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Abstract. This paper proposes a new set of propagation rules for
quantified Boolean formulae based on literals and generatedauto-
matically thanks to quantified Boolean formulae certificates. Differ-
ent decompositions by introduction of existentially quantified vari-
ables are discussed in order to construct complete systems.This set
of rules is compared with already proposed quantified Boolean prop-
agation rule sets and Stålmarck’s method.

1 Introduction

The quantified Boolean formulae validity problem is a generalization
of the Boolean formulae satisfiability problem. While the complex-
ity of Boolean satisfiability problem is NP-complete, it is PSPACE-
complete for quantified Boolean formulae validity problem.This
is the price for more concise representation of many classesof
formulae. Many important problems in several search fields have
polynomial-time translations to the quantified Boolean formulae va-
lidity problem. This is the reason why the implementation ofeffec-
tive tools for deciding the validity of quantified Boolean formulae is
an important research issue. Since quantified Boolean formulae may
be reduced to (unquantified) Boolean formulae by expansion of the
universal quantifiers, the first solution seems to reduce thequantified
Boolean formula and then apply a satisfiability algorithm. The main
drawback of this approach is that the size of the Boolean proposi-
tional formula is in worst-case exponential in the size of the quan-
tified Boolean formula. Most of the recent decision procedures for
quantified Boolean formulae validity [23, 22, 17, 13, 19] areexten-
sions of the search-based Davis-Putnam procedure [14] for Boolean
satisfiability. Some other decision procedures are based onresolu-
tion principle [24] (as Q-resolution [12] which extends theresolu-
tion principle for Boolean formulae [15] to quantified Boolean for-
mulae or Quantor [10] which combines efficiently Q-resolution and
expansion), quantifier-elimination algorithms [21, 20], or skolemiza-
tion and SAT solvers [7]. There exists also efficient algorithm for the
2CNF-QBF [3] or useful heuristics for Quantified Renamable Horn
Formulas [18], for example.

In [6], a methodology is proposed to construct constraint propaga-
tion systems to “constraint satisfaction problems that arebased on
predefined, explicitly given constraints”. Boolean constraint prop-
agation (see [5] for a small but nice history of it) and Quantified
Boolean Constraint Propagation [11] verify this definition. Properties
and definitions of these articles are in terms of domain and (Quan-
tified) arc-consistency. Usually constraint propagation systems use
implicitly a decomposition by introduction of existentially quanti-
fied variables. This decomposition does not allow to captureall the
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possible simplifications due to the properties of the connectors in
the Boolean lattice. We are more interested by these resultsin term
of propositional logic and logical equivalence as in the Stålmarck’s
method [25] for tautology checking.

In [8] is introduced the notion of certificate for a QBF. A certificate
is a mapping extracted from a QBF which allows to check or generate
models. From this certificate we will see in the following that rules
for Quantified Boolean Propagation may be extracted automatically.

In this article, after some preliminaries in section 2, we describe in
section 3 the core of our contribution: a set of Boolean propagation
rules based on literals for QBF. First we introduce the decomposition
by introduction of existentially quantified literals ; thenwe describe
the automatic generation, thanks to the certificate, of the Boolean
propagation rules based on literals for QBF ; and finally we propose
a complete algorithm based on this set of rules and the semantics of
the quantifiers. In section 4, we compare our approach with already
proposed (quantified) Boolean propagation rule systems andthe Stål-
marck’s method and in section 5, we present some future works.

2 Preliminaries

Quantified boolean formulae. The Boolean values are denoted
true andfalse. The set of propositional symbols (or variables) is de-
notedPV . The symbols⊥ and⊤ are the propositional constants.
The symbol∧ is used for conjunction,∨ for disjunction,¬ for nega-
tion,→ for implication and↔ for equivalence. A literal is a proposi-
tional variable or the negation of a propositional variable. If l is a lit-
eral andl = ¬x then|l| = x andl = x otherwise|l| = l andl = ¬l.
Propositional satisfaction is denoted|= and logical equivalence is de-
noted≡. The symbol∃ is used for existential quantification and∀ for
universal quantification (q is used as a quantification variable). Every
Boolean formula is also a quantified Boolean formula (QBF). If F is
a QBF andx is a propositional variable then(∃x F ) and(∀x F ) are
QBF. If a literal l = ¬x thenq|l| stands forqx otherwise it stands
for ql. It is assumed that distinct quantifiers bind occurrences ofdis-
tinct variables. If a variablex is not under the scope of a quantifier
qx then it is a free variable. The set of free variables of a QBFF

