
Ann Math Artif Intell (2006) 47: 139–181
DOI 10.1007/s10472-006-9029-y

Possibilistic uncertainty handling for answer
set programming

Pascal Nicolas · Laurent Garcia ·
Igor Stéphan · Claire Lefèvre

Received: 1 February 2006 / Accepted: 23 June 2006 /
Published online: 16 September 2006
© Springer Science + Business Media B.V. 2006

Abstract In this work, we introduce a new framework able to deal with a reasoning
that is at the same time non monotonic and uncertain. In order to take into account
a certainty level associated to each piece of knowledge, we use possibility theory
to extend the non monotonic semantics of stable models for logic programs with
default negation. By means of a possibility distribution we define a clear semantics of
such programs by introducing what is a possibilistic stable model. We also propose
a syntactic process based on a fix-point operator to compute these particular models
representing the deductions of the program and their certainty. Then, we show how
this introduction of a certainty level on each rule of a program can be used in order
to restore its consistency in case of the program has no model at all. Furthermore, we
explain how we can compute possibilistic stable models by using available softwares
for Answer Set Programming and we describe the main lines of the system that we
have developed to achieve this goal.

Keywords non monotonic reasoning · uncertainty · logic programming ·
possibility theory · answer set programming

PACS 68T30 · 68T27 · 68T37 · 68N17

P. Nicolas (B) · L. Garcia · I. Stéphan · C. Lefèvre
LERIA, University of Angers, Angers, France
e-mail: pascal.nicolas@univ.angers.fr

L. Garcia
e-mail: laurent.garcia@univ-angers.fr

I. Stéphan
e-mail: igor.stephan@univ.angers.fr

C. Lefèvre
e-mail: claire.lefevre@univ-angers.fr

140 Ann Math Artif Intell (2006) 47: 139–181

1 Introduction

Answer set programming (ASP) is an appropriate formalism to represent various
problems issued from Artificial Intelligence and arising when available information
is incomplete as in non monotonic reasoning, planning, diagnosis. . . It is also a very
convenient framework to encode and solve combinatorial problems since some effi-
cient operational systems are available today to deal with ASP. From a global view,
ASP is a general paradigm covering different declarative semantics for different
kind of logic programs. Whatever the precise framework, information is encoded by
logical rules and solutions are obtained by sets of models. Each model is a minimal
set of atoms (or literals) containing sure informations (some facts) and deductions
obtained by applying by default some rules. So, conclusions rely on present and
absent informations, they form a coherent set of hypotheses and represent a rational
view on the world described by the rules. Thus, in whole generality there is not a
unique set of conclusions but maybe many ones and each conclusion is no longer
absolutely sure but only plausible and more or less certain. This refers to the major
features of default reasoning as it can be described using default logic [41], from
which stable models semantics for normal logic programs, used in this paper, can be
seen as a reduction.

Possibilistic logic is issued from Zadeh’s possibility theory [49], which offers a
framework for representation of states of partial ignorance owing to the use of a
dual pair of possibility and necessity measures. Possibility theory may be quantitative
or qualitative [19, 20] according to the range of these measures which may be the
real interval [0, 1], or a finite linearly ordered scale as well. Possibilistic logic [18]
provides a sound and complete machinery for handling qualitative uncertainty with
respect to a semantics expressed by means of possibility distributions which rank-
order the possible interpretations. Let us mention that in possibilistic logic we deal
with uncertainty by means of classical two-valued (true or false) interpretations
that can be more or less certain, more or less possible. We are not concerned by
vagueness representation in a multi-valued framework but we stay in the framework
of classical logic to which we add a way to graduate the confidence we have in
each proposed information. See [21] for further comments about the representation
of certainty levels in a logical framework and the difference between multi-valued
logics, probability theory and possibility theory.

The aim of our work is to propose a way to join together in only one formalism
default reasoning and reasoning under uncertainty. That’s why we want to introduce
concepts of possibility theory within stable models semantics like it is summarized
in figure 1. To illustrate our work, let us take an example of a normal logic program
which does not represent any notions of uncertainty. It encodes medical treatment
in which a patient is suffering from two diseases. Each disease can be cured by one
drug but the two drugs are incompatible. The program

Pmed =
⎧
⎨

⎩

dr1 ← di1, not dr2. dr2 ← di2, not dr1.

c1 ← dr1, di1. c2 ← dr2, di2.

di1 ← . di2 ← .

⎫
⎬

⎭

means that the drug dr1 (resp. dr2) is given to a patient if he suffers from the disease
di1 (resp. di2) except if he takes the drug dr2 (resp. dr1); if a patient suffers from

Ann Math Artif Intell (2006) 47: 139–181 141

Default Logic
Stable Model

Semantics

Possibilistic Stable

Model Semantics

reasoning with incomplete information
u

n
certain

 in
fo

rm
atio

n

reaso
n

in
g

 w
ith

Classical Logic

Possibilistic Logic

reasoning with incomplete
and uncertain information

Possibility Theory

Figure 1 Possibilistic uncertainty handling for Answer Set Programming

disease di1 (resp. di2) and takes the drug dr1 (resp. dr2) then he is cured c1 (resp. c2)
of this disease; the patient suffers from the diseases di1 and di2. From this program,
two stable models {di1, di2, dr1, c1} and {di1, di2, dr2, c2} are obtained. This means
that the patient can be cured of one of his two diseases but not of both of them.

Nevertheless, it may seem interesting for a doctor to be able to evaluate what
choice to do between these two treatments which are incompatible. One of the
criterion for this choice may be the efficiency of each medical treatment : are
c1 ← dr1, di1 and c2 ← dr2, di2 absolutely certain rules? Another point may be the
confidence the doctor has in his diagnosis : are di1 and di2 surely established? That is
why we propose to address this problem by the help of certainty degrees affected to
rules. These degrees should be taken into account during the inferential mechanism
in order to determine the level of certainty of each conclusion and allow the doctor to
compare them. In this work we show how to achieve our aim by help of possibilistic
logic.

This paper aggregates our previous separate works [36–38] and gives the formal
proofs of all results in the appendix 9. Section 2 recalls fundamental notions about
stable model semantics and possibilistic logic. Sections 3 and 4 are the core of the
paper and define our new framework. First, we deal in section 3 with definite logic
programs (without default negation). We show how it is possible to reason both in
semantical and syntactical ways, these two aspects are shown to be equivalent. Then,
in section 4, we follow the same schema when dealing with normal logic programs
(with default negations) and we define possibilistic stable models. In section 5, we
focus on the problem of inconsistency arising when a program has no model at all. In
section 6, we present the system that we have developed to compute the possibilistic
stable models of a given program. In section 7, we compare our framework with other
works dealing with similar ideas.

142 Ann Math Artif Intell (2006) 47: 139–181

2 Theoretical backgrounds

2.1 Stable model semantics

ASP is concerned by different kinds of logic programs and different semantics. In our
work we deal with normal logic programs, interpreted by stable model semantics [22].
We consider given a non empty set of atoms X that determines the language of the
programs.1 A normal logic program is a set of rules of the form:

c ← a1, . . . , an, not b1, . . . , not bm.

where n ≥ 0, m ≥ 0, {a1, . . . , an, b1, . . . , b m, c} ⊆ X . An expression like not b is called
a default negation. The intuitive meaning of such a rule is: “if you have all the ai’s and
it may be assumed that you have no bj’s then you can conclude c.” For such a rule r
we use the following notations (extended to a rule set as usual):

– the positive prerequisites of r : body+(r) = {a1, . . . , an},
– the negative prerequisites of r : body−(r) = {b 1, . . . , b m},
– the conclusion of r : head(r) = c,
– the positive projection of r : (r)+ = head(r) ← body+(r).

If a program P does not contain any default negation (i.e.: body+(P) = ∅), then
P is a definite logic program and it has one minimal Herbrand model denoted Cn(P)

(see [28]). The reduct PX of a program P w.r.t. an atom set X is the definite logic
program defined by:

PX = {r+ | r ∈ P, body−(r) ∩ X = ∅}
and it is the core of the definition of a stable model.

Definition 1 [22] Let P be a normal logic program and S an atom set. S is a stable
model of P if and only if S = Cn(PS).

Note that a program may have one or many stable models or not at all. In this last
case we say that the program is inconsistent, otherwise it is consistent. When an atom
belongs at least to one stable model of P it is called a credulous consequence of P
and when it belongs to every stable model of P, it is called a skeptical consequence
of P. This vocabulary comes from the one of default logic [41] and it is natural since
as it is illustrated in figure 1 and established in [7, 23], stable model semantics can be
seen as a subcase of default logic.

Let A be an atom set, r be a rule and P be a program (definite or normal). For the
clarity of the sequel we need to introduce the following additional materials.

– r is applicable in A if body+(r) ⊆ A.
– App(P, A) is the subset of P of its applicable rules in A.
– A satisfies r (or r is satisfied by A), denoted by A |= r, if when r is applicable in

A, then head(r) ∈ A.
– A is closed under P if ∀r ∈ P, A |= r.

1In the sequel, if X is not explicitly given, it is supposed to be the set of all atoms occurring in the
considered program.

Ann Math Artif Intell (2006) 47: 139–181 143

– P is grounded2 if it can be ordered as a sequence 〈r1, . . . , rn〉 such that
∀i, 1 ≤ i ≤ n, ri ∈ App(P, head({r1, . . . , ri−1})

– r is blocked by A if body−(r) ∩ A �= ∅.
– Cn(P), the least (Herbrand) model of a definite logic program P, is the

smallest atom set closed under P and it can be computed as the least fix-
point of the following consequence operator TP : 2X → 2X such that TP(A) =
head(App(P, A)).

By the next result we can clarify the links between the least model A of a program
P and the rules producing it. We see that A is underpinned by a set of applicable
rules, (App(P,A)), that satisfies a stability condition and that is grounded. These
two features will be used in the sequel to define the core of our work: a possibility
distribution over atom sets induced by a definite logic program.

Proposition 1 Let P be a definite logic program and A be an atom set,

A is the least Herbrand model of P ⇐⇒
{

A = head(App(P, A))

App(P, A) is grounded

Let us end this short presentation of stable model semantics by illustrating some
notions on our introductory example.

Example 1 S1 = {di1, di2, dr1, c1} is a stable model of the normal logic program

Pmed =
⎧
⎨

⎩

dr1 ← di1, not dr2. dr2 ← di2, not dr1.

c1 ← dr1, di1. c2 ← dr2, di2.

di1 ← . di2 ← .

⎫
⎬

⎭

because

PS1
med =

⎧
⎨

⎩

dr1 ← di1.

c1 ← dr1, di1. c2 ← dr2, di2.

di1 ← . di2 ← .

⎫
⎬

⎭

and

TP
S1
med

(∅) = {di1, di2}
TP

S1
med

({di1, di2}) = {di1, di2, dr1}
TP

S1
med

({di1, di2, dr1}) = {di1, di2, dr1, c1}
TP

S1
med

({di1, di2, dr1, c1}) = {di1, di2, dr1, c1} is the fix-point.

So, we have

Cn(PS1
med) = {di1, di2, dr1, c1} = S1

proving that S1 is a stable model of Pmed. The same stands for the second stable
model S2 = {di1, di2, dr2, c2} and no other set satisfies the fix-point property.

2This notion has been firstly introduced in [43] for default logic.

144 Ann Math Artif Intell (2006) 47: 139–181

Since one aim of ASP is to solve some combinatorial problems it is necessary to
have a compact first order representation language. Thus, even if all our presentation
is made in the propositional case, it has to be considered as being the same for a
program with variables. Such a program with variables is considered as a shorter
representation of the propositional program that is obtained by replacing every
variable with every constant in the language. Nevertheless, we are only concerned
by a finite non empty set of constants. The following example is given to illustrate
this point where a combinatorial problem is encoded by means of three kinds of
rules: data rules expressing the particular datas of the given problem, guess rules
expressing the different potential solutions (the search space) and constraint rules
expressing the constraints that have to be satisfied by a solution.

Example 2

The program Pcolor encodes a 2-coloring problem on the undirected graph with
three vertices and three edges given above. The six first rules encodes the data. The
two next rules encode the two possible colors (red or green) for every vertex. The
two last rules forbid to color two vertices with the same color if they are linked by
an edge. Another way to represent this constraint is to used two headless rules like
← e(X, Y), green(X), green(Y). As it can be checked with the help of the above
figure, Pcolor has no stable model at all.

2.2 Possibilistic logic

Possibilistic logic, in the necessity-valued case, handles pairs of the form (p, α) where
p is a classical logic formula and α is an element of a totally ordered set. In the
sequel we use a finite subset of the interval [0, 1] handled in a qualitative way.
That is, numerical values are only required to define an ordered scale of values.
The pair (p, α) expresses that the formula p is certain at least to the level α, or
more formally by N(p) ≥ α, where N is the necessity measure associated to the
possibility distribution expressing the underlying semantics. Hence, a possibilistic
knowledge base is a finite set of weighted formulas � = {(pi, αi), i = 1, . . . , n} where
αi is understood as a lower bound of the necessity degree N(pi). Formulas with zero
degree are not explicitly represented in the knowledge base (only beliefs which are
somewhat accepted are explicitly represented). The higher is the weight, the more
certain is the formula. This degree α is evaluated by a necessity measure and it is
not a probability. Thus, numerical values are not an absolute evaluation (like it is
in probability theory) but induce a certainty (or confidence) scale. Moreover, let us
note that these values are determined by the expert providing the knowledge base
or they are automatically given if, as we can imagine, the rules and their confidence
degrees result from a knowledge discovery process.

Given a possibilistic knowledge base � we denote �∗ its classical part obtained
by forgetting the weights. The basic element of possibility theory is the possibility

Ann Math Artif Intell (2006) 47: 139–181 145

distribution π which is a mapping from �, the classical interpretation set of �∗, to
the interval [0, 1]. π(ω) represents the degree of compatibility of the interpretation
ω with the available information (or beliefs) about the real world. By convention,
π(ω) = 0 means that ω is impossible, and π(ω) = 1 means that nothing prevents ω

from being the real world, it is a model of �∗. When π(ω) > π(ω′), ω is a preferred
candidate to ω′ for being the real state of the world.

