
Answer Set Programming
by Ant Colony Optimization

Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

LERIA – University of Angers
2, bd Lavoisier – F-49045 Angers cedex 01 – France

{pascal.nicolas,frederic.saubion,igor.stephan}@univ-angers.fr

Abstract. Answer Set Programming is a very convenient framework
to represent various problems issued from Artificial Intelligence (non-
monotonic reasoning, planning, diagnosis...). Furthermore, it can be used
to neatly encode combinatorial problems. In all cases, the solutions are
obtained as sets of literals: the Answer Sets.
Ant Colony Optimization is a general metaheuristics that has been al-
ready successfully used to solve hard combinatorial problems (traveling
salesman problem, graph coloring, quadratic assignment...). It is based
on the collective behavior of artificial ants exploring a graph and ex-
changing pieces of information by means of pheromone traces.
The purpose of this work is to show how Ant Colony Optimization can
be used to compute an answer set of a logic program.

1 Introduction

Since few years Answer Set Programming (ASP) is recognized as a very con-
venient framework to represent various problems issued from Artificial Intel-
ligence (non-monotonic reasoning, planning, diagnosis...). Furthermore, it can
be used to neatly encode combinatorial problems (graph coloring, SAT prob-
lems...). Knowledge representation with the help of a logic program can be done
in various syntactic and semantic ways (see [1]). One can firstly mention Stable
Model semantics [8] for Normal Logic Programs augmented by Negation as Fail-
ure (NLPNF). Then, Answer Set [9] semantics has been proposed for Extended
Logic Programs (ELP) which extend NLPNF by allowing positive and negative
literals in the rules. Answer Set semantics is also used for Extended Disjunctive
Logic Programs (EDLP) [9] which extend ELP by allowing a disjunction in the
head of the rules.

Deciding the existence of a stable model is NP−complete [12]. This is the
same for the existence of an answer set of an ELP since an ELP can be encoded
into an NLPNF even in linear time. In case of an EDLP, the complexity grows up
to Σp

2 −complete [7]. These preliminary considerations have led us to firstly deal
with stable model semantics for NLPNF since it covers a large class of problems
while staying at a reasonable level of complexity. Previous works have ended in
some operational systems. For instance, DLV [6] and Smodels [16] are able to
solve non-trivial problems with thousands of rules. All these systems are based

S. Flesca et al. (Eds.): JELIA 2002, LNAI 2424, pp. 481–492, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



482 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

on complete methods and use different heuristics in order to prune the search
space as much as possible.

Few researches have already investigated alternative non-complete ap-
proaches in the domain of Answer Set Programming. [10] uses local search tech-
niques being inspired by works on SAT problems. [17] transforms the computa-
tion of an answer set into a graph coloring problem, solved by a genetic algo-
rithm. [14,15] use genetic algorithms and Ant Colony Optimization (ACO) [5,4]
to compute an extension of a Default Theory [18].

The purpose of our present work is to show how ACO can be used to propose
a specific system for ASP in order to be able to exploit the peculiarities of logic
programs and therefore to compute a stable model of a logic program. This
approach is based on the collective behavior of artificial ants exploring a graph
and exchanging pieces of information by means of pheromone traces.

2 Stable Model Semantics for Logic Programming

In this work, a Logic Program Π is a finite set of rules of the form :
c← a1, . . . , an, not b1, . . . , not bm n ≥ 0,m ≥ 0

where a1, . . . , an, b1, . . . , bm and c are atoms. For such a rule r we denote1:

body+(r) = {a1, . . . , an} body−(r) = {b1, . . . , bm}
head(r) = c r+ = head(r)← body+(r)

Definition 1. The reduct ΠA of a program Π wrt. a set of atoms A is the
program ΠA = {r+ | r ∈ Π and body−(r) ∩A = ∅}

Therefore, the resulting program ΠA contains no negation. So, it has a unique
minimal Herbrand model that can be obtained by computing its deductive clo-
sure Cl(ΠA) and the Stable Model semantics [8] of a program Π is defined as
follows.

Definition 2. Let Π be a logic program and S a set of atoms. S is a stable
model of Π if and only if S = Cl(ΠS).

Contrary to numerous works, we do not deal with a stable model in terms of
set of atoms but in terms of applied rules as it is the case in [11] from which we
adopt some notions.

