Boolean Propagation Based on Literals for Quantified
Boolean Formulae

Igor Stéphan'

Abstract.
quantified Boolean formulae based on literals and genermutat
matically thanks to quantified Boolean formulae certifisaf@iffer-
ent decompositions by introduction of existentially quied vari-
ables are discussed in order to construct complete sysinsset
of rules is compared with already proposed quantified Baopeap-
agation rule sets and Stalmarck’s method.

1 Introduction

The quantified Boolean formulae validity problem is a gelieaition
of the Boolean formulae satisfiability problem. While themgex-
ity of Boolean satisfiability problem is NP-complete, it iISIPACE-
complete for quantified Boolean formulae validity problefthis
is the price for more concise representation of many classes
formulae. Many important problems in several search fielageh
polynomial-time translations to the quantified Booleamfalae va-
lidity problem. This is the reason why the implementatiorefféc-
tive tools for deciding the validity of quantified Booleanifaulae is
an important research issue. Since quantified Boolean fasmmay
be reduced to (unquantified) Boolean formulae by expansidheo
universal quantifiers, the first solution seems to reducetiamtified
Boolean formula and then apply a satisfiability algorithrheTnain
drawback of this approach is that the size of the Booleanqgsiep
tional formula is in worst-case exponential in the size & tjuan-
tified Boolean formula. Most of the recent decision proceduior
guantified Boolean formulae validity [23, 22, 17, 13, 19] exten-
sions of the search-based Davis-Putnam procedure [14]dolen
satisfiability. Some other decision procedures are basesoiu-
tion principle [24] (as Q-resolution [12] which extends tfesolu-
tion principle for Boolean formulae [15] to quantified Boatefor-
mulae or Quantor [10] which combines efficiently Q-resantand
expansion), quantifier-elimination algorithms [21, 2@]skolemiza-
tion and SAT solvers [7]. There exists also efficient aldoritfor the
2CNF-QBF [3] or useful heuristics for Quantified Renamabta
Formulas [18], for example.

In [6], a methodology is proposed to construct constraioppga-
tion systems to “constraint satisfaction problems thatkaged on
predefined, explicitly given constraints”. Boolean coastt prop-
agation (see [5] for a small but nice history of it) and Quizexi
Boolean Constraint Propagation [11] verify this definitiBnoperties
and definitions of these articles are in terms of domain anth(®@
tified) arc-consistency. Usually constraint propagatigstems use
implicitly a decomposition by introduction of existentialquanti-
fied variables. This decomposition does not allow to capalirthe
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This paper proposes a new set of propagation rules fopossible simplifications due to the properties of the cotoredn

the Boolean lattice. We are more interested by these resutésm
of propositional logic and logical equivalence as in theiStdck’s
method [25] for tautology checking.

In [8] is introduced the notion of certificate for a QBF. A décate
is a mapping extracted from a QBF which allows to check or gtre
models. From this certificate we will see in the following tthales
for Quantified Boolean Propagation may be extracted auioatigt

In this article, after some preliminaries in section 2, weatibe in
section 3 the core of our contribution: a set of Boolean pgagian
rules based on literals for QBF. First we introduce the dgmusition
by introduction of existentially quantified literals ; thare describe
the automatic generation, thanks to the certificate, of theld&an
propagation rules based on literals for QBF ; and finally weppse
a complete algorithm based on this set of rules and the senanft
the quantifiers. In section 4, we compare our approach witady
proposed (quantified) Boolean propagation rule systemgen8tal-
marck’s method and in section 5, we present some future works