A possibility distribution π is said to be normal if ∃ω ∈ �, such that π(ω) = 1,
namely there exists at least one interpretation which is consistent with all the
available beliefs.

Given a possibility distribution π , we can define two different ways of rank-
ordering formulas of the language from this possibility distribution. This is obtained
using two mappings grading respectively the possibility and the certainty of a
formula p:

– �(p) = max{π(ω) | ω |= p} is the possibility (or consistency) degree which eval-
uates the extent to which p is consistent with the available beliefs expressed by
π [49]. It satisfies:

∀p,∀q,�(p ∨ q) = max(�(p),�(q))

– N(p) = 1−�(¬p) is the necessity (or certainty, entailment) degree which eval-
uates the extent to which p is entailed by the available beliefs. We have [19]:

∀p,∀q, N(p ∧ q) = min(N(p), N(q))

A possibility distribution is said to be compatible with a possibilistic base � =
{(pi, αi), i = 1, . . . , n} if, for all (pi, αi) ∈ �, N(pi) ≥ αi that is 1−max

ω∈�
{π(ω)|ω �|=

pi} ≥ αi. Generally, there are several possibility distributions compatible with �. A
way to select one particular distribution is to use the minimum specificity principle
[48]. It consists in putting to each interpretation the highest possibility degree
compatible with the formulas. Intuitively, it corresponds to the least informative
possibility distribution.

A possibility distribution π is said to be the least specific one between all compati-
ble distributions if there is no possibility distribution π ′ with π ′ �= π compatible with
� such that ∀ω, π ′(ω) ≥ π(ω). The least specific possibility distribution always exists
and is characterized in [18] by:

if ω is a model of �∗, then π�(ω) = 1
else π�(ω) = 1−max{αi | ω �|= pi, (pi, αi) ∈ �}

Example 3 Let � = {(a, 0.9), (b , 0.6), (a ∧ b ⇒ c, 0.8) be a possibilistic base. Its
least specific possibility distribution is summarized in the table below.

ω ¬a¬b¬c ¬ab¬c ¬a¬bc ¬abc
π� 0.1 0.1 0.1 0.1
ω a¬b¬c ab¬c a¬bc abc
π� 0.4 0.2 0.4 1

146 Ann Math Artif Intell (2006) 47: 139–181

We can see that all interpretations on the first line have a low possibility degree of
0.1 because they all contain ¬a and then contradict the formula in � with highest
certainty (here 0.9). On the other side, the model {a, b , c} of �∗ is fully possible.

3 Possibilistic definite logic programs

In this section we deal with definite logic programs. First, we introduce the
framework in which uncertainty is taken into account using possibility theory: the
possibilistic definite logic programs. Like in the possibilistic logic framework, we
study the behavior of such programs both in the semantical and in the syntactical
ways. The semantical part concerns the treatment of programs by the way of a
possibility distribution defined on the sets of atoms. The syntactical part deals with
a computation on the rules themselves. The crucial point is that the two ways of
treatment are equivalent and lead to the same results.

3.1 Language

We introduce the formal notions useful to merge the possibilistic logic treatment of
uncertainty with the knowledge representation framework given by a definite logic
program.

Definition 2 Let X be a finite set of atoms and N ⊆]0, 1] a finite, totally ordered set
of necessity values. A possibilistic atom is a pair p = (x, α) ∈ X ×N and we denote

– p∗ = x the classical projection of p,
– n(p) = α the necessity degree of p.

A possibilistic atom set is a functional relation from X to N . We denote A the set of
all possibilistic atom sets.

In other words a possibilistic atom set A ∈ A is a set of possibilistic atoms where
every atom x occurs at most one time in A and always with a strictly positive certainty
degree, ie: ∀x ∈ X , |{(x, α) ∈ A}| ≤ 1.

Definition 3 A possibilistic definite logic program is a set of possibilistic rules of the
form:

r = (c ← a1, . . . , an. , α) with n ≥ 0, {a1, . . . , an, c} ⊆ X , α ∈ N

We denote

– r∗ = c ← a1, . . . , an. the classical projection of the possibilistic rule,
– n(r) = α the necessity degree representing the certainty level of the information

described by the rule.

As in possibilistic logic, the degree α is evaluated by a necessity measure and it
is not a probability. Thus, numerical values are not an absolute evaluation (like it is
done in probability theory) but induce a certainty (or confidence) scale allowing to
order the rules. If R is a set of possibilistic rules, then R∗ = {r∗ | r ∈ R} is the definite
logic program obtained from R by forgetting all the necessity values. For a given

Ann Math Artif Intell (2006) 47: 139–181 147

possibilistic definite logic program P and an atom x, we define H(P, x) = {r ∈ P |
head(r∗) = x} the set that collects all rules in P having the same head x.

Let us recall that a possibilistic logic base is a compact representation of the pos-
sibility distribution defined on interpretations representing the information. Indeed,
the treatment of the base in a syntactical way (in terms of formulas and necessity
degrees) leads to the same results as the treatment done in a semantical way (in terms
of interpretations and possibility distribution). In our framework, the same situation
occurs as it will be shown in the next two subsections. Firstly, we define a semantical
management of a program that is defined in term of a possibility distribution over all
atom sets. Secondly, we provide a syntactical deduction process based on a fix-point
operator defined on rules and that leads to the same results as the ones given by the
possibility distribution.

3.2 Model theory for possibilistic definite logic programs

From a possibilistic definite logic program P, we can determine, as it is done in
possibilistic logic, some possibility distributions defined on all the sets in 2X and
that are compatible with P. Like in possibilistic logic, the possibility degree of an
atom set is determined by the necessity degrees of the rules of the program that
are not satisfied by this set. Knowing the framework of definite logic programs,
the reader can see that the satisfiability of a rule r is based on its applicability
w.r.t. an atom set A and then A �|= r iff body+(r) ⊆ A ∧ head(r) �∈ A (see section 2).
But, we have to notice that the contradiction of a rule is not enough to determine
the possibility degree of a set since, in ASP, it is important to take into account
the notions of groundedness and of stability (see proposition 1). Firstly, the set
A = {a, b} satisfies every rule in R = {a ← b ., b ← a.}, but it is not a model of R
because the groundedness is not satisfied. Secondly, the set A′ = {a, b , d} satisfies
every rule in R′ = {a ← ., b ← a., d ← c.} but it is not a model of R′ because d
can not be produced by any rule from R′ applicable in A′. In these two cases, the
possibility of A and A′ must be 0 since they cannot be a model at all, even if they
satisfy every rule in their respective associated program.

Definition 4 Let P be a possibilistic definite logic program and π : 2X → [0, 1] be a
possibility distribution. π is compatible with P if

∀A ∈ 2X

⎧
⎪⎪⎨

⎪⎪⎩

A �⊆ head(App(P∗, A)) ⇒ π(A) = 0
App(P∗, A) is not grounded ⇒ π(A) = 0
A is a model of P∗ ⇒ π(A) = 1
otherwise π(A) ≤ 1−max

r∈P
{n(r) | A �|= r∗}

The necessity degree attached to each rule defines only a lower bound (and not an
exact value) of the certainty of the rule. So, as recalled in section 2, many possibility
distributions are compatible with these degrees. But, we are only interested by the
least informative one, that is the least specific one, whose characterization is given
below.

148 Ann Math Artif Intell (2006) 47: 139–181

Proposition 2 Let P be a possibilistic definite logic program then πP : 2X → [0, 1]
defined by

∀A ∈ 2X

⎧
⎪⎪⎨

⎪⎪⎩

A �⊆ head(App(P∗, A)) ⇒ πP(A) = 0
App(P∗, A) is not grounded ⇒ πP(A) = 0
A is a model of P∗ ⇒ πP(A) = 1
otherwise πP(A) = 1−max

r∈P
{n(r) | A �|= r∗}

is the least specific possibility distribution.

The definition of πP ensures that it is compatible and no least specific possibility
distribution is compatible. The fourth case ranks the sets which may be solutions with
respect to the weights of the rules they falsify.

The following proposition demonstrates the links between the least specific
compatible possibility distribution and the least model of the classical projection of
the program. In particular, only the model of P∗ has a possibility equal to 1.

Proposition 3 Let P be a possibilistic definite logic program and A ⊆ X be an atom
set, then

1. πP(A) = 1 ⇐⇒ A = Cn(P∗)
2. A ⊃ Cn(P∗) ⇒ πP(A) = 0
3. Cn(P∗) �= ∅ ⇒ πP(∅) = 1−max

r∈P
{n(r) | body+(r∗) = ∅}

Now, we can give the definition of inference that is, in the framework of ASP, the
evaluation of the necessity degree of each atom of the universe.

Definition 5 Let P be a possibilistic definite logic program and πP the least specific
possibility distribution compatible with P, we define the two dual possibility and
necessity measures such that:

– �P(x) = max
A∈2X

{πP(A) | x ∈ A}
– NP(x) = 1− max

A∈2X
{πP(A) | x �∈ A}

�P(x) gives the level of consistency of x with respect to the possibilistic definite
logic program P and NP(x) evaluates the level at which x is inferred from P. This is
closely related to the definitions of possibilistic logic. For instance, whenever an atom
x belongs to the model of the classical program its possibility is total (equal to 1).
Some other results are given below.

Proposition 4 Let P be a possibilistic definite logic program and Cn(P∗) the least
model of P∗. ∀x ∈ X we have:

1. x ∈ Cn(P∗) ⇒ �P(x) = 1 and x �∈ Cn(P∗) ⇒ �P(x) = 0
2. x �∈ Cn(P∗) ⇐⇒ NP(x) = 0
3. x ∈ Cn(P∗) ⇒ NP(x) = min

A⊂Cn(P∗)
{max

r∈P
{n(r) | A �|= r∗} | x �∈ A}

4. Let P′ be a possibilistic definite logic program, P ⊆ P′ ⇒ NP(x) ≤ NP′(x).

Ann Math Artif Intell (2006) 47: 139–181 149

The last point illustrates that certainty of every piece of knowledge monotonically
grows when new information is added in the program. Furthermore, the necessity
measure allows us to introduce the following definition of a possibilistic model of a
possibilistic definite logic program.

Definition 6 Let P be a possibilistic definite logic program, then the set

�M(P) = {(x, NP(x)) | x ∈ X , NP(x) > 0}

is its possibilistic model.

Proposition 5 Let P be a possibilistic definite logic program then: (�M(P))∗ is the
least model of P∗.

Example 4 Let us take X = {a, b , c} and the following program P.

P = {(a ← ., 0.9), (b ← ., 0.6), (c ← a, b ., 0.8)}

The least specific possibility distribution on 2X that is induced by P is the following:

πP(∅) = 1−max{0.9, 0.6} = 0.1 πP({a}) = 1−max{0.6} = 0.4
πP({b}) = 1−max{0.9} = 0.1 πP({a, b}) = 1−max{0.8} = 0.2
πP({c}) = 0 (no inclusion) πP({a, c}) = 0 (no inclusion)

πP({b, c}) = 0 (no inclusion) πP({a, b, c}) = 1 (the model)

The reader has to note that program P in example 4 encodes the same kind
of information as the base � in example 3. The different atom sets just above
can be mapped into the interpretations given in example 3 (each column corre-
sponds to a row). But, there is some differences due to the particular semantics
of logic programs. For instance, the set {c} is absolutely impossible, whereas the
corresponding interpretation valuating c with true and a and b with false has a
possibility of 0.1 in the propositional case. Again, we can point out some differences
between P = {(a ← b ., α), (b ← a., α′)} and � = {(b ⇒ a, α), (a ⇒ b, α′)} since we
have πP(∅) = π�({¬a,¬b}) = 1, but πP({a, b}) = 0 and π�({a, b}) = 1. This illus-
trates the particular semantic of a logic program that is only concerned by minimal
models and requires that every conclusion is supported by a chain of applied rules. It
justifies our definition of possibility distribution that had to take into account these
peculiarities.

3.3 Fix-point theory for possibilistic definite logic programs

Definitions exposed in this subsection are closely related to what can be found in [17].
But here, we adopt an ASP point of view and thus we use atom sets instead of
classical interpretations since the underlying possibility distribution is defined on
atom sets.

150 Ann Math Artif Intell (2006) 47: 139–181

Definition 7 Consider A the finite set of all possibilistic atom set induced by X and
N (see definition 2). ∀A, B ∈ A, we define:

A � B = {(x, min{α, β}), (x, α) ∈ A, (x, β) ∈ B}
A � B = {(x, α) | (x, α) ∈ A, x �∈ B∗} ∪ {(x, β) | x �∈ A∗, (x, β) ∈ B}

∪{(x, max{α, β}) | (x, α) ∈ A, (x, β) ∈ B}
A � B ⇐⇒

{
A∗ ⊆ B∗, and
∀a, α, β, (a, α) ∈ A ∧ (a, β) ∈ B ⇒ α ≤ β

Proposition 6 By definition 7, we have

– ∀A, B ∈ A, A � B is the greatest lower bound of {A, B},
– ∀A, B ∈ A, A � B is the lowest upper bound of {A, B},
– ⊥ = ∅ is the minimal element of A
– � = {(x, max

α∈N
{α}) | x ∈ X } is the maximal element of A,

and then 〈A,�〉 is a complete lattice.

Definition 8 Let r = (c ← a1, . . . , an., α) be a possibilistic rule and A be a possi-
bilistic atom set,

– r is β-applicable in A with β=min {α, α1, . . . , αn} if {(a1, α1), . . . , (an, αn)}⊆A, 3

– r is 0-applicable otherwise.

