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ABSTRACT
In this paper we propose a generic framework for Dynamic
Island Models, which can be used as an original approach
for the adaptive selection of operators in evolutionary al-
gorithms. Assigning a variation operator to each island, we
show that the dynamic regulation of migrations, which takes
into account the pertinence of recent migrations, distributes
the individuals on the most promising islands, i.e., the most
efficient operators, at each stage of the search. The effi-
ciency of this approach is assessed on the One-Max problem
by comparing theoretical expected results to those obtained
by our dynamic island model. Experiments show that the
model provides the expected behavior.

Keywords
Island Models, Adaptive Operator Selection, Evolutionary
Computation

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control

Methods, and SearchấLŠ Heuristic methods

General Terms
Algorithms.

1. INTRODUCTION
Evolutionary algorithms (EA) have been widely used for

tackling NP-hard problems [17, 7, 4]. Basically, an EA man-
ages a population of individuals encoding possible configu-
ration of the problem, in order to optimize a given fitness
function. These individuals evolve by means of variations
operators and selection processes. Although the efficiency
of EAs is well-established on numerous optimization prob-
lems, their performance and robustness may depend on the
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correct setting of its components. Moreover, these techni-
cal choices often lead to the design of ad hoc EAs, dedi-
cated to specific problem instances, and become out of the
scope of non-specialist users. Therefore, parameter setting
in EA has deserved much attention during recent years [15]
in order to provide more generic and adaptive algorithms.
Parameter setting may indeed be considered from two com-
plementary points of view: the design of a suitable EA for
a given problem and the improvement of the behavior of
an EA to reach an acceptable performance. While the de-
sign will focus on the structural parameters of the EA such
as its variation operators, its behavioral parameters, such
as the application probabilities of these operators, will be
adjusted to improve its solving efficiency. This efficiency
greatly depends on the management of the balance between
exploration and exploitation of the search space, which re-
lies on the correct combination of suitable components with
suitable behavioral parameters values. As suggested in [8],
we distinguish parameter tuning (off-line setting before solv-
ing) from parameter control (on-line setting during solving).
For instance, one may use automated tuning algorithms [18,
13] in order to adjust parameters by running the EA on test
instances, before using it for solving new problems. In this
paper we focus on the on-line control of the variation oper-
ators of an EA [8]. Adaptive operator selection (AOS) [10]
consists in providing an adaptive mechanism for selecting
the suitable variation operator to apply on the individual,
at each iteration of the EA process. Recent approaches [11,
16] have proposed such adaptive mechanisms for general EA
with possibly many variation operators, whose behavior may
be unknown. However, as suggested by the No Free Lunch
theorems [25], it is difficult to anticipate the efficiency of an
algorithm on any instances of a wide class of problems with-
out preliminary experiment or learning process. While most
of the works on AOS (e.g., [22, 11, 16]) provide adaptive
control mechanisms for an EA with multiple operators, an-
other possible approach is to consider several single-operator
EAs and to address the global management of this set of al-
gorithms by sharing and exchanging information through
individuals. The contribution of this paper is thus to use Is-
lands Models in order to achieve such an adaptive operators
management for EAs.

Island Models [24] consider simultaneously a set of popula-
tions, clustered on islands, which are evolving independently
during some search steps and interacting periodically. This
model, which constitutes an additional abstraction level in



comparison to classical EAs, provides an improved manage-
ment of the diversity and simplify the parallel implementa-
tion of EAs.

Most of the time, island models are used in a static way,
where individuals are migrating from populations to popula-
tions following a fixed predefined scheme [19], or are specif-
ically chosen in order to reinforce the populations charac-
teristics [20, 12, 1]. Nevertheless, it is possible to dynam-
ically regulate migrations between islands by considering a
transition matrix [14]. Such a model is used to increase or
decrease the migration probabilities during the evolutionary
process according to the impact of previous analogue mi-
grations. The purpose is to control migration in order to
dynamically regulate the diversity of the individuals in the
populations, according to the search progress, and, conse-
quently, to control the population sizes. In classical uniform
island models, each island uses the same EA and differs only
by its individuals. Considering now a different algorithm on
each island, a dynamic model allows to regulate interactions
between individuals or groups of individuals.

