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Abstract

In this paper, we aim at evaluating the impact of the starting
point of a basic local search based on the first improvement
strategy. We define the coverage rate of a configuration as
the proportion of the search space from which a particular
configuration can be reached by a strict hill-climbling with a
non-zero probability. In particular, we compute the coverage
rate of fitness landscapes global optima, in order to evalu-
ate their attainability by hill-climbing algorithms. The exper-
imental study is realized on NK landscapes, in which the size
and ruggedness can be controlled.
Results indicate that the coverage rate of global optima is
usually high, which means that a basic strictly improving
hill-climbing with first improvement strategy is able to reach
global optima, independently to the starting point considered.
This confirms that it is more important to focus on an effec-
tive search strategy rather than worrying about the choice of
the initial configurations.

Introduction
Hill-climbing (Selman and Gomes 2002), among fast local
search techniques (Hoos and Stützle 2004), is often consid-
ered as an intensification mechanism which focuses on a tiny
part of the search space, its efficiency being greatly depen-
dent to the initial configuration considered. Globally, one
can think that most configurations are not reachable since
they belong to parts of the search space which are too far
from the initial configuration. However, in most search land-
scapes, the neighborhood induces a reduced diameter of the
associated transition graph1. For instance, considering a bit-
string landscape, the 1-flip neighborhood links configura-
tions through anN -dimensional hypercube,N being the bit-
string length. Obviously, neighborhood distances between
pairs of configurations in such landscapes are N/2 in av-
erage — N in the (unique) extreme case — which is not
particularly large in comparison with the number of moves
usually performed during a local search.

In this work, we measure the impact of the initial solution
of a basic first improvement local search. To achieve this,
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1The transition graph simply consists of nodes that represent
configurations and edges that link two neighbor configurations.

we aim at evaluating the coverage rate of particular config-
urations of fitness landscapes, which represents the propor-
tion of the search space from which a configuration can be
reached thanks to a hill-climbing process. This study can be
viewed as an extension of the notion of basin of attraction
(Ochoa et al. 2008; Ochoa, Vérel, and Tomassini 2010). In
these previous works, authors focused on local optima net-
works and on the probabilities to reach given local optima
from any initial configuration. Here, we propose to concen-
trate about possibilities to reach particular configurations —
eg. the global optimum — from any configuration thanks to
a first improvement hill-climbing. Experiments are realized
on NK landscapes, in which size and ruggedness are tunable.

The main motivation of this paper is to provide a clear
understanding of the real impact of well-known basic lo-
cal search components in order to improve the design of
more complex and more sophisticated algorithms, based on
these intuitions. In particular, the management of the balance
between intensification and diversification has been widely
studied in local search, leading to algorithms that may even
adapt their behavior according to the current state of the
search (Battiti, Brunato, and Mascia 2008). Clearly, the de-
sign of such algorithm may benefit from more knowledge
about, for instance, influence of the starting point in local
search, in order to manage restart strategies, or probabilities
of reaching local and global optima, in order to better use
diversification by means of escape techniques (e.g., prohibi-
tion mechanisms).

The paper is organized as follow. The next section fo-
cuses on the definitions of fitness landscapes, hill-climbing
algorithms and we also introduce the concept of coverage
rate. The NK landscapes, which are considered in the ex-
periments, are also presented. In section 3, we propose sev-
eral experiments in order to evaluate coverage properties of
NK landscapes. In the last section, we summarize our con-
tributions and point out ways to exploit these results while
designing metaheuristics.

Definitions
Fitness Landscapes and hill-climbing
A combinatorial optimization problem instance is a pair
(X, f), where X is a discrete set of feasible solutions, and
f : X → IR a scalar objective function which has to be



maximized or minimized. In a maximization context, solv-
ing (X, f) consists in finding x? ∈ argmaxx∈X f(x).