And then, for all atom x we define:

App(P, A, x) = {r ∈ H(P, x), r is β-applicable in A, β > 0}

Definition 9 Let P be a possibilistic definite logic program and A be a possibilistic
atom set. The immediate possibilistic consequence operator �TP maps a possibilistic
atom set A to another one by this way:

�TP(A) =
{

(x, δ)

∣
∣
∣
∣
∣

x ∈ head(P∗), App(P, A, x) �= ∅,
δ = max

r∈App(P,A, x)

{
β | r is β-applicable in A

}

}

Then the iterated operator �Tk
P is defined by

�T0
P = ∅ and �Tn+1

P = �TP(�Tn
P),∀n ≥ 0

Given a possibilistic atom set A, the applicability degree β of a rule β-applicable
in A captures the certainty of the conclusion that the rule can produce w.r.t. A. If the
body is empty, then the rule is applicable with its own certainty degree. If the body
is not verified (not satisfied by A), then the rule is not at all applicable. Otherwise,
the applicability level of the rule depends on the certainty level of the propositions
inducing the groundedness of the rule and its own certainty degree. As in possibilistic
logic, the certainty of a conjunction (the body of the rule) is the minimal value of
the necessity values of subformulae (atoms) involved in it. Again, the certainty of a

3For two possibilistic atom sets A and B, A ⊆ B means the classical set inclusion and has not to
be confused with the order � introduced in definition 7.

Ann Math Artif Intell (2006) 47: 139–181 151

conclusion is the minimal value between the rule certainty and the certainty degree of
its body. This is similar to the Generalized Modus Ponens used in possibilistic logic:

(a, α)

(a ⇒ b, β)

(b , min{α, β})
. Furthermore, let us remark the following feature of our operator. If

one conclusion is obtained by different rules, its certainty is equal to the greatest
certainty under which it is obtained in each case (operator max).

Proposition 7 �TP is monotonic, i.e.: A � B ⇒ �TP(A) � �TP(B).

Proposition 8 Let P be a possibilistic definite logic program, then �TP has a least fix-
point

⊔
n≥0 �Tn

P that we call the set of possibilistic consequences of P and we denote
it by �Cn(P).

Example 5 Let P be the possibilistic definite logic program given in example 4.

�Cn(P) = {(a, 0.9), (b , 0.6), (c, 0.6)}
since

�T0
P = ∅

�T1
P = �TP(∅) = {(a, 0.9), (b , 0.6)}

�T2
P = �TP({(a, 0.9), (b , 0.6)}) = {(a, 0.9), (b , 0.6), (c, 0.6)}

�T3
P = �TP({(a, 0.9), (b , 0.6), (c, 0.6)}) = {(a, 0.9), (b , 0.6), (c, 0.6)}

�Tk+1
P = �Tk

P, ∀k > 2

Proposition 9 Let P be a possibilistic definite logic program. The computation of
�Cn(P) can be done in polynomial time w.r.t. k× | P | where k is the number of
different levels of certainty occurring in P.

As illustrated in the previous example and formalized in the next result, our
operator �TP can be used to compute the possibilistic model of a possibilistic definite
logic program. This result shows the equivalence between the syntactic and semantic
approach of our framework.

Theorem 1 Let P be a possibilistic definite logic program, then �Cn(P) = �M(P).

We have shown the equivalence of the semantical and the syntactical ways for
dealing with definite logic programs. It is now interesting to focus on logic programs
with a larger extent of representation, particularly by allowing the use of default
negations. This is the issue of the next section.

4 Possibilistic normal logic programs

If we are not interested in inconsistent models, an extended logic program (i.e.: a
program built with literals and not only atoms but without head disjunction) under
answer set semantics is reducible to a program (without strong negation) under stable

152 Ann Math Artif Intell (2006) 47: 139–181

model semantics (see [23]). That is why we present our work by using the stable
model paradigm and deal with general logic programs [3] also called normal logic
programs.

4.1 Language and possibilistic stable models

Here, we want to formalize the notion of possibilistic stable model that extends the
stable model semantics by taking into account the necessity degree in the rules of a
given possibilistic normal logic program. As in definition 3, such a program is a finite
set of rules of the form:

(c ← a1, . . . , an, not b 1, . . . , not b m. , α) n ≥ 0, m ≥ 0

for which we just have to precise that ∀i, bi ∈ X , all the rest being the same as for a
possibilistic definite logic program (see subsection 3.1).

As in the classical case without necessity value, we need to define what is the
reduction of a program.

Definition 10 Let P be a possibilistic normal logic program and A be an atom set.
The possibilistic reduct of P w.r.t. A is the possibilistic definite logic program

PA = {(r∗+ , n(r)) | r ∈ P, r is not blocked by A}

By this way, the definition of a possibilistic stable model becomes natural.

Definition 11 Let P be a possibilistic normal logic program and S a possibilistic atom
set. S is a possibilistic stable model of P if and only if S = �Cn(P(S∗)).

By analogy with classical normal logic programs (without necessity values at-
tached to rules) we say that a possibilistic normal logic program P is consistent if
P has at least one possibilistic stable model. Otherwise P is said to be inconsistent.
Furthermore when a possibilistic atom belongs4 at least to one possibilistic stable
model of P it is called a credulous possibilistic consequence of P and when it belongs
to the intersection of all stable models of P, it is called a skeptical possibilistic
consequence of P.

Example 6 We are now able to represent our introductory program detailed in
example 1. By using the following certainty scale : 1 is absolutely certain, 0.9 is quasi
certain, 0.7 is almost certain and 0.3 is little certain, we can add to each information a
certainty level as in the following possibilistic normal logic program.

P ′
med =

⎧
⎨

⎩

(dr1 ← di1, not dr2., 1) (dr2 ← di2, not dr1., 1)

(c1 ← dr1, di1., 0.7) (c2 ← dr2, di2., 0.3)

(di1 ← ., 0.9) (di2 ← ., 0.7)

⎫
⎬

⎭

The two first rules (appropriateness and incompatibility of the drugs) are consid-
ered absolutely sure. The third (resp. fourth) rule expresses that we are almost (resp.

4∀A ∈ A,∀x ∈ X ,∀α ∈ N , (x, α) belongs to A ⇐⇒ {(x, α)} � A.

Ann Math Artif Intell (2006) 47: 139–181 153

little) certain of the efficiency of the drug 1 (resp. drug 2). The two last rules indicate
that the diagnosis of disease 1 (resp. disease 2) is quasi (resp. almost) certain. P′med
has two possibilistic stable models:

S1 = {(di1, 0.9), (di2, 0.7), (dr1, 0.9), (c1, 0.7)} and
S2 = {(di1, 0.9), (di2, 0.7), (dr2, 0.7), (c2, 0.3)}.

So, the doctor can observe that he has an alternative. On one hand, he can quasi
certainly give the drug dr1 and be almost certain that the patient will be cured of
the disease di1. On the other hand, he can give almost certainly the drug dr2 and the
patient will be cured of the disease di2 but that is only little certain. However, if the
doctor considers that disease di2 is very serious, maybe he will choose the drug dr2
even if the degree is lower. That is why it is interesting to obtain and keep the two
stable models in which every conclusion is weighted with a certainty degree.

Proposition 10 Let P be a possibilistic normal logic program

1. Let A be a possibilistic stable model of P and α ∈ N , then (x, α) ∈ A ⇐⇒ α =
NPA∗ (x).

2. Let A be a stable model of P∗, then {(x, NPA(x)) | x ∈ X , NPA(x) > 0} is a
possibilistic stable model of P.

3. Let A be a possibilistic stable model of P, then A∗ is a stable model of P∗.

Theorem 2 The problem of deciding whether a possibilistic normal logic program has
a possibilistic stable model is NP−complete.

Proposition 10 shows that there is a one-to-one mapping between the possibilistic
stable models of a possibilistic normal logic program P and the stable models of its
classical part P∗. It leads to theorem 2 showing that the decision problem of existence
of a possibilistic stable model for a possibilistic normal logic program stays in the
same complexity class as the decision problem of existence of a stable model for a
normal logic program. Furthermore, it indicates an easy way to implement a system
able to compute a possibilistic stable model of a possibilistic normal logic program P.
First, one can use an available software to compute the stable models of P∗. Second,
for every found stable model A, our operator �TPA can be used to compute (in
polynomial time) the corresponding possibilistic stable model �Cn(PA) of P. That is
the methodology that we have adopted to develop our system posSmodels described
in section 6.

4.2 Possibility distribution

In the previous definition 11 we have proposed a syntactical way to compute the pos-
sibilistic stable models of a possibilistic normal logic program by using the fix-point
operator �Cn defined for a possibilistic definite logic program. Now, we examine the
semantics that can be given to this framework by defining a possibility distribution
induced by the necessity values associated to normal rules. This distribution, denoted
π̃ , over 2X has to reflect the ability of every atom set to be a stable model of P ∗.

154 Ann Math Artif Intell (2006) 47: 139–181

Definition 12 Let P be a possibilistic normal logic program and A be an atom set,
then π̃P is the possibility distribution defined by π̃P : 2X �−→ [0, 1] and respecting:

∀A ∈ 2X , π̃P(A) = πPA(A)

The reader can observe that definition of π̃P can be paraphrased by: “the possi-
bility for an atom set A to be a stable model of P is its possibility to be a model (an
Herbrand one) of the program P reduced by A.” This definition is natural w.r.t. the
definition 1 of a stable model and the next result justifies it formally.

Proposition 11 Let P be a possibilistic normal logic program and A ∈ 2X be an atom
set, then

π̃P(A) = 1 ⇐⇒ A is a stable model of P ∗

Example 7 (example 6 continued) The possibility distribution associated to the
program P ′

med is

π̃P ′
med

(∅) = 0.1
π̃P′med

({di1, dr1}) = 0.3 π̃P′med
({di2, dr2}) = 0.1

π̃P′med
({di1, dr1, c1}) = 0.3 π̃P′med

({di2, dr2, c2}) = 0.1
π̃P′med

({di1, di2, dr1}) = 0.3 π̃P′med
({di1, di2, dr2}) = 0.7

π̃P′med
({di1, di2, dr1, c1}) = 1 π̃P′med

({di1, di2, dr2, c2}) = 1
for all other sets S, π̃P′med

(S) = 0

We see that the two atom sets corresponding to the two possibilistic stable models
are totally possible.

We define now the two possibility measures of possibility and necessity.

Definition 13 Let P be a possibilistic normal logic program and π̃P its associated
possibility distribution, we define the two dual possibility and necessity measures
such that:

– �̃P(x) = max
A∈2X

{π̃P(A) | x ∈ A}
– ÑP(x) = 1− max

A∈2X
{π̃P(A) | x �∈ A}

Proposition 12 Let P be a consistent possibilistic normal logic program, ∀x ∈ X we
have:

1. x is a credulous consequence of P∗ ⇐⇒ �̃P(x) = 1
2. x is not a skeptical consequence of P∗ ⇐⇒ ÑP(x) = 0

(or in other words : x is a skeptical consequence of P∗ ⇐⇒ ÑP(x) > 0)

Let us remark that if an atom x is not a credulous consequence of P then it
does not necessarily implies that �̃P(x) = 0 as it is the case for an atom that is not
a consequence of a possibilistic definite logic program (see proposition 4 item 1).
For instance, P = {(a ← ., 0.6), (b ← not a., 0.7)} has only one possibilistic stable
model {(a, 0.6)} so b is not a possibilistic credulous consequence of P. But, the

Ann Math Artif Intell (2006) 47: 139–181 155

possibility distribution is π̃P(∅) = 0.3, π̃P({a}) = 1, π̃P({b}) = 0.4 and π̃P({a, b}) = 0
so �̃P(b) = 0.4. This is because, with this program, b is not completely impossible.
In fact, b is not a credulous consequence only because a (that is a credulous
consequence) blocks the applicability of the rule concluding b . So, in other words
if we have a then we cannot have b , but if a is absent then we can have b . Since, the
certainty of a is only 0.6, so the possibility of b is naturally 0.4.

As stated at the beginning of this section, strong negations can be encoded in a
normal logic program with new atoms. The following example shows how to deal
with strong negations in our framework where certainty degrees are given.

Example 8 The possibilistic extended logic program

P = {(a ← ., 0.8), (¬b ← a, not c., 0.6), (c ← a, not ¬b ., 0.9)}
can be translated into a possibilistic normal logic program

P ′ ={(a← ., 0.8), (b ′←a, not c., 0.6), (c←a, not b ′., 0.9), (bug←b , b ′, not bug., 1)}
As it is intuitively expected P ′ has two possibilistic stable models {(a, 0.8), (b ′, 0.6)}
and {(a, 0.8), (c, 0.8)}, the first one corresponding to {(a, 0.8), (¬b , 0.6)}. In P′ the
reader can see that we have renamed every negative literal ¬x by a new atom x′ as
it is well known. The last rule (bug ← b , b ′, not bug., 1), where bug is a new atom,
forbids b and b ′ (that is ¬b) to belong to the same possibilistic stable model. We
have given to this special rule a certainty of 1 in order that the possibility of every
atom set containing b and b ′ is null.

5 Inconsistent possibilistic normal logic programs

One feature of possibilistic logic is its ability to manage inconsistency of a formula
set. It proposes a way to restore the consistency of a formula set by deleting some
less certain (or preferred) formulas, those with a low certainty degree. We present
here an analogous idea in order to deal with inconsistent normal logic programs.

5.1 Formal definitions

A possibilistic base is a set � of pairs constituted with a classical formula and a weight
that is a necessity degree. � is said to be consistent (resp. inconsistent) if its classical
support �∗ is classically consistent (resp. inconsistent). It is interesting to note that
possibilistic logic addresses the problem of inconsistency by selecting a consistent
subbase with respect to the necessity values of the formulas. An α-cut (resp. strict
α-cut) of �, denoted by �≥α (resp. by �>α), is the set of formulas in � having a
certainty degree greater than (resp. strictly greater than) α. The inconsistency degree
of � is Inc(�) = max{α | �≥αis inconsistent}. Inc(�) = 0 means that � is consistent.
If �∗ has no model, then, by discarding formulas whose necessity degree is lower
than the inconsistency degree, it defines an α-cut �>Inc(�) that is consistent. It is clear
that this cut may eliminate some formulas that are not involved in the inconsistency.
Nevertheless, Inc(�) defines a plausibility level under which information is no more
pertinent. So, it is justified to eliminate all the formulas representing this piece of

156 Ann Math Artif Intell (2006) 47: 139–181

knowledge. Let us mention that the inconsistency degree can be computed by means
of the least specific possibility distribution of �.

