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Abstract. To solve combinatorial optimization problems, many meta-
heuristics use first or best improvement hill-climbing as intensification
mechanism in order to find local optima. In particular, first improvement
offers a good tradeoff between computation cost and quality of reached
local optima. In this paper, we investigate a worst improvement-based
moving strategy, never considered in the literature. Such a strategy is
able to reach good local optima despite it requires a significant addi-
tional computation cost. Here, we investigate if such a pivoting rule can
be efficient when considered within metaheuristics, and especially within
iterated local searches (ILS). In our experiments, we compete an ILS
using a first improvement pivoting rule with an ILS using an approx-
imated version of worst improvement pivoting rule. Both methods are
launched with the same number of evaluation on bit-string based fitness
landscapes. Results are analyzed thanks to some landscapes’ features in
order to determine if worst improvement principle should be considered
as a moving strategy in some cases.

1 Introduction

Since the last two decades, the number of new metaheuristics in the literature is
unreasonably growing. Although the creativity of researchers can be outstand-
ing, it is not conceivable to create a new paradigm for each considered optimiza-
tion problem. Moreover, it is hard to choose the most adequate metaheuristic to
tackle a given optimization problem among the great variety of existing methods.
Indeed, many metaheuristics are proposed for a single problem without a further
analysis of their behavior. As stated by Sörensen in [10], there is a need to under-
stand metaheuristics components in order to know when and how to use them.
Nevertheless, there exists some studies which try to obtain insights about meta-
heuristics behavior, some of them using the concept of fitness landscapes. Some
previous works are particularly dedicated to hill-climbing algorithms (climbers)
and will be discussed in section 3.

At first, focusing on climbers may seem obsolete since there exists metaheuris-
tics more efficient to handle optimization problems. Yet, climbers are particularly
basic and often used as intensification mechanisms of more sophisticated meta-
heuristics. We believe there is a need to deconstruct metaheuristics in order to
obtain insights about their behavior and one way of doing this is to study some
basic components of metaheuristics, including intensification techniques.



In this work, we focus on a climbing technique based on the worst improve-
ment pivoting rule, which is a counter intuitive moving strategy since it selects
the least improving neighbor at each step of the search. Such a strategy showed
interesting results in a previous work [11], since it generally allows the attainment
of better local optima than when using first improvement. Yet, such a method
needs a higher computational budget, even if worst improvement approximation
variants offer interesting tradeoffs between quality and computation cost. Here,
we propose to investigate further the behavior of worst improvement and ap-
proximated variants. First, we provide an extended analysis of such a climber,
thanks to new experiments also combined with landscape analysis. Then, we
compete iterated local searches using first improvement and worst improvement
variants climbers, in order to determine their relative efficiency in an iterated
context. Indeed, even if first improvement is outperformed by worst improve-
ment in terms of local optima quality, its low computation cost allow to perform
more climbing processes in a fixed maximal number of evaluations.

This study is conducted on two different types of bit-string fitness land-
scapes: NK landscapes and UBQP landscapes (derived from Unconstrained Bi-
nary Quadratic Programming problem instances).

In the next section we introduce definitions of concepts and problems used in
this study. Section 3 is devoted to motivations of our work and previous results.
In section 4 we report and analyze results by the means of some combinatorial
landscape properties. Finally, in the last section we discuss our work.

2 Definitions

The concept of fitness landscape was originally introduced by Wright [12] in the
field of theoretical biology, to represent an abstract space which links individual
genotypes with their reproductive success. In particular, fitness landscapes are
useful to simulate mutational paths and to observe the effect of successive mu-
tations. Nowadays, such a concept is used in various fields to study the behavior
of complex systems. In evolutionary computation, fitness landscapes can help to
understand and thus to predict the behavior of neighborhood-based solving algo-
rithms regardless of the problem considered. Let us introduce some concepts and
definition, then we will present fitness landscape instances used in this paper.

2.1 Fitness Landscapes and related concepts

A fitness landscape is formally defined by a triplet (X , N , f) where X denotes
the set of feasible solutions also called search space, N denotes the neighborhood
function which assigns a set of neighboring solutions to each solution of the search
space and f denotes the fitness function which assigns a value to each solution.

Fitness landscapes are determined by many characteristics relative to their
topology, ruggedness, neutrality, etc. In the current work we mainly focus on
two classical features: size and ruggedness.



