A Possibilistic Inconsistency Handling
in Answer Set Programming

Pascal Nicolas, Laurent Garcia, and Igor Stéphan

LERIA, University of Angers, France
{pascal.nicolas, laurent.garcia, igor.stephan}@univ-angers.fr

Abstract. Both in classical logic and in Answer Set Programming, in-
consistency is characterized by non existence of a model. Whereas every
formula is a theorem for inconsistent set of formulas, an inconsistent pro-
gram has no answer. Even if these two results seem opposite, they share
the same drawback: the knowledge base is useless since one can not draw
valid conclusions from it. Possibilistic logic is a logic of uncertainty able
to deal with inconsistency in classical logic. By putting on every for-
mula a degree of certainty, it defines a way to compute, with regard to
these degrees, a consistent subset of formulas that can be then used in
a classical inference process. In this work, we address the treatment of
inconsistency in Answer Set Programming by a possibilistic approach
that takes into account the non monotonic aspect of the framework.

1 Introduction

Answer Set Programming (ASP) [1] is an appropriate formalism to represent
various problems issued from Artificial Intelligence and arising when available
knowledge is incomplete as in non monotonic reasoning, planning, diagnosis. . . In
ASP, knowledge is encoded by logical rules and solutions are obtained as models.
Each model is a minimal set of atoms containing some facts and deductions
obtained by applying by default some rules. So, conclusions rely on present and
absent data, they form a coherent set of hypotheses and represent a rational
view on the world described by the rules. Thus, in whole generality there is
not a unique set of conclusions but maybe many ones or none. When there is
no answer set, the program is said to be inconsistent and it is not possible to
reason with it. But, as far as we know, there is no work in ASP that deals with
inconsistent programs.

Possibilistic logic [2] is issued from Zadeh’s possibility theory [3]. It offers a
framework for representation of states of partial ignorance owing to the use of a
dual pair of possibility and necessity measures. Possibility theory may be quan-
titative or qualitative [4] according to the range of these measures which may be
the real interval [0, 1], or a finite linearly ordered scale as well. Possibilistic logic
provides a sound and complete machinery for handling qualitative uncertainty
with respect to a semantics expressed by means of possibility distributions which
rank-order the possible interpretations. In other words, it deals with uncertainty
by means of classical 2-valued interpretations that can be more or less certain.

L. Godo (Ed.): ECSQARU 2005, LNAI 3571, pp. 402-i14], 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Possibilistic Inconsistency Handling in Answer Set Programming 403

Default Logic Stable Model Semantics Classical Logic
C Possibility Theory)
,,,,,,,,, oo I
! Possibilistic Stable |
1 - Possibilistic Logic
Model Semantics |

Fig. 1. Possibilistic Stable Model Semantics

In [5], we have defined Possibilistic Stable Model Semantics that is a new
framework dealing with uncertainty in ASP. It has been developed to handle
normal logic programs in which each rule is given with a certainty degree and
it is based on the introduction into ASP of possibility theory concepts. Figure 1
positions our work within the linked formalisms.

In classical logic, inconsistency is characterized by the fact that every formula
is a theorem. Conversely, in ASP inconsistency is characterized by the non exis-
tence of any answer. Even, if these two situations seem opposite, they share the
same drawback: the knowledge base is useless since one can not draw valid con-
clusions from it. For our present work, the important point is that possibilistic
logic can be used to handle the problem of inconsistency in classical logic bases.
The certainty degrees attached to the formulas are seen as a rank-ordering of the
classical base. This rank-ordering is then used to extract a consistent subbase of
the initial inconsistent base. Thus it seems natural to us to developed a similar
methodology with possibilistic normal logic programs to handle inconsistency in
ASP. The idea is to extract, as it is done in possibilistic logic for classical bases,
a consistent subprogram from which it is possible to compute some answers.

