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ABSTRACT

Climbers are often used in metaheuristics in order to in-
tensify the search and identify local optima with respect
to a neighborhood structure. Even if they constitute a cen-
tral component of modern heuristics, their design principally
consists in choosing the pivoting rule, which is often reduced
to two alternative strategies: first improvement or best im-
provement. The conception effort of most metaheuristics
belongs in proposing techniques to escape from local op-
tima, and not necessarily on how to climb toward better
local optima. In this paper, we are interested in attaining
good local optima with basic hill-climbing techniques. The
NK model will be used to evaluate a set of climbers proposed
in this paper. By focusing on the pivoting rule definition,
we show that choosing the worst improving neighbor often
leads to attain better local optima. Moreover, by slightly
modifying the worst improvement strategy, one can design
efficient climbers which outperform first and best improve-
ment in terms of tradeoff between quality and computational
effort.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

Keywords

Local search, hill-climbing, fitness landscapes, NK-landscapes,
first improvement, best improvement, worst improvement.

1. INTRODUCTION
Most metaheuristics are based on a neighborhood search

technique, which consists in transforming an initial solution
by application of local moves chosen from a neighborhood
structure. During the last decades, a large panel of neighbor-
hood searches have been designed, like hill-climbing, tabu
search, simulated annealing, or iterated local search (see
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[3]). These metaheuristics mainly differ in the move selec-
tion heuristic employed. Hill-climbings are simple neighbor-
hood search techniques and are widely used as basic ele-
ments of more sophisticated local search algorithms or ad-
vanced metaheuristics (including evolutionary and hybrid
algorithms).

While designing a neighborhood search algorithm, three
main conceptual issues have to be considered. First, the
neighborhood structure design, which directly affects the fit-
ness landscape to explore. This aspect is greatly problem-
dependant and will not be discussed in this paper. Second,
a method to choose the solution initiating or restarting the
search has to be designed. This aspect is often debated,
especially in iterated local search studies. Last, the pivot-

ing rule defines the acceptance criterion of neighbors during
the search. The paper focuses on this major aspect, which
is rarely investigated, except for comparing first and best
improvements on specific problems [2, 10].

In a previous study [1], we showed that first improvement
tends to outperform best improvement on many landscapes
derived from several combinatorial problems. An analysis
of landscapes properties also indicated that first improve-
ment is particularly efficient for climbing non-smooth land-
scapes. Intuitively, since best improvement systematically
chooses the highest neighbor, it should conduce the search
towards the nearest peak (local optima) of the landscape.
On the contrary, first improvement often performs reduced
improvements, which tends to drive progressively the search
toward higher areas, where the potential local optima are
also higher. To extrapolate, we believe that choosing the
worst improving neighbor at each step of the search will al-
low to increase the number of steps and then the possibility
to reach higher areas of landscapes by avoiding the climbing
of small steepest peaks. In this paper, we aim at evaluat-
ing worst improvement as well as some other intermediate
pivoting rules.

The paper is organized as follow. The next section fo-
cuses on fitness landscapes and NK model, and also recall
hill-climbing principles. In section 3, we present alternative
pivoting rules, including the underestimated worst impro-
vement strategy. Results of empirical comparisons between
12 pivoting rules will be provided and analyzed in this sec-
tion. In section 4, we propose refined pivoting rules, which
allow to approximate the worst improvement strategy, with
a reduced number of solution evaluations. Experiments and
result analysis are also provided in order to evaluate the ef-
fectiveness of such approaches. In the last section we point
out some conclusion and discuss on perspectives of this work.



2. CLIMBING FITNESS LANDSCAPES

2.1 Combinatorial fitness landscapes
Fitness landscapes constitute a key concept in theoreti-

cal / evolutionary biology since the beginning of the 1930s.
Originally, a fitness landscape is a genotype-phenotype map-
ping [11] which emphasizes the effect of mutations (geno-
type modifications) on fitness (lifetime reproductive suc-
cess). Nowadays, this concept is frequently used to charac-
terize combinatorial optimization problems within an evolu-
tionary computation context [7, 6, 9].
Formally, a combinatorial fitness landscape is a triplet

