Data Mining - Mathematics

Dr. Jean-Michel RICHER

I FACULTÉ DES SCIENCES

 Unité de formation et de recherche département INFORMATIQUE2018
jean-michel.richer@univ-angers.fr

Outline

1. Introduction
2. Matrices and vectors
3. Derivative
4. Gradient
5. Lagrangian
6. Exercises

What we will cover

What we will cover

Mathematical background needed for the understanding of Machine Learning techniques:

- matrix and vector operations
- derivative
- gradient
- lagrangian

Difficulty of mathematics

Difficulty of mathematics

- use of symbols that represent expressions

■ some symbols have different meaning depending on the context

- sometimes strict syntax and sometimes not

Difficulty of mathematics

Example of a prime number

n is a prime number if it has only two divisors 1 and itself (but with restriction that $x \neq 1$)

- implies that we deal with integers
- implies the notion of divisibility:

$$
\begin{aligned}
& \forall n, p, q, r \in \mathbb{N} \\
& n=p \times q+r
\end{aligned}
$$

- n is divisible by q if (and only if) $r=0$ and $p \geq 1$

Vector

Vector

■ a series of values that can be identified by their index in an array of length p
■ $x(p)$ or simply $x \in \mathbb{R}^{p}$
■ for computer scientists a 1D array of length p
■ $x(p)=\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\left[x_{1}, x_{2}, \ldots, x_{p}\right], x_{i} \in \mathbb{R}$

- can also be represented vertically (for mathematicians):

$$
x(p)=x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right], \quad x^{T}=\left[x_{1}, x_{2}, \ldots, x_{p}\right]
$$

in this case x^{\top} (T for Transposition) will be the horizontal representation

Operations on vectors

Operations on vectors

- vectors must have the same length
$\square+,-, \times, /$
- the dot (or scalar) product of two vectors

$$
x y=x \cdot y=x \odot y=x^{\top} y=\sum_{i=1}^{p} x_{i} \times y_{i}
$$

- norm (or length) of a vector $\|x\|=\sqrt{x \cdot x}$

Example of operations on vectors

Examples of operations on vectors

$$
\begin{array}{rll}
x & = & {[1,-2,3]} \\
y & =[-1,4,-7] & \\
x+y= & {[1+(-1),-2+4,3+(-7)]} & =[0,2,-4] \\
x \times y= & {[1 \times-1,-2 \times 4,3 \times-7]} & =[-1,-8,-21] \\
x y= & (1 \times-1)+(-2 \times 4)+(3 \times-7) & =-30 \\
& x^{\top} y=[1,-2,3] \cdot\left[\begin{array}{c}
-1 \\
4 \\
-7
\end{array}\right]=-30
\end{array}
$$

Examples of operations on vectors

Norm of a vector in 2D

$$
\begin{aligned}
x \cdot x & =(2 \times 2)+(3 \times 3) \\
& =4+9=13 \\
\|x\| & =\sqrt{13}=3.6055
\end{aligned}
$$

Matrix

Matrix

■ $X(p)=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ where $x_{i} \in \mathbb{R}^{n}$, notation that can lead to confusion

- for computer scientists a 2D array defined by :
- n rows
- and p columns
- can be seen as an array of vectors or vector of vectors

$$
X(n, p)=\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{b} \\
\vdots & \ddots & \ddots & \vdots \\
x_{n}^{1} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right]=\left[\left[\begin{array}{c}
x_{1}^{1} \\
x_{2}^{1} \\
\vdots \\
x_{n}^{1}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right] \ldots\left[\begin{array}{c}
x_{1}^{p} \\
x_{2}^{b} \\
\vdots \\
x_{n}^{p}
\end{array}\right]\right]
$$

x_{i}^{j} is the element in row i and column j

Properties of matrices

Square matrices

- a square matrix is such that $n=p$
- the diagonal is a separation line
- called lower triangular if all the entries above the main diagonal are zero
- called upper triangular if all the entries under the main diagonal are zero
- I or I_{n} is the identity matrix

$$
I_{n}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & 1 & 0 \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

Operations on matrices

Matrix sum

- matrices must have the same dimensions

$$
\begin{aligned}
X(n, p) & =\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{2}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{1} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right]+Y(n, p)=\left[\begin{array}{cccc}
y_{1}^{1} & y_{1}^{2} & \ldots & y_{1}^{p} \\
y_{1}^{2} & y_{2}^{2} & \ldots & y_{2}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n}^{1} & y_{n}^{2} & \ldots & y_{n}^{p}
\end{array}\right] \\
& =Z(n, p)=\left[\begin{array}{cccc}
x_{1}^{1}+y_{1}^{1} & x_{1}^{2}+y_{1}^{2} & \ldots & x_{1}^{p}+y_{b}^{p} \\
x_{1}^{2}+y_{2}^{1} & x_{2}^{2}+y_{2}^{2} & \ldots & x_{2}^{b}+y_{2}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{1}+y_{n}^{1} & x_{n}^{2}+y_{n}^{2} & \ldots & x_{n}^{p}+y_{n}^{p}
\end{array}\right]
\end{aligned}
$$