In this paper, we propose to generalize and extend classi-
cal island representations in order to take into account the
dynamic nature of the model, as well as a possibly asyn-
chronous solving processes. We show then that such a model
can be used to achieve an adaptive selection of the most per-
tinent operators. To this end, we assign to each island a dif-
ferent variation operator, and we let the model distribute
the individuals on the most promising islands, according
to recent background information. Moreover, the proposed
model does not require any global migration processing, and
policies are updated with feedback information shared be-
tween islands.

An appropriate and adaptive regulation of migration flows
should assign dynamically the resources to the most per-
tinent operators during the search process. In our experi-
ments, we use EAs with basic mutation operators; the objec-
tive is thus not to regulate interactions between individuals,
but to provide an adaptive control mechanism that assigns
promising individuals to the most promising islands, i.e.,
operators.

In the following, we first introduce an original generic rep-
resentation of dynamic island models. Then we describe a
specific instantiation of the model for the adaptive selec-
tion of operators in EAs and we assess the relevance of our
approach on the One-Max problem by checking that our dy-
namic model allows an operator selection that fits the theo-
retically best sequence of operators for solving this problem.

2. GENERIC DYNAMIC ISLAND MODEL
REPRESENTATION

Since twenty years and the first distributed evolutionary
algorithms [21], island-based genetic algorithms (or island
models [24]) are more and more studied in evolutionary com-
putation. The main original problem consists in defining
the model topology and the migration policies in order to
reduce premature convergence of the population and to in-
sure a global sharing of promising individuals. Numerous
migration policies and model topologies have been proposed
(see [2, 3, 23, 5, 9, 12, 1, 19]), and it is not obvious to figure
out which topology and policies are the most suitable for a
given purpose.

Let us so consider a previously proposed island model,

which dynamically supervises the commonly-used EA pa-
rameters [1] such as population size, migration policy for
the individuals, selection policy for immigrants or the topol-
ogy of the communication between populations. A n-island
model topology can be represented by a complete labeled di-
graph (see example in Figure 1). Migration policies are given
by a transition (stochastic) matrix T of size n, where T (i, j)
represents the probability for an individual to migrate from
island i to island j (or to stay on the same island if i = j).
In order to make the model (possibly) independent to any
global processing, T is actually given by n vectors that repre-
sent the migration policies for each island V i, i ∈ {1, · · · , n},
with Σnj=1V

i
j = 1.
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Figure 1: Island Model as a Complete Digraph

In this dynamic adaptation process, one has to determine
pertinent migration probabilities at each step of the search
process, considering a classical multi-population based EA.
The dynamic regulation of the migration policies may result
in different population sizes for the different islands, which
prevent from assigning too much computational resources
to poor-quality sub-populations or islands. However, if dif-
ferent islands use different variation operators, the control
process should dynamically provide a well-balanced distri-
bution of the individuals according to these operators and
the current search state. As mentioned above, this can ob-
viously be viewed as an adaptive operator selection process,
which will be further detailed in Section 2.3.

2.1 Island processes
Figure 2 describes the mechanism that we propose for a

generic Dynamic Island Models (DIM).
The vertical reading highlights the three divided layers

defined as follows:

• upstream: the input part of the DIM with the received
feedback data and individuals followed by a learning
process;

• midstream: the evolution process (basic EA on the
island) that is applied on the sub-population given as
parameter;

• downstream: the output part of the DIM that uses
intermediate functions (analysis of the sub-population
and transition vector updating) before distributing the
data to the other islands.



Din ← recv_fb_data() Pin ← recv_individuals()

D ← learn(D, Din)
P ← Pin

P ← evolve(P)

V ← update_transition(V, D)
Pout ← migrate(P, V)
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Figure 2: Dynamic island mechanism: population
flow, feedback data flow and order of the basic steps.

The left-side of the figure shows the feedback data flow
processes while the right-side shows the individuals flow pro-
cesses.

Note that this DIM overall process is iterated on each
island into a loop. The different blocks are ordered according
to the arrows: learn, evolve, analyze and migrate. Each
block is now described in Section 2.2.

2.2 Blocks description
Din ← recv fb data(): this continuously running process
collects the feedback data from other islands.