In the following the size of a combinatorial fitness landscape will denote its
number of solutions. The ruggedness is directly linked to the number and the
repartition of the local optima. A landscape with a few local optima and large
basins of attraction can be views as smooth whereas a landscape with many local
optima and small basins is rugged. The basin of attraction of a local optimum
[8] refers to the set of solutions from which a basic hill-climbing algorithm has
a substantial probability to reach the considered local optimum. The presence
of several local optima is directly related to the epistasis phenomenom. Epista-
sis occurs when the presence or absence of a given gene influences the fitness
variation induced by a mutation. Sign epistasis occurs when a specific mutation
improves a solution and deteriorates another one, as depicted in fig. 1. If the two
solutions where the mutation is applied are neighbors we refer to 1-sign-epistasis,
if the distance between these solutions is of k we refer to k-sign-epistasis [2]. In
an iterative improvement context, we mostly refer to sign epistasis since such
methods mostly focus on the improving and deteriorating aspect of moves.
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Fig. 1. Left-hand side : the presence of a mutation a → A affects the effect of the
mutation b→ B which becomes beneficial, there is sign-epistasis. Right-hand side: no
sign epistasis.

For most combinatorial fitness landscapes it is not conceivable to enumer-
ate all solutions, thus many landscape properties such as ruggedness cannot be
exhaustively calculated. Many indicators can be used in order to estimate land-
scape properties [7], especially ruggedness. Here, we focus on the k-ruggedness
indicator formally introduced in [2] and based upon k-sign epistasis. k-ruggedness
refers to the k-epistasis rate within a sampling of pairs of k-distant solutions.
1-ruggedness which refers to the 1-epistasis rate on several pairs of mutation
reflects local ruggedness whereas k-ruggedness (with k > 1) refers to a more
global ruggedness of the landscape.



2.2 Bit-string landscapes instances

The NK landscape model [5] is widely used to generate artificial combinatorial
landscapes with tunable size and ruggedness. NK landscapes are regularly used
to understand the behavior of evolutionary process in function of ruggedness
levels.

Properties of NK landscapes are determined by means of two parameters N
and K. N refers to the length of bit-string solutions and K ∈ {0, . . . , N − 1}
specifies the variable interdependency hence the ruggedness of the landscape.
Setting K to 0 leads to a completely smooth landscape consequently contain-
ing a single local (then global) optimum. Increasing K induces to increase the
ruggedness of generated landscapes.

The topology of an NK landscape is a N -dimensional hypercube whose ver-
tices are solutions and edges are neighborhood transitions (1-flip moves). The
fitness function fNK to be maximized is defined as follows:

f(x)NK = 1
N

N∑
i=1

Ci(xi, Πi(x))

xi is the i-th bit of the solution x. Πi is a subfunction which defines the
dependencies of bit i, with Πi(x) such that πj(i) ∈ {1, . . . , N} \ {i} and | ∪Nj=1

πj(i)| = K. Subfunction Ci : {0, 1}K+1 → [0, 1) defines the contribution value of
xi w.r.t. its set of dependencies Πi(x). NK landscapes instances are determined
by the (K+1)-uples (xi, xπ1(i), . . . , xπK(i)) and a matrix C of fitness contribution
which describes the 2N × (K + 1) possible contribution values.

The Unconstrained Binary Quadratic Programming problem (UBQP) is a
NP-hard problem [4] regularly used to reformulate a large scope of real-life prob-
lems. An instance of UBQP is composed of a matrix Q filled with N×N positive
or negative integers. A solution of UBQP is a binary vector x of size N where
xi ∈ {0, 1} corresponds to the i-th element of x. The objective function fUBQP
to be maximized is described as follows:

fUBQP (x) =
∑n
i=1

∑N
j=1 qijxixj

The considered UBQP neighborhood is defined by the N solutions being at
a Hamming distance of 1 (i.e. thanks to one-flip neighborhood operator). Thus
N -dimensional NK and UBQP landscape instances only differ by their fitness
function.

In experimental sections, a sample of 28 NK and 24 UBQP landscapes is used.
NK landscapes are randomly generated using different size and variable inter-
dependency parameter values: N ∈ {128, 256, 512, 1024},K ∈ {1, 2, 4, 6, 8, 10,
12}. For UBQP landscapes, we use a set of 24 UBQP random instances1, us-
ing different size and density parameter values: N ∈ {2048, 4096}, d ∈ {0.10,
0.25, 0.50, 0.75, 1}. The density d ∈ [0, 1] represents the expected proportion of
non-zero values in the matrix Q.

1 UBQP instances have been obtained with the instance generator provided at
http://www.personalas.ktu.lt/~ginpalu/ubqop its.html.



3 Worst improvement hill-climbing

3.1 Pivoting rule choice

A hill-climbing algorithm (climber) consists of selecting an improving neighbor
of the current solution at each step of the search. When the current solution
has no improving neighbor, a local optimum is reached and then implies the
end of the climbing process. The main interrogation when designing a climber
concerns the neighbor selection rule (pivoting rule), which directly affects the
capacity of the search algorithm to reach good local optima. This is particularly
true since the global optimum (or at least a high local optimum) can actually
be reached using a single climber from most solutions, assuming the use of a
relevant pivoting rule [3].