Our basic idea is inspired by these general principles coming from possibilistic
logic. Considering that every rule in a program has a certainty degree allows us to
rank all rules by strata with respect to these degrees. Then, the aim of our consistency
restoring process is to keep the greatest number of most preferred strata. The next
definition characterizes the goal to reach.

Definition 14 Let P be a possibilistic normal logic program

– the strict α-cut of P is the subprogram P>α = {r ∈ P | n(r) > α}
– the consistency cut degree of P is

ConsCutDeg(P) =
{

0 if P is consistent
min
α∈N

{α | P>α is consistent} otherwise

The consistency cut degree of a possibilistic normal logic program P defines the
minimum level of certainty for which a strict α-cut of P is consistent. When P
is inconsistent P>ConsCutDeg(P) is the consistent subprogram of P that we want to
compute. Let us note that, because of the non monotonicity of the framework it does
not ensure that a higher cut is necessarily consistent. And also, it is not necessarily
the greatest (in number of rules) consistent subprogram of P. Here, our approach
to restore the consistency of a possibilistic normal logic program is to delete the
minimum number of lesser certain rules.

Example 9 Let P be the following possibilistic normal logic program

P =
{

(c ← ., 1), (f ← not e, not f., 0.9), (e ← not b ., 0.8),

(a ← not a, not b ., 0.7), (d ← c, not d., 0.6), (b ← c., 0.5)

}

Then ConsCutDeg(P) = 0.7 since P>0(= P), P>0.5 and P>0.6 are inconsistent and
P>0.7 is consistent. Let us remark that P>0.8 is inconsistent. This last point illustrates
a notable difference between classical logic and stable model semantics. In classical
logic, every subset of a consistent set of formulas is itself consistent. But, a subset of
a consistent normal logic program is not necessarily consistent and this is due to the
non monotonic nature of the formalism.

The previous definition deals with the syntactic aspect of consistency restoring
since it is only based on the rules of the program. It is interesting to define an
inconsistency degree in a semantic way like it is done in possibilistic logic by using a
possibility distribution.

Definition 15 Let P be a possibilistic normal logic program, its inconsistency degree
is

InconsDeg(P) = 1− max
A∈2X

{π̃P(A)}

This inconsistency degree can be used to characterize an inconsistent possibilistic
normal logic program and to define a cut that is still a superset of the consistent

Ann Math Artif Intell (2006) 47: 139–181 157

subprogram that we want to obtain. Unfortunately, conversely to possibilistic logic
where the inconsistency degree directly leads to a consistent subbase, it does not
necessarily provide us with a consistent program. This is due to the non monotonicity
of ASP paradigm.

Proposition 13 Let P be a possibilistic normal logic program, then

1. P is inconsistent ⇐⇒ InconsDeg(P) > 0
2. InconsDeg(P) ≤ ConsCutDeg(P).

Our inconsistency degree definition allows us to define a methodology of consis-
tency restoring for a possibilistic normal logic program. This is done by means of
the next function cut that computes the greatest (w.r.t. the certainty level of rules)
consistent subprogram of P.

Definition 16 Let cut be the function defined on a possibilistic normal logic program
by

{
cut(P) = P if InconsDeg(P) = 0
cut(P) = cut(P>InconsDeg(P)) otherwise

The next proposition shows that the function cut using the notion of inconsistency
degree of a program determines its greatest (in terms of scale ordering) consistent
subprogram.

Proposition 14 Let P be a possibilistic normal logic program then cut(P) =
P>ConsCutDeg(P).

Example 10 Let us come back to our program P in example 9. Since max
A∈2X

{π̃P(A)} =
0.3, then we have InconsDeg(P) = 0.7. The first call to cut is enough to
compute the maximal consistent subprogram of P: cut(P) = {(c ← ., 1), (f ←
not e, not f., 0.9), (e ← not b ., 0.8)} such that cut(P)∗ has one stable model {c, e}.

5.2 Relations with possibilistic logic

Here, we focus our attention on possibilistic normal logic program encoding classical
possibilistic bases. Let A be an atom set from which a classical propositional base
is built. Recall that every propositional base can be encoded in a clause set S. So,
without loss of generality, we consider here only clause sets. On its turn, such a
clause set S can be translated in a normal logic program P(S) as follows). First,
the translation of a clause cl = (¬a1 ∨ · · · ∨ ¬an ∨ b 1 ∨ · · · ∨ b m) in a rule is P(cl) =
f alse ← a1, . . . , an, b ′1, . . . , b ′m. and then, the encoding of a base S is

P(S) = {P(cl) | cl ∈ S} ∪ {x ← not x′., x′ ← not x. | x ∈ A}
∪ {bug ← f alse, not bug.}

The intuition behind this translation stands on the following remarks (a similar
process is exposed in [44]).

158 Ann Math Artif Intell (2006) 47: 139–181

– x′ is a new atom encoding the negative literal ¬x.
– Rules x ← not x′. and x′ ← not x. allow to generate all possible classical propo-

sitional interpretations by doing an exclusive choice between x and ¬x for each
atom x in A.

– The goal of each rule P(cl) is to conclude f alse (a new symbol) if the choice
of atoms (x and ¬x) corresponds to an interpretation that does not satisfy the
clause cl. By this way, if there exists a stable model not containing f alse, then it
corresponds to a model of S (since every clause is satisfied).

– The goal of special rule bug ← f alse, not bug., where bug is a new symbol, is to
discard every stable model containing f alse. Since bug appears in the head and
in the negative body of this rule and nowhere else, if a stable model exists then it
may not contain f alse.

By this way there is a one to one correspondence between the propositional
models of S and the stable models of P(S). But, as stated in [39] there is no modular
mapping from program to set of clauses, only a modular transformation from set of
clauses to program exists. So, in a way, ASP has better knowledge representation
capabilities than propositional logic and it is interesting to study how it can be
extended to the possibilistic case in particular when there is an inconsistency. To
reach our goal, we first extend the transformation P to a new transformation PP for
the possibilistic case in a natural way. If (cl, α) ∈ �, then its encoding keeps the same
necessity degree α in PP(�) and a necessity value equal to 1 is assigned to all the
other rules (the “technical” ones).

Definition 17 Let � = {(cli, αi), i = 1, . . . , n} be a possibilistic base (in CNF), its
encoding in a possibilistic normal logic program is:

PP(�) = {(P(cli), αi) | (cli, αi) ∈ �}
∪{(x ← not x′., 1), (x′ ← not x., 1) | x ∈ A}
∪ {(bug ← f alse, not bug., 1)}

In the sequel we use X = ∪a∈A{a, a′} ∪ { f alse, bug} to make the correspondence
between the language of the propositional base and the one of its translation.

Definition 18 Let A be the set of atoms occurring in a possibilistic base �. Let X be
the set of atoms occurring in the possibilistic normal logic program PP(�). A pseudo
interpretation for A is an atom set X ⊆ X such that ∀a ∈ A, (a ∈ X ∨ a′ ∈ X) ∧ (a �∈
X ∨ a′ �∈ X) ∧ bug �∈ X ∧ f alse �∈ X.

The interesting point for the particular case of a possibilistic normal logic program
encoding a possibilistic logic base is that, in this case, we are able to restore its
consistency in only one step as it can be summarized in the figure 2.

In the following, we will say that a pseudo interpretation X corresponds to
a classical interpretation ω if by translating each atom a′ ∈ X in literal ¬a, we
obtain the interpretation ω. By this way, every stable model of PP(�)∗ is a pseudo
interpretation corresponding to a classical model for �∗ and conversely.

Ann Math Artif Intell (2006) 47: 139–181 159

Proposition 15 Let � be a possibilistic base and A its set of atoms. Let P = PP(�) be
the encoding of �, ∀X ⊆ X we have

X is not a pseudo interpretation for A and π̃P(X) = 0
or

X is a pseudo interpretation and π̃P(X) = π�(ω)

where ω is the interpretation that corresponds to X

Proposition 16 Let � be a possibilistic base, then

1. Inc(�) = InconsDeg(PP(�))

2. ∀α ∈ N , PP(�>α) = PP(�)>α

3. InconsDeg(PP(�)) = 0 =⇒ (PP(�))∗ has at least one stable model and every
stable model corresponds to a propositional model of �∗

4. InconsDeg(PP(�)) = α > 0 =⇒ (PP(�)>α)∗ has at least one stable model and
every stable corresponds to a propositional model of (�>α)∗.

These results establish that our methodology exposed in figure 2 is valid. There is
a total equivalence between the processing of a classical base with possibilistic logic
and the processing of the corresponding possibilistic normal logic program.

Example 11 Let � be the following possibilistic base

� =
{

(¬e, 0.9), (b ∨ c, 0.8), (¬b ∨ e, 0.7), (¬a ∨ b , 0.7),

(¬d, 0.5), (a, 0.5), (¬b ∨ d, 0.3)

}

Its encoding as a possibilistic normal logic program is

PP(�) =
⎧
⎨

⎩

(f alse ← e., 0.9), (f alse ← b ′, c′., 0.8), (f alse ← b , e′., 0.7),

(f alse ← a, b ′., 0.7),

(f alse ← d., 0.5), (f alse ← a′., 0.5), (f alse ← b , d′., 0.3)

⎫
⎬

⎭

∪{(x ← not x′., 1), (x′ ← not x., 1) | x ∈ {a, b , c, d, e}}
∪{(bug ← f alse, not bug., 1)}

possibilistic logic base possibilistic normal logic program
inconsistent base � =⇒ inconsistent program PP(�)

⇓ ⇓
consistent subbase �>α ⇐⇒ consistent subprogram PP(�)>α

⇓ ⇓
propositional model ⇐⇒ stable model

α is the inconsistency degree of � and PP(�)

Figure 2 Relation between possibilistic logic and possibilistic stable model semantics.

160 Ann Math Artif Intell (2006) 47: 139–181

Then, we have InconsDeg(PP(�)) = 0.5 that corresponds to Inc(�) = 0.5 and the
computed consistent subprogram of PP(�) is

PP(�)>0.5 =
{

(f alse ← e., 0.9), (f alse ← b ′, c′., 0.8), (f alse ← b , e′., 0.7),

(f alse ← a, b ′., 0.7)

}

∪{(x ← not x′., 1), (x′ ← not x., 1) | x ∈ {a, b , c, d, e}}
∪{(bug ← f alse, not bug., 1)}

We obtain PP(�)>0.5 = PP(�>0.5) and (PP(�)>0.5)
∗ has two stable models

{a′, b ′, c, d, e′} and {a′, b ′, c, d′, e′}. They correspond to the two propositional models:
{¬a,¬b , c, d,¬e} and {¬a,¬b , c,¬d,¬e} of (�>0.5)

∗ the consistent subbase obtained
in possibilistic logic.

5.3 Constraint relaxation

One application domain for ASP is the encoding of combinatorial problems in such a
way that, given a problem A, the stable models of a program P(A) are the solutions
of A. As illustrated in example 2.1, designing P(A) consists in writing three kinds of
rules:

– data rules describing the particular data of the given instance,
– guess rules able to generate all the search space,
– check rules, or constraints, eliminating the points in the search space that are not

solutions.

By this way, when A has no solution, the corresponding program P(A) is inconsis-
tent. In this case it may be interesting to relax some constraints in order to obtain
an approximate solution of A. But which constraint has to be relaxed? In a real case
problem (ex: a timetabling problem), it is usual to have different kinds of constraints.
Some of them are impossible to circumvent (ex: each teacher cannot give two courses
at the same time), but some others are only desirable (ex: do not place a course after
6PM). We see that all constraints can be ranked by level of importance (preference)
and so our framework can encode A in a possibilistic normal logic program PP(A).
If PP(A) is inconsistent, then by means of inconsistency degree our function cut can
be used to relax some less important constraints. Then, the resulting subprogram
has a stable model that represents an approximate solution of the initial problem A.
We illustrate this proposal by pursuing our already introduced two-coloration graph
problem.

Example 12 (example 2 continued) The coloring problem, by red or green, of the
undirected graph G = ({v1, v2, v3}, {(v1, v2), (v2, v3), (v3, v1)}) has no solution and
then Pcolor is inconsistent. In such a problem, edges are the constraints of the
graph. So let us suppose that these constraints can be ranked, by means of an
importance degree on every edge as it is illustrated in the left hand graph of figure 3.

Ann Math Artif Intell (2006) 47: 139–181 161

3

1 2
1

0.70.9

3

1 2
1

0.9

Figure 3 Constraint relaxation.

The corresponding possibilistic normal logic program5 that encodes this additional
information is:

PPcolor =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(v(1) ← ., 1), (v(2) ← ., 1), (v(3) ← ., 1),

(e(1, 2) ← ., 1), (e(2, 3) ← ., 0.7), (e(3, 1) ← ., 0.9),

(red(X) ← v(X), not green(X)., 1),

(green(X) ← v(X), not red(X)., 1),

(bug ← e(X, Y), red(X), red(Y), not bug., 1),

(bug ← e(X, Y), green(X), green(Y), not bug., 1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Then, InconsDeg(PPcolor) = 0.7 and cut(PPcolor) = PPcolor>0.7 is a consistent possi-
bilistic normal logic program. This subprogram PPcolor>0.7 encodes a relaxation of
the initial problem in which we eliminated the less important constraint as illustrated
in the right hand graph of figure 3. Finally, each stable model of cut(PPcolor)

∗

(like {red(1), green(2), green(3)}) encodes some approximate solutions of the initial
problem A.

6 Possibilistic stable model computing

In this section we expose how we can compute the possibilistic stable models of
a possibilistic normal logic program by using available softwares for ASP and we
describe the main lines of the system that we have developed.

