150
	200
	250
	300
	350

(x**2+8*x-4)+(y**2+6*y-3)

-50
	0
	50
	100
	150
	200
	250
	300
	350
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Gradient

A convex quadratic function
The gradient of the function is:

∂f
∂x = 2× x + 8

∂f
∂y = 2× y + 6

The minimum is found for ∂f
∂x = 0 and ∂f

∂y = 0

∂f
∂x = 0 ⇒ x = −4

∂f
∂y = 0 ⇒ y = −3
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Gradient

Gradient descent algorithm

Data: f (x)
Result: x?: the minimum of the function
initialise vector x ;
while not terminate_condition do

compute gradient ∇f ;
x = x − α×∇f ;

end
Algorithm 1: A very simple descent algorithm

note that the Terminate Condition can be defined in
different ways (improvement, number of iterations)
α = 0.1 for example, if too big the algorithm won’t find
the solution
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Gradient

Descent for a convex quadratic function
For the previous convex function we obtain this:

x0= 3, y0= 5, alpha=0.1

gradient=(14, 16)

x1= 1.5999, y1= 3.4

gradient=(11.2, 12.8)

x2= 0.48, y2 = 2.1199

gradient=(8.96, 10.2399)

...

x48 = -3.99984389478361, y48 = -2.999821594038412

gradient=(0.0003122104327797359, 0.000356811923175826)

x49 = -3.999875115826888, y49 = -2.9998572752307298
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Gradient

Difficulty of finding the minimum
it becomes more difficult to find the minimum if

the function is not convex
the function has many minima (Rastrigin or
Himmelblau functions)
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Gradient

In Python

from scipy import optimize

def f(x):

return x[0]**2+8*x[0] -4+x[1]**2+6*x[1]-3

def fprime(x):

return np.array ([(2*x[0]+8) , (2*x[1]+6) ])

z = optimize.fmin_bfgs(f, [3, 5], fprime=fprime)

print(z)

Optimization terminated successfully.

Current function value: -32.000000

Iterations: 2

Function evaluations: 4

Gradient evaluations: 4

[-4. -3.]
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5. Lagrangian
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A bit of history

Joseph-Louis Lagrange
born Guiseppe Lodovico
Lagrangia [it,fr] (1736 - 1813) was a
franco-italian mathematician and
astronomer
made significant contributions to
the fields of analysis, number
theory, and both classical and
celestial mechanics
in 1787, at age 51, moved from
Berlin to Paris and became a
member of the French Academy
of Sciences
remained in France until the end of
his life
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Lagrangian multipliers

Principle
you want to minimize or maximize f (x) subject to
g(x) = 0
under certain conditions

I f (x) is a quadratic function
I g(x) are linear constraints

define the function

L(x , α) = f (x) + αg(x)

where α ≥ 0 ∈ R is called the lagrangian multiplier
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Lagrangian multipliers

Resolution
a solution of L(x , α) is a point of gradient 0
so compute and solve

∂L(x ,α)
∂x = 0

∂L(x ,α)
∂α = g(x) = 0

or reuse in L(x , α)
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Method of Lagrange - example

Statement of the example
Suppose you want to put a fence around some field
which as a form of a rectangle (x , y) and you want to
maximize the area knowing that you have P meters of
fence: {

Max x × y
such that P = 2x + 2y

then f (x , y) = xy and g(x) = P − 2x − 2y = 0{
Max xy

such that P − 2x − 2y = 0
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Method of Lagrange - example

Lagrange formulation

L(x , y , α) = xy + α(P − 2x − 2y)

the derivatives give us

∂L(x , y , α)

∂x
= y − 2α = 0

∂L(x , y , α)

∂y
= x − 2α = 0

∂L(x , y , α)

∂α
= P − 2x − 2y = 0
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Method of Lagrange - example

Resolution
the first two constraints give us y = 2α = x , so x = y

in other words, the area is a square
and the last one that P = 4x = 4y

consequently α = P/8 because α = x/2 = y/2
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6. Exercises
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Matrix - Matrix multiplication

Matrix - Matrix multiplication
Consider the following matrices:

A =

1 0 −2
4 5 −3
6 −3 −2

 B =

0.5 7 3
8 −6 2
1 −2 3


Perform the products by hand and compare:

A× B ?
= B × A
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Matrix - Matrix multiplication

Matrix - Vector multiplication
Consider the following matrix and vector:

A =

1 0 −2
4 5 −3
6 −3 −2

 x =

0.5
8
1


Perform the products by hand and compare:

A× x ?
= xT × A
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Matrix - Matrix multiplication

Vector - Vector multiplication
Consider the following vectors:

x =

1
4
6

 y =

−3
8
1


Perform the following operations:

x × y and x � y
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Check results in python

Check results in python
Write a program in python to check the results of the
different matrix and vector products
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Derivative

Derivative rules
Remember to use the following rules:

(f + g)′ = f ′ + g′ (dSum)

(f × g)′ = f ′ × g + f × g′ (dProd)

f (g(x))′ = f ′(g(x))× g′(x) (dComp)
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Derivative

Derivatives
write a python program to draw the following functions
(use matplotlib) and compute their derivatives by hand:

f1(x) =
1+ 1

x
x−3

f2(x) = 1
x2+ex

f3(x) = x×ex

1+ex
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Derivative

Derivatives
The results are the following

f ′1(x) = −x2 + 2x − 3

(x − 3)2 x2

f ′2(x) = − e
x + 2x

(ex + x2)
2

f ′3(x) =
e

x (ex + x + 1)

(ex + 1)2
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Derivative of f1(x)

Derivative of f1(x)

f1(x) = (1 +
1
x
)× 1

x − 3

f1(x) = F(x)×G(x)

So we need to apply the formula (dProd)
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Derivative of f1(x)

Derivative of f1(x)

F(x) = (1 +
1
x
)

F ′(x) = − 1
x2

G(x) =
1

x − 3
= H(K (x))

with
H(z) =

1
z

K (z) = z − 3
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Derivative of f1(x)

Derivative of f1(x)

G′(x) = H ′(K (x))× K ′(x)

G′(x) = − 1
(x − 3)2 × 1
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Derivative of f1(x)

Derivative of f1(x)
Finally

f ′1(x) = − 1
x2 ×

1
x − 3

+ (1 +
1
x
)×− 1

(x − 3)2

f ′1(x) = − 1
x2 ×

x − 3
x − 3

+ 1 +
1
x
×− x

(x − 3)2

f ′1(x) = −(x − 3) + (x + 1)x
x2(x − 3)2

f ′1(x) = −x2 + 2x − 3
x2(x − 3)2
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Derivative of f2(x)

Derivative of f2(x)

f2(x) =
1

x2 + ex

f2(x) = F(G(x))

So we need to appy the formula (dComp) with

F(z) =
1
z

G(z) = z2 + ez
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Derivative of f2(x)

Derivative of f2(x)

F ′(z) = − 1
z2

G′(z) = 2z + ez (dSum)
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Derivative of f2(x)

Derivative of f2(x)
Finally

f ′2(x) = − 1
x2 + ex × (2x + ex)

f ′2(x) = −2x + ex

x2 + ex
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Derivative

Derivatives
check the results with the derivative calculator
write a program in python using sympy to compute
the derivatives of the functions
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Gradient

Gradient
determine where f1(x) is minimum
using the gradient method try to determine where
f2(x) and f3(x) are maximum or minimum
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Gradient of f1

Gradient/derivative of f1

The derivative of f1 is:

f ′1(x) = −x2 + 2x − 3
x2(x − 3)2

There are extremum (maximum or minimum) where
f ′1(x) = 0
The function is not defined if the denominator is equal to
x2(x − 3)2 = 0: {

x2 = 0 ⇒ x = 0
(x − 3)2 = 0 ⇒ x = 3
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Gradient/derivative of f1

Gradient/derivative of f1

The derivative is equal to 0 if:

x2 + 2x − 3 = 0



∆ = b2 − 4ac = 22 − 4× 1×−3 = 16

x1 =
−b −

√
∆

2a
=
−2− 4
2× 1

= −3

x2 =
−b +

√
∆

2a
=
−2 + 4
2× 1

= +1

then
x2 + 2x − 3 = (x − 1)(x + 3)
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Gradient/derivative of f2