Pin ← recv individuals(): this continuously running pro-
cess collects individuals migrating to (or staying on) the cur-
rent island.

Both recv_fb_data() and recv_individuals() functions
do not cause any break during the execution of the main loop
process since they should be processed in parallel. They fill
out their own stacks each time they receive feedback data
as well as new migrated individuals from other islands. An
equivalent process can be simulated sequentially.

D ← learn(D, Din): the current knowledge vector D (n
values representing the comparative pertinence of the last
migrations, for all islands) is updated using data received
since its last update that are recorded in Din. Note that
Din may not have a fixed size.

P ← evolve(P ): a basic EA process is applied to the sub-
population P .

Dout ← analyze(P ): according to the origin of individ-

uals, feedback information characterizing the pertinence of
last migrations are sent to corresponding islands.

V ← update transition(V , D): reward/penalty values
given by D are used to update V with the following rein-
forcement learning process:

V = (1− β)(α.V + (1− α).D) + β.N

where N is a stochastic vector (Σnj=1Nj = 1) with random
values. α represents the importance of the knowledge accu-
mulated during the last migrations (inertia or exploitation)
and β is the amount of noise, which is necessary to explore
alternative search space areas by means of individuals.

Pout ← migrate(P , V ): each individual migrates to an
island regarding to V (in this representation, the particular
case of staying on the same island is also considered as a
migration). Pout is a vector of n sets of individuals.

2.3 DIM for Adaptive Operators Selection
The generic DIM introduced in this section (2) can easily

be instantiated in order to manage classical evolutionary
algorithms like genetic, memetics or population-based local
search algorithms. As mentioned in introduction, DIM can
be used for the adaptive operator selection in an EA. This
can be achieved with a specific instantiation of the model
proposed in Figure 2. Each island represents a particular
operator and has the following specifications:

• The evolve process uses the operator assigned to this
island.

• The analyze process computes the feedback informa-
tion and sends it to each islands (including its own). In
our case, this information will be the average improve-
ment of all individuals in function of their previous
localization, during the last evolution step.

• The learn process receives feedback information from
all other islands. D is a reward vector computed us-
ing an intensification strategy: only the best island is
rewarded.

D[j] =

{
1/|B| if j ∈ B,
0 otherwise,

with B = argmax
j′

Dj′

in

where Di
in ⊆ Din are feedback values coming from

island i

3. VALIDATION: ONE-MAX PROBLEM
The One-Max problem is a simple and well-known prob-

lem, already used to assess the performance of Adaptive
Operator Selection mechanisms [11, 6]. The n-bits One-
Max problem considers n-length bit strings; starting from
0n individuals (i.e. strings made up of n zeros), the aim is
to maximize the number of ones, that is to reach the 1n bit
string. The score of a bit string x, noted |x|1, corresponds
to its number of ones.



3.1 One-Max Mutation Operators
Recent works [11, 6] use four mutation (or local search)

operators:

• bit-flip, which flips every bit with probability 1/n,

• and k-flip (with k = {1, 3, 5}), which flips exactly k
bits.

In the following and depending on the context, bit-flip and
k-flip will denote the mutation operator as well as the cor-
responding neighborhood relation (according to well-know
Hamming distance). k-flip can easily be defined by a neigh-

borhood relation Nk : {0, 1}n → 2{0,1}
n

such as x′ ∈ Nk(x)
if and only if |h(x, x′)| = k (where h is the Hamming dis-
tance). It is more difficult to describe the bit-flip operator
using a neighborhood relation, since it corresponds to a com-
plete neighborhood with a non-uniform move probability. In
Proposition 2 we will show however how one bit-flip move
can be reduced in one k-flip move with a determined prob-
ability of choosing k.

Intuitively, the 5-flip operator will be more efficient when
applied on weak individuals (containing mostly zeros), while
1-flip will improve with a higher probability individuals with
a high proportion of ones. This point is corroborated by the
following theoretical comparisons of operators.

3.2 Probability of Improvement
Proposition 1. Let x ∈ {0, 1}n and x′ ∈ Nk(x) two bit

strings of scores s = |x|1 and s′ = |x′|1. We have:

p(s′ > s) =

min(k,n−s)∑
i=max(bk/2c+1,

k−s)

Cin−sC
k−i
s

Ckn

This is the probability to improve an individual x of size n
and score s with a k-flip mutation.