6.1 General algorithm

Let us first recall results of section 4.1 : given a possibilistic normal logic program
P there is a one to one mapping between the possibilistic stable models of P and
the stable models of the corresponding normal logic program P∗ (proposition 10).
This property ensures that, given S a stable model of P∗ then �Cn(PS) is a
possibilistic stable model of P. Moreover, we have established (proposition 9) that
the computation of �Cn(PS) can be done polynomially from the moment we are
provided with the stable model S. So, the computation of a possibilistic stable model

5As usual in ASP, rules with variables are a shortcut for a set of instantiated rules for which each
certainty degree is that of the rule with variables from which it comes.

162 Ann Math Artif Intell (2006) 47: 139–181

has not to be significantly harder than the computation of a classical stable model
since this last one can be exponential. Despite this high level of complexity, some
efficient ASP solvers are available today:

– DLV [26] http://www.dbai.tuwien.ac.at/proj/dlv
– Smodels [45] http://www.tcs.hut.fi/Software/smodels
– Cmodels [27] http://www.cs.utexas.edu/users/tag/cmodels.html
– Nomore++ [2] http://www.cs.uni-potsdam.de/wv/nomore++
– . . .

So, the extension of one of them to compute possibilistic stable models has to be
realizable without losing too much efficiency and the general algorithm for this
purpose is sketched in figure 4.

Starting from this general algorithm we have developed a system in C++ by
choosing Smodels as underlying ASP solver. Smodels works only for variable-free
programs, so it is used with a front-end program Lparse that adds variables (and
many others things) to the accepted language and generates a variable-free normal
logic program. The choice of this solver has been guided by a compromise taking into
account the system performances, the source code availability and our familiarity
with the system. Moreover, any ASP system could have been used. But, the ability to
clearly separate the grounding of the rules and the computation of the stable models
has been also one reason of our choice.

Let us mention that from now and without loss of generality, we use necessity
degrees that are natural integers. This integer set allows to represent the finite subset
of interval [0, 1] used in the theoretical parts of this work. As recall in section 2.2,
these values have not a numerical meaning, but only a qualitative and relative
significance. So, for convenience we have chosen integer values to encode them.

Thus, an input file containing a possibilistic normal logic program will have to be
presented as a sequence of expressions

α c :- a1, . . . , am, not b 1, . . . , not b n.

where α ∈ {1, . . . , 100} if 100 is enough and encodes the full certainty for instance.
For the rest of our presentation we shall use this syntax when giving some examples.

6.2 Rule grounding

If we want to use ASP paradigm to solve some large and realistic problems, then
using rules with variables to encode problems is absolutely necessary. As already
mentioned, despite the propositional language, it is usual to consider programs with
variables. Such a program is viewed as a compact representation of the propositional

computeAllPS M(in Solv : an ASP solver, P : a possibilistic normal logic program)
begin

while (Solv(P*) returns a stable model S
write ΠCn(PS)

endwhile
end

Figure 4 General algorithm.

Ann Math Artif Intell (2006) 47: 139–181 163

program obtained by replacing every variable with every constant of the language (its
Herbrand instantiation). But, usually, most of the rules of the Herbrand instantiation
have unsatisfiable bodies and they may be discarded without affecting the set of
stable models. So we call a grounding, a process that transforms a normal logic
program into an equivalent ground logic program. Lparse performs such a grounding
whenever the program respects some syntactic conditions (see Lparse manual for
details).

Example 13 Consider the following possibilistic normal logic program

P1 =
⎧
⎨

⎩

50 b(X) :- a(X), not c(X). 100 c(X) :- a(X), not b(X).

100 a(1). 20 a(2).

100 b(2). 80 d(3).

⎫
⎬

⎭

its classical part is

P∗1 =
⎧
⎨

⎩

b(X) :- a(X), not c(X). c(X) :- a(X), not b(X).

a(1). a(2).

b(2). d(3).

⎫
⎬

⎭

whose grounded version by Lparse is

P∗1 =

⎧
⎪⎪⎨

⎪⎪⎩

b(1) :- not c(1). c(1) :- not b(1).

b(2) :- not c(2).

a(1). a(2).

b(2). d(3).

⎫
⎪⎪⎬

⎪⎪⎭

Note that no useless instantiation, for example with X = 3, is made. Actually, a rule
like b(3) :- a(3), not c(3). is useless since a(3) is impossible to derive with these rules.
Moreover, many rule simplifications are made by Lparse as the deletion of a(X) in
the positive bodies of rules and the elimination of the rule c(2) :- a(2), not b(2). since
b(2) is given.

But, for possibilistic programs, we have first to block some partial evaluations :
simplifications like the deletion of a(X) in the three first grounded rules of the above
example will not hold for a possibilistic program because they could modify the
applicability degree of the rules. And, second, we have to keep the necessity degree
affected to each rule with variables to every fully instantiated rule generated from
this rule. These tasks are achieved via the following preprocessing that maps every
possibilistic rule into a normal one in which a special new atom is inserted to record
the certainty degree.

preproc(r) = r′ such that

⎧
⎨

⎩

head(r′) = head(r)
body+(r′) = body+(r) ∪ {nu__(n(r))}
body−(r′) = body−(r)

The generalization of this process to a possibilistic normal logic program P is defined
as follows

Preproc(P) = {preproc(r) | r ∈ P}
∪ {	external nu__(X).}
∪ {nu__(α). | α ∈ N }

164 Ann Math Artif Intell (2006) 47: 139–181

The directive 	external nu__(X). is a special feature used by Lparse to indicate that
expressions nu__(X) are special atoms that could be given in a second step (see
Lparse manual for details). Here, the useful point is that Lparse keeps every such
atoms in the resulting grounded program. By this way, our initial goal: grounding
every rule by keeping the trace of the necessity degree, is achieved as it can be seen
in the two programs below.

Example 14 (example 13 continued)
Output of the preprocessing of P1:

Preproc(P1)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b(X) :-a(X), not c(X), nu__(50). c(X) :-a(X), not b(X), nu__(100).

a (1) :-nu__(100). a(2) :-nu__(20).

b(2) :-nu__(100). d(3) :-nu__(80).

	external nu__(X).

nu__(100). nu__(80). nu__(50). nu__(20).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Output of the grounding process done by Lparse :

Preproc(P1)=

⎧
⎪⎪⎨

⎪⎪⎩

b(1) :- a(1), nu__(50), not c(1). c(1) :- a(1), nu__(100), not b(1).

b(2) :- a(2), nu__(50), not c(2). c(2) :- a(2), nu__(100), not b(2).

a (1) :- nu__(100). a(2) :- nu__(20).

b(2) :- nu__(100). d(3) :- nu__(80).

⎫
⎪⎪⎬

⎪⎪⎭

We have implemented these techniques in a program named preprocLparse. It
accepts a possibilistic logic program that may contain strong negations or constant
declarations. In fact, these particular points have no influence on our preprocessing
and they are managed as usual by Lparse. Thus, the following chain has to be used
to realize whole preprocessing

preprocLparse inputfile | lparse --true-negation

where --true-negation is given to allow the treatment of strong negation. The
output of this process is the input (in the internal Smodels’ format) of our program
posSmodels described in the next section.

6.3 Possibilistic stable model computation

Here, we describe how our system posSmodels computes the possibilistic stable
models of a possibilistic normal logic program by using the grounded normal logic
program produced by the preprocessing step described in previous subsection. The
whole algorithm, using Smodels as underlying ASP solver, is presented in figure 5.
The first thing to do is to read the output of the first step, that is a normal logic
program encoded in the internal Smodels’ format, and to rebuild its corresponding
possibilistic logic program (see part 1 of the algorithm). By this way, and because
of the preprocessing treatment, we are provided with a grounded possibilistic normal
logic program P′ where every rule is given with the right certainty degree. The second
step is to build for Smodels the non possibilistic corresponding normal logic program
SP′ in order to compute its stable models. This is done via the Smodels programming
API. Note that we deal with two representations of atoms and rules of the program :
one for Smodels, and one for posSmodels. But this is the price to pay to stay
independent of Smodels, and it is made so that we can directly access from one

Ann Math Artif Intell (2006) 47: 139–181 165

kind of atoms to the other one. Thus, the computation of possibilistic stable models
is now possible by following the general algorithm of the figure 4 detailed in the third
part of figure 5. The whole process implements, the most efficiently as possible, the
immediate possibilistic consequence operator �TP introduced in definition 9.

Let us comment some particular points.

– Since we know that every set S is a stable model of P′∗ then we can restrict our
attention to the program PP ⊆ P′S. But it is also useless to take into account
rules with head or positive body not included in S since we already know that
they never will be applicable in S. In fact, the only interesting ones are rules r
of P′ such that r∗ is a generating rule of P′∗, ie : r∗ is applicable in A and not
blocked by A.

– L(R) is a counter initiated with the body length of rule R and decreased each
time a new atom belonging to the body of R is added in Res. By this way, at each
step the applicable rules are those with L(R) = 0.

– An applicable rule with a certainty α and a head x can be dropped from PP
when an atom (x, α) is added in Res since this rule (because of the definition of
β-applicability) will never produce a new possibilistic atom (x, α′) with α′ > α.
But, a rule cannot be discarded before since it can be used many times to produce

Figure 5 Possibilistic stable model computation.

166 Ann Math Artif Intell (2006) 47: 139–181

P lparse smodelspreprocLparse

posSmodels

possibilistic
stable
model

Figure 6 Process chain.

the same atom, but with an increasing certainty degree at each time. For instance,
consider the following program P and the evolution of computation of the
result Res.

P =

⎧
⎪⎪⎨

⎪⎪⎩

20 a.

100 x.

100 b :- a.

100 a :- x.

⎫
⎪⎪⎬

⎪⎪⎭

Res = ∅
Res = {(a, 20), (x, 100)}
Res = {(x, 100), (b , 20), (a, 100)}
Res = {(x, 100), (a, 100), (b , 100)}

We can see that rule 100 b :- a. is used two times: firstly with (a, 20) to produce
(b , 20), and secondly with (a, 100) (when this atom has been produced by rule
100 a :- x.) to produce (b , 100).

6.4 Examples and evaluations

Our whole system, sketched in the figure 6, implements in C++ the general algorithm
of figure 5. It is available at www.info.univ-angers.fr/pub/pn/Softwares/PosSmodels.
Its usage is:

preprocLparse inputfile | lparse --true-negation | posSmodels k

in order to obtain at most k possibilistic stable models. In the figure 7 we summarize
some experimental results. In all cases our goal is to estimate the overhead of
“possibilistic computation” so that is why we compare the performance of our
whole system (as in the chain of the figure 6) with the performance of Lparse and
Smodels on the same programs with or without certainty degrees. Note that, given
PP a possibilistic program and P = PP∗ its classical part, if PP′ is the grounded
possibilistic program obtained by our system and P′ the grounded program produced
by Lparse, we have, in most cases, PP′∗ �= P′. The reason is that no partial evaluation
is done by Lparse in the possibilistic case. So Lparse does much less work in our
case than in classical case. At the opposite, the resulting work for Smodels is
more important (rules can contain about twice more atoms due to the absence of
simplifications). This explains why our treatment can sometimes be faster than the
classical one : partial evaluations done by Lparse are not in these cases profitable.

– On the top graphs, we have reported some results about the computation of all
possibilistic and classical stable models of a program encoding a Hamiltonian
cycle problem in a so-called simplex graph. The program contains 672 atoms and
30183 rules and has 948 different models. We have successively computed 1, 100,
. . . , 900 and all (classical and possibilistic) stable models.

www.info.univ-angers.fr/pub/pn/Softwares/PosSmodels

Ann Math Artif Intell (2006) 47: 139–181 167

– On the bottom graphs, we have reported some results about the computation
of one, possibilistic or not, stable model of a program. This program encodes a
problem of Hamiltonian path in a complete graph. The number of nodes in the
graph growths from 5 to 35. For the last instance, the corresponding program has
3,747 atoms and 90,684 rules and Smodels needs roughly 100 s of CPU time to
compute the first stable model.

In these graphs, we can see that the times consumed to treat each case (with
or without certainty degrees) grow in a same way w.r.t. the number of models to
compute and w.r.t. the difficulty to find one solution. Thus, we can say that our system
posSmodels is efficient since the time dedicated to the possibilistic part computation
is negligible compared to the time consumed to compute the classical stable models.
This is in accordance with our theoretical results in proposition 9 and theorem 2.

7 Related works

7.1 Dealing with default reasoning and uncertainty

In the last years, many formalisms have been proposed to deal with non monotonic
reasoning or uncertain reasoning. However, it has to be noticed that few formalisms
deal conjointly with both features. In this last category, many of these works are
underpinned by probability theory and very few by possibility theory.

First of all, some works use a framework of uncertainty to represent default
reasoning. For instance [5] follows this line by using possibilistic logic. It uses the
ordering defined by Pearl’s System Z [40] on default rules to find an ordering on the
corresponding formulas in possibilistic logic. This ordering is based on the specificity
of default rules. For example, if we take the so-called penguin example defined by
the default base a bird flies, a penguin does not fly, a penguin is a bird and the fact a

Figure 7 Performance evaluation.

168 Ann Math Artif Intell (2006) 47: 139–181

penguin. The possibilistic base defined on these default rules is {(¬b ∨ f, 1/3), (¬p ∨
¬ f, 2/3), (¬p ∨ b , 2/3), (p, 1)} since the rules applied to penguins are more specific
than the ones applied to bird. The background idea is that they are less affected by
exceptions and, then are considered as more certain. Here, the necessity degrees do
not describe the certainty degree of each formula but encode the specificity of the
rules and then captures the properties of plausible reasoning in the sense defined by
system P and rational monotony [25]. Clearly, the uncertainty is no longer able to be
represented.