– A rule r is blocked by an atom set A if body−(r) ∩A �= ∅.
– A rule r blocks a rule r′ if head(r) ∈ body−(r′).
– A rule which blocks itself as x← . . . , not x, . . . is called a forbidden rule.
– A rule r is applicable in an atom set A if body+(r) ⊆ A.
– Two rules r and r′ are compatible if r does not block r′, r′ does not block
r, body+(r) ∩ body−(r′) = ∅ and body+(r′) ∩ body−(r) = ∅.

1 Such notations are extended to rule set when their first letter is capitalized.



Answer Set Programming by Ant Colony Optimization 483

procedure ACO
begin

Set parameters
Initialize pheromone trails
repeat

construct some candidate solutions
Update pheromone trails

until a solution is found or maximum number of iterations reached
end

Fig. 1. Ant Colony Optimization algorithm

– A rule set R is grounded if there exists an enumeration 〈r1, . . . , rn〉 of R such
that ∀i ∈ {1, . . . , n}, ri is applicable in the set Head({r1, . . . , ri−1}).

– Let Π be a logic program and A an atom set. The set of Generating Rules of
Π wrt. A is R(Π,A) = {r ∈ Π|r is applicable in A and not blocked by A}.
Computing a stable model of a logic program Π is equivalent to find a par-

ticular subset of rules P ⊆ Π as we show in the next result.

Lemma 1. Let P ⊆ Π be a subset of a logic program Π. Head(P ) is a stable
model of Π iff P is grounded and P = GR(Π,Head(P )).

The main goal of our search method is to find a set of rules P satisfying
lemma 1. Such a set of rules P is called the Generator of the stable model
Head(P ) and all its rules are said to be applied. It is easy to check that all
rules in a Generator P are pairwise compatible. Firstly, the previous lemma
entails that a rule can not block another rule in the same Generator. Secondly,
if r = b ← a, . . . is a rule in P , it means that a ∈ Head(P ) and then any rule
like r′ = c← . . . , not a, . . . cannot belong to P . This characteristic is similar to
the notion developed in [13] about compatibility between default rules.

3 Ant Colony Optimization for Stable Models

3.1 Ant Colony Optimization Principles

Ant Colony Optimization (ACO) [5,4] has been inspired by the observation of the
collective behavior of ants when they are seeking food. Every ant puts a little bit
of pheromone all along its walk and directs itself by choosing its way taking into
account the amount of pheromone left by previous ants on each possible path.
Since the pheromone evaporates, these probabilistic choices evolve continuously.
This collective behavior, based on a kind of shared memory (pheromone on
paths), can be used for the resolution of any optimization problem or constraint
satisfaction problem which can be encoded as the search of an optimal path
in a graph. Following [19] we can resume the general ACO algorithm as in the
figure 1.



484 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

3.2 Problem Representation

We describe here our original design of an Ant Colony Optimization algorithm
for stable model search.

Definition 3. We associate to a logic program Π the graph G(Π) = (r ∈ Π ∪
{in, out}, A) where each rule becomes a vertex and in and out are two particular
vertices added to the rule set. The arc set A is defined by :

A = {(in, r),∀r ∈ Π | body+(r) = ∅}
∪ {(r, r′) ∈ Π2 | r �= r′, r and r′ are compatible}
∪ {(r, out),∀r ∈ Π}
∪ {(in, out)}
\ {(r, r′), (r′, r),∀r, r′ ∈ Π | r is a forbidden rule }

In addition, each arc (i, j) ∈ A is weighted by an artificial pheromone τi,j
which is a positive real number.

Example 1. The logic program :

Π =
{
a← not f b← not c c← a f ← b
d← a, not b d← not d e← d, not f

}

is represented by the following graph (:- stands for ←) :

In the sequel, we identify vertices of the graph (different from in and out) and
rules of the logic program and we indifferently use P as a path in the graph (ie
a sequence of vertices) or as a set of rules.

An admissible path is a cycle free path P from in to out in the graph G(Π).
It induces a Candidate Generator by implicitly discarding in and out. Thus, the
goal of Ant Colony Optimization is to find an admissible path P such that it
is a true Generator of a stable model Head(P ). For instance, in example 1, the
path P = 〈in, a← not f, d← a, not b, c← a, e← d, not f, out〉
leads to a true Generator of the stable model Head(P ) = {a, c, d, e}.

The definition 3 in which we try to build the graph G(Π) with the smallest
arc set possible is justified by the following remarks :

– Since we seek a grounded set of rules, all paths have to begin (just after in)
by a rule that is applicable in ∅.



Answer Set Programming by Ant Colony Optimization 485

– Only compatible rules may belong to the same Generator (see end of sec-
tion 2) so it is useless to put an arc between two rules which are not com-
patible.