(X ,N , f), where X is a set of configurations (or candidate

solutions) called search space, N : X → 2X is a neighborhood

relation, and f is a fitness function. f(x) is the fitness (or
height) of a configuration x ∈ X . x′ ∈ N (x) is a neighbor

of x. N (x) is called the neighborhood of x. In a maximiza-
tion context, a local optimum is a configuration x ∈ X such
that ∀x′ ∈ N (x), f(x′) 6 f(x), while a global optimum is a
configuration x⋆ ∈ argmaxx∈X f(x).
A fitness landscape (X ,N , f) is usually linked with a com-

binatorial optimization problem instance, where X repre-
sents a discrete set of feasible solutions, and f corresponds
to a scalar objective function or its estimation.

2.2 NK-landscapes
The NK family of landscapes has been proposed in [4]

in order to generate artificial combinatorial landscapes with
tunable shape properties: size and ruggedness. NK-land-
scapes use a basic search space, with binary strings as con-
figurations and bit-flip (1-flip) as neighborhood. Character-
istics of an NK-landscape are determined by means of two
parameters N and K. N refers to the length of binary string
configurations. K ∈ {0, . . . , N−1} specifies the level of vari-
ables interdependency, which directly affects the ruggedness
of the landscape. By increasing the value of K from 0 to
N −1, NK-landscapes can be tuned from smooth to rugged.
In particular, if K = 0, the landscape contains only one lo-
cal (global) optimum; on the contrary, setting K to N − 1
leads to a random fitness assignment.
In NK-landscapes, the fitness function FNK : {0, 1}N →

[0, 1) to be maximized is defined as follows:

FNK(x) =
1

N

N
∑

i=1

Ci(xi,Πi(x)) (1)

xi is the i-th bit of configuration x (1 6 i 6 N). Sub-
function Πi defines the dependencies of bit i, with Πi(x) =
{xπ1(i), . . . , xπK(i)} such that πj(i) ∈ {1, . . . , N} \ {i} and

|
⋃K

j=1 πj(i)| = K. Subfunction Ci : {0, 1}K+1 → [0, 1) de-
fines the contribution value of xi with respect to its set of
dependencies Πi(x).
NK-landscape instances are both determined by the (K+

1)-uples (xi, xπ1(i), . . . , xπK(i)) and a fitness contribution

matrix C describing the 2N × (K + 1) possible contribution
values. In standard NK-landscape instances considered here,
dependencies between variables and contribution values are
randomly generated from a uniform distribution.

2.3 Hill-climbing and Move Strategies
A hill-climbing algorithm (or climber) is a basic local

search strategy which navigates through the search space
thanks to non-deteriorating moves only. Given an initial

configuration called starting point, a traditional climber it-
eratively moves to better neighbors, until a local optimum
is reached. Such a search mechanism, also known as it-

erative improvement, allows to distinguish several variants
which are discussed hereafter. To summarize, climbing a fit-
ness landscape (X ,N , f) consists actually in defining a move
strategy which reaches a configuration as highest as possible.

Two commonly-used climbing move strategies, first and
best improvement, constitute the widely used pivoting rules.
These rules define how to select a better neighbor from a
not locally optimal configuration [12]. More precisely, the
best improvement strategy (or greedy hill-climbing) consists
in selecting, at each iteration, a neighbor which achieves
the best fitness. This implies to generate and evaluate the
whole neighborhood at each step of the search. The first

improvement strategy accepts the first evaluated neighbor
which satisfies the moving condition and avoids the system-
atic generation of the entire neighborhood. Worst improve-

ment, among other pivoting rules, can easily be considered
but, to the best of our knowledge, is not really envisaged for
the design of local search algorithms. This paper will focus
on determining the actual efficiency of these underestimated
move strategies, which are detailed in the next section.

A neutral move policy has to be established for climb-
ing landscapes containing neutrality. We focus here on the
evaluation of pivoting rules, then experimental comparisons
will be realized on non-neutral NK-landscapes in order to
prevent a possible impact of neutral move policies. Thus,
climbers considered afterwards will respect the generic basic
iterative improvement definition, allowing only stricly im-
proving moves (see algorithm 1).