Next section 2 recalls some theoretical backgrounds about ASP and presents
possibilistic stable model semantics [5]. In section 3 we expose our methodol-
ogy to deal with inconsistency in ASP by a possibilistic approach. We show an
equivalence result between our approach and this of possibilistic logic and we il-
lustrate the use of our proposal in the context of combinatorial problems encoded
in ASP. We conclude, in section 4, by briefly positioning our work relatively to
others in the same area.

2 Theoretical Backgrounds

ASP is concerned by different kinds of logic programs and different seman-
tics. In our work we deal with normal logic programs, interpreted by stable
model semantics [6]. We consider given a non empty set of atoms X that de-
termines the language of the programs. A normal logic program is a set of rules
of the form: ¢ «— a1, ..., ag, not by, ..., not b;. where £k > 0,1 > 0,
{a1,...,ap,b1,...,bi,c} C X. A term like not b is called a default negation.
The intuitive meaning of such a rule is: ”if you have all the a;’s and no b;’s

404 P. Nicolas, L. Garcia, and I. Stéphan

then you can conclude ¢”. For such a rule r we use the following notations!:
the positive prerequisites of r, body™(r) = {a1, ..., a,}; the negative prereq-
uisites of 7, body~ (r) = {b1, ..., bm}; the conclusion of r, head(r) = ¢ and
the positive projection of r, r* = head(r) « body™ (r). If a program P does
not contain any default negation (ie: body™ (P) = @), then P is a definite logic
program and it has one minimal Herbrand model Cn(P) (see [7]). The reduct
PX of a program P wrt. an atom set X is the definite logic program defined by
PX ={r* |r € P, body=(r)N X = 0} and it is the core of the definition of a
stable model that is an atom set satisfying S = Cn(P%).

Note that a program may have one or many stable models or not at all. In
this last case we say that the program is inconsistent, otherwise it is consistent.
Since we restrict our attention to normal logic programs we are not concerned by
possibly inconsistent stable models. These ones may appear when we consider
Answer Set Semantics for extended logic programs [1] in which literals (and not
only atoms) are used in the rules.

Ezample 1. Py = {a «— .,c < a,not b.,d < not ¢,not f.} has one stable model
{a,c}, P, = {a < not b.,b — not a.,c < a.,c < b.} has two stable models {a, c}
and {b,c} and P3s = {a < not a.} is inconsistent.

In this paper, we work with programs and their models using a ”rule-based”
approach that needs the following materials. Let A be an atom set, r be a rule
and P be a program (definite or normal). We say that r is applicable in A if
body™(r) € A and we denote App(P, A) the subset of P of its applicable rules
in A. A satisfies r (or r is satisfied by A), denoted A |= r, if when r is applicable
in A, then head(r) € A. P is grounded if it can be ordered as the sequence
(r1,...,ry) such that Vi, 1 <i <n,r; € App(P, head({r1,...,1i—1})).

In [5] we have extended stable model semantics in order to take into account
some certainty degrees on rules. To achieve this goal, we consider given a finite
set of atoms X and a finite, totally ordered set of necessity values N CJ0, 1].
Then, a possibilistic atom is a pair p = (z,a) € X x N. We denote by p* = z the
classical projection of p and by n(p) = « its necessity degree. These notations
can also be extended to a possibilistic atom set (p.a.s.) A that is a set of pos-
sibilistic atoms in which every atom z occurs at most one time. A possibilistic
definite logic program (p.d.l.p.) is a set of possibilistic rules of the form:

(ce—ay, ..., ag., @)
where k > 0,{a1, ..., ar, ¢} C X,a € N. The classical projection of a possi-
bilistic r rule is 7* = ¢ < a1, ..., ag. n(r) = a is a necessity degree representing

the certainty level of the information described by r. If R is a set of possibilistic
rules, then R* = {r* | » € R} is the program obtained from R by forgetting all
the necessity values.

From a possibilistic definite logic program P, we can determine, as it is done
in possibilistic logic, a least specific possibility distribution defined on all the
sets in 2% and characterized as follows.

! These functions are extended to a rule set as usual.