Operations on matrices

Matrix product

$$
\text { ■ } X(n, p) \times Y(p, q)=Z(n, q)
$$

- number of columns of $X=$ number of rows of Y

$$
z_{i}^{j}=\sum_{k=1}^{p} a_{i}^{k} \times b_{k}^{j}
$$

```
for (int i = 0; i < n; ++i)
    for (int j = 0; j < q; ++j) {
    double sum = 0;
    for (int k = 0; k < p; ++k) {
        sum += a[i][k] * b[k][j];
    }
    c[i][j] = sum;
    }
```


Operations on matrices

Matrix product

Note that generally:

$$
A B \neq B A
$$

Operations on matrices

Example of matrix product

$$
X(3,2)=\left[\begin{array}{ll}
11 & 12 \\
21 & 22 \\
31 & 32
\end{array}\right] \times Y(2,3)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

Operations on matrices

Example of matrix product

$$
\begin{gathered}
X(3,2)=\left[\begin{array}{ll}
11 & 12 \\
21 & 22 \\
31 & 32
\end{array}\right] \times Y(2,3)=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \\
Z(3,3)=\left[\begin{array}{lll}
11 \times 1+12 \times 4 & 11 \times 2+12 \times 5 & 11 \times 3+12 \times 6 \\
21 \times 1+22 \times 4 & 11 \times 1+22 \times 4 & 21 \times 1+22 \times 4 \\
31 \times 3+32 \times 6 & 31 \times 3+32 \times 6 & 31 \times 3+32 \times 6
\end{array}\right]
\end{gathered}
$$

Operations on matrices

Example of matrix and vector product

$$
x(3,2)=\left[\begin{array}{ll}
11 & 12 \\
21 & 22 \\
31 & 32
\end{array}\right] \times y(2)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Operations on matrices

Example of matrix and vector product

$$
\begin{aligned}
& X(3,2)=\left[\begin{array}{ll}
11 & 12 \\
21 & 22 \\
31 & 32
\end{array}\right] \times y(2)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& Z(3,3)=\left[\begin{array}{l}
11 \times 1+12 \times 2 \\
21 \times 1+22 \times 2 \\
31 \times 1+32 \times 2
\end{array}\right]=\left[\begin{array}{l}
35 \\
65 \\
95
\end{array}\right]
\end{aligned}
$$

Operations on matrices

Matrix transpose

- to make it simple: exchange of values from both sides of the diagonal of the matrix

$$
X(n, p)=\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{2}^{p} \\
\vdots & \ddots & \ddots & \vdots \\
x_{n}^{1} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right] \quad X^{\top}(p, n)=\left[\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1} \\
x_{1}^{2} & x_{2}^{2} & \ldots & x_{n}^{2} \\
\vdots & \ddots & \ddots & \vdots \\
x_{1}^{p} & x_{2}^{p} & \ldots & x_{n}^{p}
\end{array}\right]
$$

Operations on matrices

Matrix transpose

$$
\begin{gathered}
X(3,3)=\left[\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right] \quad X^{\top}(3,3)=\left[\begin{array}{lll}
11 & 21 & 31 \\
12 & 22 & 32 \\
13 & 23 & 33
\end{array}\right] \\
X(3,5)=\left[\begin{array}{lllll}
11 & 12 & 13 & 14 & 15 \\
21 & 22 & 23 & 24 & 25 \\
31 & 32 & 33 & 34 & 35
\end{array}\right] \quad X^{\top}(5,3)=\left[\begin{array}{lll}
11 & 21 & 31 \\
12 & 22 & 32 \\
13 & 23 & 33 \\
14 & 24 & 34 \\
15 & 25 & 35
\end{array}\right]
\end{gathered}
$$

Operations on matrices

Inverse of a matrix

The inverse matrix A^{-1} of a matrix A is such that

$$
A^{-1} \times A=1
$$

and is used for example to solve linear equation systems:

$$
A \times x=b \text { then } x=A^{-1} \times b
$$

where x and b are vectors

Operations on matrices

Inverse of a matrix

$$
\begin{gathered}
A(3,3)=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -3 \\
-7 & 6 & -5
\end{array}\right] \\
A^{-1}(3,3)=\left[\begin{array}{ccc}
0.125 & 0.4375 & -0.1875 \\
0.25 & 0.25 & 0 \\
0.125 & -0.3125 & 0.0625
\end{array}\right] \\
A \times\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=b=\left[\begin{array}{c}
14 \\
-6 \\
-10
\end{array}\right] \quad A^{-1} b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{gathered}
$$

Derivative

Derivative of $f(x)$

- the slope of the tangent of a curve in a given point
- if positive: the curve will increase
- if negative: the curve will decrease
- if zero: won't increase or decrease

Derivative

Derivative of $f(x)$

Derivative

Derivative

More formally the derivative can be defined as

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{(x+h)-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notations:

$$
f^{\prime}(x) \quad \text { or } \quad \frac{d f(x)}{d x}
$$

$\frac{d f(x)}{d x}$ means the variation of $f(x)$ if we increase x by a small value