Algorithm 1 Generic basic iterative improvement algo-
rithm

input: a starting point xs ∈ X
x← xs

while x is not a local optimum do
x← x′, x′ choosen in {x+ ∈ N (x), f(x+) > f(x)} w.r.t.
a pivoting rule

return x

3. FROM BEST TO WORST IMPROVEMENT
In a precedent study [1], we empirically show that first im-

provement allows to find better local optima than best im-
provement on most combinatorial landscapes, especially on
difficult ones (fairly large and/or rugged landscapes). This
result was observed on NK-landscapes and fitness landscapes
derived from academic combinatorial problems: MAXSAT,
QAP, and Flow-shop. In other words, this means that on dif-
ficult landscapes, selecting systematically the highest neigh-
bor statistically leads to be trapped in local optimal of lower
quality. It should be interesting to determine if strategies
which favor the selection of improving neighbors of lower
fitnesses conduct to higher local optima. In particular, it
makes sense to consider the worst improvement pivoting
rule, which selects the worst improving neighbor at each
step of the search.

3.1 Considering Rank-based Pivoting Rules
Let Ix = (x1, x2, . . . , xw) a tuple constitued by all strictly

(distincts) improving neighbors of x ∈ X sorted by decreas-



ing fitnesses, ie. ∀i ∈ {1, . . . , w}, xi ∈ N (x), f(xi) > f(x)
and f(xi) > f(xi+1) (i < w).
Given a configuration x and an associated tuple Ix =

(x1, x2, . . . , xw), let us describe three generic ranking-based
pivoting rules:

• S=
i selects at each step of the search the i-th best im-

proving neighbor (xi).

• S>

i selects randomly one of the i-th best improving
neighbors (belonging to {x1, x2, . . . , xi}).

• S6

i selects randomly one of the (w − i + 1)-th worst
improving neighbors (belonging to {xi, xi+1, . . . , xw}).

Let q1 = ⌈w/4⌉, m = ⌈w/2⌉ and q3 = ⌈3w/4⌉ be respec-
tively the indices of the first, second and third quartiles of
Ix. b = 1 and w denote the indices corresponding to the
best and the worst configurations of Ix. In the following, we
will consider S=

i , S>

i and S6

i combined with 5 ranking val-
ues: i ∈ {b, q1,m, q3, w}. Note that, as depicted in figure 1,

some strategies are equivalent (S=
b and S>

b , S
6

b and S>
w , S

=
w

and S6
w). Obviously, S=

b corresponds to best improvement,
S=
w to worst improvement, and S>

w to first improvement —
despite the fact that the definition assumes that the whole
neighborhood is systematically generated.

Sq
1

=
Sq

1
Sq

1

Sm Sm
=
Sm

Sq
3

=
Sq

3
Sq

3

Sb
=
Sb Sb, (Best)

Sw
=
Sw Sw,

(First)

(First) (Worst)

xq1
xb xm xq3 xw

Figure 1: Illustration of different ranking-based piv-
oting rules. Improving neighbors are sorted from
the best (xb) to the worst (xw). This ranking de-
termines the candidate set of acceptable neighbors
according to the pivoting rule. For instance, S>

q3
con-

sists in randomly selecting a configuration among
the 75% most improving neighbors.

Consequently, we extracted 12 distinct ranking-based piv-
oting rules, which includes first, best and worst improvement
move strategies. Their relative efficiency will be discussed
below.

3.2 Experimentations
This section aims at competing climbers which use differ-

ent ranking-based pivoting rules by measuring their respec-
tive ability to reach high local optima. Let us notice that
this study mainly focus on the worst improvement perfor-
mance. Other variants will help us to evaluate the impact
of the move strategy in local searches.

Experimental process consists in the comparison of 12
hill-climbing versions, each one corresponding to a specific
rank-based pivoting rule S (see section 3.1): S=

b , S=
q1 , S

=
m,

S=
q3 , S

=
w , S>

q1 , S
>
m, S>

q3 , S
>
w , S

6
q1 , S

6
m, S6

q3 . All climbers are
tested on various NK-landscapes. Recall that N and K pa-
rameters allow to build NK instances of different sizes and
ruggednesses. In our experiments, we consider 28 (N,K)
parametrizations, corresponding to all combinations of N ∈
{128, 256, 512, 1024} and K ∈ {1, 2, 4, 6, 8, 10, 12}. For each
couple (N,K), we generated 10 random landscapes. Conse-
quently, 280 different NK-landscapes are considered here.

