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ABSTRACT
In this paper, we formalize a multiobjective local search
paradigm by combining set-based multiobjective optimiza-
tion and neighborhood-based search principles. Approxi-
mating the Pareto set of a multiobjective optimization prob-
lem has been recently defined as a set problem, in which the
search space is made of all feasible solution-sets. We here
introduce a general set-based local search algorithm, explic-
itly based on a set-domain search space, evaluation function,
and neighborhood relation. Different classes of set-domain
neighborhood structures are proposed, each one leading to
a different set-based local search variant. The correspond-
ing methodology generalizes and unifies a large number of
existing approaches for multiobjective optimization. Pre-
liminary experiments on multiobjective NK-landscapes with
objective correlation validates the ability of the set-based lo-
cal search principles. Moreover, our investigations shed the
light to further research on the efficient exploration of large-
size set-domain neighborhood structures.
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Algorithms
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1. INTRODUCTION
Since the early 2000s, several approaches incorporated

quality indicators within the internal principles of multiob-
jective randomized search procedures. The implicit goal is
then to identify a population of solutions that minimizes or
maximizes a given indicator value, the most popular exam-
ples being the hypervolume and the epsilon indicators [5,
8, 10, 16, 17]. More recently, approximating the Pareto set
of a multiobjective optimization problem has been formu-
lated as a set problem by Zitzler et al. [18]. The search
space is then made of solution-sets (and not single solu-
tions). This paradigm allows to better capture the dynamics
of multiobjective randomized search algorithms [14]. Follow-
ing this view, and generalizing the concept of Pareto local
optimum set [12], the paper attempts to extend the con-
cept of set-based multiobjective optimization [18] with the
aim of formalizing a general-purpose set-based local search
(SbLS) methodology. The goal of the local search process is
explicitly defined as identifying a solution-set optimizing a
given indicator value. The purpose of the current paper is
not to introduce a strictly-speaking ‘novel’ algorithm, since
existing approaches already share similar principles with
SbLS. Among others, they include SEMO [11], PLS [12],
PAES [10] or also SMS-EMOA [5]. Instead, the proposed
SbLS paradigm synthesizes, abstracts and extends a large
class of classical multiobjective approaches by formulating
or re-formulating them in terms of local search algorithms.
Moreover, it provides a unified framework for the design,
analysis and comparison of different approaches from a com-
mon terminology and classification.

As in the single-objective case, the evaluation function
and the neighborhood relation both play an important role
on the design of any local search algorithm. The behavior of
the search process and the landscape characteristics are, to
a large extent, induced by the definition of these two com-
ponents. With the aim of generalizing such approaches to
set-based multiobjective optimization, we give arguments in
favor of using a quality indicator as an evaluation function,
and we explicitly define a set-domain neighborhood relation.
As a consequence, any single-objective metaheuristic can po-
tentially be applied to identify a Pareto set approximation.
We highlight the main properties of set-domain neighbor-
hood structures, and we introduce different classes of such



Table 1: Main notations used in the paper.
Notation Meaning

solution domain
X set of feasible element-solutions in the decision/search space
x an element-solution, i.e. a feasible solution for the original problem (x ∈ X)
Z set of feasible outcome vectors in the objective space
z a feasible objective vector (z ∈ Z)
M number of objective functions
f objective function vector (f : X → Z)
N a solution-domain neighborhood relation (N : X → 2X)

set domain
Σ set of feasible solution-sets (Σ is a power set of X)
σ a solution-set (σ ∈ Σ)
I a set-domain evaluation function, i.e. a unary quality indicator (I : Σ → IR)
IH the unary hypervolume indicator
N a set-domain neighborhood relation (N : Σ → 2Σ)
C an N -compliant set-domain neighborhood class

relations, that correspond to different resolution methodolo-
gies. Afterwards, we argue that the most challenging issue
within SbLS approaches, in terms of computational com-
plexity, is related to the neighborhood exploration, due to
the very large neighborhood size. As a result, there is a
tradeoff to be found between the exploration of large-size
neighborhood structures with a higher effectiveness, and
the exploration of smaller neighborhood structures with a
smaller cost. At last, we investigate the search abilities of
a number of SbLS variants induced by different neighbor-
hood relations to produce improving solution-sets, and we
compare the performance of the algorithm with respect to
different set-domain neighborhood relations for bi-objective
instances of ρMNK-landscapes.

The paper is organized as follows. In Section 2, we in-
troduce the basics of multiobjective optimization as well as
set-based multiobjective search, and we give the template of
a general set-based local search algorithm. Different classes
of set-domain neighborhood relation are proposed in Sec-
tion 3, together with a discussion on the issue of neighbor-
hood exploration in such context. Experimental results are
given in Section 4. The last section concludes the paper and
discusses a number of open issues.