Let us examine some works that merge non monotonicity and uncertainty in a
classical logic framework and not a logic programming one. [14] is based on possi-
bility theory and is about evolving systems using uncertain default transition rules.
In this case, possibility theory is again used all alone to represent both uncertainty
and default reasoning. In the probabilistic setting, [32] proposes several inference
processes merging probabilistic logic respectively with system P entailment, system
Z entailment and lexicographic entailment. These frameworks are able to merge
both strict logical knowledge, default knowledge and probabilistic knowledge. One
main difference with our work is that it uses logic and not logic programming
(so it belongs to the philosophy of plausible reasoning in the sense of system P).
Moreover, the same tool, called conditional constraint, is used to represent default
logical knowledge and probabilistic knowledge. So, probability measures sometimes
represent default reasoning and sometimes represent real probability. Whereas,
in our framework, logic programming is used to represent default reasoning and
necessity measures represent uncertainty.

Now, we cite some formalisms where logic programs are extended with various
annotations encoding uncertainty. Here, there is a clear distinction between non
monotonic reasoning and uncertainty, but the latter is not based on possibility
theory. In [35], annotated non-monotonic rule systems are introduced to affect
on every piece of knowledge a weight representing a probability, an uncertainty
measure, a time, a place,. . . For instance for a logic program, it leads to rules like
(c, 0.4) ← (a, 0.5), (not b , 0.7). This approach is different from ours since we put
weights on rules and not on each atom in the rules. Another divergence is the
meaning of the weights : in our work we deal with uncertainty while they develop
a formalism in which the semantics of weights is unspecified. For us, it seems difficult
to develop a formalism in which the semantics of weights is not established a priori
as in our work where weights are clearly interpreted in the framework of possibility
theory. In [1, 6, 12, 13, 17, 29] the reader can find different propositions about multi-
valued or probabilistic logic programs, about possibilistic definite logic programs,
about levels of certainty ranking atoms (but not rules) involved in a non-monotonic
reasoning,. . . But, none of these works describes a formalism dealing with uncertainty
in a logic program with default negation by means of possibilistic theory, both in a
semantic and a syntactic ways. In particular, in [30] many-valued disjunctive logic
programs with probabilistic semantics are introduced with minimal, perfect and
stable models for such programs. This work is completed in [31] by some fixpoint
characterizations for different model semantics. This approach is similar to us but in
the probability theory: an uncertainty numerical degree interpreted as a probability
is associated to each clause and model theory and fixpoint semantics are given. In
[4], the uncertain information which is represented is again strictly probabilistic. In
other words, it comes from information given in terms of statistics and the values

Ann Math Artif Intell (2006) 47: 139–181 169

have a meaning in themselves. In our framework, it is not the case since uncertainty
is interpreted as a scale. Another example of probabilistic non monotonic formalism,
clearly situated in the ASP paradigm, can be found in [42] that defines probabilistic
well founded semantics and probabilistic stable model semantics. In this work it
is possible to represent rules like c : [0.9, 1] ← a : [0.6, 0.75], not(b : [0.8, 1]) where
every atom is annotated with a probability interval. Again, this is an important
difference with our work, since we consider that the uncertainty concerns the whole
rule and not each component of the rule.

To end this quick survey we consider that the following works are related to ours,
either because they are concerned by default reasoning and possibility theory, either
because of technical considerations they can be considered as a generalization of our
framework. In [46], the approach is to reconstruct possibilistic logic by defining a
multi-valued interpretation and a corresponding satisfaction relation and forgetting
the notion of possibility distribution. Then, it is impossible to provide any result
about the possibility of an atom set to be a stable model. Moreover, the necessity
(certainty) of a conclusion is not correlated to the possibility of the atom set. So,
we think that this approach is far from the spirit of possibilistic logic. In the same
way, [34] proposes a general framework extending disjunctive programs and stable
models semantics by introducing a reliability interval for each rule. From a syntactic
point of view, our approach can be considered as a particular case of this one. But
the described formalism do not refer explicitly to possibility theory to deal with
uncertainty. It uses multivalued interpretations while we stay in the framework of
stable models (which are bivalued). Finally, the description of a graded default
logic can be found in [11]. It introduces a general logical framework dealing with
uncertainty by using modality: each level of uncertainty is represented by a modality.
Since stable models semantics can be seen as a reduction of default logic (see figure 1
and [7, 23]), this graded default logic can be considered as a generalization of our
framework. However, [11] does not mention a possibility distribution.

7.2 Dealing with inconsistency

There are many families of methods to handle inconsistency in stratified knowledge
bases. Our work is part of the ones that restore consistency by selecting one or several
consistent subbases. In this family, our approach is a cautious one that deletes all
knowledge under a level of inconsistency. A different way is to keep a maximal
number of data in every stratum. For instance, in [8] the knowledge is given by a
stratified formula set T = T1 ∪ · · · ∪ Tn where the most important formulas are in
T1. The preferred subtheory of T is S = S1 ∪ · · · ∪ Sn iff ∀k, 1 ≤ k ≤ n, S1 ∪ · · · ∪ Sk

is consistent and maximal. So, the strategy to extract a consistent subbase from an
inconsistent one is, from the most important stratum to the less important one, to
compute for each stratum a subset of formulas consistent with the union of the
previous ones. The next example illustrates that this strategy may give a different
result than our one if we apply it to normal logic programs.

Example 15 Let us consider the inconsistent program P = P1 ∪ P2 ∪ P3 ∪ P4 with
P1 = {b ← not a.}, P2 = {a ← not a.}, P3 = {a ← not b .} and P4 = {b ← not b .}.
The preferred subtheory approach of [8] leads to the consistent subprogram S =
P1 ∪ ∅ ∪ P3 ∪ P4 = {b ← not a., a ← not b ., b ← not b .} that has a unique stable

170 Ann Math Artif Intell (2006) 47: 139–181

model {b}. On our side, we can represent the different strata of P by means of
the possibilistic normal logic program PP = {(b ← not a., 1), (a ← not a., 0.8), (a ←
not b ., 0.6), (b ← not b ., 0.4)}. Then, we find InconsDeg(PP) = 0.4 and so cut(PP) =
PP>0.4 = {(b ← not a., 1), (a ← not a., 0.8), (a ← not b ., 0.6)} that is consistent and
such that cut(PP)∗ has a unique stable model {a}.

To summarize, we can say that [8] has a top-down conservative approach, when
we use a bottom-up destructive approach. Furthermore, for an inconsistent logic base
� handled with a possibilistic approach, the consistent subbase �>Inc(�) is always a
subset of the preferred subtheories of �. Whereas the example 15 shows that it is not
always the case for the normal logic programs and the difference comes from the non
monotonic nature of stable model semantics.

Finally, let us mention that our proposal about constraint relaxation described
in 5.3 deals with over-constrained logic programs for which other works exist as
Hierarchical Constraint Logic Programming [47]. But, this approach addresses the
problem in a different way from ours, by a hierarchy of degrees and some error and
comparator functions to choose between different solutions (see [24] for a survey on
over-constrained systems).

7.3 Dealing with preferences

In possibilistic logic, the necessity degrees are commonly interpreted as preferences
between formulas, the more certain is a formula, the more preferred it is. Since
there is a lot of works dealing with preferences between rules in non-monotonic
reasoning [15], it is interesting to analyze our work when we consider that the
necessity degrees on rules determine a preference order. If we look only on the area
of ASP, most of these works use the preferences expressed between the rules to make
a choice between the different stable models to keep only the preferred ones [9, 10].
In other words, the priorities between the rules do not evaluate a certainty degree of
the rules but are a tool to choose between contradicting rules. This differs from our
work because, when several stable models exist, we keep all of them. Additionally,
we compute the certainty of the propositions with respect to each stable model. But
we do not try to eliminate some stable models since we consider them as alternate
solutions.

More precisely, [10] deals with normal logic programs. When a normal logic
program has several answer sets, it consists in selecting some of them, the preferred
ones, with respect to the priorities expressed between the rules. The difference also
occurs in term of expressing priorities between the rules: like in possibilistic logic, we
propose a total ordering whereas, Brewka and Eiter propose a partial ordering. This
is due to the fact that, in our work, we want an evaluation of the certainty and every
rule is evaluated whereas, in [10], the priorities are expressed between the potentially
conflicting rules. It is however interesting to compare the two approaches and for this,
we focus on the examples given in [10].

Example 16 To express the strong negation we use the encoding described at the
end of section 4 and we express the preference relations by means of a corresponding
choice of certainty degrees. If the rule r1 is preferred to the rule r2, then n(r1) > n(r2).

Ann Math Artif Intell (2006) 47: 139–181 171

In the following p stands for penguin, b for bird and f for fly.

Ppen =
{

(p ← ., 1), (b ← ., 1), (f ← b , not f ′., 0.4), (f ′ ← p, not f., 0.8),

(bug ← f, f ′, not bug., 1)

}

Let us compute the possibility distribution and focus on the sets containing neither
bug, neither both f and f ′ (since the others are impossible to obtain and their
possibility degree is 0):

πPpen (∅) = 0; πPpen ({ f }) = 0; πPpen ({p, f }) = 0; πPpen ({b , f ′}) = 0;
πPpen ({p}) = 0; πPpen ({ f ′}) = 0; πPpen ({p, f ′}) = 0; πPpen({p, b , f }) = 1;
πPpen ({b}) = 0; πPpen({p, b}) = 0.2; πPpen ({b , f }) = 0; πPpen({p, b , f ′}) = 1;

This possibility distribution indicates two stable models for P∗pen that are S1 = {p,

b , f } and S2 = {p, b , f ′)}. Then A1 = {(p, 1), (b , 1), (f, 0.4)} and A2 ={(p, 1), (b , 1),

(f ′, 0.8)} are the two possibilistic stable models of Ppen. From these two sets, we can
conclude that ¬ f is more plausible than f which agrees with result in [10] where the
only one preferred answer set is {p, b,¬ f }.

Example 17 Let us take the following program

P =
{

(b ← a, not b ′., 0.9), (b ′ ← not b ., 0.8), (a ← not a′., 0.7),

(bug ← a, a′, not bug., 1), (bug ← b , b ′, not bug., 1)

}

P has two possibilistic stable models of A1 = {(a, 0.7), (b , 0.7)} and A2 =
{(a, 0.7), (b ′, 0.8)}. So, ¬b is more preferred than b . This does not agree with prin-
ciple I in [10] where the preferred answer set is A1 which contains b . Nevertheless,
we can argue that this is due to two different points of view. In [10], the priorities are
used to make a choice between the rules but the deduced proposition are considered
equally sure in each answer set. So, in the example, when a is deduced, it is natural
to prioritize the first rule which leads to b over the second one which leads to ¬b .
In our point of view, each proposition has a certainty degree in the answer set.
So,the applicability of the rules does not only depend on the level of the rule but
also on the level of the propositions allowing to apply the rule. In the example, the
level of the first rule is dependent on the level of certainty of proposition a.

The next example deals with principle II in [10] for priorities.

Example 18 Let us take the following program:

P =
{

(b ← a, not b ′., 0.9), (a′ ← not a., 0.8), (a ← not a′., 0.7),

(bug ← a, a′, not bug., 1), (bug ← b , b ′, not bug., 1)

}

A1 = {(a, 0.7), (b , 0.7)} and A2 = {(a′, 0.8)} are the two possibilistic stable models of
P. Here, we prefer ¬a over a. This is in accordance with [10] where preferred answer
set is A2. It is natural to observe this fact here, since when there is no condition for
applying rules, the choice is only made by using the priority defined between these
rules.

172 Ann Math Artif Intell (2006) 47: 139–181

8 Conclusion

In this paper we have achieved our goal : defining an extension of the Answer Set
Programming paradigm for incomplete and uncertain knowledge representation and
reasoning. Our framework of possibilistic stable model semantics embeds in a unified
way two aspects of common sense reasoning : non monotonicity and uncertainty.
Each part is underpinned by a well established formalism : stable models semantics
and possibility theory. In a theoretical point of view, we have given some formal
results ensuring the clear semantics of our proposal. We have linked this semantics
to a syntactic process able to derive uncertain conclusions from a knowledge base
expressed by means of a possibilistic normal logic program. We have shown that the
decision problem induced by our formalism are in the same complexity class as those
of the classical stable model semantics without uncertainty. We have also proposed
a method to restore the consistency of a program by interpreting certainty degrees
on rules as a way to choose which rules to eliminate. In a practical point of view,
we have developed an extension of system Smodels that allows to efficiently use our
framework for real world applications.

To pursue this work, we can envisage several perspectives. In the area of ASP
it should be interesting to study how we can extend our framework to possibilistic
disjunctive logic programs. With regard to inconsistency, a new methodology, always
based on certainty degrees, should be studied to try to keep a great number of rules
especially those that are not concerned by inconsistency. About the interpretation of
certainty degrees as preference relations between rules, a deeper analysis is needed
to understand how the two approaches are related. Also, we should have to see how
to apply our framework and use our system to solve weighted CSP. To end, and about
software, we could try to incorporate the certainty degrees handling directly in the
searching process of a stable model instead to do that in a second separate step.

9 Result proofs

Proof (Proposition 1)
⇒: Firstly, since A is the model of P then A = Cn(P) and it is the least fixpoint of
TP, so A = head(App(P, A)) is obvious. Secondly, the iterative computation of the
least fixpoint of TP (described in the first column below) produces a sequence of rule
sets (described in the second column below).

A0 = ∅ R0 = ∅
A1 = TP(A0) R1 = App(P, A0)

A2 = TP(A1) R2 = App(P, A1)

.

Ak = TP(Ak−1) = Ak Rk = App(P, Ak−1) = Rk

Ak = A Rk = App(P, A)

(least f ixpoint)

So, we can order the final set Rk as Rk = 〈r1
1, . . . , r1

n1
, r2

1, . . . , r2
n2

, . . . , rk
1, . . . , rk

nk
〉 by

respecting ∀i = 1, . . . , k,∀ j = 1, . . . , ni, ri
j ∈ Ri \ ∪l<i Rl . By this way, the grounded-

ness of App(P, A) is proven.