100 random configurations were generated for each NK-
landscape, which will be used as starting points for hill-
climbings. For each NK-landscape, 100 executions of the
12 hill-climbing versions were performed, using the same set
of starting points in order to cancel the initialization bias.
Searches are stopped when a local optimum is reached.

In this experiment analysis, we mainly focus on the qual-
ity of the local optima reached by all hill-climbings vari-
ants. For each triplet (N,K, S), we first compute the av-
erage fitness of the 1,000 local optima resulting from the
corresponding searches. To increase readability, we only re-
port on table 1 results for S=

i climbers as well as S>
w (first

improvement) for comparison. Other intermediate variants
are not outputted here, but will be discussed later. For
each NK parametrization, we report the best average value
in bold. The background is colored in grey if a method is
not statistically outperformed by any other variant with re-
spect to a binomial test (p-value 0.95) comparing, for a given
pair of methods, both local optima obtained for each couple
(instance,starting point). More precisely, if S denotes the
number of successes of method A over method B, then A
statistically outperforms B when 1

21000

∑

S

i=0

(

1000
S

)

> 0.95,
ie. S > 526.

Numerical results given in table 1 allows to extract sev-
eral clear conclusions. First, we observe that best improve-
ment systematically achieves best average results on smooth
instances (K = {1, 2}), while worst improvement outper-
forms other variants on all other landscapes. This observa-
tion is clearly confirmed by the statistical analysis. Previ-
ous work [1] already shown the superiority of best improve-
ment against first improvement on smooth NK-landscapes,
and the superiority of first improvement against best impro-
vement on rugged ones. Here, experiments on rank-based
pivoting rules show that worst improvement is clearly more
efficient that first improvement each time first improvement
outperforms best improvement. For reaching better local
optima, it seems to be appropriate to choose only between
best and worst improvement strategies, depending of the
ruggedness of the landscape. This tendency is confirmed in
figure 2, which shows the evolution of average fitness values
according to the rank-based pivoting rule used. It indicates
that the average quality of local optima is strongly correlated
with the rank (quality) of selected neighbors, positively on
smooth NK-landscapes and negatively on rugged ones.

Table 2 focus on the best local optima obtained by each
strategy on each landscape. For each couple (strategy, in-
stance), we first compute the best local optimum reached
among the 100 executions. Given a (N ,K) parametrization,
values provided in the table corresponds to the average fit-
ness of the best local optima obtained by each strategy on
the 10 instances. Globally, observations reported for table
1 remain valid. We can then expect that the superiority of



