
From (Quantified) Boolean Formulae

to Answer Set Programming

Igor Stéphan Benoit Da Mota
Pascal Nicolas

LERIA, University of Angers,
2 boulevard Lavoisier, 49045, Angers, France

Abstract

We propose in this article a translation from Quantified Boolean For-
mulae to Answer Set Programming. The computation of a solution of a
Quantified Boolean Formula is then equivalent to the computation of a
stable model for a normal logic program. The case of unquantified Boolean
formulae is also considered since it is equivalent to the case of Quantified
Boolean Formulae with only existential quantifiers.

1 Introduction

The problem of satisfiability of a Boolean or propositional formula (SAT) is
a combinatorial problem known as the canonical problem of the NP-complete
complexity class. Many decision procedures have been proposed, mainly for
the conjunctive normal form (CNF) [22, 26, 9]. Some recent works show that
the CNF transformation seems to disrupt too much the original structure of
the problem [36]. However, there exist only few implementations of solvers for
non-CNF SAT formulae [36, 19, 24, 13].

In the same way, the problem of validity of quantified Boolean formulae
(QBF) [34] is a combinatorial problem but with PSPACE-complete complexity.
SAT problem is equivalent to QBF problem with only existentially quantified
variables. Most of the decision procedures for QBF treat only the restriction to
prenex CNF formulae since they are extensions of SAT decision procedures [30,
17, 7, 21, 5, 31, 4]. For QBF, the impact of the transformation in prenex CNF
formulae seems even larger [2]. As for SAT solvers, there exist very few QBF
solvers for (non prenex) non-CNF formulae [3, 2, 38, 12, 37].

In both cases (SAT or QBF), the encoding of combinatorial problems, or
more generally knowledge representation in artificial intelligence, are usually
natural, direct and compact when an unrestricted syntax is allowed. That is
why in this article we propose to deal with satisfiability for non CNF (quantified)
Boolean formulae.

Answer Set Programming (ASP) is a formalism of non monotonic logic pro-
gramming appropriated to represent and solve different combinatorial problems.
Many decision procedures for ASP have been proposed and have been developed
in different tools which have proved their efficiency and their robustness on large
problems.

A polynomial translation from SAT to ASP has already been proposed but
only for CNF formulae [27] or a particular case [18]. In this article, we formalize
a translation that can be applied to every kind of propositional formula and then,
we extend it to quantified Boolean formulae. We want to demonstrate by this
work that the paradigm of answer set programming (ASP, see subsection 2.2)
is sufficiently expressive to represent quantified Boolean formulae (QBF, see
subsection 2.1). To reach our goal, we first demonstrate in section 3 that the
representation of the satisfiability problem for non-CNF formulae is possible
in ASP. Then, in the section 4, we extend the principle to quantified Boolean
formulae. We complete this study in section 5 by presenting the tools that we
have developped to practically realize our translations from SAT or QBF to ASP.
Furthermore, we give some experimental results illustrating that the best ASP
solvers may be used to compute the models of (quantified) Boolean formulae in
an arbitrary syntax and not just in conjunctive normal form which is the case for
most of the available QBF solvers. The section 6 concludes our work by relating
it to some others and discussing some points about efficiency. The proofs of all
theoretical results enonced in our work are grouped in the special section 7.
But first, we start with a section that introduces the necessary materials to
understand this work.

2 Preliminaries

The aim of the two following subsections is to recall the formal definitions nec-
essary for the understanding of our work.

2.1 (Quantified) Boolean Formulae

The Boolean values are denoted with t and f , the set of Boolean values is denoted
with BOOL and the set of Boolean functions (i.e. functions from BOOLn to
BOOL) is denoted with F . The set of propositional symbols (or variables) is
denoted with V. The symbols > and ⊥ are the propositional constants. The
symbol ∧ is used for conjunction, ∨ for disjunction, ¬ for negation, → for
implication, ↔ for equivalence and ⊕ for xor (O = {∧,∨,→,↔,⊕}). A literal
is a propositional variable or the negation of a propositional variable. The set
of literals is denoted with L. The set PROP of propositional formulae (called
also Boolean formulae) is inductively defined as follows: every propositional
symbol (constant or variable) is an element of PROP ; if F is an element of
PROP then ¬F is an element of PROP ; if F and G are elements of PROP
and ∗ is an element of O then (F ∗ G) is an element of PROP . The symbol
∃ is used for existential quantification and ∀ for universal quantification (q is

2

used in place of ∃ and ∀). The set of quantified Boolean formula (QBFs) is
also defined by induction as follows: every Boolean formula is also a quantified
Boolean formula; if F is a QBF and x is a propositional variable then (∃x F)
and (∀x F) are QBF. It is assumed that distinct quantifiers bind occurrences
of distinct variables. The set of variables or symbols of a formula F is denoted
with V(F). A substitution is a function from the set of variables to the set of
(quantified) Boolean formulae. We define a substitution of x by F in G, denoted
with G[x← F], as the formula obtained by replacing in G all the occurrences1

of variable x by the formula F . A binder Q is a string q1x1 . . . qnxn with
x1, . . . , xn distinct variables and q1, . . . , qn quantifiers. The function Q from
the set of variables of a binder to {∃,∀} associates to a variable its quantifier
in the binder Q. A QBF QF is in prenex form if it is constituted of a binder
and a Boolean formula called the matrix. A QBF QF is in conjunctive normal
form (CNF) if F is itself in conjunctive normal form (i.e. a conjunction of
disjunctions of literals). In the following, we only deal with prenex QBFs. We
define an occurrence o ∈ {0, 1}∗ of a formula in another one as follows: ε is the
occurrence of Σ in itself; if o is an occurrence of σ in Σ0 then 0.o is an occurrence
of σ in ¬Σ0; if o is an occurrence of σ in Σ0 then 0.o is an occurrence of σ in
(Σ0 ∗ Σ1), ∗ ∈ O and σ is a sub-formula of Σ0; if o is an occurrence of σ in Σ1

then 1.o is an occurrence of σ in (Σ0 ∗Σ1), ∗ ∈ O and σ is a sub-formula of Σ1.
As usual ε.o is simplified in o.

Semantics of all the Boolean symbols is defined in standard way. A valuation
(or Boolean interpretation) is a function from the set of variables to BOOL.
Propositional satisfaction is denoted with |= and logical equivalence is denoted
with ≡. A model (i.e. a valuation satisfying a formula) is denoted with a set
of literals; for example, the valuation ν defined by ν(x) = t, ν(y) = f and
ν(z) = t and which satisfies the formula ((x∨y)↔z) is denoted with {x,¬y, z}.
The semantics of QBF is defined as follows: for every Boolean variable y and
QBF F , (∃y F) = (F [y ← >]∨F [y ← ⊥]) and (∀y F) = (F [y ← >]∧F [y ← ⊥]).
A QBF F is valid if F ≡ >. If y is an existentially quantified variable preceeded
by the universally quantified variables x1, . . . , xn we denote ŷx1,...,xn

its Skolem
function from BOOLn to BOOL. A model for a QBF F is a sequence s of
satisfying Skolem functions for F (denoted with s |= F). For example, the
QBF ∃y∃x∀z((x∨y)↔z) is not valid but the QBF ∀z∃y∃x((x∨y)↔z) is valid
and its possible sequence of satisfying Skolem functions is ŷz(t) = t, ŷz(f) = f ,
x̂z(t) = f and x̂z(f) = f2. Skolem functions are sometimes represented by
policies [8] or strategies [6] which clarify them by trees; for example, the term
{z 7→ y;¬x,¬z 7→ ¬y;¬x} is a valid policy or winning strategy corresponding to
the Skolem functions x̂ and ŷ. A (Boolean) model of an unquantified Boolean
formula corresponds exactly to a (QBF) model of its existential closure; for
example for the QBF ∃y∃x∃z((x∨y)↔z), the Skolem functions x̂ = t, ŷ = f
and ẑ = t correspond to the Boolean model ν(x) = t, ν(y) = f and ν(z) = t for
the propositional formula ((x∨y)↔z). A QBF is valid if and only if there exists a

1since all the variables are different
2For every b ∈ BOOL, the valuation ν(z) = b, ν(x) = x̂z(b), ν(y) = ŷz(b) is a (Boolean)

model of ((x∨y)↔z).

3

sequence of satisfying Skolem functions. We recall that the SAT problem which
decides if a Boolean formula is satisfiable or not is the canonical problem of the
NP-complete class and the QBF problem which decides if a quantified Boolean
formula is valid or not is the canonical problem for the PSPACE-complete class.

2.2 Answer Set Programming

Since few years, Answer Set Programming (ASP) is a very active research field
involved in knowledge representation, non monotonic reasoning, logic program-
ming and combinatorial problem resolution. In a fully declarative manner, ASP
can represent a problem with a logic program of whose semantics defines a set of
answers (the models of the program) encoding the solutions of a given problem.
Under the generic term of ASP, many syntactic and semantic variants have been
defined. In this work we use the original stable model semantics [16] for normal
logic programs.

A normal logic program3 is a finite set of rules like

(c← a1, . . . , an, not b1, . . . , not bm.)

n ≥ 0,m ≥ 0 where c, a1, . . . , an, b1, . . . , bm are atoms all gathered in the set
A; P represents the set of all programs. For a rule r, we note head(r) = c its
head, body+(r) = {a1, . . . , an} its positive body and body−(r) = {b1, . . . , bm}
its negative body. The Gelfond-Lifschitz reduct of a program P by an atom set
X is the program PX = {(head(r) ← body+(r).) | body−(r) ∩ X = ∅}. Since
it has no default negation, such a program is definite and then it has a unique
minimal Herbrand model denoted with Cn(P). By definition, a stable model of
P is an atom set S ⊆ A such that S = Cn(PS). Let us note that a program may
have no, one or many stable models. For instance, {(a.), (b ← a, not d.), (c ←
a, not b.)} has the unique stable model {a, b}, {(a ← not b.), (b ← not a.)} has
two stable models {a} and {b} and {(a.), (b← a, not d.), (d← b.)} has no stable
model at all and is said to be inconsistent.

To determine if a program has, or not, a stable model is an NP-complete
problem, and then the relation between ASP and the canonical NP-complete
problem, SAT, has already been studied. For instance, we recall here the ap-
proach introduced in [27] in the case of propositional formulae given in CNF.
Let Σ be a clause set. The translation of the formula produces a program LP (Σ)
containing rules (na ← not a.) and (a ← not na.) for every atom a occurring
in Σ. For every clause in Σ, a new atom c is created and the rule (← not c.)4

is added to LP (Σ). For every literal l in this clause, the rule (c ← a.) if l is
an atom a or the rule (c ← na.) if l is the negation of an atom a, is added to
LP (Σ). In this way, Σ has a propositional model if and only if LP (Σ) has a
stable model. The reader can observe that the first rule pairs in LP (Σ) allow
one to generate all possible interpretations for Σ and rules whose head is c per-
mit to infer c if the interpretation satisfies the corresponding clause. Lastly, for

3For sake of simplicity we use program in the sequel.
4Such a headless rule is called a constraint and is given for a rule like (bug ← not c, not bug.)

where bug is a new symbol.