– out has to be the last vertex of every path.
– The empty set may be a stable model so we need the arc (in, out).
– Since no Generator can contain a forbidden rule we isolate every rule of the

form x← . . . , not x, . . .. By this way no path can contain such rules.

During the initialization stage, the pheromone on every arc of the graph is
initialized to 1 in order to give equal chances to all paths. During the process this
pheromone globally evaporates on all arcs and it increases on arcs that are on
good paths in order to concentrate a great number of ants on the most promising
parts of the graph.

3.3 The Ant’s Travel

In order to reduce the search space to explore, an ant is not allowed to build any
admissible path, since some of them can obviously not lead to a solution2. We
limit its choices to the set defined below.

Definition 4. Let an ant be on the last vertex v = last(P ) of a partial path
P = 〈in, . . . , v〉 that it is currently building; it can only choose the next vertex
in the set :

Next(P ) =


r ∈ Π

∣∣∣∣∣∣
(last(P ), r) is an arc of G(Π)
r is applicable in Head(P )
∀r′ ∈ P, r and r′ are compatible




Furthermore, as it is usual in the design of an Ant System we introduce a
local evaluation function η to weight every possible next vertex. The idea is
to give the higher values to the vertices which seem to be the better ones to
continue the construction of the Candidate Generator.

Definition 5. Let P = 〈in, . . .〉 be a path in the graph G(Π) and r ∈ Next(P )
a possible rule to choose to continue the path.

η(P, r) =




1/10 if head(r) ∈ Head(P )
1/10 if ∃r′ ∈ Π | r′ is forbidden, not blocked

by P and applicable in P ∪ {head(r)}
k × 10 with k = card({r′ ∈ Π | r′ is forbidden,

applicable in P , not blocked by P and
blocked by r})if this set is non empty

1 otherwise

The global idea of the heuristic η is based on the fact that a necessary (but
not sufficient) condition for a set of atoms to be a true Generator is that it
blocks every applicable forbidden rule. This aim is achieved by the four cases of
η detailed below.
2 We recall that ants build only cycle free paths but we do not detail how it is done

since this is well known.



486 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

– If the head of a rule is already in the partial Candidate Generator then it
seems not really informative to add the same atom again. Furthermore its
negative body would still reduce the possible choices of the next rules.

– If the head of a rule makes applicable a forbidden rule, we have to avoid to
choose it. Indeed, if Π contains a rule like r = b ← a, not b, . . . applying
a rule like a ← . . . forces to add in the future a rule which will block r.
Otherwise, the resulting set is obviously not a true Generator.

– As a supplement of the previous case, we favor a rule if it can block some
applicable forbidden rules.

– We give a medium value to all of the other rules.

This local function combined with the recorded pheromone on the graph leads
to the definition of the attractivity of a vertex r for an ant staying on the last
vertex of a partial path P = 〈in, . . .〉.
Definition 6. Let G(Π) be a graph for a logic program Π and P = 〈in, . . . , ri〉
a partial path. We define the attractivity of each vertex rj ∈ Next(P ) by

A(P, rj) =
τi,j × η(P, rj)∑

rk∈Next(P ) τi,k × η(P, rk)

On each vertex ri (the last one of its current path) during its travel from in
to out, an ant chooses the next vertex by a random choice between all possible
next vertices rj . This choice is biased by the attractivity in such a way that every
vertex rj has a probablity to be chosen equal to A(P, rj). By definition of the
set Next(P ) the only paths that can be explored correspond to rule sets that
are grounded. If at any time during the process the set Next(P ) becomes empty
then the ant goes directly to out and the journey is finished. This is the only way
for an ant to reach out. Let us remark that the definition of set Next(P ) ensures
that a final path P = 〈in, . . . , out〉 is maximal in the sense that there exists no
rule r ∈ Π \ P such that r is applicable in Head(P ) and r is not blocked by
Head(P ) except if r is forbidden or if it blocks at least one rule in P . Last, when
an ant has chosen its next vertex r, the partial path becomes P = 〈in, . . . , r〉. If
a non-forbidden rule r′ satisfying


r′ is applicable in Head(P )
head(r′) �∈ Body−(P )
body−(r′) ⊆ Body−(P )

appears, then the ant goes directly on r′ because if a Generator S ⊇ P exists then
S must contain r′. This deterministic inference is applied as long as possible.