N K S
=
b S

=
q1

S
=
m S

=
q3

S
=
w S

>
w

128 1 .6973 .6916 .6877 .6845 .6809 .6896

256 1 .7033 .6986 .6966 .6944 .6918 .6980

512 1 .6937 .6886 .6856 .6828 .6803 .6872

1024 1 .6997 .6954 .6920 .6895 .6867 .6936

128 2 .7169 .7142 .7121 .7107 .7081 .7133

256 2 .7130 .7104 .7080 .7055 .7035 .7080

512 2 .7120 .7097 .7077 .7063 .7041 .7076

1024 2 .7132 .7109 .7092 .7073 .7052 .7088

128 4 .7216 .7214 .7231 .7230 .7250 .7207

256 4 .7211 .7224 .7237 .7247 .7274 .7218

512 4 .7228 .7238 .7255 .7268 .7285 .7232

1024 4 .7232 .7244 .7262 .7275 .7298 .7238

128 6 .7170 .7178 .7194 .7217 .7251 .7187

256 6 .7207 .7217 .7257 .7269 .7313 .7234

512 6 .7214 .7232 .7261 .7291 .7338 .7239

1024 6 .7223 .7243 .7276 .7302 .7353 .7250

128 8 .7124 .7135 .7150 .7166 .7199 .7136

256 8 .7147 .7163 .7201 .7214 .7267 .7179

512 8 .7163 .7190 .7220 .7256 .7306 .7200

1024 8 .7176 .7206 .7239 .7274 .7330 .7215

128 10 .7049 .7056 .7083 .7106 .7115 .7078

256 10 .7082 .7095 .7132 .7158 .7197 .7126

512 10 .7106 .7128 .7163 .7195 .7244 .7143

1024 10 .7121 .7150 .7185 .7223 .7270 .7165

128 12 .6970 .6980 .6996 .7022 .7033 .7009

256 12 .7015 .7026 .7062 .7087 .7129 .7053

512 12 .7045 .7066 .7104 .7133 .7179 .7082

1024 12 .7064 .7089 .7125 .7163 .7209 .7107

Table 1: Comparison of S=
i pivoting rules (aver-

age fitness of local optima reached from 1000 hill-
climbings distributed on 10 instances). Recall that
S=
b is best improvement, S=

w is worst improvement,
and S>

w , which is reported for comparison, is first
improvement.

N K S
=
b S

=
q1

S
=
m S

=
q3

S
=
w S

>
w

128 1 .7103 .7065 .7036 .7022 .6992 .7061

256 1 .7127 .7108 .7083 .7058 .7035 .7092

512 1 .7011 .6970 .6943 .6917 .6895 .6962

1024 1 .7049 .7013 .6981 .6954 .6930 .6998

128 2 .7454 .7419 .7418 .7382 .7386 .7397

256 2 .7316 .7288 .7273 .7257 .7233 .7279

512 2 .7257 .7240 .7219 .7196 .7182 .7220

1024 2 .7233 .7199 .7196 .7175 .7150 .7192

128 4 .7569 .7569 .7595 .7578 .7604 .7544

256 4 .7466 .7502 .7510 .7507 .7544 .7477

512 4 .7413 .7435 .7429 .7448 .7470 .7425

1024 4 .7363 .7366 .7389 .7410 .7439 .7372

128 6 .7569 .7575 .7579 .7589 .7603 .7554

256 6 .7449 .7512 .7524 .7536 .7564 .7507

512 6 .7425 .7420 .7443 .7476 .7528 .7435

1024 6 .7368 .7388 .7407 .7446 .7478 .7394

128 8 .7532 .7521 .7562 .7533 .7560 .7504

256 8 .7433 .7428 .7464 .7483 .7524 .7427

512 8 .7369 .7409 .7407 .7442 .7486 .7410

1024 8 .7308 .7343 .7371 .7395 .7457 .7365

128 10 .7432 .7447 .7480 .7436 .7471 .7448

256 10 .7356 .7344 .7380 .7420 .7453 .7373

512 10 .7317 .7315 .7348 .7377 .7425 .7337

1024 10 .7266 .7307 .7335 .7348 .7401 .7312

128 12 .7370 .7350 .7373 .7389 .7400 .7392

256 12 .7314 .7280 .7320 .7348 .7375 .7300

512 12 .7255 .7261 .7293 .7321 .7360 .7271

1024 12 .7228 .7222 .7264 .7307 .7338 .7238

Table 2: Average fitness of best local optima reached
for each type of instance (10 instances per NK
parametrization).
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Figure 2: S=
i pivoting rules results with respect to

landscape ruggedness, for a fixed size N=1024. Sim-
ilar overall tendency is observed for other values of
N (see table 1).

worst improvement should be observed also in an iterated lo-
cal search context (considering a fixed number of local search
realized).

In the graphic of figure 3, we report the average fitness
values obtained by the 12 studied climbers versions (for
N = 1024). Methods are ordered according to the aver-
age rank of solutions selected by the pivoting rule. For
each ruggedness level (K), we observe a monotonic or nearly
monotonic evolution of the average final fitnesses. This con-
firms that the local search efficiency is directly correlated
(negatively or positively) with the fitness improvement real-
ized at each step of the search. The table included in figure
3 reports numerical results for K = 12. This allows to vi-
sualize the monotonic evolution of results obtained by the
generic ranking-based pivoting rules (S=, S>, and S6).