is denotedFV (F ). We defineG[x← F ] as the formula obtained
form G by replacing occurrences of the propositional variablex by
the formulaF . A binderQ is a stringq1x1 . . . qnxn with x1, . . . , xn

distinct variables andq1 . . . qn quantifiers. We writeqx1 . . . xn for
any permutation ofqx1 . . . qxn. A QBF QF is in prenex conjunc-
tive normal form ifF is a Boolean formula (called the matrix) in
conjunctive normal form.

QBF semantics. Semantics of all the Boolean symbols is defined
in standard way. In particular, from the structure of the Boolean lat-



tice some simplifications on a QBF may be applied (we only present
simplifications for disjunction, but a similar presentation may be
done for conjunction, implication or any binary Boolean operator):

(1) (⊥∨⊥)≡⊥ (2) (⊥∨⊤)≡⊤
(3) (⊤∨⊥)≡⊤ (4) (⊤∨⊤)≡⊤
(5) (⊥∨y)≡y (6) (⊤∨y)≡⊤
(7) (x∨⊥)≡x (8) (x∨⊤)≡⊤
(9) (x∨x)≡x (10) (x∨x)≡⊤

These rules may be applied iteratively until the (unique) fix-point
is reached. The semantics of QBF is defined as follows: for ev-
ery Boolean variabley and QBF F , a formula (∃y F ) =
(F [y ← ⊤]∨F [y ← ⊥]) and(∀y F ) = (F [y ← ⊤]∧F [y ← ⊥]).
A QBF F is valid if F≡⊤. If y is an existentially quantified vari-
able preceded by the universally quantified variablesx1, . . . , xn

we denoteŷx1,...,xn
its Skolem function from{true, false}n to

{true, false}. A model for a QBFF is a sequences of satisfying
Skolem functions forF (denoteds |= F ). For example, the QBF
∃y∃x∀z((x∨y)↔z) is not valid but the QBF∀z∃y∃x((x∨y)↔z)
is valid and its possible sequence of satisfying Skolem functions
is ŷz(v) = v, ŷz(f) = f , x̂z(v) = f and x̂z(f) = f .
In [27], a new equivalence relation for QBF, denoted∼= is intro-
duced. This equivalence is about preservation of models (and not
only preservation of validity). For example,∀z∃y∃x((x∨y)↔z)≡⊤
but ∀z∃y∃x((x∨y)↔z) 6∼= ⊤. A (Boolean) model of an unquanti-
fied Boolean formula corresponds exactly to a (QBF) model of its
existential closure. A QBF is valid if and only if there exists a se-
quence of satisfying Skolem functions. According to the theorems
∃x∃yF≡∃y∃xF , ∀x∀y≡∀y∀xF and ∃x∀yF 6≡ ∀y∃xF for any
QBFF , the QBF induce an order on the equivalence classes formed
by the same adjacent quantifiers. Every QBF may be easily trans-
formed in an equivalent prenex QBF.

Certificates for QBF. In [8] is introduced the notion of certifi-
cate for a QBF (this notion is also introduced in [27, 26] but un-
der another name). A certificate is a mapping from the set of the
existentially quantified variables of a QBF to couples of Boolean
formulae only constituted on the variables which precede the vari-
able in the binder. The certificate may be extracted from a QBFby
an extension of the quantifier-elimination algorithm QMRES[20].
From a certificate{x 7→ (Φ+

x , Φ−
x )}x∈V may be extracted a QBF

V

x∈V
(x∨Φ+

x )∧(¬x∨Φ−
x ). This QBF is equivalent (i.e. preserves

the validity) of the QBF from which the certificate is extracted, but
also preserves the set of satisfying Skolem functions (and in other
words the models) [27, 26]. This certificate allows model-checking
for QBF [8] and also enumeration of models [8, 27, 26]. For exam-
ple, the mapping{y 7→ (⊤, z), x 7→ ((¬z∨y), z)} is the certifi-
cate of the QBFF = ∀z∃y∃x((x∨y)↔z). From this certificate,
the QBFF ′ = ∀z∃y∃x((y∨⊤)∧(¬y∨z)∧(x∨(¬z∨y))∧(¬x∨z))
may be extracted. This QBF has the two following properties:F ′≡F

andF ′ ∼= F .