Properties of the derivative

Property of addition and product of the derivative

$$
\begin{gathered}
(f+g)^{\prime}=f^{\prime}+g^{\prime} \\
(f \times g)^{\prime}=f^{\prime} \times g+f \times g^{\prime}
\end{gathered}
$$

As an exercise you could try to prove the result of $(f \times g)^{\prime}$

Properties of the derivative

Property of the composition

$$
(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) \times f^{\prime}
$$

in other words:

$$
g(f(x))^{\prime}=g^{\prime}(f(x)) \times f^{\prime}(x)
$$

(DerivComp)

Properties of the derivative

Property of the composition

Find the derivative of

$$
h(x)=\sin \left(3 x^{2}+2\right)
$$

■ let $g(x)=\sin (x)$, then $g^{\prime}(x)=\cos (x)$

- let $f(x)=3 x^{2}+2$, then $f^{\prime}(x)=6 x$

So

$$
\begin{gathered}
h^{\prime}(x)=g(f(x))^{\prime}=g^{\prime}(f(x)) \times f^{\prime}(x) \\
h^{\prime}(x)=\cos \left(3 x^{2}+2\right) \times 6 x
\end{gathered}
$$

Property of the inverse function

Let $f^{-1}(x)$ be the inverse function of $f(x)$, i.e. $f^{-1}(f(x))=x$

$$
\begin{aligned}
& {\left[f^{-1}(f(x))\right]^{\prime} }=(x)^{\prime}=1 \\
& f^{-1^{\prime}}(f(x)) \times f^{\prime}(x)=1 \quad \text { from (DerivComp) } \\
& f^{-1^{\prime}}(f(x))=\frac{1}{f^{\prime}(x)} \quad \text { (Derivinv) }
\end{aligned}
$$

Derivative of x^{n}

$f(x)=x^{n}$

Derivative of x^{n}

$f(x)=x^{n}$

The derivative should have the following behaviour

X	$-\infty$	0	∞
$x^{2 k}$	-	0	+
$x^{2 k+1}$	+	0	+

with n even $(2 k)$ or odd $(2 k+1)$

Derivative of x^{n}

$(x+a)^{n}$

Remember that $x^{0}=1$

$$
\begin{array}{lcc}
(x+a)^{2} & = & x^{2}+2 a x+a^{2} \\
(x+a)^{3} & = & x^{3}+3 a x^{2}+3 a^{2} x+a^{3} \\
(x+a)^{4} & = & x^{4}+4 a x^{3}+6 a^{2} x^{2}+3 a^{3} x+a^{4} \\
\ldots & & \\
(x+a)^{n} & = & \alpha_{0, n} a^{0} x^{n}+\cdots+\alpha_{i, j} a^{i} x^{j}+\cdots+\alpha_{n, 0} a^{n} x^{0} \\
(x+a)^{n} & = & \sum_{i=0, j=n-i}^{i=n} \alpha_{i, j} a^{i} x^{j}
\end{array}
$$

the coefficients $\alpha_{i, j}$ of $a^{i} x^{j}$ are given by Pascal's triangle

A bit of history

Blaise Pascal (fr) (1623-1662)

- was a French mathematician, physicist, inventor, writer and catholic theologian

- wrote a significant treatise on the subject of projective geometry at the age of 16
- work on the principles of hydraulic fluids (hydraulic press and the syringe)
■ theological work, referred to posthumously as the Pensées (Thoughts)

Derivative of x^{n}

Pascal's triangle

$$
\begin{array}{c|ccccc}
n & x^{n} & a x^{n-1} & \ldots & & \\
0 & 1 & 0 & & & \\
1 & 1 & 1 & 0 & & \\
2 & 1 & 2 & 1 & 0 & \\
3 & 1 & \mathbf{3} & 3 & 1 & 0 \\
4 & 1 & \mathbf{4} & 6 & 4 & 1
\end{array}
$$

Obviously, the coefficient $\alpha_{1, n-1}$ of ax^{n-1} is n

Derivative of x^{n}

Derivative of x^{n}

$$
f(x+h)-f(x)=(x+h)^{n}-x^{n}
$$

Derivative of x^{n}

Derivative of x^{n}

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{n}-x^{n} \\
& =\left(x^{n}+n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots\right)-x^{n}
\end{aligned}
$$

Derivative of x^{n}

Derivative of x^{n}

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{n}-x^{n} \\
& =\left(x^{n}+n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots\right)-x^{n} \\
& =n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots
\end{aligned}
$$

Derivative of x^{n}

Derivative of x^{n}

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{n}-x^{n} \\
& =\left(x^{n}+n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots\right)-x^{n} \\
& =n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots \\
\frac{f(x+h)-f(x)}{h} & =\frac{n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots}{h}
\end{aligned}
$$

Derivative of x^{n}

Derivative of x^{n}

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{n}-x^{n} \\
& =\left(x^{n}+n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots\right)-x^{n} \\
& =n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots \\
\frac{f(x+h)-f(x)}{h} & =\frac{n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots}{h} \\
& =n x^{n-1}+\underbrace{\alpha_{2, n-2} h x^{n-2}+\ldots}_{0}
\end{aligned}
$$