A fitness landscape is a triplet (X,N , f), where X is a
set of configurations called search space, N : X → 2X is
a neighborhood function, and f is a fitness function. f(x) is
the fitness of x. x′ ∈ N (x) is a neighbor of a configuration
x ∈ X . N (x) is the neighborhood of x. A local optimum is
a configuration x such that ∀x′ ∈ N (x), f(x′) 6 f(x). A
global optimum is a configuration x? ∈ argmaxx∈X f(x).

A local search algorithm aims at finding the best configu-
ration of X (thanks to f ) while exploring a subset of X rel-
atively to (X,N , f). A hill-climbing algorithm is a basic lo-
cal search strategy which navigates through the search space
in allowing only non-deteriorating moves. Given an initial
configuration called starting point, a basic hill-climbing al-
gorithm iteratively moves to better neighbors, until it reaches
a local optimum. We consider here the most stochastic ba-
sic hill-climbing strategy, first improvement, which accepts
at each iteration the first evaluated neighbor which satisfies
the moving condition (see algorithm 1). Other well-known
strategy, best improvement, is not considered here, since its
(globally) deterministic aspect will not distinguish possi-
bilistic and probabilistic cases. Moreover, in (Basseur and
Goëffon 2013), it has been shown that first improvement of-
ten outperforms best improvement on a wide variety of land-
scapes.

input : a fitness landscape (X,N , f), a starting point
x0 ∈ X

output: a local optimum xopt and its fitness Fopt

F ← f(x0)
N ← N (x0)
while N 6= ∅ do

Randomly selects x′ ∈ N
F ′ ← f(x′)
if F ′ > F then

x← x′

F ← F ′

N ← N (x)
end
else

N ← N \ {x′}
end

end
xopt ← x
Fopt ← F
return (xopt, Fopt)

Algorithm 1: Basic first improvement hill-climbing.

More details about hill-climbing and various stochastic
local search techniques can be found in (Hoos and Stützle
2004).

Basins of attraction and coverage rate
Given a fitness landscape (X,N , f) and a hill-climbing
strategy (first or best improvement), the basin of attrac-
tion of a local optimum xopt is the set Bxopt

= {x ∈

X, pxopt(x) > 0}, where pxopt(x) represents the probability
to reach xopt from x as starting point and using the given
hill-climbing strategy (Ochoa, Vérel, and Tomassini 2010).
Note that this definition is restricted to local optima only
but can actually be generalized to any configuration of the
search space.

In (Ochoa, Vérel, and Tomassini 2010), the size of a
basin of attraction Bxopt

is defined as the sum of proba-
bilities

∑
x∈X pxopt

(x). Authors do not define the size of
a basin of attraction as its cardinality, in order to represent
the probability for a given local optimum to be attained by
a hill-climbing, which starts from a random configuration
(the global probability is actually

size(Bxopt )

#X ). In this paper,
we will focus on the cardinality of basins of attraction in
order to determine the possibility of reaching a given local
optimum. Thus, we introduce the coverage rate γ(x) of a
configuration x ∈ X as the proportion of the search space
that belongs to its basin of attraction:

γ(x) =
#Bx

#X

NK Landscapes
The NK family of landscapes (Kauffman and Weinberger
1989) is a problem-independent model for constructing mul-
timodal landscapes. NK-landscapes use a basic search space,
with binary strings as configurations and bit-flip as neigh-
borhood (two configurations are neighbors iff their Ham-
ming distance is 1). Characteristics of an NK landscape are
determined by two parameters N and K. N refers to the
size of binary string configurations, which defines the search
space size (|X| = 2N ). K specifies the ruggedness level of
the landscape; indeed, the fitness value of a configuration is
given by the sum of N terms, each one depending on K +1
bits of the configuration. Thus, by increasing the value of K
from 0 to N − 1, NK landscapes can be tuned from smooth
to rugged.

In NK landscapes, the fitness function f : {0, 1}N →
[0, 1) to be maximized is defined as follows.

f(x) =
1

N

N∑
i=1

ci(xi, xi1 , . . . , xiK ) (1)

where ci : {0, 1}K+1 → [0, 1) defines the component func-
tion associated with each variable xi, i ∈ {1, . . . , N}, and
where K < N .

