
Local Search for the Maximum

Parsimony Problem

Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao�

LERIA - University of Angers 2 Boulevard Lavoisier,
49045 Angers Cedex 01, France

{goeffon, richer, hao}@info.univ-angers.fr

Abstract. Four local search algorithms are investigated for the phylo-
genetic tree reconstruction problem under the Maximum Parsimony cri-
terion. A new subtree swapping neighborhood is introduced and studied
in combination with an effective array-based tree representation. Com-
putational results are shown on a set of randomly generated benchmark
instances as well as on 8 real problems (sequences of phytopathogen
γ-proteobacteria) and compared with two references from the literature.

1 Introduction

Phylogeny concerns the reconstruction of the evolutionary history of a set of
species identified by their nucleic acid (DNA) or amino acid (AA) sequences,
also called taxa. The evolutionary relationships between species are represented
by a tree, called a phylogenetic tree, whose branches reflect historical relation-
ships. The applications of phylogeny range from classification and taxonomy to
molecular epidemiology [5].

The problem of phylogeny reconstruction can be addressed using several
methods. The distance-based approach computes a distance matrix from the taxa
and tries to find a tree that approximates this matrix. Agglomerative clustering
algorithms such as NJ (Neighbor-Joining) [11] and BIONJ [8] are well-known
examples. The character-based approach searches through tree topologies to find
the best tree according to an optimality criterion. The widely used Maximum
Parsimony criterion [3] is such an example which states that the tree requir-
ing the fewest number of changes (mutations) should be preferred. This Maxi-
mum Parsimony Problem (MPP) is known to be NP-Hard [7]. Therefore, several
heuristics have been developed, including branch-swapping used in PHYLIP [4]
and PAUP [12], simulated annealing [2] and other metaheuristics [1]. Maximum
Likelihood is yet another approach for the inference of phylogeny using proba-
bilistic estimation.

In this paper, we are interested in studying Local Search algorithms for the
MPP and studying two important elements: the neighborhood relation and the
internal tree representation. We evaluate a new neighborhood called Subtree
Swapping Neighborhood (SSN) as well as an array-based tree representation.
� Corresponding author.

L. Wang, K. Chen, and Y.S. Ong (Eds.): ICNC 2005, LNCS 3612, pp. 678–683, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Local Search for Maximum Parsimony Problem 679

2 The Maximum Parsimony Problem

Definition 1 (Phylogenetic tree). A phylogenetic tree is a directed graph
showing the relationships between a group of contemporary taxa (labels of the
leaves) and their hypothetical common ancestors (internal nodes labeled by con-
sensus sequences). If a rooted tree is used, the root is the common ancestor of
all the contemporary taxa.

Definition 2 (Consensus sequences). Given two sequences S1 and S2 of
length k: S1 =< x1

1, x
1
2, · · · , x1

k >, S2 =< x2
1, x

2
2, · · · , x2

k > with xj
i taken from

some alphabet
∑

, the consensus sequence Sc (parent node in a phylogenetic tree)
is obtained from S1 and S2 by:

∀i, 1 ≤ i ≤ k, xc
i =

{
x1

i ∪ x2
i , if x1

i ∩ x2
i = ∅

x1
i ∩ x2

i , if x1
i ∩ x2

i �= ∅

The cost of the consensus sequence Sc is defined by:

f(Sc) =
k∑

i=1

ci where ci =
{

1, if x1
i ∩ x2

i = ∅
0, otherwise

Definition 3 (Parsimony score of a phylogenetic tree). Given a phyloge-
netic tree t and V a set of nodes whose leaves are labeled with the sequences of
an initial set S, the parsimony score of t is given by :

f(t) =
∑

v∈V \S

f(Sv
c)

where Sv
c are the consensus sequences associated to the internal nodes of t.

The goal of the Maximum Parsimony Problem is then to find a tree t∗ ∈
T with the lowest parsimony score f(t∗), T being the set of all the possible
phylogenetic trees for a given set of taxa S.