The different results obtained and reported in tables 1
and 2, and in figure 3, show a clear interest in performing
worst improvement hill-climbings while considering rugged
landscapes. However, achieving a worst improvement search
naturally requires most solution evaluations. When compar-
ing worst improvement against best improvement, attaining
a local optimum requires more moves: each best improve-
ment step significantly increases the fitness value while worst
improvement focus on minimizing the fitness benefit at each
step of the search. First improvement naturally allows to
avoid the systematic generation of the entire neighborhood,
which drastically reduces the number of evaluations needed
to reach the local optima. In the next section, we focus on
the number of evaluations, and propose ways to keep ad-
vantages of worst improvement with a reduced number of
solution evaluations.

4. APPROXIMATING WORST IMPROVE-

MENT
First results emphasizes that for climbing efficiently rugged

landscapes, the search should focus on selecting the improv-
ing neighbors which achieve lower fitness values. However,
such a strategy is time-consuming for two reasons. First, in



Strategy b q1 m q3 w
S= .7064 .7089 .7125 .7163 .7209
S> .7064 .7072 .7083 .7094 .7107
S6 .7107 .7133 .7158 .7185 .7209
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Figure 3: Performance of 12 ranking-based pivot-
ing rules on 7 sets of NK-landscapes grouped by
ruggedness (k=1 to 12, N=1024 only). Strategies
are sorted according to the average ranking values
avg rank of selected neighbor−1

number of improving neighbors−1
(from S=

B to S=
W : 0, 1/8, 1/4,

1/4, 3/8, 1/2, 1/2, 5/8, 3/4, 3/4, 7/8, 1). Table (on top):
numerical values for K=12.

minimizing the improvement realized at each step, we tend
to greatly increase the number of steps needed to reach a
local optimum. Second, as for best improvement, the whole
neighborhood has to be generated for ensuring the selection
of the worst neighbor — unless an incremental neighborhood
evaluation is feasible.
Here, we propose to approximate the complete worst im-

provement strategy by generating the neighborhood par-
tially. Such a mechanism is commonly used for approximat-
ing best improvement on large neighborhoods [8]. We pro-
pose here to select the worst improving neighbor of a solution
within a subset of its neigborhood. More precisely, we intro-
duce the partial worst improvement (denoted asWκ), which
consists in stopping the neighborhood generation when κ
improving neighbors are found (unless the whole neighbor-
hood has been evaluated). At each step of the search, Wκ

selects the configuration with the lowest fitness among the
(at most) κ improving neighbors. As a consequence, the
parameter κ directly affects the number of solution evalua-
tions needed to perform a hill-climbing step. Note thatW1 is
first improvement, while WN corresponds to the (complete)
worst improvement.
In the experiments, several partial worst improvement ver-

sions have been tested: W2, W4, W8, W16, and alsoW1 and
WN for comparison. Experimental process consists then in
the comparison of 6 hill-climbing versions which are compet-
ing on the set of 280 NK-landscapes used in the previous sec-
tion. The experimental protocol remains also unchanged in
terms of starting points, number of executions, and stopping
criterion. Let us precise that neighbors are always generated
in a random order. Table 3 reports results on rugged in-
stances only (K > 4), where worst improvement dominates