NK landscapes instances are determined by the (K + 1)-
uples (xi, xi1 , . . . , xiK ) as well as the 2N (K + 1) ci re-
sult values corresponding to a fitness-contribution matrix C
whose values are randomly generated in [0, 1) and following
the random neighborhood model (Kauffman and Weinberger
1989).

In the following, we study NK landscapes to extract in-
formation about coverage rates. Let us recall that a coverage
rate is defined with respect to a landscape and a move strat-
egy. In this paper, we focus on the first improvement strat-
egy.

Experiments will be carried out on various landscapes
classified with respect to their size and ruggedness. We



first focus on studying coverage rate properties of NK-
landscapes on small instances in order to provide exact re-
sults, which will help us to extrapolate such properties on
larger landscapes.

Coverage rate of NK landscape global optima
This section aims at calculating the coverage rate of NK
landscape global optima by performing a first improvement
hill-climbing. A high coverage rate means that an effort for
determining an appropriate initial solution is not necessar-
ily useful. Indeed, this would mean that a randomly chosen
solution would have a high probability of having a chance to
reach the global optimum.

Methodology
The coverage rate computation of a global optimum first
requires to solve the optimization problem itself. For each
NK landscape instance considered in the results section,
the global optimum is obtained by means of an exhaustive
search. To compute exactly the coverage rate of the global
optimum, we determine all possible reverse hill-climbing
paths from the optimum as starting point.

input : a fitness landscape (X,N , f) and its global
optimum s?

output: the coverage rate of s?

cardcov← 1
f̃ ← bf(s?).Hc //f̃ is the integer transformation of f in
the interval {0..H − 1}, where H is the hash table size
InsertSol(HashTable,f̃ ,s?)
for i← f̃ to 0 do

foreach s ∈ SolSet(HashTable,i) do
foreach s′ ∈ N (s) do

j ← bf(s′).Hc // a solution is inserted if
the fitness is deteriorated and if this solution
is not already recorded;
if j < i then

if not FindSol(HashTable,j,s′) then
InsertSol(HashTable,j,s′)
cardcov←cardcov +1

end
end

end
DeleteSolSet(HashTable,i)

end
end
return cardcov/2N ;

Algorithm 2: Computation of a coverage rate.

A basic approach is to recursively generate deteriorating
neighbors until reaching a local minimum, while counting
the number of distinct configuration considered. However
such an approach is intractable since most solutions be-
long to numerous hill-climbing paths. The use of a hash
table which considers fitness as hash function will allow
us to effectively ensure that each solution is handled only

once. Combined with a treatment of solutions by decreas-
ing fitness, this representation allows to free memory during
the search, by deleting solutions which cannot appear after-
wards (see algorithm 2).

Results
Table 1 presents the coverage rates obtained on small NK
landscapes instances. By focusing on the column LO1,
which corresponds to the coverage rates of global optima,
one may observe that the average rate is greater than 70%
for all (N,K) parameterizations. The smallest coverage re-
sult (70.17%) is obtained on a rugged instance (K = 8),
which can be classified as difficult. Nevertheless, the aver-
age global optima coverage rate on rugged NK landscapes
remains relatively high. Considering average rates accord-
ing to the landscapes ruggedness, we observe that the greater
values are obtained forK = 4. This result is quite surprising
since one would expect to get the best coverage for the least
rugged instances (K = 2), even if standard deviations are
higher.

An interesting point is that global optima coverage rates
are high and their variation between NK instances are rela-
tively low. It means that global optima can be attained with
basic hill-climbings from most initial configurations. This
result seems to be not dependent to the size of the search
space, and we can expect that this remains valid for wider
landscapes.

During experiments, we observed the distribution of so-
lutions according to their fitness, considering if they belong
or not in the coverage of the global optimum. By this way,
we are able to visualize the correlation between coverage
rates and configuration fitnesses, as shown in figure 1. This
figure emphasizes that the global optimum is almost always
attainable from the worst configurations of the search space,
which is intuitively understandable since it allows the gen-
eration of many possible improving paths. At the contrary,
it is less often possible to reach the global optimum when
starting from a configuration with a high fitness.