A Possibilistic Inconsistency Handling in Answer Set Programming 405

Proposition 1. Let P be a p.d.lLp. then wp : 2% — [0,1] defined by VA € 2%

1. if A Z head(App(P*, A)) then mp(A) =0
2. if App(P*, A) is not grounded then mp(A) =0
3. otherwise
— ifVre P,AEr* then tp(A) =1
—else 0 <7p(A) <1 and mp(A) =1-— Eﬂngagc{n(r) | A B r*}

is the least specific possibility distribution.

By this way, we are able to rank every atom set with respect to its ability
to be a model of P. If an atom set satisfies the condition in one of the two first
items in proposition 1, then it is absolutely not possible for it to be a model of
P. Otherwise, its possibility to be a model is related to the certainty degree of
rules that it falsifies. Obviously, if A is the model of P, then its possibility is full
and vice-versa (ie: mp(A) =1 <= A = Cn(P)).

Now, we can give the definition of inference that is the evaluation of the
necessity degree of each atom of the universe.

Definition 1. Let P be a p.d.l.p. and mp the least specific possibility distribution
compatible with P, we define the two dual possibility and necessity measures:

IIp(x) = f‘IéE;)é{ﬂ'p(A) |z€e A} and Np(z)=1-— gé&;g{ﬂp(A) | x & A}

IIp(x) gives the level of consistency of & with respect to the p.d.l.p. P and
Np(x) evaluates the level at which z is inferred from the p.d.l.p. P. This is
closely related to the definitions of possibilistic logic. For instance, whenever an
atom z belongs to the model of the classical program its possibility is total. Fur-
thermore, the necessity measure allows us to introduce the following definition
of a possibilistic model of a p.d.l.p.

Definition 2. Let P be a possibilistic definite logic program, then the set
HOM(P) = {(z,Np(z)) | x € X, Np(z) > 0}

1s 1ts possibilistic model.

Proposition 2. Let P be a p.d.Lp. then : (IIM(P))* is the model of P*.

Ezample 2. Let us take P = {(a < .,0.8), (b < a.,0.6), (d < a.,0.5), (d «
¢.,0.9)}. The least specific possibility distribution induced by P is null for ev-
ery atom set included in {a,b,c,d} except for mp(@) = 0.2, mp({a}) = 0.4,
mp({a,b}) = 0.5, 7p({a,d}) = 0.4 and 7wp({a,b,d}) = 1 (the model). So, we
can compute the possibility of each atom: IIp(a) = IIp(b) = IIp(d) = 1 and
ITp(c) = 0 and its certainty in term of necessity degree: Np(a) = 0.8, Np(b) =
0.6, Np(c) = 0, Np(d) = 0.5. Thus, IM(P) = {(a,0.8), (b,0.6), (d,0.5)} is the
possibilistic model of P.

406 P. Nicolas, L. Garcia, and I. Stéphan

Now, we allow default negation in programs and we summarize the notion of
possibilistic stable model. It extends the stable model semantics by taking into
account the necessity degree in the rules of a given possibilistic normal logic
program (p.n.l.p.). Such a program is a finite set of rules of the form:

(c—ay, ..., ag, not by, ..., notb., a) k>0,1>0

for which we just have to precise that {by,...,b;} C X, all the rest being the
same as for a p.d.l.p. (see the beginning of this section). As for normal logic
programs, we need to define what is the reduction of a program.

Definition 3. Let P be a p.n.l.p. and A be an atom set. The possibilistic reduct
of P wrt. A is the p.d.l.p. PA = {(r** n(r)) | r € P,body=(r) N A = (}.

By this way, the definition of a possibilistic stable model becomes natural.

Definition 4. Let P be a p.n.l.p. and S a p.a.s., S is a possibilistic stable model
of P if and only if S = IIM(P5").

By analogy with normal logic programs we say that a p.n.l.p. P is consis-
tent if P has at least one possibilistic stable model. Otherwise P is said to be
inconsistent. Let us note that there is a one to one mapping between the stable
models of P* and the p.s.m. of P. In particular, if P is inconsistent then P* is
also inconsistent and if S is a p.s.m. of P then S* is a stable model of P*.