2. TOWARD SET-BASED LOCAL SEARCH
In this section, we give the main definitions for multi-

objective optimization and set-based multiobjective search,
and we formalize the high-level template of a set-based local
search algorithm. The notations are summarized in Table 1.

2.1 Multiobjective Optimization
A multiobjective optimization problem can be defined by

an objective vector function f = (f1, f2, . . . , fM ) with M >

2, and a set X of feasible solutions in the decision space.
In the combinatorial case, X is a discrete set. To avoid
confusion, we call a feasible solution x ∈ X an element-
solution. Let Z = f(X) ⊂ IRM be the set of feasible out-
come vectors in the objective space. To each element-solution
x ∈ X is assigned an objective vector z ∈ Z on the basis
of the vector function f : X → Z with z = f(x). In a
maximization context, an element-solution x′ ∈ X is dom-
inated by an element-solution x ∈ X, denoted by x′ ≺ x,
iff ∀i ∈ {1, 2, . . . ,M}, fi(x

′) 6 fi(x) and ∃j ∈ {1, 2, . . . ,M}
such that fj(x

′) < fj(x). An element-solution x⋆ ∈ X is

said to be Pareto optimal (or efficient, non-dominated), if
there does not exist any other element-solution x ∈ X such
that x⋆ ≺ x. The set of all Pareto optimal element-solutions
is called the Pareto set (or the efficient set). Its mapping in
the objective space is called the Pareto front.

In practice, different resolution approaches exist and rely
on the cooperation between the resolution process and the
decision making process. In any case, the overall goal is of-
ten to identify a set of good-quality element-solutions. One
of the most challenging issue in multiobjective optimization
is to identify a minimal complete Pareto set, i.e. a single
Pareto optimal element-solution mapping to each point of
the Pareto front. But generating such a set is usually infea-
sible, due to the complexity of the underlying problem or to
the large number of optima. Therefore, the overall goal is
often to identify a good Pareto set approximation. Evolu-
tionary multiobjective optimization (EMO) algorithms and
other population-based metaheuristics have received a grow-
ing interest for such purpose since the late eighties [7].

2.2 Set-based Multiobjective Search
Recently, finding a Pareto set approximation has been ex-

plicitly stated as a set problem. In that sense, most existing
EMO algorithms can be seen as hill-climbers performing on
sets. Zitzler et al. [18] define a set-based multiobjective op-
timization problem as a couple search space / preference
relation (in the space of solution-sets) by focusing on the
objective values of element-solutions.

2.2.1 Set-domain Search Space
The search space Σ ⊂ 2X is defined as the set of feasible

sets of element-solutions (and not single element-solutions).
It is often the case that a maximum cardinality is imposed,
such that |σ| 6 µ for all σ ∈ Σ. We denote an element σ ∈ Σ

as a solution-set. Under such notations, x ∈ X is a feasi-
ble element-solution, while σ ∈ Σ is a feasible solution-set.
Some examples for the definition of the set-domain search
space are given below [14].

• The search space of population-based approaches can
be defined as Σ=µ = {σ ∈ 2X : |σ| = µ}, where µ is
the population size.

• The search space of approaches using a bounded archive
can be defined as Σ6µ = {σ ∈ 2X : |σ| 6 µ}, where
µ is the maximum archive size.



• The search space of a number of existing dominance-
based approaches, where solution-sets of mutually non-
dominated element-solutions only are considered, can
be defined as Σ6≺ = {σ ∈ 2X : ∀x, x′ ∈ σ, x 6≺ x′}.

• A search space with the two previous restrictive condi-
tions can also be considered as Σ6≺

6µ = {σ ∈ 2X : |σ| 6

µ and ∀x, x′ ∈ σ, x 6≺ x′}.

• A search space without any restriction is Σ⋆ = 2X .

2.2.2 Set-domain Evaluation Function
Different interpretations of what is a good Pareto set ap-

proximation are possible, and the definition of approxima-
tion quality strongly depends on the decision maker pref-
erences. Two classes of relations can be defined over Σ to
compare solution-sets: dominance relations, like the Pareto
dominance relation extended to solution-sets, or quality indi-
cators; see e.g. [19]. With the aim of fitting state-of-the-art
single-objective local search algorithms to the set of feasible
solution-sets, we propose to follow the second proposal as an
evaluation function. Indeed, the mobility and the heuristic
guidance of the search process requires the definition of a
unary evaluation function, assigning a scalar value to any
feasible solution-set. As in single-objective optimization, an
evaluation function enables to compare solution-sets, but
with much more precision than a dominance relation. In-
deed, not only it gives a total order among solution-sets,
but it also quantifies the absolute quality of solution-sets as
well as the differences between any two solution-sets. A set-
based dominance relation is generally not satisfying enough
to measure interesting problem-related features. Quality in-
dicators, as defined in [19], allow to overcome such a limita-
tion by introducing a complete order between solution-sets,
and by quantifying their respective quality with respect to
the indicator being used. We here assume that the set pref-
erence relation is explicitly given in terms of a unary quality
indicator I : Σ→ IR.