Ann Math Artif Intell (2006) 47: 139–181 173

⇐=: A = head(App(P, A)) ⇒ A = TP(A) by definition of TP. Thus A is a fixpoint
of TP. By groundedness of App(P, A) the least fixpoint of TP is a set B ⊇ A (see
the two iterations described above) and then A is the least fixpoint of TP and so the
least Herbrand model of P.

Proof (Proposition 2)
The definition of πP ensures obviously its compatibility and the minimality of
specificity is ensured by the fourth point.

Proof (Proposition 3)

1. ⇒: If πP(A) = 1, then A ⊆ head(App(P∗, A)) and head(App(P∗, A)) ⊆ A since
∀r ∈ P, A |= r∗ (by proposition 2). So A = head(App(P∗, A)). In addition, since
πP(A) > 0 we have App(P∗, A) is grounded (by proposition 2). Thus, by propo-
sition 1, A = Cn(P∗).
⇐: If A = Cn(P∗), then (by proposition 1) we have A ⊆ head(App(P∗, A))

and App(P∗, A) is grounded, so πP(A) > 0. In addition, we have A =
head(App(P∗, A)) (by proposition 1) and so ∀r ∈ P, A |=r∗, and thus πP(A)=1.

2. A ⊃ Cn(P∗) ⇒ A ⊃ head(App(P∗, A)) ∨ App(P∗, A) is not grounded by prop-
osition 1. So, by proposition 2, πP(A) = 0.

3. ∅ ⊆ head(App(P∗,∅)) and App(P∗, ∅) is grounded are two obvious properties.
So πP(∅) is only defined by the fourth case in proposition 2 and since Cn(P∗) �= ∅
we have

πP(∅) = 1−max
r∈P

{n(r) | ∅ �|= r∗}

= 1−max
r∈P

{n(r) | body+(r∗) = ∅}

Proof (Proposition 4)

1. By definition 4 and propositions 1 and 2, πP(Cn(P∗)) = 1 and thus x ∈ Cn(P∗) ⇒
�P(x) = 1 by definition 5.
Otherwise, if x �∈ Cn(P∗) let us suppose that �P(x) > 0. Then, by definition 5
∃A ⊆ X , x ∈ A, πP(A) > 0 and A �= Cn(P∗) since x �∈ Cn(P∗). So, by proposi-
tion 1, we have 2 cases :

– A �= head(App(P∗, A)) and then πP(A) = 0 by definition 4, that is a
contradiction.

– App(P∗, A) is not grounded and then πP(A) = 0 by definition 4, that is a
contradiction.

Thus, �P(x) = 0.
2. Since π(Cn(P∗)) = 1, then NP(x) = 0 is obvious when x �∈ Cn(P∗). Conversely, if

NP(x) = 0 then ∃A ⊆ X , x �∈ A and π(A) = 1. So, such a set A must be Cn(P∗),
since, by proposition 3, it is the unique set with a possibility of 1. Thus, x �∈
Cn(P∗).

3. NP(x) = 1− max
A∈2X

{πP(A) | x �∈ A}
= 1− max

A⊆Cn(P∗)
{πP(A) | x �∈ A} by proposition 3

= 1− max
A⊂Cn(P∗)

{πP(A) | x �∈ A} since x ∈ Cn(P∗)

174 Ann Math Artif Intell (2006) 47: 139–181

Since we consider x ∈ Cn(P∗), Cn(P∗) is not empty and so by proposition 3 we
have at least one set A (for instance A = ∅) such that πP(A) = 1−max

r∈P
{n(r)

| A �|= r∗}. Thus
NP(x) = 1− max

A⊂Cn(P∗)
{1−max

r∈P
{n(r) | A �|= r∗} | x �∈ A}

= min
A⊂Cn(P∗)

{max
r∈P

{n(r) | A �|= r∗} | x �∈ A}.
4. Firstly, x �∈ Cn(P∗) ⇒ NP(x) = 0 (by item 2 in this proposition) and so NP(x) ≤

NP′(x).
Secondly, let us consider x ∈ Cn(P∗). Then, we have also x ∈ Cn(P′∗).

P ⊆ P′ ⇒ ∀A ∈ 2X , max
r∈P

{n(r) | A �|= r∗} ≤ max
r∈P′

{n(r) | A �|= r∗}
⇒ min

A∈2X
{max

r∈P
{n(r) | A �|= r∗}, x �∈ A} ≤ min

A∈2X
{max

r∈P′
{n(r) | A �|= r∗}, x �∈ A}

⇒ NP(x) ≤ NP′(x) by item 3 in this proposition.

Proof (Proposition 5)
Obvious by proposition 4 item 2.

Proof (Proposition 6).
There is no particular difficulty to obtain this result.

Proof (Proposition 7)
The proof of the monotonicity of �TP relies on the use of max operator and on the
obvious fact:

A � B ⇒ ∀x ∈ head(P∗), App(P, A, x) ⊆ App(P, B, x)

Proof (Proposition 8)
This result is similar to this in [17] and the existence and the characterization of the
least fixpoint of �TP is ensured by the Knaster–Tarski theorem.

Proof (Proposition 9)
It is known that Dowling–Gallier algorithm [16] computes the least Herbrand

model of a definite logic program in polynomial time with respect to the number of
rules in the program. In our case the polynomial time is now defined with respect to
number of rules in the program × number of different uncertainty degrees occurring
in the program (see algorithm in figure 5 in subsection 6.3).

So �Cn(P) can be computed in polynomial time.

Proof (Theorem 1)
⊆ : Given a possibilistic definite logic program P and its associated necessity measure
NP, we start by proving �Cn(P) ⊆ �M(P).

Ann Math Artif Intell (2006) 47: 139–181 175

By definition of �Cn(P) that is the least fixpoint of �TP, we can firstly remark
that ∀x ∈ X , α ∈ N , (x, α) ∈ �Cn(P) ⇒ α > 0. Let us suppose that

NP(x) = α′ > α (1)

Since x ∈ Cn(P∗), by proposition 4 item 3, we have:

NP(x) = min
A∈2X

{max
r∈P

{n(r) | A �|= r∗}, x �∈ A} = α′

⇒ ∀A ∈ 2X , x �∈ A, max
r∈P

{n(r) | A �|= r∗} ≥ α′

⇒ ∀A ∈ 2X , x �∈ A, ∃r ∈ P | A �|= r∗, n(r) ≥ α′ (2)

So, by using (2) at each step i, we can build the two maximal following sequences
〈Ai〉 and 〈ri〉 such that ∀i, 0 ≥ i ≥ k, x �∈ A∗

i and head(r∗i) �= x

A0 = ∅ ⇒ ∃r0 ∈ P | A∗
0 �|= r∗0, n(r0) ≥ α′

A1 = {(head(r∗0), n(r0))} ⇒ ∃r1 ∈ P | A∗
1 �|= r∗1, n(r1) ≥ α′

. . .

Ak = {(head(r∗0), n(r0), . . . , (head(r∗k−1), n(rk−1))} ⇒ ∃rk ∈ P | A∗
k �|= r∗k, n(rk) ≥ α′

Ak+1 = {(head(r∗0), n(r0), . . . , (head(r∗k), n(rk))}
〈r0, . . . , rk〉 is maximal, ie : ¬∃r ∈ P | head(r∗) �= x and A∗

k+1 �|= r. But, since

x �∈ A∗
k+1 and Ak+1 � �Cn(P) and x ∈ �Cn(P)∗

we have

∀r ∈ P, A∗
k+1 �|= r ⇒ head(r∗) = x

and in particular, by using (2) again, we have

∃ρ ∈ P | A∗
k+1 �|= ρ∗, n(ρ∗) ≥ α′ and head(ρ∗) = x.

In addition, ∀(y, β) ∈ Ak+1, β ≥ α′ and since n(ρ∗) ≥ α′, we have (head(ρ∗), γ) =
(x, γ) ∈ �Cn(P) with γ ≥ α′ > α. This is in contradiction with the fact (x, α) ∈
�Cn(P) since �Cn(P) = �n≥0�Tn

P(∅). So, our initial supposition (1) is false and then
NP(x) ≤ α.

Furthermore, we have

(x, α) ∈ �Cn(P) ⇒ ∃P′ ⊆ P, (x, α) ∈ �Cn(P′) and P′ is minimal

(ie: ∀P′′ ⊆ P′, (x, α) �∈ �Cn(P′′))

⇒ ∀r ∈ P′, n(r) ≥ α (because of properties of �TP)

⇒ NP′(x) ≥ α (by definition 5 and proposition 4)

⇒ NP(x) ≥ α (by proposition 4)

Thus, NP(x) = α and then (x, α) ∈ �M(P), so �Cn(P) ⊆ �M(P).

176 Ann Math Artif Intell (2006) 47: 139–181

⊇: Now in order to prove �M(P) ⊆ �Cn(P), let us first remark the following
equivalences ∀x ∈ X

x �∈ Cn(P∗) ⇐⇒ NP(x) = 0

¬∃β, β > 0, (x, β) ∈ �Cn(P) ¬∃β, β > 0, (x, β) ∈ �M(P)

Then, we have,

∀x ∈ X , ∃β, β > 0, (x, β) ∈ �Cn(P) ⇐⇒ ∃β, β > 0, (x, β) ∈ �M(P)

and so,

∀x ∈ X , α > 0, (x, α) ∈ �M(P) ⇒ ∃β, β > 0, (x, β) ∈ �Cn(P)

⇒ ∃β, β > 0, (x, β) ∈ �M(P) (because of the first part of this proof)
⇒ β = α since �M(P) = {(x, NP(x))} ⇒ (x, α) ∈ �Cn(P)

This ends the proof of �Cn(P) = �M(P).

Proof (Proposition 10)

1. By definition 11, A is the set of possibilistic consequences of PA∗
. So, by

theorem 1 the result is immediate.
2. Firstly let us remark that (PA)

∗ = (P∗)A and that PA is a possibilistic definite
logic program, so we have.

– ∀x∈X , NPA(x) > 0⇒x∈Cn((PA)
∗
) by proposition 4 and so x∈Cn((P∗)A).

Thus, x ∈ A since A = Cn((P∗)A) (A is a stable model of P∗).
– ∀x ∈ X , x ∈ A ⇒ x ∈ Cn((P∗)A) since A is a stable model of P∗ and so x ∈

Cn((PA)
∗
). Thus, NPA(x) > 0 by proposition 4.

So, we have {x ∈ X , NPA(x) > 0} = A and then

{(x, NPA(x)) | x ∈ X , NPA(x) > 0}∗ = A (3)

For a better lisibility, we denote S = {(x, NPA(x)) | x ∈ X , NPA(x) > 0} and since
PA is a possibilistic definite logic program, we have

S = �M(PA) by definition
⇐⇒ S = �Cn(PA) by theorem 1
⇐⇒ S = �Cn(PS∗) by previous equality (3)

Thus, S = {(x, NPA(x)) | x ∈ X , NPA(x) > 0} is a possibilistic stable model of P.
3. If A is a possibilistic stable model of P so it is the possibilistic model of P(A∗)

(by definition 11). Thus A∗ is the model of
(
P(A∗))∗ (by proposition 5), so A∗ is a

stable model of P∗.

Proof (Theorem 2)
For a given possibilistic normal logic program P, the second and third items of
proposition 10 lead to:

P has at least one possibilistic stable model ⇐⇒ P∗ has at least one stable model.

Ann Math Artif Intell (2006) 47: 139–181 177

Knowing that the problem of deciding whether a normal logic program has a stable
model is NP−complete [33] the result holds.

Proof (Proposition 11)
⇒: π̃P(A) = 1 ⇒ πPA(A) = 1 (by definition 12)⇒ A = Cn(PA∗) (by proposition 3),
so A is a stable model of P∗ (by definition 1).
⇐=: A is a stable model of P∗ ⇒ A = Cn(PA∗) (by definition 1) ⇒ πPA(A) = 1 (by
definition 3) ⇒ π̃P(A) = 1 (by definition 12).

Proof (Proposition 12)

1. x is a credulous consequence of P∗
⇐⇒ ∃A ∈ 2X s.t. x ∈ A and A is a stable model of P∗
⇐⇒ ∃A ∈ 2X s.t. x ∈ A and π̃P(A) = 1 by proposition 11
⇐⇒ �̃P(x) = 1 by definition 13

2.⇒: x is not a skeptical consequence of the consistent possibilistic normal logic
program P∗ ⇒ ∃A ∈ 2X a stable model of P∗ s.t. x �∈ A. In addition we have
π̃P(A) = 1 by proposition 11 and thus ÑP(x) = 0 by definition.

⇐: ÑP(x)= 0⇒ max
A∈2X

{π̃P(A) | x �∈ A} =1⇒ ∃A ∈ 2X , x �∈ A, π̃P(A)= 1⇒ A

is a stable model of P∗ that does not contain x, thus x is not a skeptical
consequence of P∗.

Proof (Proposition 13)

1. It is a direct consequence of proposition 11.
2. If P is consistent the result is obvious since InconsDeg(P) = 0 by first item

of this proposition. So, in the sequel of this proof, we consider an inconsistent
possibilistic normal logic program P.
Since N is a finite set we can consider N = {α1, . . . , αn} such that ∀i, 1 ≤ i <

n, αi > αi+1 and we denote ∀i, 1 ≤ i ≤ n, Pi = P>αi .
Let αk = ConsCutDeg(P), so Pk is consistent and so ∃A ∈ 2X , A is a stable
model of (Pk)

∗. We have PA = (Pk)
A ∪ P′A and we show P′A �= ∅. If this were

not the case, P′A = ∅ ⇒ Cn(PA) = Cn((Pk)
A) = A, since A is a stable model

of Pk(A). Thus A is a stable model of P, that is a contradiction since P is
inconsistent and so P′A �= ∅.