Derivative of x^{n}

Derivative of x^{n}

$$
\begin{aligned}
f(x+h)-f(x) & =(x+h)^{n}-x^{n} \\
& =\left(x^{n}+n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots\right)-x^{n} \\
& =n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots \\
\frac{f(x+h)-f(x)}{h} & =\frac{n h x^{n-1}+\alpha_{2, n-2} h^{2} x^{n-2}+\ldots}{h} \\
& =n x^{n-1}+\underbrace{\alpha_{2, n-2} h x^{n-2}+\ldots}_{0}
\end{aligned}
$$

$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=n x^{n-1}$

Function $1 / x$

Function $1 / x$

angers

Derivative of $1 / x$

$f(x)=1 / x$

The derivative should have the following behaviour

Derivative of $1 / x$

Derivative of $1 / x$

$$
\begin{aligned}
f(x+h)-f(x) & =\frac{1}{x+h}-\frac{1}{x} \\
& =\frac{x-(x+h)}{x(x+h)} \\
& =\frac{-h}{x^{2}+h x} \\
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{-h}{x^{2}+h x}}{h} \\
& =\frac{-h}{h\left(x^{2}+h x\right)} \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =-\frac{1}{x^{2}}
\end{aligned}
$$

Function $\log (x)$

Function $\log (x)$

- $\ln (x)$ or $\log (x)$
- the natural logarithm of x is the power to which $e=2.718281 \ldots$ would have to be raised to equal x
■ for example $\ln (7.5)=2.0149 \ldots$, because $e^{2.0149 \ldots}=7.5$
■ used to replace products by sums
- other functions:

$$
\log _{n}(x)=\frac{\ln (x)}{\ln (n)}
$$

Function $\log (x)$

Function $\log (x)$

angers

Derivative of $\log (x)$

$f(x)=\log (x)$

The derivative should have the following behaviour

X	$-\infty$	0	∞
x	NA	$-\infty$	+

Properties of the function $\log (x)$

$$
\begin{array}{ll}
\log (1) & =0 \\
\log (e) & =1 \\
\log (x \times y) & =\log (x)+\log (y) \\
\log (x / y) & =\log (x)-\log (y) \\
\log \left(x^{n}\right) & =n \times \log (x)
\end{array}
$$

Derivative of $\log (x)$

Derivative of $\log (x)$

By definition

$$
\log (a)=\int_{1}^{a} \frac{1}{x} d x
$$

so the derivative of $\log (x)$ is $\frac{1}{x}$

Derivative of $\log (x)$

$$
f(x+h)-f(x)=\log (x+h)-\log (x)
$$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right)
\end{aligned}
$$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right) \\
& =\log \left(1+\frac{h}{x}\right)
\end{aligned}
$$

Derivative of $\log (x)$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right) \\
& =\log \left(1+\frac{h}{x}\right) \\
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h} \times \log \left(1+\frac{h}{x}\right)
\end{aligned}
$$

Derivative of $\log (x)$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right) \\
& =\log \left(1+\frac{h}{x}\right) \\
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h} \times \log \left(1+\frac{h}{x}\right) \\
& =\log \left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right)
\end{aligned}
$$

Derivative of $\log (x)$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right) \\
& =\log \left(1+\frac{h}{x}\right) \\
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h} \times \log \left(1+\frac{h}{x}\right) \\
& =\log \left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right) \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\log \left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right)
\end{aligned}
$$

Derivative of $\log (x)$

Derivative of $\log (x)$

$$
\begin{aligned}
f(x+h)-f(x) & =\log (x+h)-\log (x) \\
& =\log \left(\frac{x+h}{x}\right) \\
& =\log \left(1+\frac{h}{x}\right) \\
& =\frac{1}{h} \times \log \left(1+\frac{h}{x}\right) \\
\frac{f(x+h)-f(x)}{h} & =\log \left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right) \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\log \left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right) \\
& =\log \left(\lim _{h \rightarrow 0}\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right)=\log \left(e^{\frac{1}{x}}\right)
\end{aligned}
$$

Function $\exp (x)$

Function $\exp (x)$ (Jakob Bernoulli (ch), 1654-1705)
■ the exponential function aka the antilogarithm

- $\exp (x)=e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$

■ $e^{1}=2.718281 \ldots$

A bit of history

Jakob Bernoulli (ch), 1654-1705)

■ family, of Belgium origin, were refugees fleeing from persecution by the Spanish rulers of the Netherlands

- swiss mathematician and astronomer
- theory of permutations and combinations (Bernoulli numbers), by which he derived the exponential series
- Law of large numbers, in statistics, 1713

Function $\exp (x)$

Function $\exp (x)$

Derivative of $\exp (x)$

$f(x)=\exp (x)$

The derivative should have the following behaviour

X	$-\infty$	0	∞
x	+	1	+

Properties of the function e^{x}

$$
\begin{aligned}
& e^{0}=1 \\
& e^{x}=0 \quad \forall x \\
& e^{-x}=\frac{1}{e^{x}} \\
& e^{x+y}=e^{x} \times e^{y} \\
& e^{x-y}=\frac{e^{x}}{e^{y}} \\
& e^{x \times y}=\left(e^{x}\right)^{y}
\end{aligned}
$$