Gradient/derivative of f2

The derivative of f2 is:

f ′2(x) = −2x + ex

x2 + ex

The denominator x2 + e is always positive so we need to

solve:
2x + ex = 0

which is not possible by analytical methods we need to
find the root by using an approximation method
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Gradient/derivative of f2

Gradient/derivative of f2 (1/2)

import numpy as np

def gradient_ascent(x, df):

delta = 0.0000001

alpha = 0.1

while True:

x_n = x + alpha * df(x)

if math.fabs(x-x_n) < delta:

break

x = x_n

return x
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Gradient/derivative of f2

Gradient/derivative of f2 (2/2)

def f2(x):

return 1/(x*x + np.exp(x))

def df2(x):

return (-2*x - math.exp(x))/(x**2 + math.exp(

x))**2

x2_star = gradient_ascent2( -0.5, df2)

print("f2: ", x2_star , " => ", f2(np.asarray ([ x2_star

])))
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Lagrangian

Lagrangian
Consier the following problem

Max x2 + y2 + z2

such that

x + 2y + z = 1
2x − y − 3z = 4

use the method of Lagrange to solve it to determine
x , y and z
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Lagrangian resolution

Lagrangian resolution
We define

L(x , y , z, α1, α2) = f (x , y , z) +
α1(x + 2y + z − 1) +
α2(2x − y − 3z − 4)

with f (x , y , z) = x2 + y2 + z2
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Lagrangian resolution

Lagrangian resolution
We need to compute the partial derivatives of L for each
variable :

∂L(x ,y,z,α1,α2)
∂x = 2x + α1 + 2α2 = 0 (1)

∂L(x ,y,z,α1,α2)
∂y = 2y + 2α1 − α2 = 0 (2)

∂L(x ,y,z,α1,α2)
∂z = 2z + α1 − 3α2 = 0 (3)

∂L(x ,y,z,α1,α2)
∂α1

= x + 2y + z − 1 = 0 (4)

∂L(x ,y,z,α1,α2)
∂α2

= 2x − y − 3z − 4 = 0 (5)
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Lagrangian resolution

Lagrangian resolution
Express α1 from x and α2 in (1)

−2x − 2α2 = α1 (1)

2y + 2α1 − α2 = 0 (2)

2z + α1 − 3α2 = 0 (3)

x + 2y + z − 1 = 0 (4)

2x − y − 3z − 4 = 0 (5)
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Lagrangian resolution

Lagrangian resolution
Then replace in (2) and (3)

−2x − 2α2 = α1 (1)

2y + 2(−2x − 2α2)− α2 = 0 ⇒ 2y − 4x − 5α2 = 0 (2)

2z + (−2x − 2α2)− 3α2 = 0 ⇒ 2z − 2x − 5α2 = 0 (3)

x + 2y + z − 1 = 0 (4)

2x − y − 3z − 4 = 0 (5)
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Lagrangian resolution

Lagrangian resolution
By substracting (2) and (3) we get
−2x + 2y − 2z = x − y + z = 0. And finally we have a
system of 3 equations with 3 variables:

x − y + z = 0 (6) = (2)− (3)

x + 2y + z − 1 = 0 (4)

2x − y − 3z − 4 = 0 (5)
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Lagrangian resolution

Lagrangian resolution

Then we compute (6)− (4) and obtain y = 1
3 .

The rest of the resolution is obvious and we should get

x = 16
15

y = 1
3

z = −11
15

α1 = −52
75

α2 = −54
75
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Lagrangian resolution

Lagrangian resolution
In Python:

import numpy as np

A = np.asarray ([[2,0,0,-1,-2], [0,2,0,-2,1],

[0,0,2,-1,3], [1,2,1,0,0], [2,-1,-3,0,0]])

b = np.asarray ([0,0,0,1,4])

x = np.linalg.solve(A, b)

print(x)
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6. End
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