Let us notice that a high coverage does not mean that the
global optimum is easily attainable, but refers to the possibil-
ity to reach it. In the next section, we focus on the probability
of reaching global optima from randomly selected solutions.

Probability of reaching global and local
optima

Previous results show that the global optimum is achievable
with a hill-climbing from most solutions of the search space.
However, this does implies a significant probability to reach
it. This section aims at computing the probabilities to reach
each local optimum, ie. the size of their basin of attraction.

Methodology
The computation of the probability of achieving a particular
configuration (eg. the global optimum) cannot be achieved
by exhaustively testing all possible paths from all possible
starting points. Here, we propose to compute the probability
to reach a configuration from a single random starting point.
An estimation of the expected probability will be obtained



N = 16 N = 24
Instance K = 2 K = 4 K = 8 K = 2 K = 4 K = 8

1 94.37% 91.49% 68.38% 63.19% 95.95% 88.89%
2 55.72% 86.68% 74.82% 91.93% 96.12% 88.90%
3 90.95% 86.90% 74.26% 66.19% 95.50% 91.64%
4 67.83% 92.95% 66.99% 71.55% 95.83% 88.70%
5 54.65% 88.79% 69.38% 92.42% 94.99% 90.60%
6 74.98% 87.76% 68.52% 72.44% 97.66% 86.64%
7 68.91% 87.81% 69.40% 63.63% 94.34% 87.61%
8 74.03% 87.19% 66.75% 96.92% 96.58% 89.60%
9 96.78% 91.07% 71.34% 80.10% 92.98% 90.55%

10 78.67% 87.83% 71.86% 82.39% 96.13% 91.00%
Avg 75.69% 88.85% 70.17% 78.08% 95.61% 89.41%
SD 14.86% 2.19% 2.82% 12.57% 1.28% 1.57%

Global Avg: 78.23%; SD: 11.66% Avg: 87.70%; SD: 10.24%

Table 1: Coverage rates of randomly generated NK landscapes (N ∈ {16, 24} and K ∈ {2, 4, 8}).
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Figure 1: Coverage rate of an NK landscape global optimum
(N = 24, K = 2, instance #9, global cov. rate: 80.10%)
with respect to fitness. We indicate, for all fitness values
(range size 10−3), the number of configurations belonging to
the basin of attraction of the global optimum (dashed line),
and the total number of configurations of the search space
(dotted line).

by averaging on a sample of starting points. The algorithm
works as follow.

Computing the probability that a configuration x0 reaches
an optimum xopt requires to determine the probability of se-
lection of all improving paths that drive to xopt. In particu-
lar, if no search path leads to xopt, the probability will be set
to 0. The probability of following a path will be evaluated
starting from x0 and taking into account all possible local
searches ways. In a first improvement context, we consider
that all improving neighbors have an equivalent probability
to be selected. Thus, if a configuration x has a probability
p to be reached and has k improving neighbors, then the

probability of choosing each of these paths will be p/k. If a
solution can be reached from two distinct paths, then we add
the corresponding probabilities.

Algorithm 3 describes how the probability of achieving
an optimum xopt starting from a solution x0 is computed.

input : a fitness landscape (X,N , f), a starting point
s0 ∈ X and a target configuration s? ∈ X

output: the probability to reach s? from s0

f̃0 ← bf(s0).Hc
f̃? ← bf(s?).Hc
InsertSol(HashTable,f̃ ,s0)
Pr[s0]← 1 // Probability to reach s0 from s0
for f̃ ← f̃0 to f̃? do

foreach s ∈ SolSet(HashTable,f̃) do
foreach s′ ∈ N (s) do

f̃ ′ ← bf(s′).Hc
if f̃ ′ > f̃ then

if not FindSol(HashTable,f̃ ′,s′)
then

InsertSol(HashTable,f̃ ′,s′)
Pr[s′]← Pr[s]/n

end
else

Pr[s′]← Pr[s′] + Pr[s]/n
end

end
end

end
DeleteSolSet(HashTable,f̃)

end
return Pr[s?]