Several works about climbers [9, 1, 11] investigate the effects of using clas-
sical first and best improvement pivoting rules on the capacity of climbers to
reach good solutions. These studies highlight that first improvement is often the
most efficient rule to reach good local optima on sufficiently large and rugged
landscapes. Let us recall that first improvement (F) consists of selecting the
first improving neighbor encountered at each step of the search whereas best
improvement (B) selects the improving neighbor with the highest fitness value
at each step of the search. Since performing smaller steps with first improvement
often leads toward better local optima, a study considered the worst improve-
ment (W) pivoting rule [11], which consists of selecting the improving neighbor
with the lowest fitness value at each step of the search. This work showed that
W is more efficient than F and B on non-smooth NK landscapes (some results
are extracted on the left side of table 1).

Worst improvement requires a very high computational budget in terms of
number of evaluations since it evaluates the whole neighborhood at each step of
the search and generally performs more steps than first and best improvement.
To overcome this issue, intermediate rules Wk have been proposed in [11]. Wk

approximates W by selecting the solution with the lowest fitness among k im-
proving neighbors at each step of the search. This process avoids the generation
of the whole neighborhood at each step of the search and can drastically reduce
the required number of evaluation to attain a local optimum. Some results of the
aforementioned study are extracted in the right side of table 1. Wk leads toward
better solutions than first and best improvement even with k = 2 while signifi-
cantly reducing the number of evaluations during the hill-climbing process. Let
us notice that smooth NK landscapes are not considered since worst improve-
ment is not efficient on such landscapes in comparison to a best-improvement
hill-climbing

3.2 Additional experiments

In the current study we first perform additional experiments on UBQP land-
scapes (see section 2.2),following the same protocol than in [11]. For each couple
(landscape, method) we perform 100 runs starting from the same set of 100



Landscape F B W W2 W4 W8 W16

NK256,4
.7128 .7211 .7274 .7233 .7254 .7257 .7262

2k 19k 136k 5k 10k 21k 41k

NK256,8
.7179 .7147 .7267 .7218 .7243 .7259 .7267

2k 13k 284k 13k 31k 73k 66k

NK256,12
.7053 .7015 .7129 .7089 .7105 .7124 .7122

2k 10k 346k 5k 13k 33k 74k

NK1024,4
.7238 .7232 .7298 .7253 .7270 .7286 .7291

12k 302k 2336k 25k 54k 122k 223k

NK1024,8
.7215 .7176 .7330 .7251 .7285 .7306 .7316

13k 214k 5837k 31k 74k 172k 7330k

NK1024,12
.7107 .7064 .7210 .7150 .7178 .7197 .7206

14k 166k 8544k 34k 84k 206k 487k

Table 1. Extract of previous results obtained with various hill-climbing on NK land-
scapes from [11]. For each couple (landscape,climber) we report the average fitness
value of local optima as well as the average number of evaluations below.

randomly generated solutions. Results show that on UBQP landscapes (table 2,
left side), worst improvement always leads toward better local optima averages
than first and best improvement but requires a huge number of fitness evalua-
tions. Approximated versions of worst improvement are also considered (tab. 2
- rigth side) and Wk appears to be particularly efficient while drastically reduc-
ing the number of evaluations. These results are similar to those obtained on
NK landscapes and confirm the potential interest of worst improvement and its
approximed variants.

The worst improvement rule was initially described in order to obtain bet-
ter insights on what makes a climber efficient. Results showed that, despite the
high computation cost, performing small improvements drives toward high local
optima. Then, worst improvement approximations were proposed to obtain ef-
ficient pivoting rules which are not time consuming and thus potentially usable
when tackling an optimization problem.

First improvement is the fastest and most simple way to reach local optima,
which is an advantage when considering a fixed number of evaluations since it
is able to reach a maximal number of local optima compared to any other strict
hill-climbing pivoting rule. Considering more advanced pivoting rules which are
more efficient but also more time consuming have to be investigated in a iter-
ated context. Indeed, it is relevant to wonder if reaching less local optima than
with first improvement is counterbalanced by their higher quality. In particular,
we investigate if iterating Wk can be a better alternative than iterating first
improvement in some cases. Let us recall that Wk leads toward better solutions
than a climber using a first improvement pivoting rule, but it still requires at
least twice more evaluations.