3.4 Path Evaluation

Definition 7. Let P be a Candidate Generator for a logic program Π. Its eval-
uation is defined by :

eval(P ) = card

({
r ∈ Π \ P

∣∣∣∣ r is applicable in Head(P)
and not blocked by Head(P)

})



Answer Set Programming by Ant Colony Optimization 487

By using lemma 1 it is obvious to check that eval(P ) = 0 ⇐⇒ Head(P ) is a
stable model of Π. So the goal of the ants is to minimize the value of eval(P )
over the set of possible paths from in to out in G(Π) in order to find a path
with a null evaluation.

At this point we can informally state that we have a problem of complexity
still in class NP , since there is an exponential number of possible paths P , but
checking if eval(P ) = 0 can be done in a polynomial time.

3.5 Pheromone Updating

The goal of pheromone updating is to concentrate ants on the paths that min-
imize the value of eval and this can be done in many various ways. Here we
choose an elitist and ranking strategy [2] to update the pheromone trails. So, if
the colony contains N ants then we obtain a set S of N ′ ≤ N different paths.
If no path has a null evaluation (otherwise a solution is reached) then, we can
order S as a sequence of subsets from the better to the worst paths.

S = Sv1 ∪ . . . ∪ Svn ,∀i > 0,
{∀s ∈ Svi , eval(s) = vi
vi < vi+1

If we have fixed to enforce the K better paths of S then we determine the least
value k, 1 ≤ k ≤ n such that

∑k
i=1 card(Svi) ≥ K. Given a global reinforcement

coefficient ∆, 0 < ∆ < 1, then all paths in Sv1 are reinforced by ∆, those in
Sv2 by ∆2, . . . , those in Svk−1 by ∆k−1 and, at last, K −∑k−1

i=1 card(Svi) paths,
randomly chosen in Svk , are reinforced by ∆k. The reinforcement of a path
P = 〈in, r1, . . . , rp, out〉 by a value ∆k does not consist simply in updating the
pheromone on arcs (in, r1), (r1, r2), . . . , (rp, out). In fact, for a graph G(Π) =
(Π ∪ {in, out}, A) all arcs (ri, rj) ∈ (P × P ) ∩A are reinforced by ∆k, that is :

τi,j ←
{
τi,j +∆k if (ri, rj) ∈ Svk and τi,j < 10
τi,j otherwise

Therefore, it enables us to record in the pheromone the fact that all the vertices
in P seem “to get well together”. Then, an ant of the next colony, standing on
a vertex r ∈ P will be more incited to choose any rule r′ ∈ P even if (r, r′) was
not exactly an arc of P . Obviously, this will be possible only if the groundedness
condition is respected (this is always checked by the function Next). Further-
more, we force the pheromone to stay lesser than 10 in order to let a chance to
every arc to be chosen by an ant.

Finally, the evaporation process acts on every arc (ri, rj) by :

τi,j ← τi,j × 0.99 if τi,j > 0.1

If the pheromone is already lesser than 0.1, we leave it unchanged in order to
keep a minimal chance to every arc to be chosen by an ant. On the other side,
we force the pheromone trail to stay lesser than 10. It has been shown [19] that
this bounding of the pheromone improves the performances of ant systems.

To conclude this section, we give in figure 2 the whole general algorithm
which includes the different components described above.



488 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

Input :
G(Π) the graph representing the logic program
MaxIt the maximum number of iterations (colonies)
NbA the number of ants in the colony
NbR the number of paths to be reinforced
∆ the reinforcement coefficient

Begin
Sol:-false
i:-1
Repeat // launch one colony

For j:-1 to NbA Do
according to the attractivity of every vertex the ant j
builds a stochastic admissible path Pj in G
If eval(Pj) = 0 Then Sol:-Pj EndIf

EndFor
increase pheromone on the NbR better paths
let the pheromone evaporate on every arc of the graph
i:-i+ 1

Until (Sol �= false) or (i > MaxIt)
return Sol

End

Fig. 2. Ant Colony Optimization algorithm

ladder graph : lad_4 board graph : board_4 simplex graph : sim_4

Fig. 3. Graphs for experimental studies

4 Experimental Validation

We have implemented this whole algorithm in a system called ASACO (Answer
Set by ACO) using the java language (jdk1.2.2) and we report here some
experiments aiming at tuning some parameters monitoring the system : the
number of ants in a colony, the number of paths that are reinforced and the rate
of this reinforcement. In order to have scalable and understandable examples,
we have studied two kinds of problems on graphs : the Hamilton cycle problem
and the 3-coloring problem. We used the three kinds of graphs (ladder, board
and simplex) presented in figure 3. Both problems have been generated and
encoded in a logic program by means of system TheoryBase [3] and we refer to
the different problems by the following conventions : ham lad N is an hamiltonian
cycle problem on a ladder graph with 2N vertices, ham sim N is an hamiltonian