Algorithm 3: Probability to reach a solution s′.



Instance Best 10.00 % 30.00 % 50.00 % Top 5 #LO Cov.
1 9.54 % 14.25 % 49.97 % 61.79 % 43.76 % 20 94.37 %
2 2.49 % 10.73 % 33.05 % 59.86 % 17.23 % 36 55.72 %
3 13.43 % 13.43 % 44.98 % 84.58 % 66.86 % 16 90.94 %
4 5.04 % 16.67 % 49.02 % 77.65 % 21.58 % 49 67.82 %
5 7.89 % 17.63 % 55.31 % 75.03 % 17.63 % 54 54.65 %
6 8.14 % 24.76 % 55.45 % 76.76 % 28.17 % 48 74.98 %
7 9.46 % 28.54 % 67.36 % 85.14 % 20.41 % 81 68.91 %
8 12.09 % 12.09 % 45.20 % 73.59 % 51.62 % 16 74.02 %
9 34.89 % 34.89 % 75.04 % 84.90 % 75.04 % 18 96.77 %
10 45.43 % 45.43 % 64.49 % 79.76 % 64.49 % 19 78.66 %

Avg 14.84% 21.84% 53.99% 75.91% 65.70 35.7 75.69
SD 13.93 % 11.41 % 12.35 % 8.96 % 22.55 % 21.93 14.86

Table 2: Probability of achieving different local optima on (N = 16, K = 2) instances. Probabilities are obtained from a
sampling of 100 initial solutions. The probability of reaching each possible local optimum was calculated. The Best column
corresponds to the probability of reaching the global optimum. Columns 10%, 30%, 50% refer to the probability of reaching
respectively the 10%, 30%, 50% best local optima. Top 5 column corresponds to the probability to reach one of the 5 best local
optima. Column #LO indicates the number of local optima of the considered instance. The last column reports the coverage
rate of the global optimum on each considered instance.

Instance Best 10.00 % 30.00 % 50.00 % Top 5 #LO Cov.
1 3.69 % 35.41 % 66.62 % 84.05 % 24.17 % 121 91.48
2 4.23 % 27.15 % 61.34 % 82.95 % 13.70 % 129 86.68
3 3.29 % 36.29 % 71.83 % 85.27 % 28.76 % 89 86.89
4 3.64 % 24.92 % 55.68 % 78.67 % 15.09 % 106 92.94
5 6.02 % 32.18 % 70.04 % 85.72 % 20.39 % 99 88.79
6 3.81 % 26.13 % 64.49 % 82.06 % 16.45 % 119 87.76
7 4.56 % 35.03 % 65.15 % 81.66 % 14.74 % 140 87.81
8 3.28 % 29.37 % 61.81 % 80.22 % 14.65 % 139 87.18
9 3.89 % 37.92 % 69.48 % 83.50 % 17.59 % 121 91.06

10 9.28 % 37.87 % 66.56 % 83.12 % 18.45 % 142 87.83
Avg 4.57% 32.23% 65.30% 82.72% 18.40% 120.5 88.85
SD 1.84 % 4.98 % 4.79 % 2.17 % 4.83 % 18.03 2.19

Table 3: Probability of achieving different local optimum on (N = 16, K = 4) instances. See Table 2 for columns description.

Instance Best 10.00 % 30.00 % 50.00 % Top 5 #LO Cov.
1 0.54 % 26.93 % 59.95 % 77.52 % 2.92 % 770 68.37
2 2.76 % 31.45 % 59.93 % 79.53 % 5.18 % 770 74.81
3 0.57 % 27.59 % 57.67 % 75.97 % 2.47 % 730 74.26
4 0.61 % 30.21 % 60.84 % 77.41 % 3.46 % 745 66.98
5 0.20 % 27.32 % 59.75 % 77.76 % 1.10 % 794 69.38
6 0.90 % 25.70 % 59.16 % 79.13 % 2.51 % 747 68.51
7 1.11 % 32.36 % 57.71 % 78.28 % 3.20 % 780 69.39
8 0.56 % 30.33 % 60.59 % 77.94 % 3.50 % 737 66.74
9 1.60 % 31.93 % 63.19 % 79.00 % 5.00 % 740 71.33
10 0.59 % 31.89 % 58.65 % 78.15 % 3.06 % 741 71.85