Ezample 3. {(c < a,not d.,0.6),(d «— a,not c.,1),(a.,0.8),(e <« d.,0.3)} has
two possibilistic stable models: {(a,0.8), (¢,0.6)} and {(a,0.8),(d,0.8), (e,0.3)}.

Now, we examine the semantics given to this framework by the definition of a
possibility distribution induced by the necessity values associated to each normal
rules. This distribution 7 over all the atom sets (ie : over 2%) has to reflect the
ability of every atom set to be a stable model of P* and that is formalized in
the proposition 3.

Definition 5. Let P be a p.n.l.p. and A be an atom set, then Tp is the possibility
distribution defined by 7p : 2% — [0,1] such that VA € 2% ,7p(A) = mpa(A).

Proposition 3. Let P be a p.n.lL.p. and A € 2% be an atom set, then 7p(A) =
1 < A is a stable model of P*.

Thus, if there is no atom set A such that 7p(A) = 1 then P is inconsistent.
This ends the presentation of possibilistic stable model semantics that we have
introduced in previous works to manage uncertainty in ASP and that we use
here to deal with inconsistency.

3 Inconsistency Handling in ASP

One feature of possibilistic logic is its ability to manage inconsistency of a formula
set. It proposes a way to restore the consistency of a formula set by deleting

A Possibilistic Inconsistency Handling in Answer Set Programming 407

some less certain (or preferred) formulas, those with a low certainty degree. We
present here an analogous idea in order to deal with inconsistent normal logic
programs. The basic idea is to consider that every rule in the given program has
a certainty degree. All rules are ranked by strata with respect to these degrees
and the consistency restoring process has to keep the greatest number of most
preferred strata.

3.1 Formal Definitions

A possibilistic base is a set X of pairs constituted with a classical formula and a
weight that is a necessity degree. X is said to be consistent (resp. inconsistent) if
its classical support, obtained by forgetting the weights, is classically consistent
(resp. inconsistent). It is interesting to note that possibilistic logic addresses
the problem of inconsistency by selecting a consistent subbase with respect to
the necessity values of the formulas. a-cut (resp. strict a-cut) of X', denoted
by X>q (resp. by Xs4), is the set of classical formulas in X' having a certainty
degree greater than (resp. strictly greater than) «. The inconsistency degree
of X is Inc(X) = maz{a : Y>,is inconsistent}. Inc(X) = 0 means that X
is consistent. If X' has no model, then, by discarding formulas which necessity
degree is lower than the inconsistency degree, it defines an a-cut X r,.(x) that
is consistent. It is clear that this cut may eliminate some formulas that are not
involved in the inconsistency. Nevertheless, Inc(X) defines a plausibility level
under which information is no more pertinent. So, it is justified to eliminate
all the formulas representing this piece of knowledge. Let us mention that the
inconsistency degree can be computed by means of the least specific possibility
distribution of X

The following presentation of our work is inspired by these general principles
issued from possibilistic logic.

Definition 6. Let P be a p.n.l.p.

— the strict a-cut of P is the subprogram Ps, = {r € P | n(r) > o}
— the consistency cut degree of P is

0 if P is consistent
ConsCutDeg(P) = { 1 if Vo € N, P5 is inconsistent
min{Ps,, is consistent} otherwise
aeN
The consistency cut degree of a p.n.l.p. P defines the minimum level of

certainty for which a strict a-cut of P is consistent. When P is inconsistent
P. conscutpeg(p) 18 the consistent subprogram of P that we want to compute.
Let us note that, because of the non monotonicity of the framework it does not
ensure that a higher cut is necessarily consistent. And also, it is not necessarily
the greatest (in number of rules) consistent subprogram of P. Here, our approach
to restore the consistency of a p.n.L.p. is to delete the minimum number of less
certain rules.