3 Local Search for the Maximum Parsimony Problem

Given the NP-hardness of the MPP, local search (LS) heuristics have been mas-
sively used to find approximate phylogenetic trees. In this Section, we study four
LS algorithms using a new neighborhood. First, the basic and common elements
of these LS algorithms are introduced.

3.1 Tree Representation and Evaluation

One important issue of LS algorithms for the MPP concerns the way the trees are
represented and evaluated. Here, we use an array-based representation (Fig. 1).
Each node is identified by a number (N), associated with its left (L) and right
(R) son, the parent (P) and the cost (C) of the node. This representation is par-
ticularly suitable for applying changes in the SSN neighborhood and convenient
for computing the cost of each neighboring tree.

680 A. Goëffon, J.-M. Richer, and J.-K. Hao

RLN

nodes
Internal

A(AC)T
(AC)CT

P

Initial tree
7

6

5

4321

A(AC)T

(AC)CT

CC(GT)

CCGCCTACTAAT

Table representation

(Taxa)
Leaves

C

CC(GT)4
0
0
0
0

1
2
3
0
0
0
0

7
6
5
4
3
2
1

5

CCG
CCT
ACT
AAT

1
1
1
0
0
0
0

0
7
6
5
5
6
7

6

Fig. 1. Tree representation

3.2 Neighborhood

Neighborhood is a critical element of local search algorithms. The literature offers
three major neighborhoods for trees: NNI (Nearest neighborhood interchanges)
[14], SPR (Subtree pruning and Regrafting) and TBR (Tree Bisection Recon-
nection) [13]. NNI is a restricted neighborhood which consists in swapping two
adjacent branches. SPR removes a subtree and reinserts it in other branches of
the tree. TBR breaks the initial tree into two subtrees which can be reconnected
to any branches of one another. It is easy to see that NNI ⊆ SPR ⊆ TBR.

In this study, we introduce a new neighborhood, that we call SSN (for Subtree
Swapping Neighborhood). SSN consists in swapping two subtrees of a tree. Let
SSNX,Y (t) be the tree obtained by exchanging the subtrees with roots X and
Y of tree t such that Y (resp. X) must not be contained in the subtree rooted
from X (resp. from Y). Then the SSN neighborhood N can be formally defined
as follows N : T → 2T is such that for each t =<N, V >∈ T , a tree t′ ∈ T is
a neighbor of t, i.e. t′ ∈ N (t), if and only if ∃(X, Y) ∈ V × V , SSNX,Y (t) = t′

where V is the set of nodes. As shown later, SSN, combined with our internal
tree representation, contributes greatly to the efficiency of our LS algorithms.

3.3 Implemented Local Search Algorithms

Pure Descent (PD). The Pure Descent (PD) algorithm accepts only better
neighboring solutions. A neighboring tree t′ is accepted to replace the current
tree t only if f(t′) < f(t) (t′ is more parsimonious than t). This algorithm
needs no parameter and stops automatically when a local optimum (minimum)
is encountered. The pure descent is very fast and may serve as a baseline reference
for evaluating other algorithms.

Random Walk Descent (RWD). This algorithm combines the pure descent
with the random walk strategy to accept from time to time a random neighbor
(which is not necessarily better). At each iteration, with probability p ∈ [0, 1],

Local Search for Maximum Parsimony Problem 681

a neighbor is taken randomly from the neighborhood to replace the current
solution regardless of its cost; with probability 1 − p, a pure descent iteration
is carried out. Here, p = 1

α.|S|2 , α taking values from 1 to 10 and |S| being the
number of species of the problem instance.

Iterative Local Search (ILS). ILS uses the pure descent to reach a first
local optimum and then perturbs this local optimum by carrying out a limited
number of random walks. This leads to a new solution which is then used by
the pure descent to seek another local optimum. The two-steps process Descent-
Perturbation is repeated until a predefined stop condition is met.

Simulated Annealing (SA). At each iteration, a neighbor t′ is taken randomly
from N (t) of the current tree t. t′ is accepted to replace t if t′ is better than t.