Many unary quality indicators exist in the literature [19].
One of them is the hypervolume indicator IH , that is to be
maximized. It gives the portion of the objective space en-
closed by a solution-set σ ∈ Σ and an appropriately chosen
reference point z⋆ ∈ IRM , such that z⋆ is dominated by all
feasible element-solutions. The hypervolume indicator is one
of the most commonly used indicator, due to several theo-
retical properties [3, 8, 16]. In particular, it is dominance
preserving, i.e. ∀σ, σ′ ∈ Σ such that σ′ is dominated by σ:
IH(σ) > IH(σ′). Let us also notice that a minimal solution-
set maximizing the IH -value is a subset of the Pareto set.
Many recent randomized multiobjective search algorithms
are based on the hypervolume indicator, but most of them
operates on the solution-domain [5, 16, 17], with the ex-
ception of [4] where a hypervolume-based evolutionary algo-
rithm working at the set level is proposed. Apart from the
hypervolume indicator, most existing quality indicators are
binary indicators and are not dominance preserving [19]. For
instance, distance-based indicators are typically not domi-
nance preserving, even if the convergence to the Pareto front
can be achieved in some particular cases [13].

2.2.3 Goal of the Search Process
Usual approaches from multiobjective optimization aim

at finding a set of compromise element-solutions within the
search space of feasible element-solutions. Here, the search

space is made of all possible sets of element-solutions. Con-
sequently, the overall goal is to find an optimal solution-set,
considering the search space of solution-sets and a quality
indicator to evaluate them. The goal of the search process is
then to find (or approximate) a solution-set σ ∈ Σ that max-
imizes the indicator value. A set-based optimization problem
can be formalized as follows.

argmax
σ∈Σ

I(σ) (1)

Therefore, I can be seen as a function that assigns, to each
solution-set, a scalar value reflecting its quality according
to the goal of the search process formulated in Problem (1),
i.e. an evaluation function defined over solution-sets. Notice
that this issue is related to the problem of finding a subset
of µ element-solutions maximizing I, i.e. the optimal µ-
distributions of element-solutions with respect to I [3].

2.2.4 Limitations
In their proposal on set-based multiobjective optimiza-

tion, Zitzler et al. [18] give the definition of a set-based
optimization problem, but not of a set-based local search
algorithm. In particular, there is no explicit mention to any
set-domain fitness or evaluation function, and there is no
definition of any set-domain neighborhood operator, then
restricting the application of their approach to some ‘ran-
dom set mutation’, or ‘heuristic set mutation’, and where
‘the neighborhood is in principle the entire search space’ [18].
However, defining a neighborhood structure on solution-sets
allows to distinguish between the properties of the search
space, and the heuristics used to explore a solution-set neigh-
borhood. Moreover, the definition of a set-domain neighbor-
hood relation strongly impacts the dynamics of set-based
multiobjective search algorithms.

2.3 Set-based Local Search
In single-objective optimization, a local search algorithm

is based on the definition of a triplet (X,N , h). First, X
is the set of admissible element-solutions (i.e. the search
space). Second, N : X → 2X is a neighborhood relation, i.e.
a function that assigns a set of element-solutions N (x) ∈ 2X

to any element-solution x ∈ X. The set N (x) is called the
neighborhood of x, and an element-solution x′ ∈ N (x) is
called a neighbor of x. At last, h : X −→ IR is an evaluation
function.

Like in single-objective optimization, a multiobjective set-
based local search algorithm requires a proper definition of
(i) a search space, (ii) a neighborhood structure, and (iii) an
evaluation function. In this work, following [14], we pro-
pose to define a multiobjective set-based local search as a
triplet (Σ, N, I) such that: (i) Σ ⊂ 2X is a set of feasible
solution-sets, (ii) N : Σ→ 2Σ is a neighborhood relation be-
tween solution-sets, and (iii) I : Σ → IR is a unary quality
indicator, i.e. an evaluation function measuring the qual-
ity of solution-sets. Σ, N, and I still need to be defined for
the problem at hand. But this is also the case in single-
objective optimization, except that they are here defined on
the set-domain.