Decomposition by introduction of existentially quantified
variables. The decomposition by introduction of existen-
tially quantified variables (applied usually on prenex for-
mulae) introduces existentially quantified variables to cap-
ture the intermediate results of a calculus. This decomposi-
tion preserves the validity of the initial QBF. For example,
the QBF ∀z∃y∃x((x∨y)↔¬z) is decomposed in the QBF
∀z∃y∃x∃u∃v(((x∨y)↔u)∧(¬z↔v)∧((u↔v)↔⊤)). This QBF

is valid only if the QBF∀z∃v(¬z↔v), ∃y∃x∃u((x∨y)↔u) and
∀z∃u((u↔z)↔⊤) are also valid. This decomposition is the base of
Boolean constraint propagation systems [5, 4] and the Stålmarck’s
algorithm [25] for tautology checking. The simplification rules be-
come simplification propagation rules. In the case of QBF, the binder
is important and then added to give what we call an equivalence
schema. The simplification rules already introduced are rewritten to
integrate the existentially quantified variables and the binder. For
example, the simplification rule(9) is rewritten in the equivalence
schemaqx∃z((x∨x)↔z) with the propagation[z ← x]. Here the
order on the quantifiers is very important since∃z∀x((x∨x)↔z)
is not valid. One may notice that rule(10) can not be a rule of
Boolean constraint propagation systems based on decomposition by
introduction of variables since it does not allow literals in the rules.

3 Boolean Propagation based on literals for
Quantified Boolean Formulae

This section describes the core of our contribution: a set ofpropaga-
tion rules for quantified Boolean formulae based on literalsand gen-
erated thanks to quantified Boolean formulae certificates. First we in-
troduce the decomposition by introduction of existentially quantified
literals ; then we describe the automatic generation of the Boolean
propagation rules based on literals for QBF ; finally we propose a
complete algorithm based on this set of rules and the semantics of
quantifiers.

3.1 Decomposition by introduction of existentially
quantified literals

The classical decomposition by introduction of existentially quanti-
fied variables for Boolean formulae keeps negation as a connector of
the generated Boolean formulae. By this way, equivalence schema
asx∨x≡z with [z ← ⊤] can not be captured. We propose a decom-
position based on literals instead of variables to be able tointroduce
this kind of rules in our propagation system. The negation then disap-
pears form the connectors of the decomposed formula. The following
function δ decomposes a Boolean formula by introduction of exis-
tentially quantified literals (◦ is a binary connector, functionsδ+ and
δ− return couples(variable, decomposition), πi(c) with i = 1 (resp.
i = 2) stands for the first (resp. second) projection of the couplec).

δ(F ) = π2(δ
+(F ))∧(π1(δ

+(F ))↔⊤)
δ+(x) = (x,⊤), x ∈ PV

δ−(x) = (x,⊤), x ∈ PV

δ+(¬A) = δ−(A),
δ−(¬A) = δ+(A),
δ+(A ◦B) = (z, π2(δ

+(A))∧π2(δ
+(B))

∧((π1(δ
+(A)) ◦ π1(δ

+(B)))↔z))
δ−(A ◦ B) = (z, π2(δ

+(A))∧π2(δ
+(B))

∧((π1(δ
+(A)) ◦ π1(δ

+(B)))↔z))

If QF is a prenex QBF,D = δ(F ) the decomposition ofF and
X = FV (QD) the set of new existentially quantified variables in-
troduce by the functionδ then the QBFQ∃XD is the result of the
decomposition by introduction of existentially quantifiedliterals of
QF 2. For example, the QBF∀z∃y∃x((x∨y)↔¬z) is now decom-
posed in the QBF∀z∃y∃x∃u(((x∨y)↔u)∧((u↔z)↔⊤)).