4

every clause, constraints forbid all sets not containing c (that are not models
of Σ) to be a stable model. The first part of our contribution is an extension
of this approach to all propositional formulae without syntactic restriction (like
CNF) and it is described in the next section.

3 From a Boolean Formula to a Normal Logic
Program

We propose a (polynomial) translation of every Boolean formula into a normal
logic program and prove that a formula is satisfiable if and only if the program,
obtained by this translation, has a stable model.

Our result is not only an existence result but it gives the correspondence
between the (Boolean) models of the formula and the stable models of the
obtained program. It allows ASP solvers to be used as a tool to solve SAT
problems without any restriction on formulae (as CNF). The following definition
describes the π and π−1 functions which associate a set of literals of a formula
to a set of atoms of a program and reciprocally.

Definition 1 (π and π−1 functions). Let π : 2L → 2A be a function such that,
for every L ∈ 2L,

π(L) = {x | x ∈ L} ∪ {nx | ¬x ∈ L}.

Let π−1 : 2A × PROP → 2L be a function such that for every A ∈ 2A and
every Σ ∈ PROP ,

π−1(A,Σ) = {x | x ∈ A, x ∈ V(Σ)} ∪ {¬x | nx ∈ A, x ∈ V(Σ)}.

The following definition describes the PQ function which generates from a
set of propositional variables a program whose stable models are in bijection
with all the possible valuations of the variables.

Definition 2 (PQ function). Let V be a set of variables, PQ : 2V → P be a
function such that

PQ(V) =
⋃
x∈V

{
(x← not nx.), (nx← not x.)

}
Theorem 1. Let Σ be a propositional formula and ν be a set of literals. ν is a
valuation of V(Σ) if and only if PQ(V(Σ)) has a stable model π(ν).

Example 1. Let F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))) be a propositional
formula. V(F) = {a, b, c, d} and

PQ(V(F)) =


(a← not na.), (na← not a.),
(b← not nb.), (nb← not b.),
(c← not nc.), (nc← not c.),
(d← not nd.), (nd← not d.)


5

For example, the set of atoms m = {na, b, nc, d} is a stable model of the
normal logic program PQ(V(F)) and π−1(m,F) = {¬a, b,¬c, d} is a valuation
of V(F).

The (Boolean) models of a propositional formula are valuations satisfying
the constraints linked to the operators constituting the formula. To obtain a
program corresponding to the formula, we add to PQ function another function
which translates those constraints (or sub-formulae). The chosen method intro-
duces for every operator instances of the formula a new atom which represents
the results of the operator on its arguments.

Definition 3 (P translation function). Let Σ, Σ0 and Σ1 be three propositional
formulae, x a propositional variable and o an occurrence. Let P : PROP ×
{0, 1}∗ → P be a function defined by induction as follows:

if Σ = x then P (Σ, o) = {(so ← x.)}
if Σ = ¬Σ0 then P (Σ, o) = {(so ← not so.0.)} ∪ P (Σ0, o.0)
if Σ = (Σ0∧Σ1) then P (Σ, o) = {(so ← so.0, so.1.)} ∪ P (Σ0, o.0) ∪ P (Σ1, o.1)
if Σ = (Σ0∨Σ1) then P (Σ, o) = {(so ← so.0.), (so ← so.1.)}

∪P (Σ0, o.0) ∪ P (Σ1, o.1)
if Σ = (Σ0→Σ1) then P (Σ, o) = {(so ← not so.0.), (so ← so.1.)}

∪P (Σ0, o.0) ∪ P (Σ1, o.1)
if Σ = (Σ0↔Σ1) then P (Σ, o) = {(so ← so.0, so.1.), (so ← not so.0, not so.1.)}

∪P (Σ0, o.0) ∪ P (Σ1, o.1)
if Σ = (Σ0⊕Σ1) then P (Σ, o) = {(so ← so.0, not so.1.), (so ← not so.0, so.1.)}

∪P (Σ0, o.0) ∪ P (Σ1, o.1)

The translation of an initial formula Σ is given by P (Σ, ε).

Example 2 (Example 1 continued). For the propositional formula
F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d)))))

P (F, ε) =

(sε ← s0, s1.), (s0 ← s02 .), (s0 ← s0.1.), (s02 ← c.),
(s0.1 ← b.), (s1 ← not s1.0.), (s1 ← s12 .), (s1.0 ← b.),
(s12 ← s12.0, s13 .), (s12.0 ← not s12.02 .), (s12.0 ← s12.0.1.),
(s12.02 ← c.), (s12.0.1 ← d.), (s13 ← s13.0.), (s13 ← s14 .),
(s13.0 ← c.), (s14 ← s14.0, s15 .), (s14 ← not s14.0, not s15 .),
(s14.0 ← a.), (s15 ← not s15.0.), (s15.0 ← d.)


From the two above definitions, we introduce in the following definition the

function Π which generates from a propositional formula a normal logic program.

Definition 4 (Π function). Let Σ be a propositional formula. Let Π : PROP →
P be a function such that Π(Σ) = PQ(V(Σ)) ∪ P (Σ, ε).

The following lemma shows that for a formula Σ, the program Π(Σ) does
not eliminate nor adds stable model to the program PQ(Σ): it only adds to the
stable models of PQ(Σ) some atoms so.

6

Lemma 1. Let Σ be a propositional formula. The set of literals ν is a valuation
for V(Σ) if and only if there exists a (unique) stable model m of Π(Σ) such that
π(ν) ⊆ m.

The following lemma shows that every intermediate atom so introduced to
represent the result of a sub-formula is in the stable model if and only if its
valuation is t.

Lemma 2. Let Σinit be a propositional formula, Σ be a sub-formula of Σinit
and m be a stable model of PQ(V(Σinit))∪P (Σ, ε). For every occurrence o of Σ
in Σinit

so ∈ m if and only if π−1(m,Σ) |= Σ.

Theorem 2. Let Σ be a propositional formula and m a stable model of Π(Σ),

sε ∈ m if and only if π−1(m,Σ) |= Σ.

The result follows from the previous lemma 2 with Σ = Σinit.
To obtain only stable models containing (or not) the atom sε, we extend

the definition of function Π to Π+ (Π−) which includes in the program a new
constraint.

Definition 5 (Π+ and Π− functions). Let Σ a propositional formula. Let Π+

and Π− : PROP → P be two functions such that:

Π+(Σ) = Π(Σ) ∪ {(← not sε.)}
Π−(Σ) = Π(Σ) ∪ {(← sε.)}

The following corollary to the previous Theorem 2 establishes the wished
result: the equivalence between the existence of a stable model of the program
and the satisfiability of the propositional formula. This result is not only an
existence result : to every stable model of a program corresponds a (Boolean)
model of the formula and reciprocally.

Corollary 1. Let Σ be a propositional formula, the normal logic program Π+(Σ)
has a stable model if and only if Σ is satisfiable. Moreover, if m is a stable model
of Π+(Σ) then π−1(m,Σ) |= Σ ; if ν is a (Boolean) model for Σ then there exists
a (unique) stable model m of Π+(Σ) such that π(ν) ⊆ m.

Example 3 (Example 2 continued). The propositional formula F has eight
models, for example : ν1 = {¬a, c, d,¬b} |= F. Π(F) has sixty-four stable models
with eight {mi}1≤i≤8 ones which contain sε ; these eight stable models are such
that π−1(mi, F) |= F, 1 ≤ i ≤ 8 ; for example the stable model

m1 = {na, nb, c, d} ∪ {sε, s0, s1, s02 , s12 , s12.0, s12.02 , s12.0.1, s13 , s13.0, s14}

is such that π−1(m1, F) = {¬a,¬b, c, d} = ν1.

7

The translation Π+ allows one to decide not only if a propositional formula
is satisfiable or not but also by the corollary 1 if a formula is a tautology or
not indirectly by exhaustively computing the models (or their number). The
translation Π− allows to decide directly if a propositional formula is a tautology
or not as it is expressed in the following corollary of the theorem 2.

Corollary 2. Let Σ be a propositional formula, the normal logic program Π−(Σ)
has no stable model if and only if Σ is a tautology. Moreover, if m is a stable
model of Π−(Σ) then π−1(m,Σ) falsifies the formula Σ ; if ν falsifies the formula
Σ then there exists a (unique) stable model m of Π−(Σ) such that π(ν) ⊆ m.

Let us remark that if the formula Σ contains n different propositional vari-
ables, m occurrences of these variables and p operators then Π(Σ) contains at
most 2n + m + 2p rules. So, our translation Π is polynomial with respect the
length of the given formula. Moreover, as introduced in [27] we can say that Π is
modular in the sense that the translation of a formula can be locally computed.
Indeed, let us suppose that we have already computed the program Π(Σ) and
decide to deal with a new formula as (Σ ∗ Σ′), ∗ ∈ O. Then, we just have to
compute Π(Σ′), join it with Π(Σ) and add the one or two rules necessary to
encode the operator ∗ to obtain the whole desired translation5. The important
point is that we do not have to recompute anything else for Σ.

It is also obvious that the translation is simple and may be optimized to
decrease the number of introduced symbols and rules. We can see first that
every occurrence of a variable introduces a new symbol (and a new rule) in
the base cases of induction : a first optimization modifies those two base cases
and mixes them with the induction cases. We can also increase the number
of connectors and consider the ”nand” (not and), ”nor” (not or) and ”non
implication” connectors (the negation of the equivalence is the xor). With this
second modification combined with the previous one, negation disappears from
the translated connectors ; considered as a formal system the translation is very
closed to the semantic tableaux of [32].

Example 4 (Example 2 continued). The program P (F, ε) may be optimised in (sε ← s0, s1.), (s0 ← c.), (s0 ← b.), (s1 ← not b.), (s1 ← s12 .),
(s12 ← s12.0, s13 .), (s12.0 ← not c.), (s12.0 ← d.), (s13 ← c.),
(s13 ← s14 .), (s14 ← a, nd.), (s14 ← not a, not nd.)