Proof. Given x a bit string of length n and by definition
of the k-flip operator: {x′, |h(x, x′)| = k} = Nk(x). If x′ ∈
Nk(x) and |x′|1 > |x|1, then more zeros than ones have
been flipped in x. The number of ones in x is |x|1 = s.
The probability to flip exactly i zeros with a k-flip operator
(0 6 i 6 k) is equal to the probability of selecting i zeros

and k − i ones, that is :
Ci

n−sC
k−i
s

Ck
n

. The move is improving

if i > k− i, i.e. i > k/2, so i > bk/2c+1. Consequently, the
probability of selecting more zeros than ones is the sum of
probabilities of selecting exactly i zeros for all i > bk/2c+ 1
(improving moves) such that k − s 6 i 6 n − s (possible
moves).

Proposition 2. Considering the n-bit One-Max problem,
the bit-flip operator consists in applying the k-flip operator

with the probability Ckn
1
nk

(
1− 1

n

)n−k
.

Proof. The bit-flip operator flips each bit with the prob-
ability 1/n. Consequently, the probability of flipping ex-

actly k bits among n is Ckn
1
nk

(
1− 1

n

)n−k
(binomial distri-

bution).

Proposition 3. Let x, x′ ∈ {0, 1}n two bit strings of
scores s = |x|1 and s′ = |x′|1, such that x′ is generated
from x with the bit-flip operator. We have

p(s′ > s) =
n∑
k=1

 1

nk

(
1−

1

n

)n−k min(k,n−s)∑
i=max(bk/2c+1,

k−s)

Cin−sC
k−i
s



This is the probability to improve an individual x of size n
and score s with a bit-flip mutation.

Proof. The probability to improve an individual in flip-
ping exactly k bits is given by the proposition 1 and the
k-flip operator. Since every k-flip moves (0 6 k 6 n) are in-
dependent, the bit-flip improvement probability can be cal-
culated in adding up the probability of improvement for each
k, weighted by the probability to flip k bits with a bit-flip
move (see Proposition 2). Consequently,

p(s′ > s) =
∑n
k=1

(
Ckn

1
nk

(
1− 1

n

)n−k∑k
i=bk/2c+1

Ci
n−sC

k−i
s

Ck
n

)
=

∑n
k=1

(
1
nk

(
1− 1

n

)n−k∑k
i=bk/2c+1 C

i
n−sC

k−i
s

)
with k − s 6 i 6 n− s.
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Figure 3: Probability to improve an individual for
the 1000-bits One-Max problem using the flip oper-
ators: bit-flip, 1-flip, 3-flip and 5-flip.

3.3 Improvement Score
During the search, only improving mutations are effective

while deteriorating ones provide reverse effects. So the im-
provement score of a mutation x → x′ (x′ results from a
mutation applied on x) can be formalized by:

∆s(x, x′) = max(0, |x′|1 − |x|1)

Proposition 4. The expected value of the improvement
score of a k-flip mutation on an individual x ∈ {0, 1}n of
score s = |x|1 is equal to:

min(k,n−s)∑
i=max(bk/2c+1,

k−s)

(2i− k)
Cin−sC

k−i
s

Ckn

Proof. Let x ∈ {0, 1}n, x′ ∈ Nk(x), s = |x|1, s′ = |x′|1.
Let i the number of zeros which are flipping during the k-
flip mutation x → x′. The number of ones in x′ (s′) is
equal to the number of ones in x (s), minus the number of
ones flipped (k − i), plus the number of zeros flipped (k).
s′ = s − (k − i) + i = s − k + 2i, i.e., s′ − s = 2i − k.
If i 6 bk/2c, then s′ 6 s, and ∆s(x, x′) = 0. Otherwise,
∆s(x, x′) = 2i − k. The expected score can be deduced
using Proposition 1 and its proof.