2 as in decomposition by introduction of existentially quantified variables the
equivalencez↔⊤ is immediately propagated



According to the theorems∀x(F∧G)≡(∀xF∧∀xG) and
∃x(F∧G) |= (∃xF∧∃xG), if Q

V

((x◦y)↔z) is the decomposi-
tion of the QBFF thenF is valid only if all the QBFQ((x◦y)↔z)
are also valid.

3.2 The set of Boolean propagation rules based on
literals for QBF

The set of Boolean propagation rules based on literals for QBF pre-
sented in this article are generated automatically by enumeration of
the possible equivalence schemata and by the calculus of theassoci-
ated certificate as described in the next section3. The set of equiva-
lence schemata is divided in two equal sets: the set of contradictory
schemata issued from non valid equivalence schemata and theset
of the other schemata. A contradictory rule is generated forevery
contradictory schema. A contradictory rule must stop the fix-point
calculus and return that the QBF is not valid (since one of thecon-
junction of the decomposed QBF is not valid). The other schemata
are of four different types:

• some equivalence schemata are tautological: in that case a tauto-
logical simplification rule is generated which only eliminates the
equivalence from the decomposition (the number of this ruleis
superscripted by|=) ;

• some equivalence schemata are only contingent (i.e. it is not tau-
tological and gives no substitution for the variables): in that case
no rule is generated (the number of the schema is superscripted
by ?) ;

• some equivalence schemata determine all the variables by sub-
stitution: in that case a simplification propagation rule isgener-
ated which eliminates the equivalence from the decomposition
and propagates the substitutions (the number of this rule issu-
perscripted by⇒) ;

• some equivalence schemata determine only a part of the variables
by substitution and after propagation is still contingent:in that
case a propagation rule is generated which propagates the substi-
tutions (the number of this rule is superscripted by⇒?).

We report only the results for disjunction. We obtain 16 tautologi-
cal simplification rules (abbreviated in the 10 rules of Figure 2), 58
simplification propagation rules (abbreviated in the 10 rules of the
section 2 and the 30 first rules of Figure 1), 2 propagation rules (the
last 2 rules of Figure 1), 28 contingent equivalence schemata (cf. Fig-
ure 3), and 104 contradictory rules not reported here.

The proof that the fix-point of the iterative application of our rules
is always reached and is unique is based on the results of [4].The ar-
gument cannot be based on reduction domain as for constraintpropa-
gation systems since not all the rules decrease the number ofpossible
Boolean values of the variables of the rule. Instead we use a usual ar-
gument in logic based on the weight of the decomposed formula.

3.3 Automatic generation of the Boolean
propagation rules based on literals for QBF

The calculus of a certificate for an equivalence schema (withthe lit-
eral x (resp.x) considers as the variablex (resp. the formula¬x))
allows us to deduce automatically its associated rule if exists. Dur-
ing this calculus two cases may appear: the certificate demonstrates
that the equivalence is not valid then a contradictory rule is gener-
ated or it demonstrates that the equivalence is valid and in that case