408 P. Nicolas, L. Garcia, and I. Stéphan

_ f (e 1), (f < not e,not f.0.9), (e < not b.,0.8),
Example 4. Let P = (a < not a,not b,0.7), (d < ¢, not d.,0.6), (b < c.,0.5) }
ConsCutDeg(P) = 0.7 since P(= Psg), P~o.5 and Psg¢ are inconsistent and
P-g.7 is consistent. Let us remark that Psgg is inconsistent. This last point
illustrates a notable difference between classical logic and stable model semantics.
In classical logic, every subset of a consistent set of formulas is itself consistent.
But, a subset of a consistent normal logic program is not necessarily consistent
and this is due to the non monotonic nature of the formalism.

Definition 7. Let P be a p.n.l.p., its inconsistency degree is

InconsDeg(P) =1 — max{7p(A)}
Ae2X

This inconsistency degree can be used to characterize an inconsistent p.n.l.p.
and to define a cut of an inconsistent p.n.l.p. that is still a superset of the
consistent subprogram that we want to obtain.

Proposition 4. Let P be a p.n.l.p., then

— P is inconsistent <= InconsDeg(P) > 0
— InconsDeg(P) < ConsCutDeg(P).

We define our methodology of consistency restoration for a p.n.l.p. by means
of the next function cut that computes the greatest (wrt. the certainty level of
rules) consistent subprogram of P.

Definition 8. Let cut be the function defined on a p.n.l.p by

cut(P) =P if InconsDeg(P) =0
cut(P) = cut(Ps rneonsDeg(p)) Otherwise

Proposition 5. Let P be a p.n.l.p. then cut(P) = PsconsCutDeg(P)-

Ezxample 5. Let us come back to our program P in example 4 for which we have
InconsDeg(P) = 0.7. The first call to cut is enough to compute the maximal
consistent subprogram of P: cut(P) = {(c.,1),(f < not e,not f.0.9),(e «—
not b.,0.8)} such that cut(P)* has one stable model {c, e}.

3.2 Relations with Possibilistic Logic

In this section, we focus our attention on possibilistic normal logic programs
encoding classical possibilistic bases. Let A be an atom set from which a classical
propositional base is built. Recall that every propositional base X can be encoded
in a clause set. So, without loss of generality, we consider here only clause sets. On
its turn, such a clause set X can be translated in a normal logic program P(X)
as following (a similar process is exposed in [8]). First, the translation of a clause
c=(—a1V---Vaa, Vb V- -Vby,)inaruleis P(cl) = f — ay,...,an,b),...,0,.
The encoding of a base X' is

A Possibilistic Inconsistency Handling in Answer Set Programming 409

P(X)={P(cl) | cl € X}
U{x «— not 2'.,2" — not z. | x € A} U {bug — f,not bug.}

and the intuition behind this translation stands on the following remarks.

— 2’ is a new atom encoding the negative literal —x

— Rules # « not z’. and ' < not z. allow to generate all possible classical
propositional interpretations by doing an exclusive choice between = and —x
for each atom z in A.

— The goal of each rule P(cl) is to conclude f (a new symbol for false) if
the choice of atoms (z and —z) corresponds to an interpretation that does
not satisfy the clause cl. By this way, if there exists a stable model not
containing f, then it corresponds to an interpretation of X (since every
clause is satisfied).

— The goal of special rule bug < f, not bug., where bug is a new symbol, is to
discard every stable model containing f. Since bug appears in the head and
in the negative body of this rule and nowhere else, if a stable model exists
then it may not contain f.

By this way there is a one to one correspondence between the propositional
models of X and the stable models of P(X). But, as stated in [9] there is no
modular mapping from program to set of clauses, only a modular transformation
from set of clauses to program exists. So, in a way, ASP has better knowledge
representation capabilities than propositional logic and it is interesting to study
how it can be extended to the possibilistic case in particular when there is an
inconsistency. To reach our goal, we first extend the transformation P to a new
transformation PP for the possibilistic case in a natural way. If (cl, @) € X, then
its encoding keep the same necessity degree a in PP(X). A necessity value equal
to 1 is assigned to all the other rules (the ”technical” ones).