2 Preliminaries

Quantified boolean formulae. The Boolean values are denoted
true andfalse The set of propositional symbols (or variables) is de-
noted PV. The symbolsl and T are the propositional constants.
The symbolA is used for conjunctiory for disjunction,— for nega-
tion, — for implication and— for equivalence. A literal is a proposi-
tional variable or the negation of a propositional variatfié is a lit-
eral and = —z then|l| = = andl = x otherwise|l| = [ and] = —I.
Propositional satisfaction is denotedand logical equivalence is de-
noted=. The symboH is used for existential quantification avdor
universal quantificationy(is used as a quantification variable). Every
Boolean formula is also a quantified Boolean formula (QBFF. is
a QBF andc is a propositional variable thgiz F') and(Vx F) are
QBF. If a literall = —x theng]|!| stands forgxz otherwise it stands
for ¢l. It is assumed that distinct quantifiers bind occurrencetisf
tinct variables. If a variable is not under the scope of a quantifier
gz then it is a free variable. The set of free variables of a QBF
is denotedF'V (F'). We defineG[z <+ F] as the formula obtained
form G by replacing occurrences of the propositional variabley
the formulaF'. A binderQ isastringgiz1 . .. gnz, Withz1, ... 2y
distinct variables ands . . . ¢, quantifiers. We writeyz; . . . z,, for
any permutation ofjz; . ..qz,. A QBF QF is in prenex conjunc-
tive normal form if F" is a Boolean formula (called the matrix) in
conjunctive normal form.

QBF semantics. Semantics of all the Boolean symbols is defined
in standard way. In particular, from the structure of the Baa lat-



tice some simplifications on a QBF may be applied (we onlygmes is valid only if the QBFV23v(—z+w), JyIzIu((zVy)—u) and
simplifications for disjunction, but a similar presentatimay be  V:3u((u«z)«T) are also valid. This decomposition is the base of

done for conjunction, implication or any binary Boolean i@ter): Boolean constraint propagation systems [5, 4] and the Stékis
algorithm [25] for tautology checking. The simplificationles be-
(1) (Lvh)=L](@2) (LvT)=T come simplification propagation rules. In the case of QB&Hinder
3) (TvLh)=T | (@) (TvD)=T is important and then added to give what we call an equivalenc
(5) (Lvy)=y | (6) (Tvy)=T schema. The simplification rules already introduced areiten to
(7) (avl)= (8)  (avT)=T integrate the existentially quantified variables and thedei. For
9) (@vao)=z | (10) (zvz)=T example, the simplification rulé9) is rewritten in the equivalence

Lo . . . . schemagz3z((xVz)«—z) with the propagatiorjz < z]. Here the
These rules may be applied iteratively until the (unique)piint order on the quantifiers is very important singeva((z\va)—z)

is reached. The _semanﬂcs of QBF is defined as follows: for V45 not valid. One may notice that rulg0) can not be a rule of
ery Boolean variabley and QBF F, a formula (3y F) =

Boolean constraint propagation systems based on decaiopdsy
(Fly < T].VF[y. o L]) and (Vy_ F) = (.F[y = TIAFly o 1)) . introduction of variables since it does not allow literaddtie rules.
A QBF Fis valid if F=T. If y is an existentially quantified vari-

able preceded by the universally quantified variabies. .., x,
we denoteye,....z,, its Skolem function from{true,false}” to 3 Boolean Propagation based on literals for
{true, false}. A model for a QBFF is a sequencs of satisfying Quantified Boolean Formulae
Skolem functions forF" (denoteds | F’). For example, the QBF
Jy3aVz((xVy)«—=z) is not valid but the QB z3y3z((zVy)«—z2) This section describes the core of our contribution: a setapaga-
is valid and its possib|e sequence of Satisfying Skolem tfans tion rules for quantified Boolean formulae based on liteaald gen-
is .(v) = v, 9.(f) = f, 2.(v) = f and z.(f) = f. erated thanks to quantified Boolean formulae certificatiest We in-
In [27], a new equivalence relation for QBF, denotdis intro- troduce the decomposition by introduction of existenyigliantified
duced. This equiva|ence is about preservation of modeld (m literals ; then we describe the automatic generation of thel&an
only preservation of validity). For example;3y3z((xVy)—z)=T  Propagation rules based on literals for QBF ; finally we pszpa
but Vz3y3z((zVy)—z) 2 T. A (Boolean) model of an unquanti- complete algorithm based on this set of rules and the secsaoti
fied Boolean formula corresponds exactly to a (QBF) modetsf i quantifiers.
existential closure. A QBF is valid if and only if there esist se-
guence of satisfying Skolem functions. According to theoteens
JxIyF=Fy3IzF, VeVy=VyVae F and JaVyF # Vy3zF for any
QBF F, the QBF induce an order on the equivalence classes formed
by the same adjacent quantifiers. Every QBF may be easilg-tran The classical decomposition by introduction of existelytiquanti-
formed in an equivalent prenex QBF. fied variables for Boolean formulae keeps negation as a ctomef