Answer Set Programming by Ant Colony Optimization 489

Table 1. Influence of ant colony size

ham sim 5 (203 rules)
NbA NbR = 5, ∆ = 0.5 NbR = 10, ∆ = 0.9

%suc NbIt %suc NbIt
50 36 21 36 13

100 73 17 70 14
150 96 13 86 9
200 100 11 96 9
300 100 9 100 7
400 100 6 100 4

(MaxIt = 1) 5000 20 - - -

cycle problem on a simplex graph with N vertices on each side and col board N
is a 3-coloring problem on a board graph with N2 vertices. For each test we
performed, we ran 30 times our system with exactly the same parameters in
order to have a good approximation of its average behavior. In all subsequent
tables, results are averages over these 30 runs and we use the following notations :

– NbA is the number of ants in a colony.
– MaxIt is the maximum number of iterations (ie : the maximum number of

ant colonies that are launched).
– NbR is the percentage of paths or the absolute number of paths (it is men-

tioned in each case) that are reinforced after each iteration of an ant colony.
– ∆ is the basic rate of reinforcement (∆,∆2, ∆3, . . . are used).
– %suc is the ratio of the number of runs which find a stable model over the

number of all runs.
– NbIt is the number of iterations (or colonies) needed to find a solution when

the method succeeds.

Each problem has at least one stable model and our system stops after having
found one or after MaxIt iterations. Then, we can use the different rates of
success %suc to compare the efficiency of the different choices of values for the
parameters.

In table 1, we report the influence of the ant colony size. We can see that
it is necessary to use a large enough ant colony if we want to be sure to solve
the problem in less than MaxIt iterations (here MaxIt = 30). The best perfor-
mances are obtained when we reinforce 10 paths with a basic rate ∆ = 0.9 since
in this case about 1600 ants (4 colonies of 400 ants) are used to find a stable
model in the best case. While at least 2400 ants (6 colonies of 400 ants) are
used when only 5 paths are reinforced with a basic rate ∆ = 0.5. So, whatever
the updating of pheromone is, a minimal size of the colony is required. For the
last line of table 1 we launch 5000 ants at one time and we stop just after one
iteration. So, this is a pure stochastic search and the results are very poor : 20 %
of success after 5000 tries. So, the general heuristics of Ant Colony Optimization
is efficient since, with a good choice of parameters, we obtain 100% of success
with less than 2000 tries.



490 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

Table 2. Influence of pheromone reinforcement.

ham lad 10 (134 rules) NbA = 100
NbR ∆ = 0.1 ∆ = 0.5 ∆ = 0.9

%suc NbIt %suc NbIt %suc NbIt
0% 50 11 - - - -
5% 63 12 43 12 50 10

10% 80 9 70 8 76 9
20% 50 9 70 13 86 9
col board 7 (399 rules) NbA = 20

NbR ∆ = 0.1 ∆ = 0.5 ∆ = 0.9
%suc NbIt %suc NbIt %suc NbIt

0% 13 7 - - - -
5% 13 14 63 19 76 14

10% 20 17 56 17 80 15

0

2

4

6

8

10

12

14

[0,
10

0]

]10
0,2

00
]

]20
0,3

00
]

]30
0,4

00
]

]40
0,5

00
]

]50
0,1

00
0]

]10
00

,15
00

]

]15
00

,20
00

]

> 2
00

0

CPU times (sec)

fr
eq

u
en

cy

ASACO with 600 ants SMODELS

0

200

400

600

800

[0,10] ]10,20] ]20,30] ]30,40] ]40,50] ]50,60] >60

number of choice points

fr
eq

u
en

cy

DLV

Fig. 4. Comparative results for ham sim 6

In table 2 we report the influence of the pheromone updating on the per-
formance of our system. When NbR = 0%, ∆ has no influence. This explains
why there is only one result on these lines. In these cases, the method acts as
a pure stochastic search and the percentage of success is again very low. On
the other hand, the performances increase with the coefficient of reinforcement
and the best results are obtained when at least 10% of the paths are updated.
So, once again, this is an argument to demonstrate the efficiency of Ant Colony
Optimization. We have made some comparative studies of ASACO versus Smod-
els [16] and DLV [6]. For these both systems we performed many tests on the
same problem by shuffling the input file for each test since we remarked that the
performances of these systems may depend on the order of the rules. In figure 4
we detail the distributions of CPU times for Smodels and ASACO for ham sim 6
to illustrate that we are able to obtain interesting results on a problem which is
very difficult to solve for one of the best available systems. Even if DLV has very
good performances, we can see on the last picture of figure 4 that there exist
some configurations of the input file for which the number of explored choice
points highly increases.