4 From Quantified Boolean Formulae to Normal

Logic Programming

We have described in the previous section the translation of a propositional for-
mula to a normal logic program such as to compute the stable models of the pro-
gram corresponds to compute the models of the (Boolean) formula. We extend
these results to the quantified Boolean formulae (QBF) thanks to a translation

5taking into account that we have to use a new symbol s′ 6= s in Π(Σ′)

8

from a QBF to a normal logic program such as to compute the stable models of
the program corresponds to compute the models (satisfying Skolem functions)
of the QBF. The simplest way to extend results of the previous section is to
apply the semantics of the universal quantifier which makes this quantification
explicit as a conjunction: (∀x Σ) = (Σ[x← >]∧Σ[x← ⊥]) and then to apply
on this formula, which only contains existentially quantified variables, the re-
sult obtained in the propositional case (this technique is very close to [5]). The
obvious price of this method is the exponential increase of the obtained propo-
sitional formula and then of the normal logic program. The other price is the
exponential increase of the number of intermediate symbols introduced during
the translation of the connectors. These two exponential increasings may be
avoided by computing a first order normal logic program. Unfortunately, a final
exponential increasing of the actual program treated by the ASP solvers cannot
be avoided since the actual ASP solvers are propositional ones.

The technique we present here is inspired by the Skolemization and is close
to the propositional symbolic skolemization of [4] : the existentially quantified
variables are replaced by functions whose arguments are the universally quanti-
fied variables which precede them in the binder. Those functions are converted
into predicate symbols in the normal logic program. Two new symbols 0 and
1 are introduced and an interpretation function i from {0, 1} to BOOL such
that i(0) = f and i(1) = t. Definitions of π and π−1 are extended to Skolem
functions and to n-ary predicates.

Definition 6 (π∀ and π−1
∀ functions for QBF). Let π∀ : 2F → 2A be a function

such that, for every sk ∈ 2F ,

π∀(sk) =
{x(i−1(u1), . . . , i−1(un)) | x̂ ∈ sk, u1, . . . , un ∈ BOOL, x̂(u1, . . . , un) = t}
∪ {nx(i−1(u1), . . . , i−1(un)) | x̂ ∈ sk, u1, . . . , un ∈ BOOL, x̂(u1, . . . , un) = f}

Let π−1
∀ : 2A×QBF → 2F be a function such that, for every A ∈ 2A and every

Σ ∈ QBF ,

π−1
∀ (A,Σ) =
{x̂(i(U1), . . . , i(Un)) = t | x(U1, . . . , Un) ∈ A,Q(x) = ∃, U1, . . . , Un ∈ {0, 1}}
∪ {x̂(i(U1), . . . , i(Un)) = f | nx(U1, . . . , Un) ∈ A,Q(x) = ∃, U1, . . . , Un ∈ {0, 1}}

In the following definition, translation functions P ∀Q and P ∀ have an argu-
ment S (for “Skolem”) which associates to every existentially quantified variable
the number of universally quantified variables which precede it (and then the
arity of the function and of the predicate symbol). The translation function P ∀Q
corresponds to the treatment of the quantifiers: the existential quantification is
treated in a similar way to the propositional case since the universal quantifi-
cation introduces a rule expliciting the constant 1 as interpreted to t and the
semantics of the quantifier as a conjunction (the interpretation of the constant
0 as f is not explicited since it is not useful : this fact illustrates the asymmetry
in the non monotonic logic program, that deals with negation by the absence

9

of something instead of its explicit representation). The intermediate symbols
introduced in the propositional case are considered for the QBF case as exis-
tentially quantified variables coming from the decomposition by introduction of
existentially quantified variables as in [33]. As existentially quantified variables,
they are also skolemized : every intermediate symbol has as many arguments
as universally quantified variables in the QBF.

Definition 7 (P ∀Q, P ∀ and Π∀ functions). Let Σ, Σ0 and Σ1 be QBF, V a set
of variables, n and N∀ in N, o an occurrence and S a function from V to N.
Let P ∀Q : QBF × N× N× (V → N)→ P be a function such that

if Σ = (∃x Σ0) then P ∀Q(Σ, N∀, n, S) = P ∀Q(Σ0, N∀, n, S ∪ {(x 7→ n)})
∪{(x(U1, . . . , Un)← not nx(U1, . . . , Un).),

(nx(U1, . . . , Un)← not x(U1, . . . , Un).)}
if Σ = (∀x Σ0) then P ∀Q(Σ, N∀, n, S) = P ∀Q(Σ0, N∀, n+ 1, S)
∪{(x(U1, . . . , UN∀)← Un+1 = 1.)}
∪{(s0n(U1, . . . , Un)← s0n+1(U1, . . . , Un, 0), s0n+1(U1, . . . , Un, 1).)}

if Σ is a propositional formula then
P ∀Q(Σ, N∀, n, S) = P ∀(Σ, 0N∀ , N∀, S)

Let P ∀ : PROP × {0, 1}∗ × N× (V → N)→ P be a function such that

Existentially quantified variable considered as a formula
if Σ = x and (x 7→ n) ∈ S then P ∀(Σ, o,N∀, S) =
{(so(U1, . . . , UN∀)← x(U1, . . . , Un).)}

Universally quantified variable considered as a formula
if Σ = x and (x 7→ n) 6∈ S then P ∀(Σ, o,N∀, S) =
{(so(U1, . . . , UN∀)← x(U1, . . . , UN∀).)}

if Σ = ¬Σ0 then P ∀(Σ, o,N∀, S) ={
(so(U1, . . . , UN∀)← not so.0(U1, . . . , UN∀).)

}
∪P ∀(Σ0, o.0, N∀, S)

if Σ = (Σ0∧Σ1) then P ∀(Σ, o,N∀, S) =
{(so(U1, . . . , UN∀)← so.0(U1, . . . , UN∀), so.1(U1, . . . , UN∀).)}
∪P ∀(Σ0, o.0, N∀, S) ∪ P ∀(Σ1, o.1, N∀, S)

if Σ = (Σ0∨Σ1) then P ∀(Σ, o,N∀, S) ={
(so(U1, . . . , UN∀)← so.0(U1, . . . , UN∀).),
(so(U1, . . . , UN∀)← so.1(U1, . . . , UN∀).)

}
∪P ∀(Σ0, o.0, N∀, S) ∪ P ∀(Σ1, o.1, N∀, S)

10

if Σ = (Σ0→Σ1) then P ∀(Σ, o,N∀, S) ={
(so(U1, . . . , UN∀)← not so.0(U1, . . . , UN∀).),
(so(U1, . . . , UN∀)← so.1(U1, . . . , UN∀).)

}
∪P ∀(Σ0, o.0, N∀, S) ∪ P ∀(Σ1, o.1, N∀, S)

if Σ = (Σ0↔Σ1) then P ∀(Σ, o,N∀, S) ={
(so(U1, . . . , UN∀)← so.0(U1, . . . , UN∀), so.1(U1, . . . , UN∀).),
(so(U1, . . . , UN∀)← not so.0(U1, . . . , UN∀), not so.1(U1, . . . , UN∀).)

}
∪P ∀(Σ0, o.0, N∀, S) ∪ P ∀(Σ1, o.1, N∀, S)

if Σ = (Σ0⊕Σ1) then P ∀(Σ, o,N∀, S) ={
(so(U1, . . . , UN∀)← so.0(U1, . . . , UN∀), not so.1(U1, . . . , UN∀).),
(so(U1, . . . , UN∀)← not so.0(U1, . . . , UN∀), so.1(U1, . . . , UN∀).)

}
∪P ∀(Σ0, o.0, N∀, S) ∪ P ∀(Σ1, o.1, N∀, S)

Let Σ be a QBF and N∀ the number of universally quantified variables of Σ.
Let Π∀(Σ) : QBF → P be a function such that Π∀(Σ) = P ∀(Σ, N∀, 0, ∅).

By construction the translation is polynomial.

Example 5 (Example 3 continued). Let F∃a∀b∃c∀d = ∃a∀b∃c∀dF be a QBF
with F = ((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))). We obtain

Π∀(F∃a∀b∃c∀d) = P∃a∀b∃c∀d∪
(a← not na.), (na← not a.),
(b(U1, U2)← U1 = 1.), (sε ← s0(0), s0(1).),
(c(U1)← not nc(U1).), (nc(U1)← not c(U1).),
(d(U1, U2)← U2 = 1.), (s0(U1)← s02(U1, 0), s02(U1, 1).)


with P∃a∀b∃c∀d equal to P (F, 02) in which all so (resp. b, c and d) are replaced
by so(U1, U2) (resp. b(U1, U2), c(U1) and d(U1, U2)) and with intermediary call
P ∀(F, 2, 2, {(a 7→ 0), (c 7→ 1)}).

Let F∀a∃b∀c∃d = ∀a∃b∀c∃dF be a QBF. We obtain

Π∀(F∀a∃b∀c∃d) = P∀a∃b∀c∃d∪
(a(U1, U2)← U1 = 1.), (sε ← s0(0), s0(1).),
(b(U1)← not nb(U1).), (nb(U1)← not b(U1).),
(c(U1, U2)← U2 = 1.), (s0(U1)← s02(U1, 0), s02(U1, 1).),
(d(U1, U2)← not nd(U1, U2).), (nd(U1, U2)← not d(U1, U2).)


with P∀a∃b∀c∃d equal to P (F, 02) in which all so (resp. a, b, c and d) are re-
placed by so(U1, U2) (resp. a(U1, U2), b(U1), c(U1, U2) and d(U1, U2)) and with
intermediary call P ∀(F, 2, 2, {(b 7→ 1), (d 7→ 2)}).

Let the reader note that the obtained program is a first order one in which
only two constants (0 and 1) occur. So, as usual in ASP, this program has to be
considered as a (exponential) compressed version of the propositional program
in which every variable is replaced by 0 or 1.

11

Theorem 3. Let Σ be a QBF and m be a stable model of Π∀(Σ).

sε ∈ m if and only if Σ is valid.

Example 6 (Example 5 continued). The QBF F∃a∀b∃c∀d = ∃a∀b∃c∀dF has no
satisfying Skolem function and Π∀(F∃a∀b∃c∀d) has no stable model.

As in the SAT case, the function Π is extended to the function Π+ (resp.
Π−) to restrict the stable models corresponding to the (Boolean) models (resp.
corresponding to the valuations which falsify the formula). We define the func-
tion Π∀+ (resp. Π∀−) as an extension of the function Π∀ to restrict the Skolem
functions to those which satisfy (resp. not satisfy) the QBF.

Definition 8 (Π+
∀ and Π−∀ functions). Let Σ be a QBF. Let Π+

∀ and Π−∀ :
QBF → P be functions such that

Π+
∀ (Σ) = Π∀(Σ) ∪ {(← not sε.)}

Π−∀ (Σ) = Π∀(Σ) ∪ {(← sε.)}

As for the corollary 1 of theorem 2 which computes the (Boolean) model of a
propositional formula thanks to the stable models of an associated normal logic
program, the following corollary to the theorem 3 allows one to extract from
the stable models of an associated normal logic program the Skolem functions
which satisfy a QBF.

Corollary 3. Let Σ be a QBF, the normal logic program Π+
∀ (Σ) has a stable

model if and only if Σ is valid. Moreover, if m is a stable model of Π+
∀ (Σ) then

π−1
∀ (m,Σ) is a set of Skolem functions which satisfy the QBF ; if sk is a set of

Skolem functions which satisfy Σ then there exists a (unique) stable model m of
Π+
∀ (Σ) such that π∀(sk) ⊆ m.