Derivative of e^{x}

Derivative of e^{x}

By definition $\log \left(e^{x}\right)=x$. So we compute the derivative of this last expression:

$$
\log \left(e^{x}\right)=x
$$

Derivative of e^{x}

Derivative of e^{x}

By definition $\log \left(e^{x}\right)=x$. So we compute the derivative of this last expression:

$$
\begin{aligned}
\log \left(e^{x}\right) & =x \\
\left(\log \left(e^{x}\right)\right)^{\prime} & =(x)^{\prime}
\end{aligned}
$$

Derivative of e^{x}

Derivative of e^{x}

By definition $\log \left(e^{x}\right)=x$. So we compute the derivative of this last expression:

$$
\begin{array}{ll}
\log \left(e^{x}\right) & =x \\
\left(\log \left(e^{x}\right)\right)^{\prime} & =(x)^{\prime} \\
\frac{1}{e^{x}} \times e^{\prime}(x) & =1 \quad \text { by(Derivinv })
\end{array}
$$

Derivative of e^{x}

Derivative of e^{x}

By definition $\log \left(e^{x}\right)=x$. So we compute the derivative of this last expression:

$$
\begin{array}{ll}
\log \left(e^{x}\right) & =x \\
\left(\log \left(e^{x}\right)\right)^{\prime} & =(x)^{\prime} \\
\frac{1}{e^{x}} \times e^{\prime}(x) & =1 \quad \text { by(Derivinv) } \\
e^{\prime}(x)=e(x) &
\end{array}
$$

Derivatives

$$
\begin{array}{ll}
\left(x^{n}\right)^{\prime} & =n x^{n-1} \\
\left(\frac{1}{x}\right)^{\prime} & =-\frac{1}{x^{2}} \\
(\log (x))^{\prime} & =\frac{1}{x} \\
(e(x))^{\prime} & =e^{x}
\end{array}
$$

IFACulté

Gradient

Definition of the gradient

Given a function of several variables $f(x, y, z)$, the gradient is the vector of the partial derivatives of f

$$
\nabla f(x, y, z)=\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]
$$

The partial derivative $\frac{\partial f}{\partial x}$ is the derivative of $f(x, y, z)$ when y and z are considered as constants:

$$
\frac{\partial f}{\partial x}=\frac{\partial f(x, y, z)}{\partial x}=\frac{d f(x, y, z)_{\mid y, z}}{d x}
$$

Gradient

Property of the gradient

- the gradient ∇f gives the direction toward which you can increase the value of the function
- conversly $-\nabla f$ gives the direction toward which you can decrease the value of the function

Use of the gradient

Finding the minimum of a function

- the gradient can be used to find the minimum of a function by progressively decreasing the coordinates by substracting
- a fraction of the value of the gradient

Gradient

A convex quadratic function

Consider the following function:

$$
f(x, y)=\left(x^{2}+8 \times x-4\right)+\left(y^{2}+6 \times y-3\right)
$$

$(x * * 2+8 * x-4)+\left(y^{* *} 2+6 * y-3\right)$

Gradient

A convex quadratic function

The gradient of the function is:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 \times x+8 \\
& \frac{\partial f}{\partial y}=2 \times y+6
\end{aligned}
$$

The minimum is found for $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=0 \Rightarrow x=-4 \\
& \frac{\partial f}{\partial y}=0 \Rightarrow y=-3
\end{aligned}
$$

Gradient

Gradient descent algorithm

Data: $f(x)$
Result: x^{\star} : the minimum of the function initialise vector x;
while not terminate_condition do compute gradient ∇ f; $x=x-\alpha \times \nabla f ;$
end
Algorithm 1: A very simple descent algorithm

- note that the Terminate Condition can be defined in different ways (improvement, number of iterations)
- $\alpha=0.1$ for example, if too big the algorithm won't find the solution

Gradient

Descent for a convex quadratic function

For the previous convex function we obtain this:

```
x0= 3, y0= 5, alpha=0.1
gradient=(14, 16)
x1= 1.5999, y1= 3.4
gradient=(11.2, 12.8)
x2= 0.48, y2 = 2.1199
gradient=(8.96, 10.2399)
x48 = -3.99984389478361, y48 = -2.999821594038412
gradient=(0.0003122104327797359, 0.000356811923175826)
x49 = -3.999875115826888, y49 = -2.9998572752307298
```


Gradient

Difficulty of finding the minimum

it becomes more difficult to find the minimum if

- the function is not convex
- the function has many minima (Rastrigin or Himmelblau functions)

Gradient

In Python

```
from scipy import optimize
def f(x):
    return x[0]**2+8*x[0]-4+x[1]**2+6*x[1] - 3
def fprime(x):
    return np.array([(2*x[0]+8), (2*x[1]+6)])
z = optimize.fmin_bfgs(f, [3, 5], fprime=fprime)
print(z)
```