Definition 9. Let X = {(cl;,;),i =1,...,n} be a possibilistic base (in CNF),
its encoding in a p.n.l.p. is:

PP(X) = {(P(cly), ;) | (cly, ;) € X}
U{(z < not 2'.,1), (' <~ not z.,1) | x € A} U {(bug — f,not bug.,1)}

In the sequel we use X = Ugca{a,a’} U{f,bug} to make the correspondence
between the language of the propositional base and the one of its translation.

Definition 10. X C X is a pseudo interpretation if
Vae A (ae XVad eX)N(agXVd €X)N bugg XNf&X

The interesting point for p.n.l.p. encoding a possibilistic logic base is that, in
this case, we are able to restore the consistency of a p.n.l.p. in only one step as
it can be summarized in the figure 2.

In the following, we will say that a pseudo interpretation X corresponds to
a classical interpretation w if by translating each atom o’ € X in literal —a,

410 P. Nicolas, L. Garcia, and I. Stéphan

possibilistic logic base possibilistic normal logic program
inconsistent base Y = inconsistent program PP(X)
4 4
consistent subbase Y-, <= consistent subprogram PP(X)sq
4 (3
propositional model <= stable model
a is the inconsistency degree of X' and PP(X)

Fig. 2. Relation between possibilistic logic and possibilistic stable model semantics

we obtain the interpretation? w. By this way, every stable model of PP(X)*
is a pseudo interpretation corresponding to a classical model for X and
conversely.

Proposition 6. Let X be a possibilistic base and P = PP(X) its encoding in a
p.n.lp., VX C X we have
X is not a pseudo interpretation and 7p(X) =0
or
X is a pseudo interpretation and 7p(X) = wx(w)
where w is the interpretation that corresponds to X

Proposition 7. Let X be a possibilistic base, then

— Inc(X) = InconsDeg(PP(X)).

— if Inc(X) = a, PP(Xss) = (PP(X))sa

— InconsDeg(PP(X)) = 0= (PP(X))* has at least one stable model S that
corresponds to a propositional model of X

— InconsDeg(PP(X)) = a > 0= (PP(X)sq)* has at least one stable model
S that corresponds to a propositional model of X< .

These results establish that our methodology exposed in figure 2 is valid.
There is a total equivalence between the management of classical bases with
possibilistic logic and the management of the corresponding p.n.l.p

Bvample 6. Let ¥ — {(ﬁe,o.g),(va,o.8)7(ﬁb\/e,o.7),(ﬂavb7o.7),} e a

(—d,0.5), (a,0.5), (b V d,0.3)
possibilistic base. Its encoding as a p.n.L.p. is

_J(f—e,09),(f < V,.,08),(f —b,e.,0.7),(f —a,l.0.7),
PP(X) = { (f —d.,0.5),(f — a.,0.5),(f « b,d.,0.3), }
U{(z < not 2'.,1), (' «— not z.,1) | z € {a,b,c,d,e}}
U{(bug < f,not bug.,1)}

2 A pseudo interpretation leads necessary to an interpretation since it contains one
occurrence of each atom (ie a or its negation) and no occurrence of f nor bug.

A Possibilistic Inconsistency Handling in Answer Set Programming 411

Then, we have InconsDeg(PP(X)) = 0.5 that corresponds to Inc(X) = 0.5
and the preferred consistent subprogram of PP(X) is

PP(X)so5 ={(f < €.,0.9),(f < V,c.,08),(f — b,€e.,0.7),(f — a,b.,0.7)}
U{(x < not 2'.,1), (' «—not x.,1) | z € {a,b,c,d,e}}
U{(bug «— f,not bug.,1)}

So, we obtain PP(X)s¢5 = PP(Xs05) and (PP(X)-0.5)* has two stable
models: {a’,V',¢c,d,e'} and {a’,V’,c,d’,e'}. They correspond to the two proposi-
tional models: {—a, —b, ¢, d, —e} and {—a, —b, ¢, ~d, =e} of (X~¢.5)* the consistent
subbase obtained in possibilistic logic.