Example 7 (Example 6 continued). The QBF F∀a∃b∀c∃d = ∀a∃b∀c∃dF has a
(unique) set of satisfying Skolem functions:

sk =
{
b̂a(t) = t, b̂a(f) = t,
d̂ac(t, t) = t, d̂ac(t, f) = f , d̂ac(f , t) = t, d̂ac(f , f) = t

}
which corresponds to the valid policy or winning strategy

a 7→ b;
{
c 7→ d,
¬c 7→ ¬d

}
,

¬a 7→ b;
{
c 7→ d,
¬c 7→ d

}


and Π+
∀ (F∀a∃b∀c∃d) has a (unique) stable model

m =
{b(1), b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)}∪
{a(1, 0), a(1, 1), c(0, 1), c(1, 1)}∪
{sε, s0(0), s0(1), s02(0, 0), s02(1, 0), s02(0, 1), s02(1, 1)}∪{
so(A,C) | A,C ∈ {0, 1}, o ∈ {03, 02.1, 02.12, 02.12.0, 02.13}

}
∪

{s02.14(0, 0), s02.14(1, 0), s02.14(0, 1)}

12

So, we have π−1
∀ (m,F∀a∃b∀c∃d) = sk and π∀(sk) ⊆ m.

Since the symbols s and s0 represent the semantics of the universal quantifi-
cation for the variables a and c, it is necessary to all their instances to be in
the stable model. Only the atom s02.14(1, 1) is not in the stable model since it
represents the sub-formula (a↔¬d) for the variable a interpreted to t (the first
1 of s02.14(1, 1)) and the variable d interpreted to t (since the atom d(1, 1) is in
the stable model) and have to be interpreted to f .

5 Implementation

The theoretical principles exposed in previous sections have been implemented
in three different tools : edimacs2nlp, qbf2nlp, qedimacs2nlp, freely avail-
able6. These tools admit two kinds of input formats: EDIMACS format for SAT
competition 7 and QBF 1.0 format (extended with implication, equivalence and
xor) for QBF competition 8. As mentioned previously, some improvements of
our formal method have been introduced in the operational translators that we
have developed. For instance, all the theory is based on binary operators, but
in EDIMACS format we can represent n-ary operators and our tools are able
to deal with them. In example 8 we show the real ASP program for example 7
with no option (two options are possible : -lparse to hide the intermediate
symbols and -noreduce to generate a program with no optimization).

Example 8 (Example 7 continued). The generated file

bool(0). bool(1).
b(U0) :- not nb(U0),bool(U0).
nb(U0) :- not b(U0),bool(U0).
d(U0,U1) :- not nd(U0,U1),bool(U0),bool(U1).
nd(U0,U1) :- not d(U0,U1),bool(U0),bool(U1).
sigma_2(U0,U1) :- U1=1,bool(U0),bool(U1).
sigma_2(U0,U1) :- b(U0),bool(U0),bool(U1).
sigma_3(U0,U1) :- U1=0,bool(U0),bool(U1).
sigma_3(U0,U1) :- d(U0,U1),bool(U0),bool(U1).
sigma_4(U0,U1) :- U0=1,nd(U0,U1),bool(U0),bool(U1).
sigma_4(U0,U1) :- U0=0,not nd(U0,U1),bool(U0),bool(U1).
sigma_5(U0,U1) :- U1=1,bool(U0),bool(U1).
sigma_5(U0,U1) :- sigma_4(U0,U1),bool(U0),bool(U1).
sigma_6(U0,U1) :- sigma_3(U0,U1),sigma_5(U0,U1),bool(U0),bool(U1).
sigma_7(U0,U1) :- not b(U0),bool(U0),bool(U1).
sigma_7(U0,U1) :- sigma_6(U0,U1),bool(U0),bool(U1).
sigma_8(U0,U1) :- sigma_2(U0,U1),sigma_7(U0,U1),bool(U0),bool(U1).
sigma :- sigma_1(0),sigma_1(1).
sigma_1(U0) :- sigma_8(U0,0),sigma_8(U0,1),bool(U0).

6http://forge.info.univ-angers.fr/~damota/asp/en/index.php
7http://www.satcompetition.org/2005/edimacs.pdf
8http://www.qbflib.org/boole.html

13

http://forge.info.univ-angers.fr/~damota/asp/en/index.php
http://www.satcompetition.org/2005/edimacs.pdf
http://www.qbflib.org/boole.html

:- not sigma .

is the output of qbf2nlp on file in QBF 1.0 format

/forall [a] /exists [b] /forall [c] /exists [d]
((c | b) & (b -> ((c -> d) & (c | (a <-> !d)))))

for the QBF ∀a∃b∀c∃d((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))).

We want to evaluate if our approach represents an efficient alternative to
computing the (Boolean) model of a propositional formula or the satisfying
Skolem functions of a QBF. We have selected five ASP solvers: DLV [20] (July
14th, 2006), CLASP [14] (CLASP 1.0.1), noMoRe++ [1] (noMoRe++ v1.5),
smodels [28] (smodels-2.32) and ASSAT [23] (ASSAT 2.0); ASSAT has an ap-
proach inverse to ours, it computes stable models by calling an underlying SAT
solver, in this study: MiniSat [9] (MiniSat 2.0 beta). We first study the results
of our approach on propositional formulae and then on QBF.

5.1 From SAT to ASP

We have chosen to evaluate and compare our approach in propositional case on
the set of QG6 problems [25] which has the advantage to be available in CNF
format (from 1301 to 2109 variables and from 6089 to 9964 clauses) and non-
CNF format (either 252 or 324 variables and from 3532 to 7850 disjunctions or
conjunctions) ; there are 83 satisfiable instances and 173 unsatisfiable instances.
The CNF version was obtained by directly expressing the problem of classifying
quasigroups into CNF as opposed to the translation of non-clausal formulas into
CNF. We compare the run time and the percentage of successful runs of ASP
solvers on the result of our translations applied to the SAT non-CNF instances
and those of the SAT non-CNF solver SatMate [19] (SatMate.20.05.2006) the
only one which admits the file format of the set of problems QG6. We also
include in the comparison the run time and percentage of successful runs for the
SAT CNF solvers zChaff [26] (zChaff 2007.3.12.) and MiniSat. The experiments
have been realized on a 2 × Intel Xeon CPU 2.80Ghz with 2GB of memory.
Table 1 shows if the problems are satisfiable (SAT) or not (UNSAT), the number
of solved problems (NbR), the average run time in seconds (ATR) and the
average run time in seconds when the run succeeds (ATRS).

Our approach associated with the ASP solvers CLASP and ASSAT is really
efficient on this set of problems since it performs better than the SAT non-CNF
solver SatMate (dedicated to this set of problems) and zChaff (on the CNF
benchmarks) ; only MiniSat is better in number of solved problems and run
time. It is worth noting that if the time limit is set to 500 hours (instead of 1
hour), SatMate does not solve more problems but the other solvers do.

5.2 From QBF to ASP

All current ASP solvers deal with first order programs, but they use a ”front-
end”, external like Lparse [35] (Lparse 1.0.17) or GrinGo [15] (GrinGo 1.0.0) or

14

SAT CNF SAT non CNF

QG6 SAT zChaff MiniSat SatMate

NbR 83 83 83
% solved 100,00% 100,00% 100,00%
ATR 19,39 3,25 4,31
ATRS 19,39 3,25 4,31

QG6 UNSAT zChaff MiniSat SatMate

NbR 137 165 152
% solved 79,19% 95,38% 87,86%
ATR 1260,08 680,15 501,18
ATRS 645,21 538,58 73,05

ASP

QG6 SAT smodels noMoRe++ DLV CLASP ASSAT

NbR 67 83 78 83 83
% solved 80,72% 100,00% 93,98% 100,00% 100,00%
ATR 857,98 118,98 416,48 11,98 10,78
ATRS 203,17 118,98 212,40 11,98 10,78

QG6 UNSAT smodels noMoRe++ DLV CLASP ASSAT

NbR 88 77 83 154 157
% solved 50,87% 44,51% 47,98% 89,02% 90,75 %
ATR 1912,02 2067,62 1934,17 711,97 662,52
ATRS 281,58 157,12 127,86 355,66 363,15

Table 1: Experimental results for SAT.

internal for DLV. Thus, the replacement of the variables by constants (in our
case 0 and 1) called the grounding step leads to a program with an exponential
size.

We first evaluate our approach on the set of benchmarks of the QBFE-
VAL07 evaluation9 ; all the instances have an ∃∀ alternation of quantifiers and
only negation, conjunction and disjunction connectors. The result have been
obtained for a ”Core Duo T2400” with 3GB of memory. Table 2 shows the in-
stance, the number of existentially/universally quantified variables (NbV), the
run time for smodels and for CLASP, the number of choice points given by
smodels (Nb CP), the number of atoms and the number of rules of the normal
logic program grounded by Lparse.

On problems of class ”counter”, we can remark that smodels has no need
of choice point to find the solution. It clearly justifies that ASP is a good
framework to deal with the computation of solutions of QBF. It is worth noting
that when the memory is insufficient or the run time limit (1 hour) is exceeded
it is always due to the grounding step.

In [11] the authors introduce a methodology to compute answer sets of dis-
junctive logic programs 10 by means of QBF. So, by chaining their polynomial

9http://www.qbflib.org/
10programs with a disjunction in the head of rules

15

http://www.qbflib.org/

Instance NbV smodels CLASP Nb CP Nb atoms Nb rules

counter5 2 15/10 0,180 0,141 0 2 824 2 869
counter6 2 18/12 0,432 0,423 0 10 108 10 173
counter7 2 21/14 2,420 2,574 0 37 741 37 830
counter8 2 24/16 20,465 22,292 0 144 547 144 664
counter4 4 20/16 3,290 4,911 0 131 925 131 988
counter4 5 24/20 55,730 513,861 0 2 098 267 2 098 352
counter5 4 25/20 64,923 531,140 0 2 099 278 2 099 373
ring4 2 21/14 1,006 1,075 24 34 466 34 665
ring5 2 24/16 4,024 5,734 25 135 085 135 314
ring6 2 27/18 22,300 45,870 10 534 572 534 831
ring4 3 28/21 154,864 M 305 4 197 482 4 199 521
semaphore 2 21/14 1,090 1,130 5 34 967 35 156
semaphore 3 28/21 159,452 M 9 4 198 407 4 198 996
semaphore3 2 27/18 18,327 43,140 5 529 994 530 284

Table 2: Experimental results for QBFEVAL07.

translation from a disjunctive logic program to a QBF and our polynomial
translation from QBF to first order normal logic program, we obtain a com-
plete procedure to compute answer sets of disjunctive programs by means of
any answer set programming solver, even if it is not dedicated to disjunctive
programs. We have experimented this point on the strategic companie ex-
ample as it is described in [20]. We have generated 10 disjunctive programs
for each number of companies between 10 and 17. Every disjunctive program
contains 2 rules with variables. The experiments have been realized on an
Intel Pentium 4 CPU 1.40Ghz with 2GB of memory. For all these programs
the CPU time for DLV (grounding step plus computation of one model) is lower
than 0.01 second. On these disjunctive programs we have applied our transla-
tion : Table 3 shows the number of companies (NBC), the number of rules of
the disjunctive program (NBDR = 4NBC+2), the average number of first order
rules in the normal program after the 2 translations (NBNR) and the average
number of normal grounded rules after instantiation (NBGR) processed either
by Lparse or GrinGo; Table 4 reports the results of the application of Lparse
plus smodels (time spent in Lparse with its pourcentage w.r.t. total time, time
spent in CLASP with its pourcentage w.r.t. total time, total time and stan-
dard deviation σ); Table 5 reports the results of the application of GrinGo plus
smodels; Table 6 reports the results of the application of Lparse plus CLASP;
Table 7 reports the results of the application of GrinGo plus CLASP; Table 8
reports the results of the application of DLV (with its internal grounder).