A is a stable model of (Pk)
A⇒∀r∈ (Pk)

A,A|= r∗
∀r∈P′A,n(r)≤αk

}

⇒ max
r∈(Pk)A∪P′A

{n(r) |A �|=r∗}≤αk

⇒ π(Pk)A∪P′A(A) = 1− max
r∈(Pk)A∪P′A

{n(r) | A �|= r∗} ≥ 1− αk

⇒ π̃P(A) = πPA(A) = π(Pk)A∪P′A(A) ≥ 1− αk

⇒ max
A∈2X

π̃P(A) ≥ 1− αk

⇒ InconsDeg(P) = 1− max
A∈2X

{π̃P(A)} ≤ αk = ConsCutDeg(P)

Proof (Proposition 14)
Let P be a possibilistic normal logic program. If P is consistent then P>ConsCutDeg(P) =
P and InconsDeg(P) = 0, so the result is obvious.

178 Ann Math Artif Intell (2006) 47: 139–181

Let P be an inconsistent possibilistic normal logic program.

⇒ 0 < InconsDeg(P) ≤ ConsCutDeg(P) by proposition 13
⇒ P>ConsCutDeg(P) ⊆ P>InconsDeg(P) ⊂ P

So, at each time it is called, cut reduces the number of rules in the given program
by eliminating some less certain strata. Additionally, the result is ever a superset
of P>ConsCutDeg(P). Since the number of strata in P is finite and all strict supersets
of P>ConsCutDeg(P) are inconsistent, then cut stops and returns P>ConsCutDeg(P) after a
finite number of calls .

Proof (Proposition 15)
We note rbug = bug ← f alse, not bug. and recall π̃P(X) = πPX (X).

– if X is not a pseudo interpretation, we have the following cases

– bug ∈ X ⇒ rbug �∈ PX ⇒ rbug �∈ App((PX)∗, X) ⇒ bug �∈
head(App((PX)∗, X)) ⇒ πPX (X) = 0 ⇒ π̃P(X) = 0.

– bug �∈ X ∧ f alse ∈ X ⇒ X �|= rbug and since n(rbug) = 1 then π̃P(X) = 0.
– bug �∈ X∧ f alse �∈ X ∧ ∃x ∈ A , x ∈ X ∧ x′ ∈ X ⇒ x ← not x′ �∈App((PX)∗,

X) ∧ x′ ← not x �∈ App((PX)∗, X) ⇒ X �⊆ head(App((PX)∗, X)) and then
π̃P(X) = 0.

– bug �∈X ∧ f alse �∈X ∧ ∃x ∈ A , x �∈ X ∧ x′ �∈ X ⇒ X �|= x←not x′ and since
n(x ← not x′) = 1 then π̃P(X) = 0.

thus, in every case where X is not a pseudo-interpretation, π̃P(X) = 0.
– if X is a pseudo interpretation, then ∀a ∈ A , one and only one of the two

rules a ← not a′ and a′ ← not a is in App((PX)∗, X) and then App((PX)∗, X) is
grounded and X ⊆ head(App((PX)∗, X)).
Let ω be the interpretation for � that corresponds to X.
∀cl = (¬a1 ∨ · · · ∨ ¬an ∨ b 1 ∨ · · · ∨ b m),∈ �,

– ω �|= cl ⇒ ω |= a1 ∧ · · · ∧ an ∧ ¬b 1 ∧ · · · ∧ ¬b m ⇒
{a1, . . . , an, b ′1, . . . , b ′m} ⊆ X. But, f alse �∈ X, so X �|= P(cl).

– X �|= P(cl) ⇒ {a1, . . . , an, b ′1, . . . , b ′m} ⊆ X ∧ f alse �∈ X ⇒ ω |= a1 ∧ · · · ∧
an ∧ ¬b 1 ∧ · · · ∧ ¬b m ⇒ ω �|= cl.

Thus, we have ω �|= cl ⇐⇒ X �|= P(cl) and since ∀(cl, α) ∈ �, n(P(cl)) = α, we
have π�(ω) = π̃P(X), ∀X ∈ X and its corresponding interpretation ω.

Proof (Proposition 16)

1. InconsDeg(PP(�)) = 1− max
X∈2X

{π̃PP(�)(X)}. If X is not a pseudo-interpretation,

π̃PP(�)(X) = 0 by proposition 15. So, we can restrict the application of max to the
set of pseudo-interpretations, and then (again by proposition 15) we have:

InconsDeg(PP(�)) = 1−max
ω∈�

{π�(ω)} = Inc(�)

2. Since the translation is based on a given atom set A, PP(�>α) = (PP(�))>α is
obvious.

3. If InconsDeg(PP(�)) = 0, then the proposition 13 ensures that (PP(�))∗ has at
least one stable model. Every stable model corresponds to a model of �∗ because

Ann Math Artif Intell (2006) 47: 139–181 179

the translation exposed in the beginning of this subsection establishes a one to
one correspondence between stable models of PP(�) and propositional models
of �∗.

4. InconsDeg(PP(�)) = α ⇒ Inc(�) = α by the first item of this proposition and
�>α is consistent by a possibilistic logic result. So, Inc(�>α) = 0 and by the
first item of this proposition we have InconsDeg(PP(�>α)) = 0. Thus, by the
previous item, (PP(�)>α)∗ has at least one stable model and every stable model
corresponds to a propositional model of (�>α)∗.

References

1. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with fuzzy
propositional variables.In: Boutilier, C., Goldszmidt, M. (eds.), Conference in Uncertainty
in Artificial Intelligence, pp. 1–10. Stanford University, Stanford, California, USA. Morgan
Kaufmann, San Francisco, California (2000)

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ system. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.), Proceedings of the 8th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’05), volume 3662 of Lecture Notes
in Artificial Intelligence, pp. 422–426. Springer, Berlin Heidelberg New York (2005)

3. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Program.
19/20, 73–148 (1994)

4. Baral, C., Gelfond, M., Rushton, N.J.: Probabilistic reasoning with answer sets. In: Lifschitz, V.,
Niemelä, I., (eds.), Proceedings of the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’04), volume 2923 of LNCS, pp. 21–33. Fort Lauderdale, FL,
USA. Springer, Berlin Heidelberg New York (2004)

5. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In: Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning, pp. 673–684
(1992)

6. Benferhat, S., Dubois, D., Prade, H.: Possibilistic logic: From nonmonotonicity to logic program-
ming. In: Clarke, M., Kruse, R., Moral, S. (eds.), European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty volume 747 of LNCS, pp. 17–24. Springer,
Berlin Heidelberg New York (1993)

7. Bidoit, N., Froidevaux, C.: General logical databases and programs: Default logic semantics and
stratification. Inf. Comput. 91(1), 15–54 (1991)

8. Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In:
International Joint Conference on Artificial Intelligence, pp. 1043–1048 (1989)

9. Brewka, G.: Complex preferences for answer set optimization. In: Dubois, D., Welty, C.A.,
Williams, M.A. (eds.), International Conference on the Principles of Knowledge Representation
and Reasoning, pp. 213–223 (2004)

10. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109
(1-2), 297–356 (1999)

11. Chatalic, P., Froidevaux, C., Schwind, C.: Graded hypothesis theories. Theor. Comp. Sci. 171
(1-2), 247–280 (1997)

12. Damasio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T. Faber, W., Truszczynski, M.
(eds.), International Conference on Logic Programming and NonMonotonic Reasoning, volume
2173 of LNCS, pp. 379–392. Springer, Berlin Heidelberg New York (2001)

13. Damasio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S.,
Besnard, P. (eds.), European Conference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty, volume 2143 of LNCS, pp. 748–759. Springer, Berlin Heidelberg New
York (2001)

14. Dupin de Saint-Cyr, F., Prade, H.: Describing evolving systems by uncertain default transition
rules. In: International Conference in Advances in Intelligent Systems – Theory and Applications
(AISTA’04), Luxembourg (2004)

15. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference
handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2), 308–334 (2004)

180 Ann Math Artif Intell (2006) 47: 139–181

16. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of propositional horn
formulae. J. Log. Program. 1, 267–284 (1984)

17. Dubois, D., Lang, J., Prade, H.: Towards possibilistic logic programming. In: Furukawa, K.
(ed.), International Conference on Logic Programming, pp. 581–595. MIT Press, Cambridge,
Massachusetts (1991)

18. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C., Robinson, J. (eds.),
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford
University Press, Oxford (1995)

19. Dubois, D., Prade, H.: Possibility Theory – An Approach to Computerized Processing of
Uncertainty. Plenum Press, New-York (1988)

20. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, Ph. (ed.),
Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226.
Kluwer Academic Press, Dordrecht (1998)

21. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clari-
fication. Ann. Math. Artif. Intell. 32, 35–66 (2001)

22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming . In: Kowalski,
R.A., Bowen, K. (eds.), International Conference on Logic Programming, pp. 1070–1080. The
MIT Press, Cambridge, Massacusetts (1988)

23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New
Gener. Comput., 9(3-4), 363–385 (1991)

24. Jampel, M., Freuder, E.C., Maher, M.J. (eds.), Over-Constrained Systems, volume 1106 of
LNCS. Springer, Berlin Heidelberg New York (1996)

25. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumu-
lative logics. Artif. Intell. 44(1-2), 167–208 (1990)

26. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), (July 2006)

27. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-tight pro-
grams. In: International Conference on Logic Programming and NonMonotonic Reasoning,
volume 2923 of LNCS, pp. 346–350. Springer, Berlin Heidelberg New York (2004)

28. Lloyd, J.: Foundations of Logic Programming. Symbolic Computation, 2nd edition. Springer,
Berlin Heidelberg New York (1987)

29. Loyer, Y., Straccia, U.: Default knowledge in logic programs with uncertainty. In: Interna-
tional Conference on Logic Programming, volume 2916 of LNCS, pp. 466–480, Mumbai, India.
Springer, Berlin Heidelberg New York (2003)

30. Lukasiewicz, T.: Many-valued disjunctive logic programs with probabilistic semantics. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.), Proceedings of the 5th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), volume 1730 of LNCS,
pp. 277–289, El Paso, Texas, USA. Springer, Berlin Heidelberg New York (1999)

31. Lukasiewicz, T.: Fixpoint characterizations for many-valued disjunctive logic programs with
probabilistic semantics. In: Eiter, T., Faber, W., Truszczynski, M. (eds.), Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01),
volume 2173 of LNCS, pp. 336–350, Vienna, Austria. Springer, Berlin Heidelberg New York
(2001)

32. Lukasiewicz, T.: Weak nonmonotonic probabilistic logics. Artif. Intell. 168(1-2), 119–161 (2005)
33. Marek, W., Truszczyński, M.: Autoepistemic logic. J. ACM 38(3), 588–619 (1991)
34. Mateis, C.: Extending disjunctive logic programming by t-norms. In: Gelfond, M., Leone, N.,

Pfeifer, G. (eds.), LPNMR, volume 1730 of LNCS, pp. 290–304. Springer, Berlin Heidelberg
New York (1999)

35. Nerode, A., Remmel, J.B., Subrahmanian, V.S.: Annotated nonmonotonic rule systems. Theor.
Comp. Sci. 171(1-2), 111–146 (1997)

36. Nicolas, P., Garcia, L., Stéphan, I.: A possibilistic inconsistency handling in answer set program-
ming. In: European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, volume 3571 of LNCS, pp. 402–414, Barcelona, Spain. Springer, Berlin Heidelberg
New York (2005)

37. Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: International Joint Conference
on Artificial Intelligence, pp. 248–253, Edinburgh, Scotland, August 2–5 (2005)

38. Nicolas, P., Lefèvre, C.: Possibilistic stable model computing. In: ASP’05 workshop, Bath, Eng-
land (2005)

39. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

Ann Math Artif Intell (2006) 47: 139–181 181

40. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to default reason-
ing. In: Parikh, R., (ed.), Proceedings of Theoretical Aspects of Reasoning about Knowledge,
pp. 121–135. Morgan Kaufmann Publishers, San Mateo (1990)

41. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)
42. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic negation. In:

Logic Programming, 21st International Conference, (ICLP’05), volume 3668 of LNCS, pp. 204–
220, Sitges, Spain. Springer, Berlin Heidelberg New York (2005)

43. Schwind, C.: A tableaux-based theorem prover for a decidable subset of default logic. In Stickel,
M. (ed.), Conference on Automated Deduction. Springer, Berlin Heidelberg New York (1990)

44. Simons, P.: Extending and implementing the stable model semantics. Research Report A58,
Helsinki University of Technology, Department of Computer Science and Engineering, Labo-
ratory for Theoretical Computer Science, Espoo, Finland, April 2000. Doctoral dissertation

45. Syrjänen, T., Niemelä, I.: The Smodels systems. In: International Conference on Logic Program-
ming and NonMonotonic Reasoning, pp. 434–438, Vienna, Austria, September. Springer-Verlag,
Berlin Heidelberg New York (2001)

46. Wagner, G.: A logical reconstruction of fuzzy inference in databases and logic programs. In:
Intelligent Fuzzy Set Association World Congress, Prague, Czech (1997)

47. Wilson, M., Borning, A.: Hierarchical constraint logic programming. J. Log. Program. 16(3),
277–318 (1993)

48. Yager, R.R.: An introduction to applications of possibility theory. Human Syst. Manag. 3, 246–
269 (1983)

49. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. In: Fuzzy Sets and Systems, vol. 1,
pp. 3–28. Elsevier Science, Amsterdam (1978)

	Possibilistic uncertainty handling for answer set programming
	Abstract
	Introduction
	Theoretical backgrounds
	Stable model semantics
	Possibilistic logic

	Possibilistic definite logic programs
	Language
	Model theory for possibilistic definite logic programs
	Fix-point theory for possibilistic definite logic programs

	Possibilistic normal logic programs
	Language and possibilistic stable models
	Possibility distribution

	Inconsistent possibilistic normal logic programs
	Formal definitions
	Relations with possibilistic logic
	Constraint relaxation

	Possibilistic stable model computing
	General algorithm
	Rule grounding
	Possibilistic stable model computation
	Examples and evaluations

	Related works
	Dealing with default reasoning and uncertainty
	Dealing with inconsistency
	Dealing with preferences

	Conclusion
	Result proofs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