the generated Boolean formulae. By this way, equivalenbersa
Certificates for QBF. In [8] is introduced the notion of certifi- aszVz=z with [z < T] can not be captured. We propose a decom-
cate for a QBF (this notion is also introduced in [27, 26] bat u position based on literals instead of variables to be abiettoduce
der another name). A certificate is a mapping from the set @f th this kind of rules in our propagation system. The negatien ttisap-
existentially quantified variables of a QBF to couples of Rao pears form the connectors of the decomposed formula. Tlosvioly

3.1 Decomposition by introduction of existentially
quantified literals

formulae only constituted on the variables which precedewiiri-  function § decomposes a Boolean formula by introduction of exis-
able in the binder. The certificate may be extracted from a ®BF tentially quantified literals(is a binary connector, functiods™ and
an extension of the quantifier-elimination algorithm QMRE28]. 0~ return couplegvariable decompositiol, 7;(c) with s = 1 (resp.

From a certificatez — (®F,®,)}.cv may be extracted a QBF i = 2) stands for the first (resp. second) projection of the codple
Neev (@VOI)A(—zV®, ). This QBF is equivalent (i.e. preserves

the validity) of the QBF from which the certificate is extradt but §(F) = ma (8T (F))A(ma (87 (F))=T)

also preserves the set of satisfying Skolem functions (anathier 5" (z) = (z,T),z € PV

words the models) [27, 26]. This certificate allows modegaiting 6 (z)=(=,T),z€PV

for QBF [8] and also enumeration of models [8, 27, 26]. Fomexa §F(=A) =307 (A),

ple, the mapping(y — (T,2),z — ((-2Vy),z)} is the certifi- 5= (=A) = 67(4),

cate of the QBFF = Vz3y3z((xVy)<—=z). From this certificate, 5T (Ao B) = (2, m(67(A))Am(5%(B))

the QBFF’ = V23yTa((yV T)A(-yV2)A(aV(=2Vy))A(~zVz)) A((m1(67(A)) 0 m1 (87 (B)))+2))
may be extracted. This QBF has the two following propertiés: 57 (Ao B) = (2, m2(3"(A))Am2(6(B))

andF’ = F. A(m1(8F(A)) o 11 (6%(B))) 7))

. . . . . . If QF is a prenex QBFD = §(F') the decomposition of” and
Dfecomp03|t|on by '”trOdP?“O” of gmstentlglly quant|f|.ed X = FV(QD) the set of new existentially quantified variables in-

v_alrllables. Tfhed decgn;lposmon Ib):j 'ntrOdﬁ’Ct'on of eX'St?n' troduce by the function then the QBFQ3X D is the result of the
tially qu_antl 1ed variables _(app 1ed usually on prenex for- decomposition by introduction of existentially quantifiiérals of
mulae) introduces existentially quantified variables top-ca QF?2. For example, the QBF23y3z((xVy)<—z) is now decom-
ture the intermediate results of a calculus. This decomposipose'd in the QBI%,z’Hnyﬂu(((x\/y)<—>u)/\((u<—>z)<—>T))
tion preserves the validity of the initial QBF. For example, ’
the QBF Vz3ydz((zVvy)«—z) is decomposed in the QBF 2 a5in decomposition by introduction of existentially quted variables the
Vz3yTrFuv(((zVy)—u)A(—z—v)A((u—v)«T)). This QBF equivalencez— T is immediately propagated