6 Concluding discussion

In the first part of this work, we have generalized a translation from SAT to
ASP allowing one to use any existing ASP solver as a SAT solver for every kind
of propositional formula without syntactic restrictions like CNF as required for

16

NBC NBDR NBNR NBNGR Lparse NBNGR GrinGo

10 42 296 12637 11082
11 46 300 24214 21123
12 50 355 42922 41902
13 54 395 97781 85471
14 58 402 187719 163121
15 62 488 387631 338459
16 66 480 745502 647180
17 70 547 1510118 1313501

Table 3: Number of rules.

NBC CPU Lparse + smodels

Lparse smodels Total σ

10 0.27 (55%) 0.17 (35%) 0.49 0.11
11 0.68 (59%) 0.42 (37%) 1.15 0.30
12 1.76 (57%) 1.28 (41%) 3.10 0.87
13 6.74 (50%) 6.67 (50%) 13.46 8.76
14 18.17 (56%) 14.21 (44%) 32.43 19.57
15 74.10 (75%) 24.79 (25%) 98.95 32.46
16 248.25 (71%) 102.57 (29%) 350.87 143.24
17 1047.67 (75%) 347.04 (25%) 1394.28 373.71

Table 4: Results for Lparse + smodels.

NBC CPU GrinGo + smodels

GrinGo smodels Total σ

10 0.27 (63%) 0.11 (24%) 0.43 0.09
11 0.56 (52%) 0.47 (43%) 1.09 0.59
12 1.15 (44%) 1.42 (54%) 2.63 1.32
13 2.33 (13%) 15.78 (87%) 18.17 21.55
14 4.75 (14%) 29.83 (86%) 34.64 45.75
15 10.01 (11%) 77.85 (89%) 87.93 101.24
16 19.96 (7%) 274.56 (93%) 294.60 291.79
17 42.85 (3%) 1189.43 (97%) 1232.37 1648.32

Table 5: Results for GrinGo + smodels.

NBC CPU Lparse + CLASP

Lparse CLASP Total σ

10 0,21 (64%) 0,07 (23%) 0,33 0.06
11 0,57 (73%) 0,17 (22%) 0,72 0.27
12 1,59 (80%) 0,37 (19%) 2,00 0.23
13 6,46 (88%) 0,82 (11%) 7,35 3.69
14 17,68 (91%) 1,79 (9%) 19,52 1.75
15 77,43 (95%) 4,29 (5%) 81,78 12.50
16 265,95 (96%) 10,02 (4%) 276,03 43.53
17 1257,33 (98%) 29,71 (2%) 1287,11 255.18

Table 6: Results for Lparse + CLASP.

17

NBC CPU GrinGo + CLASP

GrinGo CLASP Total σ

10 0,30 (73%) 0,06 (15%) 0,41 0.04
11 0,56 (74%) 0,14 (18%) 0,76 0.05
12 1,16 (76%) 0,30 (20%) 1,52 0.06
13 2,42 (77%) 0,65 (21%) 3,14 0.24
14 4,93 (76%) 1,46 (23%) 6,45 0.24
15 10,28 (76%) 3,24 (24%) 13,59 0.51
16 20,68 (72%) 8,07 (28%) 28,83 0.88
17 43,50 (67%) 20,96 (33%) 64,53 2.56

Table 7: Results for GrinGo + CLASP.

NBC CPU DLV

Instantiation Model generator Total σ

10 0,26 (70%) 0,03 (8%) 0,37 0.04
11 0,54 (68%) 0,16 (20%) 0,80 0.20
12 1,19 (66%) 0,42 (23%) 1,81 0.41
13 2,70 (50%) 2,34 (43%) 5,43 4.13
14 5,44 (55%) 3,69 (37%) 9,86 4.81
15 11,96 (43%) 14,00 (51%) 27,54 25.27
16 25,04 (32%) 49,36 (64%) 77,37 43.57
17 35,73 (14%) 212,34 (85%) 250,88 188.15

Table 8: Results for DLV.

most of SAT solvers.
In a certain way, our translation deals with the input logical formula as it has

been already done by [29, 10] since we introduce a label for every subformula.
But our methodology can not be reduce to the application of such a normal form
translation followed by a conversion to a normal logic program as in [27]. For
instance, if the given formula is Σ = (a→ (b∨c)) , the normal form translations
presented in [29, 10] lead to the clause set C = {La,¬La∨¬a∨Lb∨c,¬Lb∨c∨b∨c}.
Then, applying the transformation for CNF formulas recalled in subsection 2.2
leads to a program containing five pairs of rules (x ← not nx.), (nx ← not x.)
one for each variable x ∈ C, included the new variables encoding the labels of
formulae. With our translation, we obtain a program Π(Σ) containing three
pairs of rules only those for variables occurring in the input formula Σ. In fact,
it is easy to check that chaining the two already known techniques leads to n+m
pair of rules of this type if n is the number of propositional variables and m the
number of operators occurring in the formula, when our methodology leads only
to n pairs (note that in whole generality n� m). This is an important feature
for efficiency of the resolution since for up-to-date ASP solvers each pair of such
rules induces a choice point to determine if x or nx belongs to a solution. In our
translation, the search space is not enlarged to useless variables but is limited
to the original ones.

Experiments show that our approach is realistic for non trivial problems even

18

if it does not speed up the global computation time. In fact, we knew that some
very deep studies are required to improve the performances of the better SAT
solvers available today, and the improvement of calculus performance for SAT
was not our main goal. But, establishing a clear mapping between propositional
models and stable models was the first necessary step to reach our initial goal :
solving the problem of QBF validity by using ASP paradigm.

That is why in this article we have defined (theoretically and practically) a
translation process that provides the user with a normal logic program whose
stable models encode (if they exist) the Skolem functions validating the given
QBF. The lack of various benchmarks does not allow us to realize a deep eval-
uation of the performance of our proposal. Therefore, we verify that space
complexity resulting from the grounding preprocessing in ASP is the central
problem for us and it reflects the particular nature of QBF. But, this point is
not surprising with respect to the theory of complexity. Indeed, our translation
takes a QBF and generates a normal logic program whose size is still polyno-
mial with respect to the size of the input QBF. Here we take the advantage
of the usage of variables in ASP that allows one to write programs represent-
ing in intension and in a very compact way, a knowledge base that can have
an exponential size if we represent it in extension. But, when the program is
processed by an ASP solver, the problem of exponential size, inherent to QBF,
arises again since all the available ASP solvers begin their computation by a
grounding phase in order to deal with a propositional program.

In conclusion, we can say that the theoretical concepts and the tools that
we have introduced here are new and provide QBF researchers with a practical
tool that can be useful to compute solutions, to verify solutions, to build bench-
marks,. . . For the ASP community, our work exhibits a kind of benchmarks
particularly difficult because of their size. It points out that one of the chal-
lenges for the ASP community is to be able to deal with very large programs,
maybe by escaping the grounding phase and dealing with first order programs.
If one day such a goal is reached then it would be of great interest for our
approach of QBF solving.

References

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The
nomore++ system. In Proceedings of the 5th Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’05), pages 422–426, 2005.

[2] C. Ansotegui, C. Gomes, and B. Selman. Achilles’ heel of QBF. In Proceed-
ings of the 5th National Conference on Artificial Intelligence (AAAI’05),
pages 275–281, 2005.

[3] A. Ayari and D. Basin. Qubos: Deciding quantified boolean logic using
propositional satisfiability solvers. In Proceedings of the 4th International
Conference on Formal Methods in Computer-Aided Design (FMCAD’02),
pages 187–201, 2002.

19

[4] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Proceedings
of the 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), number 3452 in LNCS, pages 285–
300. Springer, 2005.

[5] A. Biere. Resolve and expand. In Proceedings of the 7th International
Confrerence on Theory and Applications of Satisfiability Testing (SAT’04),
pages 59–70, 2004.

[6] L. Bordeaux. Boolean and interval propagation for quantified constraints.
In Proceedings of the First International Workshop on Quantification in
Constraint Programming, 2005.

[7] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algorithm
to evaluate quantified boolean formulae and its experimental evaluation.
Journal of Automated Reasoning, 28(2):101–142, 2002.

[8] S. Coste-Marquis, H. Fargier, J. Lang, D. Le Berre, and P. Marquis. Repre-
senting policies for quantified boolean formulae. In Proceedings of the 10th
International Conference on Principles of Knowledge Representation and
Reasoning (KR’06), pages 286–296, 2006.

[9] N. Een and N. Sörensson. An extensible SAT-solver. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), pages 502–518, 2003.

[10] U. Egly. On different structure-preserving translations to normal form.
Journal of Symbolic Computation, 22(2):121–142, 1996.

[11] U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Computing stable
models with quantified boolean formulas: Some experimental results. In
Proceedings of the AAAI Spring Symposium, pages 53–59, 2001.

[12] U. Egly, M. Seidl, and S. Woltran. A solver for QBFs in nonprenex form.
In Proceedings of the 17th European Conference on Artificial Intelligence
(ECAI’06), pages 477–481, 2006.

[13] G. Parthasarathy F. Lu, M. K. Iyer and K.-T. Cheng. An efficient sequen-
tial SAT solver with improved search strategies. In Proceedings of the 8th
Conference on Design, Automation and Test in Europe (DATE’05), pages
1102–1107, 2005.

[14] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven an-
swer set solving. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI’07), pages 386–392, 2007.

[15] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer
set programming. In Proceedings of the 7th Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’07), pages 266–271, 2007.

20

[16] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proceedings of the 5th International Conference on Logic
Programming (ICLP’88), pages 1070–1080, 1988.