Optimization terminated successfully.
Current function value: - 32.000000
Iterations: 2
Function evaluations: 4
Gradient evaluations: 4
[-4. -3.$]$

A bit of history

Joseph-Louis Lagrange

■ born Guiseppe Lodovico Lagrangia (it,fr) (1736-1813) was a franco-italian mathematician and
 astronomer

- made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics
- in 1787, at age 51 , moved from Berlin to Paris and became a member of the French Academy of Sciences
- remained in France until the end of his life

Lagrangian multipliers

Principle

- you want to minimize or maximize $f(x)$ subject to $g(x)=0$
■ under certain conditions
- $f(x)$ is a quadratic function
- $g(x)$ are linear constraints
- define the function

$$
\mathcal{L}(x, \alpha)=f(x)+\alpha g(x)
$$

where $\alpha \geq 0 \in \mathbb{R}$ is called the lagrangian multiplier

Lagrangian multipliers

Resolution

- a solution of $\mathcal{L}(x, \alpha)$ is a point of gradient 0
- so compute and solve

$$
\begin{aligned}
& \frac{\partial \mathcal{L}(x, \alpha)}{\partial x}=0 \\
& \frac{\partial \mathcal{L}(x, \alpha)}{\partial \alpha}=g(x)=0
\end{aligned}
$$

- or reuse in $\mathcal{L}(x, \alpha)$

Method of Lagrange - example

Statement of the example

Suppose you want to put a fence around some field which as a form of a rectangle (x, y) and you want to maximize the area knowing that you have P meters of fence:

$$
\left\{\begin{aligned}
\text { Max } & x \times y \\
\text { such that } & P=2 x+2 y
\end{aligned}\right.
$$

then $f(x, y)=x y$ and $g(x)=P-2 x-2 y=0$

$$
\left\{\begin{aligned}
\text { Max } & x y \\
\text { such that } & P-2 x-2 y=0
\end{aligned}\right.
$$

Method of Lagrange - example

Lagrange formulation

$$
\mathcal{L}(x, y, \alpha)=x y+\alpha(P-2 x-2 y)
$$

the derivatives give us

$$
\begin{gathered}
\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial x}=y-2 \alpha=0 \\
\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial y}=x-2 \alpha=0 \\
\frac{\partial \mathcal{L}(x, y, \alpha)}{\partial \alpha}=P-2 x-2 y=0
\end{gathered}
$$

Method of Lagrange - example

Resolution

■ the first two constraints give us $y=2 \alpha=x$, so $x=y$

- in other words, the area is a square
- and the last one that $P=4 x=4 y$

■ consequently $\alpha=P / 8$ because $\alpha=x / 2=y / 2$

Matrix - Matrix multiplication

Matrix - Matrix multiplication

Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
4 & 5 & -3 \\
6 & -3 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0.5 & 7 & 3 \\
8 & -6 & 2 \\
1 & -2 & 3
\end{array}\right]
$$

Perform the products by hand and compare:

$$
A \times B \stackrel{?}{=} B \times A
$$

Matrix - Matrix multiplication

Matrix - Vector multiplication

Consider the following matrix and vector:

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
4 & 5 & -3 \\
6 & -3 & -2
\end{array}\right] \quad x=\left[\begin{array}{c}
0.5 \\
8 \\
1
\end{array}\right]
$$

Perform the products by hand and compare:

$$
A \times x \stackrel{?}{=} \quad x^{T} \times A
$$

Matrix - Matrix multiplication

Vector - Vector multiplication

Consider the following vectors:

$$
x=\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right] \quad y=\left[\begin{array}{c}
-3 \\
8 \\
1
\end{array}\right]
$$

Perform the following operations:

$$
x \times y \quad \text { and } \quad x \odot y
$$

Check results in python

Check results in python

Write a program in python to check the results of the different matrix and vector products

Derivative

Derivative rules

Remember to use the following rules:

$$
\begin{array}{lr}
(f+g)^{\prime}=f^{\prime}+g^{\prime} & (\text { dSum }) \\
(f \times g)^{\prime}=f^{\prime} \times g+f \times g^{\prime} & (\text { dProd }) \\
f(g(x))^{\prime}=f^{\prime}(g(x)) \times g^{\prime}(x) & (\text { dComp })
\end{array}
$$

Derivative

Derivatives

write a python program to draw the following functions (use matplotlib) and compute their derivatives by hand:

$$
\begin{aligned}
& f_{1}(x)=\frac{1+\frac{1}{x}}{x-3} \\
& f_{2}(x)=\frac{1}{x^{2}+e^{x}} \\
& f_{3}(x)=\frac{x \times e^{x}}{1+e^{x}}
\end{aligned}
$$

Derivative

Derivatives

The results are the following

$$
\begin{aligned}
& f_{1}^{\prime}(x)=-\frac{x^{2}+2 x-3}{(x-3)^{2} x^{2}} \\
& f_{2}^{\prime}(x)=-\frac{e^{x}+2 x}{\left(\mathrm{e}^{x}+x^{2}\right)^{2}} \\
& f_{3}^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}+x+1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}
\end{aligned}
$$