According to the theoremsVz(FAG)=(VxFAVzG) and
2 (FAG) E (JzFAIzG), if Q A ((woy)«2) is the decomposi-
tion of the QBFF then F is valid only if all the QBFQ((zoy)« %)

are also valid. Equivalence schema Substitutions
(1)~ Jy| Lvy—l [y 1]
3.2 The set of Boolean propagation rules based on Eg;: §||yl L\ﬁ“{ F’ = I]]
H T T — €T <
literals for QBF | | (14)> 2| evieoT [re T

The set of Boolean propagation rules based on literals fdF Qfg- (15)~ x| Vel [z 1]

sented in this article are generated automatically by enaitioe of (16)~ lz| avzeT [z« T]

the possible equivalence schemata and by the calculus astuei- (1n= z|ly| wvy—Ll |r e 1] [y« 1]

ated certificate as described in the next seétidine set of equiva- (18)~ zV]y| xVye—=T [z« T]

lence schemata is divided in two equal sets: the set of adintoay (19)~ yV|z| xVyeT [y« T]

schemata issued from non valid equivalence schemata angethe (20)™ x| 2VTeox [z« T]

of the other schemata. A contradictory rule is generatedevery en= x| aVT=T [z« 1]

contradictory schema. A contradictory rule must stop thepéint (22)~ qlz|3y| Lvye—z |y« 2]

calculus and return that the QBF is not valid (since one ofcthre (23)™ Ayl Tvyey [y« T]

junction of the decomposed QBF is not valid). The other seiam (24)~ Ayl TVvy—y |y« 1]

are of four different types: (25)7 lzlqly| Tvyez [z T]

=

e some equivalence schemata are tautological: in that ceagt@ t %gg %'ZE”x' xv#—w [z — ;C_]
logical simplification rule is generated which only elimies the ( ):> [zlgle] aVTeoz [oeT]
equivalence from the decomposition (the number of this isile E;Sgﬁ Q|Z|§}§I ig;:; F; : %IJ]
superscripted by=) ; (30)= 2| evEoT [z L]

e some equivalence schemata are only contingent (i.e. ittisane N -
tological and gives no substitution for the variables):hiattcase (31):> Alzlgl| xvaf [z =TI
no rule is generated (the number of the schema is supeestript gg:} Eﬂﬁlzl iég:i Eg : ﬂ ly =Tl
by?); . . 34> | FlVie| evyeor [y—T]

e some equivalence schemata determine all the variables by su (35)> eyl zvye o e 1]
stitution: in that case a simplification propagation rulgyé&ner- 36)= Ty y \/y y T
ated which eliminates the equivalence from the decompwsiti ( ):> lylviz| = vy ly T
and propagates the substitutions (the number of this rueis ggﬁ 3|y||32||£g||zi ig:g 5 : TT]][[Z : TJ_‘]]
perscripted by=) ;

e some equivalence schemata determine only a part of theblesia (39): AylvizBle]  avyoz [y — Tl — 2]
by substitution and after propagation is still contingantthat (i(lj)ﬁ Hﬂlﬂlzlglyl wVyor  [oe I] [z —T]
case a propagation rule is generated which propagates lisé-su ( Lo [2[¥I=Bly] - avyez oo Uy« 2]
tutions (the number of this rule is superscriptedy). (1) ” Alefvlel3y|  avyeorz [z T]

@)~ | FeVyBlz] avyor [z T]

We report only the results for disjunction. We obtain 16 tdagi-
cal simplification rules (abbreviated in the 10 rules of Fega), 58
simplification propagation rules (abbreviated in the 1@subf the

section 2 and the 30 first rules of Figure 1), 2 propagatioesr(the Figure 1. Simplification propagation and (only) propagation rules fo

last 2 rules of Figure 1), 28 contingent equivalence schaiftatFig- disjunction.
ure 3), and 104 contradictory rules not reported here.
The proof that the fix-point of the iterative application efrgules
is always reached and is unique is based on the results dftjé]ar-
gument cannot be based on reduction domain as for congpraipd-
gation systems since not all the rules decrease the numpessible
Boolean values of the variables of the rule. Instead we useal ar- _ _
gument in logic based on the weight of the decomposed formula Equivalence schema Equivalence schema
()= IRVARE N (2)F 1VT<T
3.3 Automatic generation of the Boolean (3): TVieT (4): VTt
propagation rules based on literals for QBF (5)” | alel 2vVToT 1 (6)7 | gof zveeT
(7) qlyl Tvy<T (8) qlz| zVzex
The calculus of a certificate for an equivalence schema (iveHit- OF | qly] Lvy—y 10)F | qlz| zvliez