N K
Best First Partial Worst Worst

- W1 W2 W4 W8 W16 WN

128 4
.7216 .7207 .7224 .7237 .7234 .7243 .7250

5k 1k 2k 4k 8k 16k 31k

256 4
.7211 .7218 .7233 .7254 .7257 .7262 .7274

19k 2k 5k 10k 21k 41k 136k

512 4
.7228 .7232 .7248 .7262 .7278 .7281 .7285

76k 5k 11k 23k 49k 97k 568k

1024 4
.7232 .7238 .7253 .7270 .7286 .7291 .7298

302k 12k 25k 54k 112k 223k 2336k

128 6
.7170 .7187 .7214 .7228 .7242 .7240 .7251

4k 1k 2k 5k 10k 21k 46k

256 6
.7207 .7234 .7264 .7285 .7301 .7309 .7313

15k 2k 5k 12k 26k 56k 221k

512 6
.7214 .7239 .7272 .7298 .7315 .7328 .7338

63k 5k 12k 28k 63k 135k 979k

1024 6
.7223 .7250 .7280 .7310 .7330 .7343 .7353

251k 13k 29k 65k 145k 311k 4151k

128 8
.7124 .7136 .7168 .7194 .7197 .7192 .7199

3k 1k 2k 5k 11k 24k 56k

256 8
.7147 .7179 .7218 .7243 .7259 .7267 .7267

13k 2k 5k 13k 30k 66k 284k

512 8
.7163 .7200 .7242 .7266 .7285 .7297 .7306

53k 5k 13k 31k 73k 163k 1324k

1024 8
.7176 .7215 .7251 .7285 .7306 .7316 .7330

214k 13k 31k 74k 172k 382k 5837k

128 10
.7049 .7078 .7103 .7122 .7116 .7127 .7115

3k 1k 2k 5k 11k 24k 59k

256 10
.7082 .7126 .7159 .7176 .7196 .7201 .7198

11k 2k 5k 13k 32k 71k 325k

512 10
.7106 .7143 .7190 .7212 .7232 .7237 .7243

46k 5k 13k 33k 81k 183k 1593k

1024 10
.7121 .7165 .7204 .7235 .7255 .7265 .7270

187k 14k 33k 80k 189k 439k 7325k

128 12
.6970 .7009 .7021 .7035 .7037 .7028 .7033

2k 1k 2k 5k 11k 24k 59k

256 12
.7015 .7053 .7089 .7105 .7124 .7122 .7129

10k 2k 5k 13k 33k 74k 346k

512 12
.7045 .7082 .7127 .7151 .7168 .7179 .7179

41k 5k 13k 34k 85k 199k 1816k

1024 12
.7064 .7107 .7150 .7178 .7197 .7206 .7210

166k 14k 34k 84k 206k 487k 8544k

Table 3: Comparison of first improvement, worst im-
provement, and partial worst improvement pivoting
rules (average fitness of local optima reached from
1,000 hill-climbings distributed on 10 instances).

other strategies presented in the previous section. Average
results and statistical significance are provided as described
in section 3.2. We also report, for each instance, the aver-
age number of solution evaluations needed to reach a local
optima (in thousands).

Let us recall that W1 and WN were respectively denoted
as S=

w and S>
w in table 1, then similar results can be retrieved

for these methods in both tables, ie. worst improvement out-
performs first improvement when K > 4. Globally, accord-
ing to figure 4, which graphically summarizes results of table
3, WN ≻ W16 ≻ W8 ≻ W4 ≻ W2 ≻ W1, considering that
A ≻ B denotes that hill-climbing algorithm A outperforms
algorithm B in average on a particular set of instances. This
confirms the overall tendency observed in the previous sec-
tion, which states that when first improvement outperforms
best improvement, the climbing efficiency is inversely pro-
portional to the quality of the selected improving neighbors.
Nevertheless, on most instances, a relatively low value of κ
(regarding to N) is sufficient to obtain a partial worst im-
provement whose results are not statistically outperformed
by the complete worst improvement.



.71

.72

.73

W1 W2 W4 W8 W16 · · · WN

K=6

K=8

K=4

K=10

K=12

Figure 4: Average results of partial worst improve-
ment strategies (Wκ, with κ ∈ {1, 2, 4, 8, 16, 1024}) on
rugged N = 1024 instances (K ∈ {4, 6, 8, 10, 12}).
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Figure 5: Average convergence of best, worst,
and 4 partial worst improvements on a 1024 6 NK-
landscape (number of evaluations in horizontal axis,
average fitness in vertical axis).
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Figure 6: Average convergence of best, worst, and
4 partial worst improvements (focus on the first
400,000 evaluations).

The use of such technique is particularly interesting since
it clearly requires less solution evaluations than worst impro-
vement. In most cases, with an accurate κ value, a partial
worst improvement can yield statistically comparable local
optima while requiring significantly less solution evaluations
than a complete worst improvement. Setting κ consists in
determining the best compromise between hill-climbing effi-
ciency and computational costs. Note that despite best and
(complete) worst improvement both need to evaluate the
whole neighborhood at each step of the search, the num-
ber of solution evaluations required by worst improvement
is significantly greater than by best improvement since the
number of (small) steps necessarily increases. The computa-
tional difference is especially observed during the first part
of the search, when improving neighbors are numerous.