Proposition 5. The expected value of the improvement
score of a bit-flip mutation on an individual x ∈ {0, 1}n of
score s = |x|1 is equal to:

n∑
k=1

 1

nk

(
1− 1

n

)n−k min(k,n−s)∑
i=max(bk/2c+1,

k−s)

(2i− k)Cin−sC
k−i
s


Proof. This result follows from the three previous propo-

sitions.
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Figure 4: Expected value of the improvement scores
for the 1000-bits One-Max problem.

3.4 Most Accurate Operators

Definition 1. Let x ∈ {0, 1}n an individual of score s,
M = {µ1, . . . , µl} a mutation operators set and x1, . . . , xl

l neighbors of x such that x
µk→ xk (xk results from the

mutation on x by µk). s1, . . . , sl are the respective scores
of individuals x1, . . . , xl. We define the domination rate
χ(µk,M, x) of an operator µk on M in function of x, the
probability p(∆s(x, xk) > ∆s(x, xk′), ∀k′ ∈ {1, . . . , l} \ {k}),
which is equal to:

n∑
i=1

p(∆s(x, xk) = i)
∏
k′ 6=k

i−1∑
j=0

p(∆s(x, xk′) = j)


For k-flip operators (x′, of score s′, is the transformation

of x, of score s, by k-flip), we have (see Proposition 1):

pk(∆s(x, x′) = i) =

{
Ci

n−sC
k−i
s

Ck
n

if i > 0,

1− p(s′ > s) if i = 0.

For bit-flip operator, pbit(∆s(x, x
′) = i) =

n∑
k=1

(
Ckn

1

nk

(
1− 1

n

)n−k
pk(∆s(x, x′) = i)

)

The domination rates evolution of the four considered op-
erators in function of the score of an individual is shown in
Figure 5 (with M = { 1-flip, 3-flip, 5-flip, bit-flip }).
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Figure 5: Domination rates evolution for the 1000-
bits One-Max problem.

4. EXPERIMENTAL STUDY
In this section we show that the behavior of our DIM is

very close of the expected theoretical results. Moreover, we
remark that it is not very dependent of its own parameter
tuning.

4.1 Theoretical vs Empirical Results
As described in Section 3, we start with a population of 0n

individuals. The expected behavior during the search is to
use the 5-flip operator when the population quality is weak
(at the beginning), then the 3-flip operator and finally the
1-flip operator when the population quality is sufficiently
high. In our experiments, this can be observed though the
sub-population sizes of each island with respect to the mi-
grations. The more an island attracts individuals, the more
its operator is used.

Parameters for this experiment are:

• number of islands: 4 (one for each operator)

• population size: 400

• initial probabilities of migrations: 1 to stay in the same
island

• (α,β): (0.8,0.1)

In addition, let us precise that both fitness function and
accuracy score used are the simple bit string score.

Figure 6 represents the evolution of the sub-population
size of each island (bit-flip, 1-flip, 3-flip and 5-flip), the av-
erage fitness (avg) of the overall population and the best
individual fitness (best) according to the number of iter-
ations (migrations). Due to the operators definition, the
average fitness of the population is always increasing. One
can remark that the best individual fitness is close to the av-
erage one, indicating that all individuals receive equivalent
possibilities of improvement during the search.

To compare the experimental results with the theoretical
values, we represent in Figure 7 the sub-population sizes of
each island with respect to the average fitness of the popu-
lation. The fact that these changes of sub-population sizes,
i.e. the computational effort of each operator, match the
theoretical domination rates. This shows the accuracy of
the proposed model and its ability to simulate an operator
selection mechanism.
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Figure 6: Attraction of each operator, average qual-
ity of the overall population and the quality of the
best individual with respect to the migrations.
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4.2 DIM Parameters Setting
As presented in Section 2.2, this dynamic island model

requires a few parameters: the number of individuals, the
initial distribution of the individuals on the island and tran-
sition matrix values, as well as the update matrix parameters
α and β.

4.2.1 Population Size
Our experiments show that the behavior of the DIM is

almost identical with a small or a large population (more
than 100 individuals by island). With more individuals, the
mechanism is a bit more robust and less dependent to noise.
With a small population, it is necessary to extend the num-
ber of steps, but the global number of operations is lower
and updating the transition matrix is faster. A population
size equal to 100 × number of islands seems to be a good
trade-off between running time and amount of migrations if
we want to keep a nice matching to the theoretical opera-
tor efficiency. For practical uses, since this dynamic model
is sufficiently inertial and reactive, smaller population pro-

vides equivalent results in terms of solution quality. This
point will be assessed on more problems in future works.