[17] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for quantified
boolean logic satisfiability. Artificial Intelligence, 145:99–120, 2003.

[18] M. Hietalahti, F. Massacci, and I. Niemelä. DES: a challenge problem for
nonmonotonic reasoning systems. In Proceedings of the 8th International
Workshop on Non-Monotonic Reasoning (NMR’00), 2000.

[19] H. Jain, C. Bartzis, and E. Clarke. Satisfiability checking of non-clausal
formulas using general matings. In Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing (SAT’06),
pages 75–89, 2006.

[20] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The dlv system for knowledge representation and reasoning. ACM
Transactions on Computational Logic, 7(3):499–562, 2006.

[21] R. Letz. Lemma and model caching in decision procedures for quan-
tified boolean formulas. In Proceedings of the International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’02), pages 160–175, 2002.

[22] C.-M. Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI’97), pages 366–371, 1997.

[23] F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by
SAT solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[24] F. Lu, L.-C. Wang, J. Moondanos, and Z. Hanna. A signal correla-
tion guided circuit-SAT solver. Journal of Universal Computer Science,
10(12):1629–1654, 2004.

[25] A. Meier and V. Sorge. Applying SAT solving in classification of finite
algebras. Journal of Automated Reasoning, 35(1-3):201–235, 2005.

[26] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), pages 530–535, 2001.

[27] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3-4):241–273, 1999.

[28] I. Niemelä and P. Simons. Evaluating an algorithm for default reasoning.
In Proceedings of the Workshop on Applications and Implementations of
Nonmonotomic Reasonigs Systems, pages 66–72, 1995.

21

[29] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[30] J. Rintanen. Improvements to the evaluation of quantified boolean formu-
lae. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI’99), pages 1192–1197, 1999.

[31] H. Samulowitz and F. Bacchus. Binary clause reasoning in QBF. In Pro-
ceedings of the 9th International Conference on Theory and Applications
of Satisfiability Testing (SAT’06), pages 353–367, 2006.

[32] R.M. Smullyan. First Order Logic. Springer Verlag, 1969.

[33] I. Stéphan. Boolean propagation based on literals for quantified boolean
formulae. In Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI’06), pages 452–456, 2006.

[34] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1977.

[35] T. Syrjänen. Implementation of local grounding for logic programs for sta-
ble model semantics. Technical report, Helsinki University of Technology,
1998.

[36] C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with
DPLL search. In Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing (SAT’04), pages 663–678, 2004.

[37] L. Zhang. Solving QBF with combined conjunctive and disjunctive normal
form. In Proceedings of the 6th National Conference on Artificial Intelli-
gence (AAAI’06), pages 143–150, 2006.

[38] L. Zhang and S. Malik. Conflict driven learning in a quantified boolean sat-
isfiability solver. In Proceedings of the International Conference on Com-
puter Aided Design (ICCAD’02), pages 442–449, 2002.

7 Proofs

Proof of Theorem 1. Let Σ be a propositional formula such that V(Σ) = {x}.
Σ has two valuations {x} and {¬x}. π({x}) = {x} and π({¬x}) = {nx}.
Let ν be a set of literals, S a set of atoms and the normal logic program such
that PQ(ν) =

{
(x← not nx.), (nx← not x.)

}
If S = ∅ PQ(ν)S =

{
(x.), (nx.)

}
Cn(PQ(ν)S) = {x, nx} 6= S ;

If S = {x} PQ(ν)S =
{

(x.)
}

Cn(PQ(ν)S) = {x} = S ;
If S = {nx} PQ(ν)S =

{
(nx.)

}
Cn(PQ(ν)S) = {nx} = S ;

If S = {x, nx} PQ(ν)S = ∅
Cn(PQ(ν)S) = ∅ 6= S.

22

So, PQ(ν) has two stable models {x} and {nx}.
π−1({x},Σ) = {x} and π−1({nx},Σ) = {¬x}.
The theorem holds for ν = V(Σ) and |V(Σ)| = 1.
Let Σ′ be a propositional formula such that V(Σ′) = V(Σ) ∪ {x} with x a

new propositional symbol such that x 6∈ V(Σ). Σ′ has two valuations for each
valuation ν of Σ: ν ∪ {x} and ν ∪ {¬x}. Assuming the theorem holds for a
set of literals ν and a propositional formula Σ, PQ(V(Σ)) has a stable model
π(ν) if and only if ν is a valuation of Σ. Then, π(ν ∪ {x}) = π(ν) ∪ {x} and
π(ν ∪ {¬x}) = π(ν) ∪ {nx}.

Let ν′ be a set of literals, S a set of atoms and PQ(ν′) a normal logic program
such that PQ(ν′) = PQ(ν) ∪

{
(x← not nx.), (nx← not x.)

}
The atoms x and nx are not present in any body or head of a rule in PQ(ν),

because x 6∈ V(Σ). Then the union of a stable model of PQ(ν) and a stable
model of

{
(x← not nx.), (nx← not x.)

}
is a stable model of PQ(ν′).

Let π(ν) be a stable model of PQ(ν) :

If S = π(ν) ∪ ∅ PQ(ν′)S = PQ(ν)S ∪
{

(x.), (nx.)
}

Cn(PQ(ν′)S) = π(ν) ∪ {x, nx} 6= S
If S = π(ν) ∪ {x} PQ(ν′)S = PQ(ν)S ∪

{
(x.)

}
Cn(PQ(ν′)S) = π(ν) ∪ {x} = S

If S = π(ν) ∪ {nx} PQ(ν′)S = PQ(ν)S ∪
{

(nx.)
}

Cn(PQ(ν′)S) = π(ν) ∪ {nx} = S
If S = π(ν) ∪ {x, nx} PQ(ν′)S = PQ(ν)S ∪ ∅

Cn(PQ(ν′)S) = π(ν) ∪ ∅ 6= S
PQ(ν′) has two stable models for each stable model π(ν) of PQ(ν): π(ν)∪{x}

and π(ν) ∪ {nx}. π−1(π(ν) ∪ {x},Σ) = ν ∪ {x} and π−1(π(ν) ∪ {nx},Σ) =
ν ∪ {¬x}. By induction the theorem holds.

Proof of Lemma 1. Let Σinit and Σ be propositional formulae such that Σ is a
subformula of Σinit. Let Π′(Σ) be a normal logic program such that Π′(Σ) =
PQ(V(Σinit)) ∪ P (Σ, o), o be the occurrence of Σ and m be a stable model of
Π′(Σ). We prove the following lemma: “The set of literals ν is a valuation
of V(Σinit) if and only if there exists a stable model m of Π′(Σ) such that
π(ν) ⊆ m.”

The proof of this lemma is by induction.

• Σ = x.
Π′(Σ) = PQ(V(Σinit) \ {x}) ∪ PQ({x}) ∪ P (Σ, o)

= PQ(V(Σinit) \ {x}) ∪
{

(x← not nx.), (nx← not x.),
(so ← x.)

}
Let ν be a valuation of V(Σinit) and if x ∈ ν then ν′ = ν \{x} else ν′ = ν \
{¬x} (ν′ is a valuation of V(Σinit\{x})). By Theorem 1, PQ(V(Σinit)\{x})
has necessarily a stable model π(ν′). If x ∈ ν then m = π(ν′) ∪ {x, so}
is a stable model of Π′(Σ) such that π(ν) ⊆ m else ¬x ∈ ν and m =
π(ν′) ∪ {nx} is a stable model of Π′(Σ) such that π(ν) ⊆ m. Conversely,
let ν be a set of literals and m be a stable model of Π′(Σ) such that

23

π(ν) ⊆ m. Either x, so ∈ m and nx 6∈ m, or x, so 6∈ m and nx ∈ m. By
Theorem 1, the set of literals ν′, such that ν′ = ν \ {x} in first case and
ν′ = ν \ {¬x} in the second case, is a valuation of V(Σinit \ {x}). Then in
both cases ν is a valuation of V(Σinit).

Assuming Lemma 1 holds for Σ1 and Σ2 subformulae of Σ and m a stable
model of Π′(Σ) :

• Σ = ¬Σ1.
Π′(Σ) = PQ(V(Σinit)) ∪ P (Σ1, o.0) ∪ {(so ← not so.0.)}

= Π′(Σ1) ∪ {(so ← not so.0).)}
Let ν be a valuation of Σinit. By induction hypothesis, there exists a stable
model m1 of Π′(Σ1) such that π(ν) ⊆ m1. If so.0 6∈ m1 then m1 ∪ {so} is
a stable model for Π′(Σ) and π(ν) ⊆ m1 ∪ {so}, if so.0 ∈ m1 then m1 is a
stable model for Π′(Σ) and π(ν) ⊆ m. The converse is trivial.

• Σ = (Σ1∧Σ2). Cases for ∨, →, ⊕ and ↔ are similar.

Π′(Σ) = PQ(V(Σinit)) ∪ P (Σ1, o.0) ∪ P (Σ2, o.1) ∪ {(so ← so.0, so.1.)}
= Π′(Σ1) ∪Π′(Σ2) ∪ {(so ← so.0, so.1.)}

Let ν be a valuation of Σinit. By induction hypothesis, there exists a
stable model m1 of Π′(Σ1) such that π(ν) ⊆ m1 and there exists a stable
model m2 of Π′(Σ2) such that π(ν) ⊆ m2. Since V(Σinit) is in common
between Π′(Σ1) and Π′(Σ2), and Head(P (Σ1, o.0))∩Head(P (Σ2, o.1)) =:
if so.0 ∈ m1 and so.1 ∈ m2 then m = m1 ∪m2 ∪ {so} is a stable model of
Π′(Σ) and π(ν) ⊆ m, otherwise, m = m1 ∪m2 is a stable model of Π′(Σ)
and π(ν) ⊆ m. The converse is trivial.

Therefore by induction the lemma holds. Since Σ is a subformula of Σinit, it
also holds for Σinit. Hence Lemma 1 holds.

Proof of Lemma 2 and Theorem 2. Let Σ be a propositional formula such that
Σ is a subformula of Σinit. Let Π′(Σ) be a normal logic program such that
Π′(Σ) = PQ(V(Σinit)) ∪ P (Σ, o), o be the occurence of Σ and m be a stable
model of Π′(Σ). Proof of Lemma 2 is by induction. Theorem 2 follows from
Lemma 2 with Σ = Σinit.

• Σ = x.
Π′(Σ) = PQ(V(Σinit) \ {x}) ∪ PQ({x}) ∪ P (Σ, o)

= PQ(V(Σinit) \ {x}) ∪
{

(x← not nx.), (nx← not x.),
(so ← x.)

}
so ∈ m if and only if x ∈ m because (so ← x.) is the only rule whose head
is so. Then, x ∈ π−1(m,Σ) and π−1(m,Σ) |= Σ.