3.3 Constraint Relaxation

One application domain for ASP is the encoding of combinatorial problems in
such a way that, given a problem A, the stable models of a program P(A) are
the solutions of A. Designing P(A) consists in writing three kinds of rules:

— data rules describing the particular data of the given instance,

— guess rules able to generate all the search space,

— check rules, or constraints, eliminating the points in the search space that
are not solutions.

By this way, when A has no solution, the corresponding program P(A) is incon-
sistent. In this case it may be interesting to relax some constraints in order to
obtain an approximate solution of A. But which constraint has to be relaxed 7
In a real case problem (ex: a timetabling problem), it is usual to have different
kinds of constraints. Some of them are impossible to circumvent (ex: each teacher
can not give two courses at the same time), but some others are only desirable
(ex: do not place a course after 6PM). We see that all constraints can be ranked
by level of importance (preference) and so our framework can encode A in a
p.nlp PP(A). If PP(A) is inconsistent, then by means of inconsistency degree
our function cut can be used to relax some less important constraints. Then,
the resulting subprogram has a stable model that represents an approximate
solution of the initial problem A. We illustrate this proposal by the following
example of a 2-coloration of a graph.

Example 7. Let us consider A, the problem of coloring, by red or green the
undirected graph G = ({v1,v2,v3}, {(v1,v2), (v2,v3), (v3,v1)}). Its encoding is

data rules: v(1) — . v(2) —. ©v(3) .
e(1,2) —. e(2,3) —. e(3,1) <.
guess rules: red(X) «+ v(X),not green(X).
green(X) «— v(X),not red(X).
check rules: bug «— e(X,Y),red(X), red(Y'), not bug.
bug — e(X,Y), green(X), green(Y'), not bug.

P(A) =

412 P. Nicolas, L. Garcia, and I. Stéphan

Fig. 3. Constraint relaxation

But, P(A) is inconsistent since it is obvious that it is impossible to color G with
only two colors in such a way that two connected vertices have different colors.
In such a problem, edges are the constraints of the graph. So let us suppose that
these constraints can be ranked, by means of an importance degree on every edge
as it is illustrated in the first graph of figure 3. The corresponding possibilistic
normal logic program?® that encodes this additional information is:

(0(1) — 1), (0(2) — 1), (0(3) — 1),

(e(1,) 1), (e(2,3) « .,0.7), (e 3,1) —.,0.9),

) (red(X) < 0(x), not green(X).,1).

PP(4) = (green(X) «— v(X),not red(X)., 1),

(bug — e(X,Y),red(X), red(Y), not bug.,1),

(bug — e(X,Y), green(X), green(Y'), not bug.,1)
Then, InconsDeg(PP(A)) = 0.7 and cut(PP(A)) = PP(A)>o.7 is a consistent
p.n.l.p. This subprogram PP(A) encodes a relaxation of the initial problem A
in which we eliminated the less important constraint as illustrated in the sec-
ond graph of figure 3. Finally, the stable models, {red(1), green(2), green(3)}
and {red(1), green(2), green(3)}, of cut(PP(A))* encode some approximate so-
lutions of the initial problem A.

Our proposal deals with over-constrained logic programs for which other
works exist as Hierarchical Constraint Logic Programming [10]. This approach
addresses the problem in a different way from ours, by a hierarchy of degrees
and some error and comparator functions to choose between different solutions
(see [11] for a survey on over-constrained systems).

4 Conclusion

In this work, we have proposed a methodology to restore the consistency of a
normal logic program. Our proposal is underpinned by possibilistic stable model
semantics that allows to rank the rules of a program by order of certainty or
importance. We have defined a cut function that returns a consistent subprogram
of the initial inconsistent one. We have shown that our approach is equivalent to

3 As usual in ASP, rules with variables are a shortcut for a set of instantiated rules for
which each certainty degree is that of the rule with variables from which it comes.

A Possibilistic Inconsistency Handling in Answer Set Programming 413

that in possibilistic logic and illustrated how it can be used to relax a program
encoding a combinatorial problem. This is useful in order to find an approach
solution when the initial given problem has no solution.