eral z (resp.z) considers as the variable (resp. the formula-x))

allows us to deduce automatically its associated rule gtexiDur-
ing this calculus two cases may appear: the certificate dstraias
that the equivalence is not valid then a contradictory ralgener-
ated or it demonstrates that the equivalence is valid andandase

Figure 2. Tautological simplification rules for disjunction.

3 The Prolog program is available on our web site: http://wiwi.univ-
angers.fr/pub/stephan/Research/QBF/index.html



Equivalence schema Equivalence schema
( Jlz|ly[Fz]  zvyez | ( Jz|Vly[3|z| zVyez
( Viz[3y|3lz| zvyez | ( ylV|z[3|z| zVyez
( Vly|3lz|3|z| avyez | ( Vizlly|3lz| zVyez
( Jzllyl xvy=T | ( Vlz[3Aly| aVvye—T
(9)° Vly|3z| avy—T | (10)° glzBy| zvye—
( (12
( (
( (
( (

qly|F|z| zVye Jzlly] @Vyey

Vly|3z| zvyey
qly3lz 3z xVyez
Viz|3zlly|  xVyez

1)

3). Viz|3ly| aVyey
5 | alzl3z8ly|  xvyez
7)1 FEE=llyl avyes

Figure 3. Contingent equivalence schemata for disjunction.

the certificate itself allows us to deduce if the rule is adbngical
simplification rule, a simplification propagation rule, apagation
rule or that the equivalence is contingent.

o If the certificate is empty ofz — (T, T)} then the equivalence
is tautological and a tautological simplification rule imgeated.
o If the certificate contains the couple — (T,1)) thenz is

equivalent tal and a propagation rule which contains the substi-

the variables are existentially quantified, the choice efi@riable is
free and only guided by efficiency. It can not be the same foFQB
since the initial quantifiers are ordered and can not be sty ges-
muted.

In the case of search algorithms, which try to eliminate the o
ermost quantifiers first, only the quantifiers of the outertneagiiv-
alence class induce by the order may be chosengk@& be the
decomposition of a QBH, x a variable of the outermost equiva-
lence class and € {T,_L}. By the semantics of universal quan-
tifier, if ¢ = Vthen F=(D[z < T]AD|z « L]). ThenF is valid
if and only if D[z < T] and D[z < L] are valid. In particular, if
D[z < z] is not valid then it is useless to calculat§z — z] and
F is not valid. Conversely, by the semantics of existentia@mifier,
if ¢ = 3then F=(D[x — T]VD[z « L]). ThenF is valid if and
only if D[z « T]or D[z « L] are valid. In particular, iD[z < z]
is valid then it is useless to calculai¢[xz — z] and F' is valid. We
recognize here the Dilemma rule of the Stalmarck’s metha{l [2

It does not seem to us easy to use an inside-out quantifier-
elimination method like [20] to reach completeness sinoelirmost
guantifiers are existential and the semantics of existeqiantifier
introduces a disjunction that breaks the decomposition.

It is worth to notice that if the formula is already decompmbse
as a conjunction of equivalence schemata all the rules grkcap
ble. Otherwise, the decomposition introduce only one aetuee of
each new existentially quantified literals in the right harde of the

tution[z «— L] is generated. Conversely, If the certificate containsequivalences. Then this occurrence can never be univecaadinti-

the couple(z — (L, T)) thenz is equivalent toT and a propa-
gation rule which contains the substitutipn<— T] is generated.
e If the certificate contains the couple — (y,y)) andifz < y
then a propagation rule which contains the substituion- z] is
generated otherwise a propagation rule which containsuthetis

fied. This means that some of the rules (mainly contradictolgs)
can not be applied.