Algorithm 1 gives the pseudo-code of a general class of
set-based local search (SbLS) approaches. If the selection
strategy is based on a best-improving solution-set, and if
a better neighboring solution-set is always accepted, the
SbLS algorithm generalizes the hill-climbing algorithm for
set-based multiobjective optimization. In such a case, it is



Algorithm 1 SbLS

Input: σ ∈ Σ

evaluate σ with respect to I

repeat

select σ′ such that σ′ ∈ N(σ)
evaluate σ′ with respect to I

if accept(σ,σ′) then
σ ← σ′

until stop(σ)
return best-found σ

easy to show that the SbLS algorithm terminates, and that
the output of the algorithm consists of a set-domain local
optimum.

Definition 1. A solution-set σ ∈ Σ is said to be a set-

domain local optimum with respect to a set-domain neigh-
borhood relation N and a set-domain evaluation function I iff
∀σ′ ∈ N(σ), I(σ′) 6 I(σ).

Clearly, extensions of the SbLS framework can be designed
for advanced local search principles, like tabu search, sim-
ulated annealing or iterated local search. In the single-
objective case, such advanced mechanisms aim at escaping
from local optima, which generally hinder the performance
of hill-climbing algorithms. However, it is not obvious that
set-based multiobjective optimization problems share simi-
lar inhibiting characteristics, even if local fronts are a known
issue in NSGA-II [7].

3. SET-DOMAIN NEIGHBORHOOD
In this section, we discuss different ideas for the definition

of a neighborhood relation between solution-sets N : Σ→ 2Σ.
For the sake of better understanding, we restrict our analy-
sis by defining set-domain neighborhood relations based on
a solution-domain neighborhood operator. First, we pro-
pose a number of set-domain neighborhood classes. Then,
we highlight the challenging issue of neighborhood selection
and exploration in such context. At last, we strengthen the
similarities of state-of-the-art algorithms within the SbLS
approach.

3.1 Neighborhood Classes
First, let us give the definition of an N -compliant set-

domain neighborhood relation N : Σ → 2Σ, which is based
on a solution-domain neighborhood relation N : X → 2X .

Definition 2. A set-domain neighborhood relation N is
compliant with a solution-domain neighborhood relation N
(N -compliant for short) iff:

∀σ ∈ Σ, ∀σ′ ∈ N(σ),∀x′ ∈ (σ′\σ),∃x ∈ σ such that x′ ∈ N (x)

Let us consider an arbitrary solution-set σ ∈ Σ and an ar-
bitrary neighboring solution-set σ′ ∈ N(σ). Any element-
solution x′ ∈ σ′ belongs either to the original solution-set σ
or to the neighborhood N (x) of an element-solution x ∈ σ.
Note that this relation is not invertible in the general case,
since it is not required that all element-solutions from σ

are connected, with respect to N , with an element-solution
from σ′. In particular, the empty solution-set {} may be
a neighbor of every solution-set for some definitions of the
set-domain search space. Now, let us define the following
N -compliant set-domain general neighborhood relations.

1. σ′ ∈ N(1,1)(σ) ⇒ |σ′ \ σ| 6 1 and ∀x′ ∈ σ′ \ σ,∃x ∈
σ, x′ ∈ N (x).

2. σ′ ∈ N(1,⋆)(σ)⇒ ∃x ∈ σ, ∀x′ ∈ σ′ \ σ, x′ ∈ N (x).

3. σ′ ∈ N(⋆,1)(σ) ⇒ ∃σ0 ⊂ σ, ∃φ : σ0 → σ′ \ σ with ∀x′ ∈
σ′ \ σ, ∃! x ∈ σ0 such that φ(x) = x′ and x′ ∈ N (x).

4. σ′ ∈ N(⋆,⋆)(σ) ⇒ ∀x′ ∈ σ′ \ σ,∃x ∈ σ such that x′ ∈
N (x).

These four generic set-domain neighborhood relations de-
scribe the main ways of exploring a set-domain search space.
Interestingly, for any solution-set σ ∈ Σ:

N
(1,1)(σ) ⊂ (N(1,⋆)(σ) ∪ N

(⋆,1)(σ)) ⊂ N
(⋆,⋆)(σ)

By extension, we define the concept of set-domain neighbor-
hood class as follows.

Definition 3. A neighborhood relation N belongs to the
set-domain neighborhood class C(ξ1, ξ2) with ξi ∈ {1, ⋆} iff

∀σ ∈ Σ, ∀σ′ ∈ N(σ), σ′ ∈ N(ξ1,ξ2)(σ).