3 The Prolog program is available on our web site: http://www.info.univ-
angers.fr/pub/stephan/Research/QBF/index.html

Equivalence schema Substitutions
(11)⇒ ∃|y| ⊥∨y↔⊥ [y ← ⊥]
(12)⇒ ∃|y| ⊥∨y↔⊤ [y ← ⊤]
(13)⇒ ∃|x| x∨⊥↔⊥ [x← ⊥]
(14)⇒ ∃|x| x∨⊥↔⊤ [x← ⊤]
(15)⇒ ∃|x| x∨x↔⊥ [x← ⊥]
(16)⇒ ∃|x| x∨x↔⊤ [x← ⊤]
(17)⇒ ∃|x||y| x∨y↔⊥ [x← ⊥], [y ← ⊥]
(18)⇒ ∃|x|∀|y| x∨y↔⊤ [x← ⊤]
(19)⇒ ∃|y|∀|x| x∨y↔⊤ [y ← ⊤]
(20)⇒ ∃|x| x∨⊤↔x [x← ⊤]
(21)⇒ ∃|x| x∨⊤↔x [x← ⊥]
(22)⇒ q|z|∃|y| ⊥∨y↔z [y ← z]
(23)⇒ ∃|y| ⊤∨y↔y [y ← ⊤]
(24)⇒ ∃|y| ⊤∨y↔y [y ← ⊥]
(25)⇒ ∃|z|q|y| ⊤∨y↔z [z ← ⊤]
(26)⇒ q|z|∃|x| x∨⊥↔z [z ← x]
(27)⇒ ∃|z|q|x| x∨⊤↔z [z ← ⊤]
(28)⇒ q|z|∃|x| x∨x↔z [x← z]
(29)⇒ ∃|x| x∨x↔x [x← ⊤]
(30)⇒ ∃|x| x∨x↔x [x← ⊥]
(31)⇒ ∃|z|q|x| x∨x↔z [z ← ⊤]
(32)⇒ ∃|x||y| x∨y↔x [x← ⊥][y ← ⊤]
(33)⇒ ∃|x|∀|y| x∨y↔x [x← ⊤]
(34)⇒ ∃|y|∀|x| x∨y↔x [y ← ⊤]
(35)⇒ ∃|x|∀|y| x∨y↔y [x← ⊥]
(36)⇒ ∃|y|∀|x| x∨y↔y [y ← ⊤]
(37)⇒ ∃|x||y| x∨y↔y [x← ⊤][y ← ⊥]
(38)⇒ ∃|y||z|∀|x| x∨y↔z [y ← ⊤][z ← ⊤]
(39)⇒ ∃|y|∀|z|∃|x| x∨y↔z [y ← ⊤][x← z]
(40)⇒ ∃|x||z|∀|y| x∨y↔z [x← ⊤][z ← ⊤]
(41)⇒ ∃|x|∀|z|∃|y| x∨y↔z [x← ⊥][y ← z]

(1)⇒? ∃|z|∀|x|∃|y| x∨y↔z [z ← ⊤]

(2)⇒? ∃|z|∀|y|∃|x| x∨y↔z [z ← ⊤]

Figure 1. Simplification propagation and (only) propagation rules for
disjunction.

Equivalence schema Equivalence schema
(1)|= ⊥∨⊥↔⊥ (2)|= ⊥∨⊤↔⊤

(3)|= ⊤∨⊥↔⊤ (4)|= ⊤∨⊤↔⊤

(5)|= q|x| x∨⊤↔⊤ (6)|= q|x| x∨x↔⊤

(7)|= q|y| ⊤∨y↔⊤ (8)|= q|x| x∨x↔x

(9)|= q|y| ⊥∨y↔y (10)|= q|x| x∨⊥↔x

Figure 2. Tautological simplification rules for disjunction.



Equivalence schema Equivalence schema
(1)? ∃|x||y|∃|z| x∨y↔z (2)? ∃|x|∀|y|∃|z| x∨y↔z

(3)? ∀|x|∃|y|∃|z| x∨y↔z (4)? ∃|y|∀|x|∃|z| x∨y↔z

(5)? ∀|y|∃|x|∃|z| x∨y↔z (6)? ∀|x||y|∃|z| x∨y↔z

(7)? ∃|x||y| x∨y↔⊤ (8)? ∀|x|∃|y| x∨y↔⊤

(9)? ∀|y|∃|x| x∨y↔⊤ (10)? q|x|∃|y| x∨y↔x

(11)? q|y|∃|x| x∨y↔x (12)? ∃|x||y| x∨y↔y

(13)? ∀|x|∃|y| x∨y↔y (14)? ∀|y|∃|x| x∨y↔y

(15)? q|x|∃|z|∃|y| x∨y↔z (16)? q|y|∃|z|∃|x| x∨y↔z

(17)? ∃|z|∃|x||y| x∨y↔z (18)? ∀|z|∃|x||y| x∨y↔z

Figure 3. Contingent equivalence schemata for disjunction.

the certificate itself allows us to deduce if the rule is a tautological
simplification rule, a simplification propagation rule, a propagation
rule or that the equivalence is contingent.

• If the certificate is empty or{x 7→ (⊤,⊤)} then the equivalence
is tautological and a tautological simplification rule is generated.