Otherwise, t′ is accepted with a probability e−
f(t′)−f(t)

τ where f is the evaluation
(cost) function given in Section 2 and τ is the temperature parameter which
is decreased by a simple linear function. The algorithm stops when the current
solution is not replaced for a fixed number of iterations.

4 Experimental Results

In this section, we compare the four LS algorithms presented above and as-
sess their performances with respect to two references: DNAPARS of PHYLIP
package [4] and LVB (both fast and slow versions) [2]. Implemented in C++,
PD, RWD, ILS and SA are compiled using the -O2 optimization option of the
gcc/g++ compiler and run on Sun Fire V880 with 8 GBytes of RAM.

4.1 Benchmarks

Our benchmarks include problems having 100 to 180 sequences of a length of 100
nucleotides and were generated with Dnatree [10] and the Kimura two-parameter
model [9] with a transition/transversion ratio fixed to 2, and an evolution rate of
0.05. We used also 8 real instances from plant pathology, composed of 69 to 95
sequences of phytopathogen γ-proteobacteria (denoted by phyto here) with 409
to 645 sites and report only here the results on one real instance since we observed
very similar behavior on these instances. To run the programs, an initial tree is
generated either with a random construction (Rand) or with a distance-based
method (Dist). Each algorithm is run 20 to 50 times.

4.2 Comparison of PD, RWD, ILS and SA

Table 1 shows the comparative results of (PD, RWD, ILS and SA) on five classes
of random instances and the phytopathogen instance, with the following infor-
mation: the best cost found (fb), the average cost (fm), the standard deviation
of the cost (σ) and the average computing time (time).

682 A. Goëffon, J.-M. Richer, and J.-K. Hao

Table 1. Comparison of PD, ILS, RWD, SA, DNAPARS and LVB

Algorithm fb fm σ time Algorithm fb fm σ time
100.100 160.100

PD 419 420,9 1,5 3m30 PD 655 658,9 2,6 13m
RWD 419 420,1 1,4 30m RWD 655 656,6 1,9 1h20
ILS 419 419,0 0 20m ILS 655 655,5 0,7 1h
SA 419 419,0 0 30m SA 654 654,0 0 1h10

DNAPARS 419 419 − 4m DNAPARS 654 654 − 65h
LVB Slow 420 420 − >2h LVB Slow 655 655 − >3h
LVB Fast 421 421 − >2h LVB Fast 655 655 − >3h

120.100 180.100
PD 495 495,8 1,4 6m PD 753 755,4 1,8 15m

RWD 495 495 0 40m RWD 752 754,0 1,3 1h40
ILS 495 495,3 0,6 30m ILS 752 753,0 1,4 1h20
SA 495 495,0 0 40m SA 751 751,0 0 1h40

DNAPARS 495 495 − 40h DNAPARS 751 751 − 1h20
LVB Fast 496 496 − >1h LVB Slow 752 752 − >3h
LVB Slow 496 496 − >1h LVB Fast 752 752 − >3h

140.100 phyto
PD 683 684,6 1,2 8m PD 731 734,8 2,6 6m

RWD 682 683,6 1,0 1h RWD 730 731,0 1,1 40m
ILS 683 684,2 1,1 40m ILS 731 732,8 1,5 30m
SA 682 682,0 0 50m SA 729 729,8 0,7 40m

DNAPARS 682 682 − 51h DNAPARS 731 731 − 14h
LVB Slow 683 683 − >5h LVB Slow 764 764 − >4h
LVB Fast 685 683 − >4h LVB Fast 740 740 − >4h

From Table 1, one observes that PD is able to find good solutions with very
short computation times compared with other algorithms. RWD finds a little
better solutions, but needs more computation time. We suspect that executing
RWD more times may lead to even better solutions. ILS, even with a long compu-
tation time, is not competitive. This is somewhat unexpected given that it uses
a perturbation techniques to re-start PD. One possible explanation would be
that the simple re-start technique used by PD (recall that PD was run 5 times)
is more appropriate than re-starting PD with a solution near a local optimum.
Finally, SA is the most powerful algorithm, able to find the most parsimonious
trees with reasonable computation times.