In other words, a set-domain relation N belonging to the
C(ξ1, ξ2) class implies that, for any solution-set σ ∈ Σ, N(σ) ⊂

N(ξ1,ξ2)(σ). Within set-domain neighborhood relations that
belong to the C(1, 1) class, at most one element-solution can
be added. Neighborhood relations from C(1, ⋆) allow to add
multiple element-solutions belonging to the neighborhood
of the same element-solution. The C(⋆, 1) class allows to
add neighboring element-solutions from multiple element-
solutions, but each neighboring element-solution belongs to
the neighborhood of distinct element-solutions. At last, the
neighborhood relation N(⋆,⋆), from the C(⋆, ⋆) class, corre-
sponds to the unrestricted definition of an N -compliant set-
domain neighborhood relation.

Let us notice that, given that solution-sets can be seen
as populations of element-solutions, the previous definitions
can be extended to population-based operators like recombi-
nation, by considering any n-ary operator On,p : Σn → 2Σ

p

.

3.2 Neighborhood Selection
At each iteration of the SbLS algorithm, the problem of

finding the best neighbor of a solution-set σ ∈ Σ can be
formalized as follows.

arg max
σ′∈N(σ)

I(σ′) (2)

The goal is to find a solution-set (generally with a fixed
or maximum size µ) that achieves the best indicator value
among all possible neighboring solution-sets. We denote
this problem as the set-based neighborhood selection (SbNS)
problem. It is obvious to see that the neighborhood struc-
ture of N(1,⋆), N(⋆,1), and N(⋆,⋆) is too large to be enumerated
exhaustively. In particular, considering the bounded set-
domain search space Σ6µ, the size of these neighborhood
relations are exponential in the solution-domain neighbor-
hood size and the maximal solution-set size µ. Moreover,
since the N(1,1) neighborhood of a solution-set σ contains all
its own subsets, even N(1,1) is exponential in µ. The exhaus-
tive neighborhood exploration is particularly unfeasible for
the Σ

⋆ set-domain search space, since feasible solution-sets
themselves can reach an exponential size. As a consequence,
there is a compromise to be found between the size and the
quality of the neighborhood relation and the computational
complexity to explore it.



Table 2: Several state-of-the-art algorithms for multiobjective optimization as instances of SbLS framework.

Σ N I

(1+1)-PAES [10] Σ
6≺
6µ

N -compliant, C(1, 1) IH (among other variants)

SEMO [11] Σ 6≺ N -compliant, C(1, 1) none (compliant with IH )
PLS [12] Σ

6≺ N -compliant, C(1, ⋆) none (compliant with IH )
SMS-EMOA [5] Σ=µ not necessarily N -compliant IH (combined with dominance-depth ranking)

3.3 Neighborhood Exploration
A first option to reduce the computational complexity is

to evaluate the fitness value of a neighboring solution-set
incrementally. In particular, the computation of the hy-
pervolume of a solution-set from scratch is known to be
#P -complete with respect to the number of objective func-
tions [6], whereas the complexity can be reduced in prac-
tice by computing the hypervolume contribution of element-
solutions, in a similar way than [5]. Still, due to the large
neighborhood size, it can remain an intractable task to enu-
merate the neighborhood exhaustively. As a consequence,
a basic best-improvement local search strategy should be
avoided for very unrestricted neighborhood relations. Then,
in such large neighborhoods, the use of specific neighborhood
exploration techniques have to be defined, as often made
in single-objective very large-scale neighborhood search [2].
Such procedures aim at identifying an improving neighbor
or the best neighbor without enumerating the whole neigh-
borhood. For instance, one can consider a random neighbor-
hood exploration as in a (1 + 1)−EA, a first-improvement
local search strategy, or a more problem-specific approach.

When dealing with the hypervolume indicator, a common
approach in EMO consists of the following hypervolume-
based greedy heuristic (hgh). Let us assume that we are
given a number of parent and offspring element-solutions
merged into a population that needs to be reduced to a
population size µ. The hgh procedure removes the worst
element-solutions with respect to the hypervolume contri-
bution one-by-one until the population size shrinks to µ

element-solutions [4, 18]. This can easily be adapted to
SbNS as follows. First, an unconstrained-size solution-set is
generated with element-solutions from the initial solution-
set, together with element-solutions from their neighbor-
hood. Then, a subset of element-solutions is selected by
applying hgh. The way neighboring element-solutions are
produced is related to the set-domain neighborhood rela-
tion, whereas the selection of the best µ element-solutions
is related to the neighborhood exploration. However, it is
obvious to see that the neighboring solution-set returned by
such a procedure is generally not optimal with respect to
the SbNS problem given in Eq. (2).