There are many families of methods to handle inconsistency in stratified
knowledge bases. Our work is part of the ones that restore consistency by select-
ing one or several consistent subbases. In this family, our approach is a cautious
one that deletes all knowledge under a level of inconsistency. A different way is
to keep a maximal number of data in every stratum. For instance, in [12] the
knowledge is given by a stratified formula set T'=T; U - - - U T, where the most
important formulas are in T;. The preferred subtheory of T is S =S, U---US,
iff Vk,1 <k < n,S1U---USj is consistent and maximal. So, the strategy to
extract a consistent subbase from an inconsistent one is, from the most impor-
tant stratum to the less important one, to compute for each stratum a subset
of formulas consistent with the union of the previous ones. The next example
illustrates that this strategy may give a different result than our one if we apply
it to normal logic programs.

Ezample 8. Let us consider the inconsistent program P = Py U P, U P3 U Py
with P, = {b <« not a.}, P, = {a <« not a.}, P3 = {a <« not b.} and P, =
{b < not b.}. The preferred subtheory approach of [12] leads to the consistent
subprogram S = P, UQU Ps U Py = {b < not a.,a < not b.,b « not b.} that
has a unique stable model {b}. On our side, we can represent the different strata
of P by means of the p.nlp. PP = {(b « not a.,1),(a < not a.,0.8),(a —
not b.,0.6), (b «— mnot b.,0.4)}. Then, we find InconsDeg(PP) = 0.4 and so
cut(PP) = PP~g.4 = {(b < not a.,1), (a < not a.,0.8), (a < not b.,0.6)} that
is consistent and such that cut(PP)* has a unique stable model {a}.

For an inconsistent logic base X' dealt with a possibilistic approach, the con-
sistent subbase X' r,.(x) is always a subset of the preferred subtheories of X.
Whereas the example 8 shows that it is not always the case for the normal logic
programs. This difference comes from the non monotonic nature of stable model
semantics. In future works, we envisage to apply in ASP other strategies for
consistency restoring. Particularly, it would be interesting to study how to keep
all rules not directly involved in the inconsistency.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4) (1991) 363-385

2. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In Gabbay, D., Hogger, C.,
Robinson, J., eds.: Handbook of Logic in Artificial Intelligence and Logic Program-
ming. Volume 3. Oxford University Press (1995) 439-513

3. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. In: Fuzzy Sets and
Systems. Volume 1. (1978) 3-28

4. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In
Smets, P., ed.: Handbook of Defeasible Reasoning and Uncertainty Management
Systems. Volume 1. Kluwer Academic Press (1998) 169-226

414

5.

6.

10.

11.

12.

P. Nicolas, L. Garcia, and I. Stéphan

Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland (2005)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K., eds.: International Conference on Logic Programming,
The MIT Press (1988) 1070-1080

Lloyd, J.: Foundations of Logic Programming. 2nd edn. Symbolic Computation.
Springer (1987)

Simons, P.: Extending and implementing the stable model semantics. Research
Report A58, Helsinki University of Technology, Department of Computer Science
and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland
(2000) Doctoral dissertation.

Niemeld, I.: Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25 (1999)
241-273

Wilson, M., Borning, A.: Hierarchical constraint logic programming. Journal of
Logic Programming 16 (1993) 277-318

Jampel, M., Freuder, E.C., Maher, M.J., eds.: Over-Constrained Systems. In
Jampel, M., Freuder, E.C., Maher, M.J., eds.: Over-Constrained Systems. Volume
1106 of Lecture Notes in Computer Science., Springer (1996)

Brewka, G.: Preferred subtheories: An extended logical framework for default rea-
soning. In: International Joint Conference on Artificial Intelligence. (1989) 1043—
1048

	Introduction
	Theoretical Backgrounds
	Inconsistency Handling in ASP
	Formal Definitions
	Relations with Possibilistic Logic
	Constraint Relaxation

	Conclusion
	References