Derivative of $f_{1}(x)$

Derivative of $f_{1}(x)$

$$
\begin{aligned}
& f_{1}(x)=\left(1+\frac{1}{x}\right) \times \frac{1}{x-3} \\
& f_{1}(x)=F(x) \times G(x)
\end{aligned}
$$

So we need to apply the formula (dProd)

Derivative of $f_{1}(x)$

Derivative of $f_{1}(x)$

$$
\begin{aligned}
F(x) & =\left(1+\frac{1}{x}\right) \\
F^{\prime}(x) & =-\frac{1}{x^{2}} \\
G(x) & =\frac{1}{x-3}=H(K(x))
\end{aligned}
$$

with

$$
\begin{aligned}
H(z) & =\frac{1}{z} \\
K(z) & =z-3
\end{aligned}
$$

Derivative of $f_{1}(x)$

Derivative of $f_{1}(x)$

$$
\begin{aligned}
& G^{\prime}(x)=H^{\prime}(K(x)) \times K^{\prime}(x) \\
& G^{\prime}(x)=-\frac{1}{(x-3)^{2}} \times 1
\end{aligned}
$$

Derivative of $f_{1}(x)$

Derivative of $f_{1}(x)$

Finally

$$
\begin{aligned}
& f_{1}^{\prime}(x)=-\frac{1}{x^{2}} \times \frac{1}{x-3}+\left(1+\frac{1}{x}\right) \times-\frac{1}{(x-3)^{2}} \\
& f_{1}^{\prime}(x)=-\frac{1}{x^{2}} \times \frac{x-3}{x-3}+1+\frac{1}{x} \times-\frac{x}{(x-3)^{2}} \\
& f_{1}^{\prime}(x)=-\frac{(x-3)+(x+1) x}{x^{2}(x-3)^{2}} \\
& f_{1}^{\prime}(x)=-\frac{x^{2}+2 x-3}{x^{2}(x-3)^{2}}
\end{aligned}
$$

Derivative of $f_{2}(x)$

Derivative of $f_{2}(x)$

$$
\begin{aligned}
& f_{2}(x)=\frac{1}{x^{2}+e^{x}} \\
& f_{2}(x)=F(G(x))
\end{aligned}
$$

So we need to appy the formula (dComp) with

$$
\begin{aligned}
& F(z)=\frac{1}{z} \\
& G(z)=z^{2}+e^{z}
\end{aligned}
$$

Derivative of $f_{2}(x)$

Derivative of $f_{2}(x)$

$$
\begin{aligned}
& F^{\prime}(z)=-\frac{1}{z^{2}} \\
& G^{\prime}(z)=2 z+e^{z} \quad(\text { dSum })
\end{aligned}
$$

Derivative of $f_{2}(x)$

Derivative of $f_{2}(x)$

Finally

$$
\begin{aligned}
& f_{2}^{\prime}(x)=-\frac{1}{x^{2}+e^{x}} \times\left(2 x+e^{x}\right) \\
& f_{2}^{\prime}(x)=-\frac{2 x+e^{x}}{x^{2}+e^{x}}
\end{aligned}
$$

Derivative

Derivatives

- check the results with the derivative calculator
- write a program in python using sympy to compute the derivatives of the functions

Gradient

Gradient

- determine where $f_{1}(x)$ is minimum
- using the gradient method try to determine where $f_{2}(x)$ and $f_{3}(x)$ are maximum or minimum

Gradient of f_{1}

Gradient/derivative of f_{1}

The derivative of f_{1} is:

$$
f_{1}^{\prime}(x)=-\frac{x^{2}+2 x-3}{x^{2}(x-3)^{2}}
$$

There are extremum (maximum or minimum) where $f_{1}^{\prime}(x)=0$
The function is not defined if the denominator is equal to $x^{2}(x-3)^{2}=0:$

$$
\left\{\begin{array}{lll}
x^{2}=0 & \Rightarrow & x=0 \\
(x-3)^{2}=0 & \Rightarrow & x=3
\end{array}\right.
$$

Gradient/derivative of f_{1}

Gradient/derivative of f_{1}

The derivative is equal to 0 if:

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& \left(\Delta=b^{2}-4 a c=2^{2}-4 \times 1 \times-3=16\right. \\
& x_{1}=\frac{-b-\sqrt{\Delta}}{2 a}=\frac{-2-4}{2 \times 1}=-3 \\
& x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}=\frac{-2+4}{2 \times 1}=+1
\end{aligned}
$$

then

$$
x^{2}+2 x-3=(x-1)(x+3)
$$

Gradient/derivative of f_{2}

Gradient/derivative of f_{2}

The derivative of f_{2} is:

$$
f_{2}^{\prime}(x)=-\frac{2 x+e^{x}}{x^{2}+e^{x}}
$$

The denominator $x^{2}+e$ is always positive so we need to
solve:

$$
2 x+e^{x}=0
$$

which is not possible by analytical methods we need to find the root by using an approximation method