If π−1(m,Σ) |= Σ then x ∈ π−1(m,Σ) and by definition of π−1, x ∈ m.
Due to the rule (so ← x.), m is a stable model of Π′(Σ) if and only if
so ∈ m. Lemma 2 holds for this case.

Assuming Lemma 2 holds for Σ1 and Σ2 subformulas of Σ and m a stable
model of Π′(Σ) :

24

• Σ = ¬Σ1.
Π′(Σ) = PQ(V(Σinit)) ∪ P (Σ1, o.0) ∪

{
(so ← not so.0.)

}
= Π′(Σ1) ∪

{
(so ← not so.0).)

}
so ∈ m if and only if so.0 6∈ m because (so ← not so.0.) is the only rule
whose head is so. By hypothesis, so.0 6∈ m is equivalent to π−1(m,Σ1) 6|=
Σ1, therefore π−1(m,Σ) 6|= Σ1 (because V(Σ1) = V(Σ)) and π−1(m,Σ) |=
Σ.
Conversely, if π−1(m,Σ) |= Σ, then π−1(m,Σ) 6|= Σ1, equivalent to so.0 6∈
m by hypothesis. Due to the rule (so ← not so.0.), s0 ∈ m. Then Lemma 2
holds for this case.

• Σ = (Σ1∧Σ2). Cases for ∨, →, ⊕ and ↔ are similar.

Π′(Σ) = PQ(V(Σinit)) ∪ P (Σ1, o.0) ∪ P (Σ2, o.1) ∪
{

(so ← so.0, so.1.)
}

= Π′(Σ1) ∪Π′(Σ2) ∪
{

(so ← so.0, so.1.)
}

so ∈ m if and only if so.0 ∈ m and so.1 ∈ m because (so ← so.0, so.1.) is the
only rule whose head is so. By hypothesis (since m is a stable model of
Π′(Σ1) and Π′(Σ2)), so.0 ∈ m and so.1 ∈ m is equivalent to π−1(m,Σ1) |=
Σ1 and π−1(m,Σ2) |= Σ2, therefore π−1(m,Σ) |= Σ1 and π−1(m,Σ) |=
Σ2 (because V(Σ1) ⊆ V(Σ) and V(Σ2) ⊆ V(Σ)) and π−1(m,Σ) |= Σ.
Conversely, if π−1(m,Σ) |= Σ, then π−1(m,Σ) |= Σ1 and π−1(m,Σ) |= Σ2

equivalent to so.0 ∈ m and so.1 ∈ m by hypothesis. Due to the rule
(so ← so.0, so.1.), s0 ∈ m. Then Lemma 2 holds for this case.

Therefore by induction Lemma 2 holds.

Proof of Corollary 1 and Corollary 2. We prove Corollary 1. Proof is similar
for Corollary 2.

• Let m be a stable model of Π+(Σ). Due to the rule (← not sε.), sε ∈ m. m
is also a stable model of Π(Σ) (since m = Cn(Π(Σ)m) = Cn(Π+(Σ)m)).
Then by Theorem 2, π−1(m,Σ) |= Σ and Σ is satisfiable.

• Conversely, let Σ be satisfiable and ν a (Boolean) model of Σ. According
to Lemma 1, there exists a stable model m ⊇ π(ν) of Π(Σ). According to
Theorem 2, if ν |= Σ then sε ∈ m. m = Cn(Π(Σ)m) and since sε ∈ m,
m = Cn(Π+(Σ)m). So m is stable model of Π+(Σ) such that m ⊇ π(ν).
Then there exists a stable model m ⊇ π(ν) of Π+(Σ).

Hence Corollary 1 holds.

Proof of Theorem 3. We prove more than the theorem : “Let Σ be a QBF. If m
is a stable model of Π∀(Σ) such that sε ∈ m then π−1

∀ (m,Σ) is a set of Skolem
functions which satisfy the QBF ; if sk is a set of Skolem functions which satisfy
Σ then there exists a stable model m of Π∀(Σ) such that π∀(sk) ⊆ m and
sε ∈ m.”

25

The proof is in two steps. First we prove that there exists a normal logic
program nlpF (and an atom sε) for a QBF F such that : If m is a stable model
of nlpF such that sε ∈ m then π−1

∀ (m,Σ) is a set of Skolem functions which
satisfy the QBF ; if sk is a set of Skolem functions which satisfy Σ then there
exists a stable model m of nlpF such that π∀(sk) ⊆ m and sε ∈ m. Then,
we prove that nlpF has the same stable models (w.r.t. the atoms containing
Skolem function symbols) as Π∀(F).

The starting point of the first part of this proof is the Propositional Skolem-
ization of [4] which extracts from a QBF an equivalent SAT instance by Skolem-
ization of an equivalent First-Order Logic (FOL) formula. Let L be a first-order
language with PS = {p/1} the set of predicate symbols and CS = {1, 0} the
set of constant symbols (the set of function symbols is empty). Let M be a
structure such that the interpretation of predicate p is: p(1) is true and p(0)
is false. Let fol : QBF → FOL be the function that replaces in a QBF the
propositional symbol x by an atom p(x). If the domain of the structure is the
Boolean domain, [4] states that a QBF F is satisfiability equivalent to fol(F).
Example 7 continued.Let F∀a∃b∀c∃d = ∀a∃b∀c∃d((c∨b)∧(b→((c→d)∧(c∨(a↔¬d))))).

fol(F∀a∃b∀c∃d) = ∀a∃b∀c∃d((p(c)∨p(b))∧(p(b)→((p(c)→p(d))∧(p(c)∨(p(a)↔¬p(d))))))

Proof continued. Let sk : FOL → FOL be the function that computes the
Skolem form of a (prenex) FOL formula (replacing the existential variables by
new Skolem function symbols which depend on the universal variables that have
those existential variables in their scope).
Example continued.

sk(fol(F∀a∃b∀c∃d))
= ∀a∀c((p(c)∨p(b(a)))∧(p(b(a))→((p(c)→p(d(a, c)))∧(p(c)∨(p(a)↔¬p(d(a, c)))))))

Proof continued. Using the Skolem theorem we obtain that F is satisfiable if
and only if sk(fol(F)) is also satisfiable (with a bijection between the models of
the QBF and the satisfying Skolem functions). In fol(F), we keep the name of
the existential variables as Skolem constant or function symbols. We apply the
Skolem theorem and obtain a formula with only universal quantifiers. The last
step of Propositional Skolemization flattens the FOL formula to a SAT instance
(this function called prop is not detailled since we do not use it). Finally, [4]
states that prop(sk(fol(F))) is a satisfiability equivalent propositional formula
to F . We replace the application of prop function by a more simple one called
univ which expands the universal quantifiers as follow :

univ(sk(fol(F))) =
∧

(b1...bN∀)∈{0,1}N∀

σb1...bN∀
.

with for each b1 . . . bN∀ ∈ {0, 1}N
∀
, σb1...bN∀

is sk(fol(F)) in which for each
universal variable ui, p(ui) is replaced by p(ui(b1, . . . , bN∀)), for each universal
variable ui, ¬p(ui(b1, . . . , bN∀)) if bi = 0 and p(ui(b1, . . . , bN∀)) if bi = 1 is
added (with a conjunction), for each existential variable e (and Skolem function
symbol e) the atoms p(e(u1, . . . , un)) is replaced by p(e(b1, . . . , bn)).

26

Example continued.Let ∀a∀cM = sk(fol(F∀a∃b∀c∃d)).

univ(sk(fol(F∀a∃b∀c∃d))) =
[M [a← 1][c← 1] ∧ p(a(1, 1)) ∧ p(c(1, 1))]
∧[M [a← 1][c← 0] ∧ p(a(1, 0)) ∧ ¬p(c(1, 0))]
∧[M [a← 0][c← 1] ∧ ¬p(a(0, 1)) ∧ p(c(0, 1))]
∧[M [a← 0][c← 0] ∧ ¬p(a(0, 0)) ∧ ¬p(c(0, 0))]

Proof continued. Since univ(sk(fol(F))) is free of variables it may be consider
as a propositional formula. We rename all “propositional symbol” p(x) by the
“propositional symbol” x.

Let π′∀ : 2F → 2L be a function such that, for every sk ∈ 2F ,

π′∀(sk) =
{x(i−1(u1), . . . , i−1(un)) | x̂ ∈ sk, u1, . . . , un ∈ BOOL, x̂(u1, . . . , un) = t}∪
{¬x(i−1(u1), . . . , i−1(un)) | x̂ ∈ sk, u1, . . . , un ∈ BOOL, x̂(u1, . . . , un) = f}

Example continued.

sk =


b̂a(t) = t, b̂a(f) = t,

d̂ac(t, t) = t, d̂ac(t, f) = f , d̂ac(f , t) = t, d̂ac(f , f) = t

ff
π′∀(sk) = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0),¬d(1, 0)}

Proof continued. By definition of satisfiability of QBF: if a set of Skolem func-
tions sk satisfy a QBF F then π′∀(sk) is a model for univ(sk(fol(F))) ; if ν is a
(Boolean) model of univ(sk(fol(F))) then there exists a set of Skolem functions
sk such that ν = π′∀(sk) and sk satisfy F .

Now we can apply Theorem 2 and Corollary 1 to univ(sk(fol(F))) which is
a propositional formula:

(1) If m is a stable model of Π(univ(sk(fol(F)))) such that sε ∈ m then

π−1(m,univ(sk(fol(F)))) |= univ(sk(fol(F))).

Let sk be a set of Skolem functions such that π−1(m,univ(sk(fol(F)))) =
π′∀(sk) then π−1(m,univ(sk(fol(F)))) = π−1

∀ (m,F) is a set of Skolem
functions that satisfy F .

(2) If sk is a set of Skolem functions which satisfy F then π′∀(sk) is a (Boolean)
model of univ(sk(fol(F))) then there exists a stable model m of
Π(univ(sk(fol(F)))) such that π(π′∀(sk)) = π∀(sk) ⊆ m and sε ∈ m.