• If the certificate contains the couple(x 7→ (⊤,⊥)) then x is
equivalent to⊥ and a propagation rule which contains the substi-
tution [x← ⊥] is generated. Conversely, If the certificate contains
the couple(x 7→ (⊥,⊤)) thenx is equivalent to⊤ and a propa-
gation rule which contains the substitution[x← ⊤] is generated.

• If the certificate contains the couple(x 7→ (y, y)) and if x < y

then a propagation rule which contains the substitution[y ← x] is
generated otherwise a propagation rule which contains the substi-
tution [x← y] is generated. Conversely, if the certificate contains
the couple(x 7→ (y, y)) and if x < y then a propagation rule
which contains the substitution[y ← x] is generated otherwise a
propagation rule which contains the substitution[x← y] is gen-
erated.

If all the literals of an equivalence are determined by substitution
then the rule is a simplification rule (which can also be a propagation
rule). A propagation rule is not necessarily a simplification rule since
the equivalence schema can propagate a Boolean value for a literal
and be at the same time contingent.

For example,{x 7→ (⊤,⊤)} is the certificate of the equivalence
∃x(x∨⊤↔⊤) and then is a tautological schema and generates a tau-
tological simplification rule ;{y 7→ (⊤,⊤), z 7→ (¬x∧¬y, x∨y)}
is the certificate of the equivalence∀x∃y∃z(x∨y↔z) and then is
a contingent schema and generates no rule ;{x 7→ (¬z, z)} is the
certificate of the equivalence∀z∃x(x∨x↔z) and then generate a
simplification propagation rule ;{z 7→ (⊥,⊤), y 7→ (x,⊤)} is the
certificate of the equivalence∃z∀x∃y(x∨y↔z) and then generates
a propagation rule with the substitution[z ← ⊤] since all the vari-
ables are not determined by substitution and the equivalence schema
∀x∃y(x∨y↔⊤) is still contingent4.

3.4 An algorithm to reach completeness

It is obvious that only the application of the set of rules described in
this article is incomplete to decide if a QBF is valid or not. In Boolean
constraint propagation, completeness is reached by a two-steps loop:
propagation-enumeration of one of the remaining variables. Since all

4 All the certificates are accessible on our web site.

the variables are existentially quantified, the choice of the variable is
free and only guided by efficiency. It can not be the same for QBF
since the initial quantifiers are ordered and can not be so easily per-
muted.

In the case of search algorithms, which try to eliminate the out-
ermost quantifiers first, only the quantifiers of the outermost equiv-
alence class induce by the order may be chosen. LetqxD be the
decomposition of a QBFF , x a variable of the outermost equiva-
lence class andz ∈ {⊤,⊥}. By the semantics of universal quan-
tifier, if q = ∀ thenF≡(D[x← ⊤]∧D[x← ⊥]). ThenF is valid
if and only if D[x← ⊤] andD[x← ⊥] are valid. In particular, if
D[x← z] is not valid then it is useless to calculateD[x← z] and
F is not valid. Conversely, by the semantics of existential quantifier,
if q = ∃ thenF≡(D[x← ⊤]∨D[x← ⊥]). ThenF is valid if and
only if D[x← ⊤] or D[x← ⊥] are valid. In particular, ifD[x← z]
is valid then it is useless to calculateD[x← z] andF is valid. We
recognize here the Dilemma rule of the Stålmarck’s method [25].

It does not seem to us easy to use an inside-out quantifier-
elimination method like [20] to reach completeness since inner-most
quantifiers are existential and the semantics of existential quantifier
introduces a disjunction that breaks the decomposition.

It is worth to notice that if the formula is already decomposed
as a conjunction of equivalence schemata all the rules are applica-
ble. Otherwise, the decomposition introduce only one occurrence of
each new existentially quantified literals in the right handside of the
equivalences. Then this occurrence can never be universally quanti-
fied. This means that some of the rules (mainly contradictoryrules)
can not be applied.