In figure 5, we report the average fitness evolution with
respect to the number of solutions evaluated on a 1024 6
instance. This figure emphasizes that the computation cost
of worst improvement is really high when compared to the
other strategies. It is interesting to notice that although
the convergence speed of worst improvement is low, it tends
to increase during the search1. A similar evolution was ob-
served for all instances.

Figure 6 reports the results outputted in figure 5 with a
focus on the first 400,000 evaluations which suffice to ter-
minate best and partial worst improvements. This figure
allows us to visualize, on non-smooth NK-landscapes, the
clear superiority of W1 (first improvement), W2, W4, W8,
and W16 against best improvement. Moreover, the tradeoff
between convergence speed and quality of obtained local op-
tima is easy to observe. Increasing κ allows to reach better
local optima but with higher computation costs. In par-
ticular, setting κ to 2 suffices to improve results obtained
by first improvement (κ = 1) without increasing drastically
the number of solution evaluations. When κ = 16, the ob-
served convergence speed is similar to best improvement,
but searches are trapped later in local optima.

5. CONCLUSION
Climbers are often considered as basic components of ad-

vanced search methods. However, influence of their concep-
tion choices are rarely discussed through advanced studies.
In particular, most studies only focus on best and/or first im-
provement strategies. In this paper we focused on the design
of hill-climbing pivoting rules, the aim being to reach high lo-
cal optima in various landscapes. In particular, we first eval-
uate the ability of the worst improvement strategy to reach
better configurations. Experiments show that worst impro-
vement is more efficient than both first and best improve-
ment strategies while exploring rugged NK-landscapes. Re-
sults also show that the average quality of the attained local
optima is negatively correlated with the quality of selected
neighbors: worst are the ranks of selected improving neigh-
bors, better are the average local optima attained by the
hill-climbing strategy. Results on smooth NK-landscapes
lead to the opposite conclusion.

1For each worst improvement execution, note that the con-
vergence speed increases during the whole search, and espe-
cially during the last steps. However, on figure 5, the worst
improvement convergence seems slowing down after 4.106

average solution evaluations. It can be explained by the
fact that the 100 executions reach a local optimum between
4.106 and 5.106 evaluations, but not simultaneously.



The second part of this study focused on reducing the
computational cost induced by worst improvement. To this
aim, we proposed intermediate pivoting rules between first
and worst improvement. It mainly consists in combining the
low computational cost of first improvement with the ability
of worst improvement to reach good local optima. Exper-
iments show that choosing the worst improving neighbor
among a fixed number κ of potential improving moves leads
to good tradeoffs between quickness (first improvement) and
efficiency (worst improvement). In particular, choosing an
adequate κ allows to define a partial worst improvement
climber, whose results are statistically comparable to worst
improvement ones while requiring a reduced computational
effort.
Perspectives of this work include the application of worst-

based improvement principle to classical combinatorial prob-
lems. In [1], we showed that first improvement outperforms
best improvement in many cases when applied to flow-shop,
QAP and MAXSAT problems. We can expect that worst im-
provement should outperforms both classical pivoting rules
also on these problems. Naturally, some adaptation of this
study have to be proposed in order to tackle combinatorial
landscapes containing neutrality, which is a particularity of
numerous landscapes derived from combinatorial problems.
Other perspective includes the extension of this analysis

to Iterative Local Search methods [5]. Indeed, it should be
interesting to determine if improving climbers can help to
improve local search-based metaheuristics.
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strategies on various landscapes: an empirical
comparison. In Christian Blum and Enrique Alba,
editors, GECCO, pages 479–486. ACM, 2013.

[2] Pierre Hansen and Nenad Mladenović. First vs. best
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Stützle. Iterated local search. In Fred Glover and Gary
Kochenberger, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations

Research & Management Science, pages 321–353.
Kluwer Academic Publishers, Norwell, Massachusetts,
USA, 2002.

[6] Peter Merz and Bernd Freisleben. Fitness landscapes
and memetic algorithm design. New ideas in

optimization, pages 245–260, 1999.

[7] Melanie Mitchell, Stephanie Forrest, and John H
Holland. The royal road for genetic algorithms:
Fitness landscapes and GA performance. In
Proceedings of the first european conference on

artificial life, pages 245–254. Cambridge: The MIT
Press, 1992.
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