

NVIDIA® CUDA™
Architecture

Introduction & Overview

Version 1.1

April 2009

 NVIDIA® CUDA™ Architecture Introduction & Overview

 1
 www.nvidia.com/cuda

Introduction
NVIDIA® CUDA™ technology leverages the massively parallel processing power of NVIDIA
GPUs. The CUDA architecture is a revolutionary parallel computing architecture that delivers
the performance of NVIDIA’s world-renowned graphics processor technology to general purpose
GPU Computing. Applications that run on the CUDA architecture can take advantage of an
installed base of over one hundred million CUDA-enabled GPUs in desktop and notebook
computers, professional workstations, and supercomputer clusters.

With the CUDA architecture and tools, developers are achieving dramatic speedups in fields
such as medical imaging and natural resource exploration, and creating breakthrough
applications in areas such as image recognition and real-time HD video playback and encoding.
CUDA enables this unprecedented performance via standard APIs such as the soon to be
released OpenCL™ and DirectX® Compute, and high level programming languages such as
C/C++, Fortran, Java, Python, and the Microsoft .NET Framework.

The CUDA Architecture
The CUDA Architecture consists of several components, in the green boxes below:

1. Parallel compute engines inside NVIDIA GPUs
2. OS kernel-level support for hardware initialization, configuration, etc.
3. User-mode driver, which provides a device-level API for developers
4. PTX instruction set architecture (ISA) for parallel computing kernels and functions

CUDA Driver

CUDA Parallel Compute Engines
inside NVIDIA GPUs

CUDA Support in OS Kernel

OpenCL
Driver

Applications
Using OpenCL

OpenCL C
Compute Kernels

Applications
Using the

CUDA Driver API

C for CUDA
Compute Kernels

C Runtime
for CUDA

Applications
Using C, C++, Fortran,

Java, Python, ...

C for CUDA
Compute Functions

PTX (ISA)

DirectX
Compute

Applications
Using DirectX

HLSL
Compute Shaders

Device-level APIs Language Integration

1

2

3
4

 NVIDIA® CUDA™ Architecture Introduction & Overview

 2
 www.nvidia.com/cuda

The CUDA Software
Development Environment

The CUDA Software Development Environment provides all the tools, examples and
documentation necessary to develop applications that take advantage of the CUDA architecture.

Libraries Advanced libraries that include BLAS, FFT, and other functions
optimized for the CUDA architecture

C Runtime The C Runtime for CUDA provides support for executing standard
C functions on the GPU and allows native bindings for other high-level
languages such as Fortran, Java, and Python

Tools NVIDIA C Compiler (nvcc), CUDA Debugger (cudagdb),
CUDA Visual Profiler (cudaprof), and other helpful tools

Documentation Includes the CUDA Programming Guide, API specifications, and other
helpful documentation

Samples SDK code samples and documentation that demonstrate best practices
for a wide variety GPU Computing algorithms and applications

The CUDA Software Development Environment supports two different programming interfaces:

1. A device-level programming interface, in which the application uses DirectX Compute,
OpenCL or the CUDA Driver API directly to configure the GPU, launch compute kernels,
and read back results.

2. A language integration programming interface, in which an application uses the C
Runtime for CUDA and developers use a small set of extensions to indicate which
compute functions should be performed on the GPU instead of the CPU.

When using the device-level programming interface, developers write compute kernels in
separate files using the kernel language supported by their API of choice. DirectX Compute
kernels (aka “compute shaders”) are written in HLSL. OpenCL kernels are written in a C-like
language called “OpenCL C”. The CUDA Driver API accepts kernels written in C or PTX
assembly.

When using the language integration programming interface, developers write compute functions
in C and the C Runtime for CUDA automatically handles setting up the GPU and executing the
compute functions. This programming interface enables developers to take advantage of native
support for high-level languages such as C, C++, Fortran, Java, Python, and more (see below),
reducing code complexity and development costs through type integration and code integration:

• Type integration allows standard types as well as vector types and user-defined types
(including structs) to be used seamlessly across functions that are executed on the CPU
and functions that are executed on the GPU.

• Code integration allows the same function to be called from functions that will be
executed on the CPU and functions that will be executed on the GPU.

 NVIDIA® CUDA™ Architecture Introduction & Overview

 3
 www.nvidia.com/cuda

When necessary to distinguish functions that will be executed on the CPU from those that will be
executed on the GPU, the term C for CUDA is used to describe the small set of extensions that
allow developers to specify which functions will be executed on the GPU, how GPU memory will
be used, and how the parallel processing capabilities of the GPU will be used by the application.

CUDA Adoption
First introduced in March 2007, and with over 100 million CUDA-enabled GPUs sold to date,
thousands of software developers are already using the free CUDA software development tools
to solve problems in a variety of professional and home applications – from video and image
processing and physics simulations, to oil and gas exploration, product design, medical imaging,
and scientific research.

Applications written in C and C++ can use the C Runtime for CUDA directly. Applications written
in other languages can access the runtime via native method bindings, and there are several
projects that enable developers to use the CUDA architecture this way, including:

Fortran:
o Fortran wrapper for CUDA – http://www.nvidia.com/object/cuda_programming_tools.html
o FLAGON Fortran 95 library for GPU Numerics – http://flagon.wiki.sourceforge.net/
o PGI Fortran to CUDA compiler – http://www.pgroup.com/resources/accel.htm

Java:
o JaCuda – http://jacuda.wiki.sourceforge.net
o Bindings for CUDA BLAS and FFT libs – http://javagl.de/index.html

Python:
o PyCUDA Python wrapper – http://mathema.tician.de/software/pycuda

.NET languages:
o CUDA.NET – http://www.gass-ltd.co.il/en/products/cuda.net

Resources for other languages:
o SWIG – http://www.swig.org (generates interfaces to C/C++ for dozens of languages)

Developers can take advantage of great performance on the CUDA architecture today using rich
APIs and a variety of high-level languages on 32-bit and 64-bit versions of Linux, MacOS, and
Windows.

For more information about GPU Computing and the CUDA architecture, please visit www.nvidia.com/cuda.

http://www.nvidia.com/object/cuda_programming_tools.html
http://flagon.wiki.sourceforge.net/
http://www.pgroup.com/resources/accel.htm
http://jacuda.wiki.sourceforge.net/
http://javagl.de/index.html
http://mathema.tician.de/software/pycuda
http://www.gass-ltd.co.il/en/products/cuda.net
http://www.swig.org/
http://www.nvidia.com/cuda

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, and GeForce are trademarks or registered trademarks of NVIDIA
Corporation. OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc. DirectX is a
registered trademark of Microsoft Corporation. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2009 by NVIDIA Corporation. All rights reserved.

	Introduction
	The CUDA Architecture
	The CUDA Software Development Environment
	CUDA Adoption