4 Comparisons

Quantified Boolean propagation. In [11] an extension of arc-
consistency to quantified constraints (quantified arc-consistency) is
proposed. This extension is applied to QBF and a set of propagation
rules is described. This set is the counterpart in constraint propaga-
tion of the rules(1)⇒ − (8)⇒, (11)⇒ − (14)⇒, (17)⇒ − (19)⇒,
(22)⇒− (25)⇒, (38)⇒− (41)⇒, (1)⇒? and(2)⇒?. The other sim-
plification propagation rules are out of the scope of quantified arc-
consistency. So our set of rules is more powerful than the onepro-
posed in [11].

Stålmarck’s method. In [25] is described the Stålmarck’s method
of tautology checking. Tautology checking is co-NP complete and
thus corresponds to a prenex QBF with only universally quantified
variables. Stålmarck’s method tries to prove that the matrix of the
QBF can not be equivalent to⊥. Stålmarck’s method first uses the
same decomposition principal as described in preliminaries and then
applies a set of rules. This method translates(¬x) in (x→⊥) and
only covers the{→,⊥}-Boolean formulae. So, initial Stålmarck’s
rules are for the implication, we translate them (cf. Figure4) to com-
pare with ours. We do not detail the comparison of the two sets
of rules. Just some remarks: rule(32)⇒ covers ruler6 but is finer
since it also substitutes they variable ; rules(9)⇒, (16)⇒, (28)⇒

and(37)⇒ are not covered by any rules of Stålmarck’s method and
would be added in a Stålmarck’s method based on literals. Stål-
marck’s method also includes contradictory equivalence schemata
(called “terminal triplets”), they are also expressed withimplica-
tion and given in Figure 4 for comparison. Due to the lack of space
we cannot present all our contradictory equivalence schemata. These
schemata cover more than the Stålmarck’s set of contradictory equiv-
alence schemata and the following ones may be added in a Stål-



marck’s method based on literals:∃|x| x∨x↔⊥, ∃|y| ⊥∨y↔y,
∃|x| x∨x↔x and∃|x| x∨⊥↔x.

Stålmarck’s set of rules
Schema Substitutions

r1 ∃xy x∨y↔⊥ [x← ⊥][y ← ⊥]
r2 ∃xz x∨⊤↔z [z ← ⊤]
r3 ∃yz ⊤∨y↔z [z ← ⊤]
r4 ∃yz ⊥∨y↔z [z ← y]
r5 ∃xz x∨⊥↔z [z ← x]
r6 ∃xy x∨y↔x [x← ⊤]
r7 ∃xz x∨x↔z [z ← ⊤]

Terminal schemata
⊥∨⊥↔⊤

∃y ⊤∨y↔⊥
∃x x∨⊤↔⊥

Figure 4. Stålmarck’s set of rules and terminal schemata

Stålmarck’s method proves that a propositional formula is atau-
tology by proving that it is impossible to falsify it. We can not do
the same since there exists QBF with no models such that the ma-
trix in prenex normal form has (Boolean) models (for example, the
equivalence∀x∀y∀z(x∨y↔z)).

5 Future Works

The RuleMiner algorithm [1] is an algorithm for generating propa-
gation rules for constraints over finite domains defined extensionally.
It seems to be able to generate a set of rules more compact and more
powerful than the methodology described in [6] thanks to an order
over the rules and a more powerful set of possible rules. So wewill
study the impact of RuleMiner on our set of rules.

We develop a C++ version of a complete algorithm based on our
set of rules. This implementation will work on non CNF formulae
since during CNF transformation many useful pieces of information
are lost. Non CNF benchmarks are rare but in [2] new difficult ones
in non CNF format are proposed. One may also use to reduce the
scope of quantifiers tools like qTree [9].

The Constraint Handling Rule (CHR) language [16] is used
straightforwardly to implement Boolean constraint propagation sys-
tem. We are interested in implementing our set of rules in CHRin
side a dialect of Prolog.

6 Conclusion

In this article we have proposed a new set of Boolean propagation
rules based on a decomposition by introduction of existentially quan-
tified literals instead of variables. This new set of rules has been gen-
erated automatically thanks to QBF certificate calculated for equiva-
lence schemata. This set of rules has been proven to cover thealready
proposed set of rules in [11] and to extend the propositionalrules of
the Stålmarck’s method.
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