4.2.2 Initial Transition Matrix
Except with random values, one may initialize the transi-

tion matrix using two natural strategies: firstly, with a fully
partitioned island model (identity matrix); secondly, with a
fully connected one (same value everywhere), which allows
each individual to be processed by any combination of oper-
ators in the first steps. Both choices have been tested, with
no impact on the results; after a few migration steps, both
behaviors become identical thanks to the reactive charac-
teristics of the model (on condition that β 6= 0). Figure 8
shows the evolution of the transition probabilities to stay on
the same island with both initializations. These values co-
incide in less than 30 migrations in our experiments, which
indicate that the initialization of the transition matrix does
not change the global behavior of the DIM.

4.2.3 Matrix Update
Default used values for α and β are respectively 0.8 and

0.01. An increasing value of α slows down the search since
the information obtained by recent migrations is less taken
into account for the update. On the opposite side, decreasing
value of α minimizes the impact of the knowledge (learning
process) and overestimates the last migration effects; there-
fore, the search process may be badly driven by a migration
that provides an exceptionally good result.

The influence of β is important, but its exact setting is
not crucial for the smooth-running of the algorithm, even if
too high values of β make the search slower. We must insure
that β 6= 0, otherwise some islands may become unreachable
(transition probability equal to 0). Effects of parameters α
and β on the model are experimentally shown in figures 4.3
and 4.3.

4.3 Comparisons with Non-Dynamic Opera-
tors Selection

In Section 4.1 and Figure 7, we have shown the adaptive
behavior of DIM for operator selection. However, we have
to check that the learning process does not slow the overall
search process compared to a classical EA. In order to evalu-
ate the efficiency of DIM, we compare it with five EAs: four
of them are based on the four operators presented in Section
3.1 (1-flip, 3-flip, 5-flip and bit-flip), and the last one uni-
formly selects at each iteration one of these four operators.

Figure 11 shows, for each operator, the (best current in-
dividual) fitness evolution depending on the number of total
fitness computation (number of evaluations). This study en-
ables a comparison of global efficiency between an adaptive
search and a classical one.

Figure 11 shows that no EA with fixed operator is more
efficient than others at each step of the search. As observed
in Figure 7, the best operator selection at the begin of the
search is 5-flip, then 3-flip and finally 1-flip. Uniform selec-
tion strategy obtains average performances and never out-
performs all other EAs. DIM dominates every static local
searches, and it is only met by 1-flip when the search is
converging. These experiments show that DIM is able to
detect very quickly the best operator(s) at a given state of
the search, and that it is efficient even with no preliminary
knowledge on these operators.
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Figure 8: Evolution of the transition probability to stay in the same island with respect to the migrations.
The left figure shows an initialization with the same value for all the transition probabilities and the right
figure shows an initialization with an identity transition matrix.
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(a) (α,β)=(0.4,0.01)
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(b) (α,β)=(0.8,0.01)
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(c) (α,β)=(0.95,0.01)

Figure 9: Changing the value of α: less or more inertness makes the model more stable but does not modify
the global distribution of individuals
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(a) (α,β)=(0.8,0.01)
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(b) (α,β)=(0.8,0.2)
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Figure 10: Changing the value of β: more noise makes the distribution of individuals more uniform

5. CONCLUSION
This paper presents an original generic model for dynamic

islands model and shows that this may constitute an ef-
ficient approach for the adaptive selection of operators in
EAs. Each island is assigned to a single variation operator
EA, and the dynamic regulation of migrations distributes
the individuals on the most promising islands according to
recent background information. At each stage of the search,
the more efficient operators receive the greatest part of the
computational resources, while the model is able to auto-
adapt the attractive power of each islands. To assess the

real efficiency of the model, we used an experimental pro-
tocol, comparing a theoretically optimal selection scheme of
operators, for the One-Max problem, to empirical obtained
values. The next step is to apply this operator selection
strategy to more difficult problems and to compare it with
other adaptive operator selection methods.
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