3.4 Similarities with Existing Approaches
In this section, we show how a number of state-of-the-art

algorithms conveniently fit into the SbLS paradigm proposed
in the paper. Indeed, existing approaches can be redefined
in terms of set-based local search. In Table 2, we give the
set-domain search components of the following algorithms in
terms of the SbLS model: SEMO [11], PLS [12], PAES [10]
and SMS-EMOA [5].

The set-domain search space of SEMO and PLS consists
of mutually non-dominated element-solutions only, without
any restriction on the cardinality of solution-sets. Since

there is no bounding mechanism, the goal is to improve the
solution-set in terms of Pareto dominance. Adding new non-
dominated element-solutions is always better. As a conse-
quence, even if the optimization goal is not explicitly given
in terms of a quality indicator, this is similar than optimiz-
ing any Pareto-compliant indicator, like the hypervolume.
The set-domain neighborhood relation of SEMO belongs to
C(1, 1), whereas the one of PLS belongs to C(1, ⋆). The
PAES set-domain search space is made of solution-sets with
mutually non-dominated element-solutions and a maximum
cardinality. Moreover, one of the PAES variant explicitly
aims at improving the hypervolume [10]. The set-domain
neighborhood relation of the (1+1)-PAES belongs to C(1, 1).
At last, SMS-EMOA also shares similarities with the SbLS
framework. The set-domain search space is defined within
fixed-size solution-sets, and the set-domain evaluation func-
tion is close to IH , except that a dominance-depth rank-
ing [7] is additionally applied to element-solutions. How-
ever, the set-domain neighborhood relation is not neces-
sarily N -compliant since a recombination operator can be
used. Still, it is similar to a N(1,1) set-domain neighbor-
hood relation in case of mutations only. Finally, let us
remind that many original methods can potentially be de-
signed within the flexible SbLS framework by combining ex-
isting set-domain search components in an innovative way,
or by designing original ones.

4. EXPERIMENTAL ANALYSIS
This section presents an experimental analysis of different

approaches from the proposed SbLS framework on a num-
ber of bi-objective ρMNK-landscape instances of different
structures and sizes. As this study presents a different way
of tackling multiobjective combinatorial optimization prob-
lems, we mostly focus on a proof-of-principles of the SbLS
framework by measuring the ability of SbLS algorithms to
produce improving solution-sets. We also analyze the be-
havior of different SbLS formulations rather than comparing
their absolute efficiency against state-of-the-art algorithms.

4.1 ρMNK-landscapes
The family of NK-landscapes constitutes a model for con-

structing single-objective multimodal landscapes [9]. Feasi-
ble element-solutions are binary strings of size N , i.e. the
decision space is X = {0, 1}N . N refers to the problem size
(i.e. the bit-string length), and K to the number of vari-
ables that influence a particular position from the bit-string
(i.e. the epistatic interactions). In single-objective NK-
landscapes, the objective function f : {0, 1}N → [0, 1) to be

maximized is defined as f(x) = 1
N

∑N

i=1 ci(xi, xi1 , . . . , xiK ),

where ci : {0, 1}
K+1 → [0, 1) defines the component function

associated with each variable xi, i ∈ {1, . . . , N}, and where
K < N . By increasing the number of variable interactions



Table 3: Parameter setting.
problem instances

ρ ∈ {−0.5, 0.0,+0.5}, s.t. ρ > −1/(M − 1)
N ∈ {256, 512}
K ∈ {2, 4}

problem domain

X = {0, 1}N

f analytic objective functions
N 1-bit flip neighborhood

set domain
Σ = Σ6µ, with µ = 100
I = IH , with zref = (0, 0)

N ∈ {N̂
(1,1)
hgh

, N̂
(1,⋆)
hgh

, N̂
(⋆,1)
hgh

, N̂
(⋆,⋆)
hgh

}

K from 0 to (N−1), NK-landscapes can be gradually tuned
from smooth to rugged. In this work, we set the position
of these interactions at random. Component values are uni-
formly distributed in the range [0, 1).

Multiobjective NK-landscapes with a set of M indepen-
dent objective functions are defined in [1]. More recently,
multiobjective NK-landscapes with correlated objective func-
tions have been proposed [15]. Component values follow a
multivariate uniform law of dimension M , defined by a cor-
relation matrix. We here consider the same correlation be-
tween all pairs of objective functions, given by a correlation
coefficient ρ > −1

M−1
. The same epistasis degree Km = K is

used for all m ∈ {1, . . . ,M}. An instance generator and the
problem instances under study in this paper can be found at
the following URL: http://mocobench.sf.net/. For more
details on ρMNK-landscapes, the reader is referred to [15].