4 Comparisons

tution [z < y] is generated. Conversely, if the certificate contains Quantified Boolean propagation. In [11] an extension of arc-

the couple(z — (y,7)) and ifz < y then a propagation rule
which contains the substitutidly < =] is generated otherwise a
propagation rule which contains the substitutjen— 3] is gen-
erated.

If all the literals of an equivalence are determined by stidgin
then the rule is a simplification rule (which can also be a agapion
rule). A propagation rule is not necessarily a simplificatiole since
the equivalence schema can propagate a Boolean value feral li
and be at the same time contingent.

For example{z — (T, T)} is the certificate of the equivalence
Jz(xzV T« T) and then is a tautological schema and generates a ta
tological simplification rule {y — (T, T),z — (—zA-y,zVy)}
is the certificate of the equivalent&3y3z(xVy<—=z) and then is
a contingent schema and generates no rdte — (—z,z)} is the
certificate of the equivalenceéz3xz(zVa«—z) and then generate a
simplification propagation rulef{z — (L, T),y — (z,T)} is the
certificate of the equivalence:Vz3y(zVy«—z) and then generates
a propagation rule with the substitution <— T] since all the vari-
ables are not determined by substitution and the equivelscitema
Va3y(zVy«T) is still contingent.

3.4 An algorithm to reach completeness

It is obvious that only the application of the set of rulesaléeed in
this article is incomplete to decide if a QBF is valid or notBoolean
constraint propagation, completeness is reached by ateps-foop:
propagation-enumeration of one of the remaining variat8ewxe all

4 All the certificates are accessible on our web site.

consistency to quantified constraints (quantified arc-sterscy) is
proposed. This extension is applied to QBF and a set of pedjmayg
rules is described. This set is the counterpart in constpaivzpaga-
tion of the rules(1)= — (8)~, (11)™ — (14)=, (17)~ — (19)~,
(22)™ —(25)7, (38)™ — (41)7, (1)7 7 and(2)™". The other sim-
plification propagation rules are out of the scope of quattifirc-
consistency. So our set of rules is more powerful than thepoae
posed in [11].

Stalmarck’s method. In [25] is described the Stalmarck’s method

L5)_f tautology checking. Tautology checking is co-NP congplahd

thus corresponds to a prenex QBF with only universally gtiadt
variables. Stalmarck’s method tries to prove that the matfithe
QBF can not be equivalent to. Stalmarck’s method first uses the
same decomposition principal as described in prelimisaiel then
applies a set of rules. This method translates) in (z—_L) and
only covers the{—, | }-Boolean formulae. So, initial Stalmarck’s
rules are for the implication, we translate them (cf. Figliréeo com-
pare with ours. We do not detail the comparison of the two sets
of rules. Just some remarks: ryl82)= covers rulerg but is finer
since it also substitutes thevariable ; rules(9)~, (16)~, (28)~
and(37)~ are not covered by any rules of Stalmarck’s method and
would be added in a Stalmarck’s method based on literald: Sta
marck’s method also includes contradictory equivalendesata
(called “terminal triplets”), they are also expressed wiitiplica-

tion and given in Figure 4 for comparison. Due to the lack afcsp

we cannot present all our contradictory equivalence scterifhese
schemata cover more than the Stalmarck’s set of contragietpiv-
alence schemata and the following ones may be added in a Stal-
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scope of quantifiers tools like gqTree [9].

The Constraint Handling Rule (CHR) language [16] is used2?]
straightforwardly to implement Boolean constraint progiaan sys-

) - ) . [23]
tem. We are interested in implementing our set of rules in GHR
side a dialect of Prolog.

[24]

6 Conclusion [25]
In this article we have proposed a new set of Boolean projagat
rules based on a decomposition by introduction of existtiptijuan-  [26]
tified literals instead of variables. This new set of rules been gen-
erated automatically thanks to QBF certificate calculatea§uiva- 27]

lence schemata. This set of rules has been proven to covairéiaely
proposed set of rules in [11] and to extend the propositianak of
the Stalmarck’s method.
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