Avg 0.94% 29.57% 59.74% 78.07% 3.24% 755.4 70.17
SD 0.74 % 2.45 % 1.63 % 1.02 % 1.19 % 21.42 2.82

Table 4: Probability of achieving different local optima on (N = 16, K = 8) instances. See Table 2 for columns description.



Results
Tables 2, 3 and 4 report the probability of reaching local
optima on NK landscapes, for N = 16. The average prob-
ability to reach the global optimum (best) is relatively low
when K = 4 and K = 8 (respectively 4.5% and 1%).
As expected, global optima’s high coverage rates do not im-
ply high reaching probabilities. For K = 2 landscapes, this
probability is relatively high (more than 10%). Globally, the
probability of reaching the global optimum decreases while
the ruggedness of the problem increases, which is natural
since the number of local optima is greater. Nevertheless, let
us recall that this phenomenon is not present for the covering
rate. Since the probability of reaching the global optimum is
a numerical indicator of the landscape difficulty, this experi-
mentation confirms that the ruggedness level of a landscape
directly affect its difficulty.

The column 50% provides us an additional piece of in-
formation. Indeed, for all ruggedness levels, the probability
to reach one of the top 50% local optima is over 70%. This
means that a first improvement hill-climbing globally tends
to converge to high optima of the landscape. Similar conclu-
sion were obtained by Ochoa et al. (Ochoa et al. 2008) which
were focusing on best improvement. They showed that high
local optima benefited from wider basins of attraction than
lower local optima.

Correlation coverage rate vs. neighborhood
distance

This section aims at evaluating the coverage rate of a con-
figuration according to its neighborhood distance to other
configurations. To achieve this, we distinguish different
distance-based coverage rate values of a global optimum
xopt, depending of the neighborhood distance of configura-
tions to xopt. While a correlation between coverage rate and
neighborhood distance is expected, it will be interesting to
determine if coverage rates are still significant from distant
configurations.

Here we will consider the distance-based coverage rates
of global optima only. Let us notice that considering NK
landscapes, neighborhood distances between solutions are
distances, varying from 1 to N . The number of configura-
tions being at a Hamming distance of d of any particular
configuration is

(
N
d

)
. To compute distance-based coverage

rates, we first split the basin of attraction of xopt into N
subsets with respect to the Hamming distance h : X2 → IN
between configurations of Bxopt

and xopt, and then com-
pute the rates separately. More precisely, the coverage rate
of xopt at distance d is:

#{x ∈ Bxopt
, h(x, xopt) = d}(
N
d

)
Let us precise that the computation of distance-based cov-

erage rates can be included in algorithm 2 by considering N
basin cardinalities rather than a single one.

Figure 2 presents an interesting view of the basin of at-
traction of an NK landscape global optimum xopt (N = 16,
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Figure 2: Average coverage rates of NK landscape global
optima (N = 16,K = 4, 10 instances, global coverage rate:
88.85%) with respect to distances from optimum. We indi-
cate, for all distance values, the average number of configu-
rations belonging to the basin of attraction of each instance
global optimum (dashed line), and the total number of con-
figurations of a search space (dotted line).

K = 4). We illustrate here the proportion of configura-
tions belonging to the basin of attraction of xopt with re-
spect to their neighborhood (Hamming) distance of xopt.
One can observe that although the distance-based coverage
rate tends to decrease linearly while the neighborhood dis-
tance increases, it remains relatively high even for farest so-
lutions.

Correlation neighborhood distance / search
length

In this section, we aim at comparing the neighborhood
(Hamming) distance between starting points and global opti-
mum with the minimal length of a hill-climbing path linking
these two configurations. A strong correlation could allow
to reduce the computational effort to solve large instances
by focusing on direct (or nearly direct) paths — ie. without
flipping the same bit several times.