4.2 Experimental Setup
In the following, we conduct an experimental study on

the influence of the problem size (N), the non-linearity (K),
and the objective correlation (ρ) for bi-objective ρMNK-
landscapes (M = 2) on the performance the SbLS algorithm
used in conjunction with the set-domain neighborhood re-
lations under study in the paper. The parameters defining
the problem instances under investigation are given in Ta-
ble 3. One instance, generated at random, is considered per
parameter setting.

The most simple local search variant of the SbLS frame-
work given in Algorithm 1 is experimented with different set-
domain neighborhood relations. In particular, a set-based
(1 + 1)-EA is considered. We evaluate the ability of such a
simple SbLS algorithm to improve the current solution-set
along the iterations. The set-domain search space is Σ6µ.
It is made of solution-sets with mutually non-dominated
element-solutions only, and a variable size with at most µ

element-solutions. The maximum solution-set size is set to
µ = 100. Initial solution-sets are generated at random, each
element-solution from the solution-set being a random bi-
nary string, of size N . The set-domain evaluation function is
the hypervolume IH . The reference point used for the hyper-
volume calculation is set to the origin (0, 0). The solution-
domain neighborhood structure N is the 1-bit flip neighbor-
hood. In addition, a comparison with a conventional EMO
algorithm, namely NSGA-II [7], is also provided in order to
facilitate the result analysis. Let us notice that both SbLS
and NSGA-II share equivalent parameter settings, µ = 100
being an appropriate population size for NSGA-II [7].

The process of the SbLS algorithm under consideration

works as follows. At each iteration, a random neighboring
solution-set is evaluated, and is accepted only if its hyper-
volume set-domain fitness value is strictly improving over
the current solution-set. Each neighborhood operator adds
a number of neighboring element-solutions (drawing with re-
placement), and then reduces the solution-set to µ element-
solutions following to the hypervolume-based greedy heuris-
tic (hgh) described in Section 3.3. Notice that, whenever
there exists a dominated element-solution, it is removed
from the solution-set. We consider four set-domain neigh-
borhood relations, each one being derived from a set-domain
neighborhood class defined in Section 3.1. Thus, ∀σ ∈ Σ:

1. N̂
(1,1)
hgh (σ) = {hgh(σ ∪ {x′}) : x ∈ σ, x′ ∈ N (x)}.

2. N̂
(1,⋆)
hgh (σ) = {hgh(σ ∪N (x)) : x ∈ σ}.

3. N̂
(⋆,1)
hgh (σ) = {hgh(σ ∪x∈σ {x

′
x}) : ∀x ∈ σ, x′

x ∈ N (x)}.

4. N̂
(⋆,⋆)
hgh (σ) = {hgh(σ ∪x∈σ N (x))}.

Let us notice that the set-domain neighborhood relation

N̂
(ξ1,ξ2)
hgh belongs to the C(ξ1, ξ2) class. Each set-domain neigh-

borhood relation tries to add 1 or N neighboring element-
solution(s) from 1 or µ element-solution(s) with respect to
the set-domain neighborhood relation under consideration.
As discussed in Section 3.4, those different SbLS variants
share similar principles with existing state-of-the-art algo-
rithms like SEMO, PAES, PLS and SMS-EMOA. The CPU
time limit used as a stopping condition is set to 104 seconds,
a voluntarily-high value in order to ensure the convergence
of all the algorithms to a set-domain local optimum.

4.3 Computational Results
Table 4 reports the average hypervolume value obtained

for each couple (ρMNK-landscape, neighborhood class) over
a set of 30 independent simulation runs. We use 30 different
random seeds, each one leading all the algorithms to start
with the same initial solution-set. For a given instance, the
values in bold correspond to algorithms which are not statis-
tically outperformed by any other approach with respect to
a Mann-Whitney signed rank statistical test with a p-value
of 0.05. Let us remind that both the solution-domain neigh-
borhood relation and the overall method remain unchanged,
whereas only the set-domain neighborhood relations differ.

First of all, the hypervolume values reached by the four
neighborhood classes are quite close with each other. Glob-
ally, one see that the results obtained by SbLS, whatever
the neighborhood structure, validate the accuracy of the ap-
proach. Indeed, when compared against NSGA-II, there ex-
ists a significant superiority of SbLS for conflicting and inde-
pendent objective functions. On the contrary, when the ob-
jective functions are positively correlated (ρ = 0.5), NSGA-
II shows comparable or superior results. However, let us no-
tice that such a correlation degree is less representative of the
multiobjective nature of the optimization problem. Indeed,
the higher the objective correlation, the closer the multiob-
jective optimization problem to a single-objective one. As
a consequence, in such a case, Pareto-based approaches are
not necessarily appropriate from a decision making point of
view.