Answer Set Programming by Ant Colony Optimization 491

5 Conclusion

In this paper, we have designed an Ant Colony Optimization based algorithm to
compute a stable model by trying to determine which rules in the logic program
have to be applied together. By lack of time we have not realized a complete
set of experiments in order to tune all the parameters that control our system.
Nevertheless, the implementation provides performances promising enough to
incite us to continue in this way in order to improve the pheromone updating
influence and its combination with the local evaluation. Furthermore, we have
also developed another implementation in which a step of local search improves
some paths built by the ants, and future directions of work are the parallelization
of the system.

References

1. Gerhard Brewka and Jürgen Dix. Knowledge Representation with Logic Programs.
In J. Dix, L. Pereira, and T. Przymusinski, editors, Logic Programming and Knowl-
edge Representation, volume 1471 of LNAI, pages 1–55. Springer Verlag, 1998.

2. B. Bullnheimer, R. Hartl, and C. Strauss. A new rank based version of the ant sys-
tem — a computational study. Central European Journal of Operations Research,
7(1):25–38, 1999.

3. P. Cholewiński, V. Marek, A. Mikitiuk, and M. Truszczyński. Computing with
default logic. Artificial Intelligence, 112:105–146, 1999.

4. D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. Mac Graw Hill,
1999.

5. M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stimergy. Future
Generation Computer Systems, 16:851–871, 2000.

6. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving using the
dlv system. In J Minker, editor, Logic Based AI, pages 79–103. Kluwer Academic
Publishers, 2000.

7. T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In D. Miller, editor, ILP Symposium, pages
266–278. MIT Press, 1993.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the International
Conference on Logic Programming, pages 1070–1080. The MIT Press, 1988.

9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive
databases. New Generation Computing, 1991.

10. N. Leone, S. Perri, and P. Rullo. Local search techniques for disjunctive logic
programs. In E. Lamma and P. Mello, editors, AI*IA’99: Advances in Artificial
Intelligence, number 1792 in LNAI, pages 107–118. Springer, 2000.

11. Th. Linke. Graph theoretical characterization and computation of answer sets.
In B. Nebel, editor, Proceedings of the IJCAI, pages 641–645. Morgan Kaufmann
Publishers, 2001.

12. W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38(3):588–619, 1991.

13. R. Mercer, L. Forget, and V. Risch. Comparing a pair-wise compatibility heuris-
tic and relaxed stratification: Some preliminary results. In S. Benferhat and
P. Besnard, editors, Proceedings of ECSQARU, volume 2143 of LNCS, pages 580–
591. Springer Verlag, 2001.



492 Pascal Nicolas, Frédéric Saubion, and Igor Stéphan

14. P. Nicolas, F. Saubion, and I. Stéphan. GADEL : a genetic algorithm to compute
default logic extensions. In Proceedings of the European Conference on Artificial
Intelligence, pages 484–488, 2000.

15. P. Nicolas, F. Saubion, and I. Stéphan. New generation systems for non-monotonic
reasoning. In T. Eiter, M. Truszczynski, and W. Faber, editors, International
Conference on Logic Programming and NonMonotonic Reasoning, LNCS, pages
309–321, 2001.

16. I. Niemelä, P. Simons, and T. Syrjanen. Smodels: a system for answer set pro-
gramming. In Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado, USA, 2000.

17. A. Provetti and L. Tari. Answer sets computation by genetic algorithms. In Genetic
and Evolutionary Computation Conference, pages 303–308, 2000.

18. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132,
1980.

19. T. Stützle and Holger H. Hoos. Max-min ant system. Future Generation Computer
systems, 16(8):889–914, 2000.


	1 Introduction
	2 Stable Model Semantics for Logic Programming
	3 Ant Colony Optimization for Stable Models
	3.1 Ant Colony Optimization Principles
	3.2 Problem Representation
	3.3 The Ant's Travel
	3.4 Path Evaluation
	3.5 Pheromone Updating

	4 Experimental Validation
	5 Conclusion
	References