The correlation between Hamming distance and search
length is performed on the whole search space. We focus
here on computing this correlation with the global optimum
as target configuration. The principle is similar to the cov-
erage computation provided in section . The set of configu-
rations belonging in the global optimum basin of attraction
is computed thanks to algorithm 2, except that we compute
minimal paths leading to the global optimum. In most cases,
if there is a hill-climbing path to reach the global optimum,
then numerous different search paths can generally be fol-
lowed.

Results on NK instances (with N ∈ {16, 24}) are re-
ported in table 5. From most configurations belonging to
the global optimum basin of attraction, there exists a direct



N K Dist. d d+ 2 d+ 4 d+ 6 d+ 8

16

2 Avg 91.73% 6.27% 1.39% 0.40% 0.19%
SD 0.042 0.029 0.008 0.004 0.002

4 Avg 89.96% 7.40% 1.81% 0.57% 0.18%
SD 0.029 0.016 0.008 0.004 0.001

8 Avg 81.99% 12.76% 3.63% 1.15% 0.35%
SD 0.023 0.011 0.007 0.004 0.002

24

2 Avg 88.16% 7.63% 2.38% 0.99% 0.46%
SD 0.059 0.033 0.015 0.007 0.004

4 Avg 91.53% 6.26% 1.41% 0.49% 0.19%
SD 0.015 0.010 0.003 0.001 0.001

8 Avg 87.73% 8.21% 2.46% 0.95% 0.40%
SD 0.013 0.007 0.003 0.002 0.001

Cumulative avg. 88.52% 96.61% 98.79% 99.55% 99.85%

Table 5: Minimal hill-climbing path length with respect to the initial Hamming distance starting points / global optimum (d).
Considered starting points are configurations belonging to the global optimum basin of attraction. Rates are averaged from the
10 considered instances of each (N ,K) parameterization.

hill-climbing path reaching the global optimum in a num-
ber of moves corresponding to their neighborhood distance
from the optimum (d). Cumulative results indicate that only
3.4% of configurations of the global optimum basin cannot
reach the optimum in hill-climbing paths of d + 2 moves
— ie. only one bit is flipped back to its initial value dur-
ing the search. These observations indicate that if we focus
on local searches which avoid or limit the application of a
move twice during the search (e.g., using prohibition mech-
anisms), this do not influence significantly the possibility to
reach the global optimum.

Conclusion
In this paper we aimed at extracting information from NK
landscapes concerning the ability of hill-climbings to reach
global optima. To achieve this, we performed an analysis
through exhaustive explorations of NK landscapes. The dif-
ferent experiments realized provide us some interesting con-
clusions. A first experiment, which aims at evaluating the
attainability of global optima, shows that they are reachable
from most configurations of the search space through a basic
hill-climbing process.

While focusing on the probability to reach the different
local optima of the search space, results showed that a first
improvement reaches more likely higher local optima than
others.

Additional studies extended attainability results by
adding neighborhood distance information. In particular, we
pointed out that even furthest configurations are often able
to reach the global optimum thanks to a strict hill-climbing.
Moreover, by reducing the number of allowed moves, results
indicate that when a solution belongs in the global optimum
basin, in most cases there exists a direct path to attain it. It
means that there often exists a hill-climbing path from an
initial solution to the global optimum where the number of
steps is equal or close to the initial neighborhood distance
between both configurations.

It would be interesting to find a way to estimate the pro-

posed metrics for large of highly rugged landscapes where
we are not able to enumerate all paths exhaustively. Never-
theless, this study lead us to believe that there is possibilities
to improve hill-climbing search efficiency by defining alter-
native pivoting rules (Basseur and Goëffon 2014), which aim
to increase the probability to reach the best local optima and
then the average expected final fitness achieved.
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Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations & Applications. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Kauffman, S. A., and Weinberger, E. D. 1989. The NK
model of rugged fitness landscapes and its application to
maturation of the immune response. Journal of theoretical
biology 141(2):211–245.
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