4.3 Comparisons of LS Algorithms with LVB and DNAPARS

From Table 1, one observes first that in terms of solution quality, SA and DNA-
PARS find the same results for random instances, and SA finds better solutions
for the real instance. However, SA is much faster than DNAPARS to find solu-
tions of the same quality. This is particularly true when the problem instance
is of larger size. Indeed for still larger instances (with more than 200 sequences,
not reported here), DNAPARS did not finish after 2 days of computation while
SA needs 1 to 2 hours to obtain near-optimal solutions. For the phytopathogen
instance, our SA algorithm obtains better result than DNAPARS (with a cost
of 729 against 731). If we consider the results of LVB, one observes easily that
both the fast and slow versions of LVB are often dominated by our algorithms,
both in terms of solution quality and computation time.

Local Search for Maximum Parsimony Problem 683

5 Conclusion

An empirical study of four local search algorithms is carried out for the phylo-
genetic tree reconstruction with the Maximum Parsimony criterion. These algo-
rithms are tested on both random instances and real problems. They are also
compared with two references from the literature, showing competitive results.
This study confirms that local search remains a very promising approach for the
Maximum Parsimony Problem. This study has allowed us to assess the proposed
SSN neighborhood and the array-based tree representation. Based on the results,
we are investigating an improved local search algorithm using an evolutionary
SSN neighborhood combined with a noisy evaluation function. Experimental val-
idations are on the way by using very large instances (up to 500 taxa and 2 000
sites, including the Zilla data set).

Acknowledgment. This work is partially supported by the French Ouest
Genopole R©. We thank the Plant Pathology Lab. from the INRA of Angers for
providing us with the phytopathogen sequences.

References

1. A.A. Andreatta and C.C. Ribeiro.Heuristics for the phylogeny problem. Journal of
Heuristics 8:429-447, 2002.

2. D. Barker. LVB: parsimony and simulated annealing in the search for phylogenetic
trees. Bioinformatics 20:274-275, 2003.

3. J.H. Camin and R.R. Sokal. A method for deucing branching sequences in phy-
logeny. Evolution 19:311-326, 1965.

4. J. Felsenstein. Phylogenetic Inference Package (PHYLIP), 1993.
5. J. Felsenstein. Inferring Phylogenies. Sinauer, 2003.
6. W. Fitch. Towards defining course of evolution: minimum change for a specified

tree topology. Systematic Zoology 20:406-416, 1971.
7. L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-complete.

Advances in Applied Mathematics 3:43-49, 1982.
8. O. Gascuel. BIONJ: An improved version of the NJ algorithm based on a simple

model of sequence data. Molecular Biology and Evolution 14:685-695, 1997.
9. M. Kimura. A simple model for estimating evolutionary rates of base of base substi-

tutions through comparative studies of nucleotide sequence. Journal of Molecular
Evolution 16:111-120, 1980.

10. M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates. Molecular Biology and Evolution,
11:459-468, 1994 (Erratum 12:525, 1995).

11. N. Saitou and M. Nei. Neighbor-joining method : A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4:406-425, 1987.

12. D.L. Swofford. PAUP: Phylogenetic analysis using parsimony. Sinauer Associates,
1998.

13. D.L. Swofford and G.J. Olsen. in D.M. Hillis and C. Moritz (Ed.) Phylogeny Re-
construction. Molecular Systematics, chapter 11:411-501, 1990.

14. M.S. Waterman and T.F. Smith. On the similarity of dendograms. Journal of
Theoretical Biology 73:789-800, 1978.

	Introduction
	The Maximum Parsimony Problem
	Local Search for the Maximum Parsimony Problem
	Tree Representation and Evaluation
	Neighborhood
	Implemented Local Search Algorithms

	Experimental Results
	Benchmarks
	Comparison of PD, RWD, ILS and SA
	Comparisons of LS Algorithms with LVB and DNAPARS

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