Gradient/derivative of f_{2}

Gradient/derivative of $f_{2}(1 / 2)$

```
import numpy as np
def gradient_ascent(x, df):
    delta = 0.0000001
    alpha = 0.1
    while True:
        x_n}=\textrm{x}+\textrm{alpha}*\textrm{df}(\textrm{x}
        if math.fabs(x-x_n) < delta:
        break
        x = x_n
    return x
```


Gradient/derivative of f_{2}

Gradient/derivative of $f_{2}(2 / 2)$

```
def f2(x):
                        return 1/(x*x + np.exp(x))
def df2(x):
    return (-2*x - math.exp(x))/(x**2 + math.exp(
        x)) **2
x2_star = gradient_ascent2( -0.5, df2)
print("f2:ப", x2_star, "ப=>ப", f2(np.asarray([x2_star
    ])))
```


Lagrangian

Lagrangian

Consier the following problem

$$
\left\{\begin{array}{l}
\operatorname{Max} x^{2}+y^{2}+z^{2} \\
\text { such that } \\
x+2 y+z=1 \\
2 x-y-3 z=4
\end{array}\right.
$$

- use the method of Lagrange to solve it to determine x, y and z

Lagrangian resolution

Lagrangian resolution

We define

$$
\begin{aligned}
\mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)= & f(x, y, z)+ \\
& \alpha_{1}(x+2 y+z-1)+ \\
& \alpha_{2}(2 x-y-3 z-4)
\end{aligned}
$$

with $f(x, y, z)=x^{2}+y^{2}+z^{2}$

Lagrangian resolution

Lagrangian resolution

We need to compute the partial derivatives of \mathcal{L} for each variable :

$$
\begin{align*}
& \frac{\partial \mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)}{\partial x}=2 x+\alpha_{1}+2 \alpha_{2}=0 \tag{1}\\
& \frac{\partial \mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)}{\partial y}=2 y+2 \alpha_{1}-\alpha_{2}=0 \tag{2}\\
& \frac{\partial \mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)}{\partial z}=2 z+\alpha_{1}-3 \alpha_{2}=0 \tag{3}\\
& \frac{\partial \mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)}{\partial \alpha_{1}}=x+2 y+z-1=0 \tag{4}\\
& \frac{\partial \mathcal{L}\left(x, y, z, \alpha_{1}, \alpha_{2}\right)}{\partial \alpha_{2}}=2 x-y-3 z-4=0 \tag{5}
\end{align*}
$$

Lagrangian resolution

Lagrangian resolution

Express α_{1} from x and α_{2} in (1)

$$
\begin{align*}
& -2 x-2 \alpha_{2}=\alpha_{1} \tag{1}\\
& 2 y+2 \alpha_{1}-\alpha_{2}=0 \tag{2}\\
& 2 z+\alpha_{1}-3 \alpha_{2}=0 \tag{3}\\
& x+2 y+z-1=0 \tag{4}\\
& 2 x-y-3 z-4=0 \tag{5}
\end{align*}
$$

Lagrangian resolution

Lagrangian resolution

Then replace in (2) and (3)

$$
\begin{align*}
& -2 x-2 \alpha_{2}=\alpha_{1} \tag{1}\\
& 2 y+2\left(-2 x-2 \alpha_{2}\right)-\alpha_{2}=0 \Rightarrow 2 y-4 x-5 \alpha_{2}=0 \tag{2}\\
& 2 z+\left(-2 x-2 \alpha_{2}\right)-3 \alpha_{2}=0 \Rightarrow 2 z-2 x-5 \alpha_{2}=0 \tag{3}\\
& x+2 y+z-1=0 \tag{4}\\
& 2 x-y-3 z-4=0 \tag{5}
\end{align*}
$$

Lagrangian resolution

Lagrangian resolution

By substracting (2) and (3) we get
$-2 x+2 y-2 z=x-y+z=0$. And finally we have a system of 3 equations with 3 variables:

$$
\begin{align*}
& x-y+z=0 \\
& x+2 y+z-1=0 \\
& 2 x-y-3 z-4=0 \tag{4}
\end{align*}
$$

Lagrangian resolution

Lagrangian resolution

Then we compute (6) - (4) and obtain $y=\frac{1}{3}$.
The rest of the resolution is obvious and we should get

$$
\begin{aligned}
& x=\frac{16}{15} \\
& y=\frac{1}{3} \\
& z=\frac{-11}{15} \\
& \alpha_{1}=-\frac{52}{75} \\
& \alpha_{2}=-\frac{54}{75}
\end{aligned}
$$

Lagrangian resolution

Lagrangian resolution

In Python:

```
import numpy as np
A = np.asarray ([ [2,0,0,-1,-2], [0,2,0,-2,1],
    [0,0,2,-1,3], [1,2,1,0,0], [2,-1,-3,0,0]])
b = np.asarray ([0,0,0,1,4])
x = np.linalg.solve(A, b)
print(x)
```


University of Angers - Faculty of Sciences

angers

I FACULTÉ
DES SCIENCES Unité de formation et de recherche DÉPARTEMENT INFORMATIQUE

UA - Angers

2 Boulevard Lavoisier 49045 Angers Cedex 01
Tel: (+33) (0)2-41-73-50-72
angers