Considering the four set-domain neighborhood classes, one

can observe that SbLS-N̂
(⋆,⋆)
hgh is never statistically outper-

formed by any other approach. This result validates the in-
terest of defining a wide set-domain neighborhood relation.



Table 4: Average IH-value obtained by the different variants of the SbLS algorithm and NSGA-II.

SbLS-N̂
(1,1)
hgh

SbLS-N̂
(1,⋆)
hgh

SbLS-N̂
(⋆,1)
hgh

SbLS-N̂
(⋆,⋆)
hgh

NSGA-II

ρ = −0.5 N = 256 K = 2 0.5068 0.5019 0.5074 0.5074 0.4438
K = 4 0.5189 0.5124 0.5203 0.5231 0.4806

N = 512 K = 2 0.4915 0.4880 0.4897 0.4905 0.4012
K = 4 0.5186 0.5106 0.5180 0.5187 0.4440

ρ = 0.0 N = 256 K = 2 0.5161 0.5129 0.5169 0.5193 0.5032
K = 4 0.5453 0.5395 0.5444 0.5433 0.5373

N = 512 K = 2 0.5155 0.5095 0.5156 0.5159 0.4791
K = 4 0.5417 0.5396 0.5441 0.5430 0.5201

ρ = +0.5 N = 256 K = 2 0.5264 0.5231 0.5276 0.5296 0.5333

K = 4 0.5518 0.5494 0.5539 0.5535 0.5593

N = 512 K = 2 0.5213 0.5161 0.5208 0.5228 0.5184
K = 4 0.5526 0.5444 0.5528 0.5538 0.5589

The N̂
(1,⋆)
hgh neighborhood seems to be the weakest one here:

it is always statistically outperformed by at least one other
method for all the instances experimented. We attribute this
to the neighborhood selection operator, the same for the four

neighborhood classes, which is penalizing SbLS-N̂
(1,⋆)
hgh .

Another point of interest deals with the convergence rate
of the SbLS approaches. Figure 1 shows the evolution of
the average hypervolume value over the 30 runs throughout
the search process. Since the shape of the convergence rates
mainly depends on ρ, only the plots for N = 256 and K = 2
are pictured. For a better view of the earliest stages of the
search process, the running time is displayed in a logarith-

mic scale. Unsurprisingly, the iterations of SbLS-N̂
(⋆,⋆)
hgh are

time-consuming. Its global convergence is then the slowest

one. On the contrary, using the N̂
(⋆,1)
hgh neighborhood allows

to reach good-quality solution-sets rapidly, and clearly con-
verges faster, but to a lower hypervolume value.

5. CONCLUSIONS
This paper extends the idea of set-based multiobjective

optimization [18] by introducing a general set-based local
search (SbLS) methodology. This view is motivated by the
fact that the expected output of a multiobjective approach
consists of a set of (approximate) non-dominated element-
solutions. The flexible SbLS framework is based on a set-
domain search space that consists of potential solution-sets
rather than single element-solutions. The set-domain evalu-
ation function consists of a unary quality indicator, like the
hypervolume. In addition, we defined a number of neigh-
borhood relations between solution-sets. The corresponding
SbLS variants formalize and share similarities with state-of-
the-art multiobjective approaches, but also enables the de-
sign of original methodologies. Our preliminary experiments
on bi-objective ρMNK-landscapes reveal the ability of basic
SbLS approaches to produce improving solution-sets, and
to provide competitive results in terms of problem solving.
Different definitions of a set-domain neighborhood relation
leads to different search process dynamics. The set-domain
neighborhood relation to be used needs to be carefully se-
lected with respect to the computational resources available.

As a future work, we plan to make a stronger link between
the SbLS framework and state-of-the-art algorithms. Hope-
fully, this will allow a better understanding of the search
process behavior, and of the characteristics of multiobjective
optimization problems [14]. In particular, the set-domain
neighborhood relations introduced in the paper can be ex-

tended with higher degrees of reduction or expansion over
the solution-set cardinality, and with more general solution-
domain operators like recombination. However, one of the
main computational issue within such very-large set-domain
neighborhood structures deals with their exploration, where
there is a clear need for improvement over the algorithm
efficiency. Furthermore, SbLS variants could largely be im-
proved with more advanced metaheuristic principles like tabu
search or simulated annealing. In particular, restart mecha-
nisms or iterated local search extensions would allow to ap-
preciate the benefit of each set-domain neighborhood class
with an opportunity to escape from (set-domain) local op-
tima. At last, extending the experimental analysis would
give further insights on solving different multiobjective op-
timization problem classes, specifically for problems with
more than two objective functions and against more recent
indicator-based algorithms like SMS-EMOA [5] or HypE [4].
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