We have proven the first part.
Example continued.

m =
{b(1), b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)}∪
{a(1, 0), a(1, 1), c(0, 1), c(1, 1)}∪
{sε, s0(0), s0(1), s02(0, 0), s02(1, 0), s02(0, 1), s02(1, 1)}∪˘
so(A,C) | A,C ∈ {0, 1}, o ∈ {03, 02.1, 02.12, 02.12.0, 02.13}

¯
∪

{s02.14(0, 0), s02.14(1, 0), s02.14(0, 1)}

27

π′∀(sk) = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0),¬d(1, 0)}
π(m,univ(sk(fol(F∀a∃b∀c∃d))) = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0),¬d(1, 0)} = π′∀(sk)

π(π′∀(sk)) = {b(1), b(0), d(1, 1), d(0, 1), d(0, 0), nd(1, 0)} = π∀(sk)

Proof continued. Without lose of generality and by commutativity and as-
sociativity of conjunction, we isolate under the root s0 the translation of the
conjunction of the added atoms. Let nlp1 = Π(univ(sk(fol(F)))) and m1 one
of its stable models. By construction and Lemma 1, for all universal vari-
able ui and for all b1 . . . bN∀ ∈ {0, 1}N

∀
, if bi = 1 then ui(b1, . . . , bN∀) ∈

m1 and nui(b1, . . . , bN∀) 6∈ m1 otherwise bi = 0, ui(b1, . . . , bN∀) 6∈ m1 and
nui(b1, . . . , bN∀) ∈ m1.
Example continued.
nlp1 = {(sε ← sε.0, sε.1.)}∪
{With root sε.0, the translation of
a(1, 1) ∧ c(1, 1) ∧ a(1, 0) ∧ ¬c(1, 0) ∧ ¬a(0, 1) ∧ c(0, 1) ∧ ¬a(0, 0) ∧ ¬c(0, 0)}∪
{(sε.1 ← sε.1.0, sε.1.1.), (sε.1.0 ← sε.1.0.0, sε.1.0.1.), (sε.1 ← sε.1.1.0, sε.1.1.1.)}∪
{(c(1, 1)← not nc(1, 1).), (nc(1, 1)← not c(1, 1).), (c(1, 0)← not nc(1, 0).),
(nc(1, 0)← not c(1, 0).), (c(0, 1)← not nc(0, 1).), (nc(0, 1)← not c(0, 1).),
(c(0, 0)← not nc(0, 0).), (nc(0, 0)← not c(0, 0).), (a(1, 1)← not na(1, 1).),
(na(1, 1)← not a(1, 1).), (a(1, 0)← not na(1, 0).), (na(1, 0)← not a(1, 0).),
(a(0, 1)← not na(0, 1).), (na(0, 1)← not a(0, 1).), (a(0, 0)← not na(0, 0).),
(na(0, 0)← not a(0, 0).), (d(1, 1)← not nd(1, 1).), (nd(1, 1)← not d(1, 1).),
(d(1, 0)← not nd(1, 0).), (nd(1, 0)← not d(1, 0).), (d(0, 1)← not nd(0, 1).),
(nd(0, 1)← not d(0, 1).), (d(0, 0)← not nd(0, 0).), (nd(0, 0)← not d(0, 0).),
(b(1)← not nb(1).), (nb(1)← not b(1).), (b(0)← not nb(0).), (nb(0)← not b(0).)}
∪σ11 ∪ σ01 ∪ σ10 ∪ σ00

with
σ11 = {(sε.13 ← sε.13.0, sε.13.1.), (sε.13.0 ← sε.13.02 .), (sε.13.0 ← sε.13.0.1.),

(sε.13.02 ← c(1, 1).), (sε.13.0.1 ← b(1).), (sε.13.1 ← not sε.13.1.0.), (sε.13.1 ← sε.13.12 .),
(sε.13.1.0 ← b(1).), (sε.13.12 ← sε.13.12.0, sε.13.13 .), (sε.13.12.0 ← not sε.13.12.02 .),
(sε.13.12.0 ← sε.13.12.0.1.), (sε.13.12.02 ← c(1, 1).), (sε.13.12.0.1 ← d(1, 1).),
(sε.13.13 ← sε.13.13.0.), (sε.13.13 ← sε.13.14 .), (sε.13.13.0 ← c(1, 1).),
(sε.13.14 ← sε.13.14.0, sε.13.15 .), (sε.13.14 ← not sε.13.14.0, not sε.13.15 .),
(sε.13.14.0 ← a(1, 1).), (sε.13.15 ← not sε.13.15.0.), (sε.13.15.0 ← d(1, 1).)}

Proof continued. Let nlp2 be the normal logic program obtained from nlp1

by deleting all rules with sε.0.o as head (rules obtained by translation of the
added atoms), deleting sε.0 in (sε ← sε.0, sε.1.), deleting all rules containing
not ui(b1, . . . , bN∀) if bi = 1 (ui(b1, . . . , bN∀) always in the model), deleting all
rules containing not nui(b1, . . . , bN∀) if bi = 0 (nui(b1, . . . , bN∀) always in the
model), deleting the atoms not nui(b1, . . . , bN∀) if bi = 1 (nui(b1, . . . , bN∀) never
in the model), deleting the atoms not ui(b1, . . . , bN∀) if bi = 0 (ui(b1, . . . , bN∀)
never in the model), deleting the facts (nui(b1, . . . , bN∀).) if bi = 0 (since there
is no more instance of the atoms nui(b1, . . . , bN∀)). By the above remarks,
the normal logic program nlp1 has the same stable models (w.r.t. the atoms
containing Skolem function symbols) as the normal logic program nlp2.
Example continued.

28

nlp2 = {(sε ← sε.1.)}∪
{(sε.1 ← sε.1.0, sε.1.1.), (sε.1.0 ← sε.1.0.0, sε.1.0.1.), (sε.1.1 ← sε.1.1.0, sε.1.1.1.)}∪
{(c(1, 1).), (c(0, 1).), (a(1, 1).), (a(1, 0).), (d(1, 1)← not nd(1, 1).),
(nd(1, 1)← not d(1, 1).), (d(1, 0)← not nd(1, 0).), (nd(1, 0)← not d(1, 0).),
(d(0, 1)← not nd(0, 1).), (nd(0, 1)← not d(0, 1).), (d(0, 0)← not nd(0, 0).),
(nd(0, 0)← not d(0, 0).), (b(1)← not nb(1).), (nb(1)← not b(1).),
(b(0)← not nb(0).), (nb(0)← not b(0).)} ∪ σ11 ∪ σ01 ∪ σ10 ∪ σ00

with
σ11 = {(sε.13 ← sε.13.0, sε.13.1.), (sε.13.0 ← sε.13.02 .), (sε.13.0 ← sε.13.0.1.),

(sε.13.02 ← c(1, 1).), (sε.13.0.1 ← b(1).), (sε.13.1 ← not sε.13.1.0.), (sε.13.1 ← sε.13.12 .),
(sε.13.1.0 ← b(1).), (sε.13.12 ← sε.13.12.0, sε.13.13 .), (sε.13.12.0 ← not sε.13.12.02 .),
(sε.13.12.0 ← sε.13.12.0.1.), (sε.13.12.02 ← c(1, 1).), (sε.13.12.0.1 ← d(1, 1).),
(sε.13.13 ← sε.13.13.0.), (sε.13.13 ← sε.13.14 .), (sε.13.13.0 ← c(1, 1).),
(sε.13.14 ← sε.13.14.0, sε.13.15 .), (sε.13.14 ← not sε.13.14.0, not sε.13.15 .),
(sε.13.14.0 ← a(1, 1).), (sε.13.15 ← not sε.13.15.0.), (sε.13.15.0 ← d(1, 1).)}

Proof continued. Now we rename the predicate symbols sε.1.o in order to have
the same predicate symbols as in Definition 7. Let nlp3 be the normal logic
program obtained from nlp2 by deleting the rule (sε ← sε.1.), replacing the atom
sε.1 by the atom sε, replacing all the atoms sε.1.o.o′ in σo with o = b1.bN∀
by the atoms sε.o′(b1.bN∀), replacing all the atoms sε.1.o in σo with o =
b1.bn, n ≤ N∀ by the atoms sε.o′(b1.bn),
Example continued.
nlp3 = {(sε ← sε(0), sε(1).), (sε(0)← sε(0, 0), sε(0, 1).), (sε(1)← sε(1, 0), sε(1, 1).)}∪
{(c(1, 1).), (c(0, 1).), (a(1, 1).), (a(1, 0).), (d(1, 1)← not nd(1, 1).),
(nd(1, 1)← not d(1, 1).), (d(1, 0)← not nd(1, 0).), (nd(1, 0)← not d(1, 0).),
(d(0, 1)← not nd(0, 1).), (nd(0, 1)← not d(0, 1).), (d(0, 0)← not nd(0, 0).),
(nd(0, 0)← not d(0, 0).), (b(1)← not nb(1).), (nb(1)← not b(1).),
(b(0)← not nb(0).), (nb(0)← not b(0).)} ∪ σ11 ∪ σ01 ∪ σ10 ∪ σ00

with
σ11 = {(sε(1, 1)← sε.0(1, 1), sε.1(1, 1).), (sε.0(1, 1)← sε.02(1, 1).),

(sε.0(1, 1)← sε.0.1(1, 1).), (sε.02(1, 1)← c(1, 1).), (sε.0.1(1, 1)← b(1).),
(sε.1(1, 1)← not sε.1.0(1, 1).), (sε.1(1, 1)← sε.12(1, 1).), (sε.1.0(1, 1)← b(1).),
(sε.12(1, 1)← sε.12.0(1, 1), sε.13(1, 1).), (sε.12.0(1, 1)← not sε.12.02(1, 1).),
(sε.12.0(1, 1)← sε.12.0.1(1, 1).), (sε.12.02(1, 1)← c(1, 1).), (sε.12.0.1(1, 1)← d(1, 1).),
(sε(1, 1)← sε.13.0(1, 1).), (sε.13(1, 1)← sε.14(1, 1).), (sε.13.0(1, 1)← c(1, 1).),
(sε.14(1, 1)← sε.14.0(1, 1), sε.15(1, 1).), (sε.14(1, 1)← not sε.14.0(1, 1), not sε.15(1, 1).),
(sε.14.0(1, 1)← a(1, 1).), (sε.15(1, 1)← not sε.15.0(1, 1).), (sε.15.0(1, 1)← d(1, 1).)}

Proof continued. The normal logic program nlp2 has clearly the same stable
models (w.r.t. the atoms containing Skolem function symbols) as the normal
logic program nlp3. Since the normal logic program nlp3 is the ground instance
of Π∀(F), by the semantics of first-order program in normal logic program, the
normal logic program Π∀(F) has the same stable models (w.r.t. the atoms
containing Skolem function symbols) as the normal logic program nlp3.

From these equivalences (w.r.t. atoms containing Skolem function symbols):

(1’) If m is a stable model of Π∀(F) such that sε ∈ m then there exists a stable
model m′ of Π(univ(sk(fol(F)))) such that sε ∈ m′.

(2’) If there exists a stable model m of Π∀(F) such that π∀(sk) ⊆ m and

29

sε ∈ m then there exists a stable model m′ of Π(univ(sk(fol(F)))) such
that π∀(sk) ⊆ m′ and sε ∈ m′.

From (1) plus (1’) and (2’) plus (2) the theorem holds.

Proof of Corollary 3. The proof of Corollary 3 is similar to this of Corollary 1

30

	Introduction
	Preliminaries
	(Quantified) Boolean Formulae
	Answer Set Programming

	From a Boolean Formula to a Normal Logic Program
	From Quantified Boolean Formulae to Normal Logic Programming
	Implementation
	From SAT to ASP
	From QBF to ASP

	Concluding discussion
	Proofs