Landscape F B W W2 W4 W8 W16

UBQP128,25
23398 23388 23519 23510 23511 23512 23517

1k 7k 61k 2k 5k 12k 26k

UBQP128,50
32784 32458 32913 32982 33052 33063 33006

1k 8k 110k 2k 6k 16k 38k

UBQP128,75
45435 45282 45571 45610 45600 45527 45524

1k 7k 138k 2k 7k 16k 41k

UBQP128,100
50104 49896 50475 50359 50592 50495 50608

1k 8k 176k 2k 7k 17k 47k

UBQP256,25
69183 69034 69518 69340 69503 69574 69505

2k 31k 510k 6k 16k 37k 85k

UBQP256,50
102037 101866 102121 102143 102168 102132 102180

2k 34k 885k 7k 17k 43k 106k

UBQP256,75
132076 131494 133027 132710 132791 132958 132829

3k 35k 1254k 7k 19k 48k 119k

UBQP256,100
144186 143724 144817 144597 144673 144671 144826

2k 32k 1507k 7k 19k 51k 133k

UBQP512,10
132133 131881 131954 132232 132202 132119 131902

6k 136k 1614k 15k 34k 77k 170k

UBQP512,50
284049 283560 286723 285842 286223 286696 286530

8k 140k 8144k 21k 48k 122k 311k

UBQP512,75
361205 360518 362802 361983 362528 362678 362713

8k 138k 11020k 20k 50k 130k 338k

UBQP512,100
419889 418458 421017 420398 421004 421391 421141

7k 137k 12797k 20k 53k 133k 352k

UBQP1024,10
350574 349469 351940 350826 351678 351928 352137

17k 536k 15087k 39k 93k 220k 524k

UBQP1024,50
797468 795302 800153 798871 799807 799851 799907

22k 558k 72777k 53k 140k 354k 901k

UBQP1024,75
998493 995156 1001466 999585 1000837 1001775 1001059

22k 564k 95316k 54k 141k 366k 949k

UBQP1024,100
1130314 1127151 1134202 1133432 1134057 1134332 1134953

22k 568k 114228k 63k 147k 384k 1029k

UBQP2048,10
991463 988944 994765 993698 994032 994163 994586

49k 2230k 134784k 112k 264k 604k 1473k

UBQP2048,25
1626645 1623603 1630519 1628570 1629699 1629879 1630585

55k 2276k 325672k 126k 302k 734k 1886k

UBQP2048,50
2377355 2373279 2382892 2380144 2381361 2381433 2381383

60k 2295k 584078k 139k 345k 888k 2235k

UBQP2048,100
3058752 3045996 3074422 3062042 3065725 3068646 3068596

71k 2291k 951650k 168k 420k 1104k 2905k

UBQP4096,10
2775627 2771590 2788231 2781304 2785430 2787136 2788788

147k 9333k 1179075k 312k 713k 1671k 4089k

UBQP4096,25
4552524 4545854 4568967 4558515 4562055 4567451 4568374

160k 9364k 27611448k 350k 836k 2098k 5078k

UBQP4096,50
6470526 6457298 6495855 6479307 6483570 6489013 6489455

178k 9504k 4847505k 426k 1025k 2580k 6012k

UBQP4096,100
9014549 8997240 9053431 9027282 9039464 9046036 9047765

188k 9569k 7562717k 437k 1140k 2865k 7336k

Table 2. Average fitness values (rounded to the nearest integers) of local optima
obtained from 100 runs for each couple (climber, landscape) on UBQP landscapes.
The average number of evaluations is reported below.



Let us notice that we do not consider best improvement in this study since
it requires the evaluation of the whole neighborhood at each step of the search
and is regularly less efficient than other rules on considered landscapes.

Here, we investigate the efficiency of Iterated Local Searches (ILS) [6] using F
and Wk as pivoting rules dedicated to intensification phases. The considered ILS
consists of iterating climbing processes until a maximal number of evaluations is
reached. The first climbing process starts from a randomly generated solution,
whereas the following ones start from a solution obtained by applying P random
moves from the last obtained local optimum The next section presents empirical
results of ILS that only differs with the hill-climbing pivoting rule on several
landscapes. We also analyze their behavior thanks to landscapes features.

4 Experimental analysis

4.1 Experimental protocol

This experimentation is conducted on the set of 52 binary-string based fit-
ness landscapes described in section 2.2, using different fitness functions (NK,
UBQP), sizes and ruggedness parameterization. It consists to compare the per-
formances of iterated local searches (which alternate hill-climbing and random
perturbations) which only differ by the pivoting rule used during the climbing
phases.

To obtain a fair comparison, all ILS runs are performed using different values
of parameter P on each landscape: P ∈ {5, 10, 15, 20} on NK landscapes (higher
values of P are useless here), and P ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80} on UBQP
landscapes. Compared climbers are F , W2, W4, W8, W16. These different values
of k allow various tradeoffs between quality of approximations and computation
cost of climbers Wk. Recall that F is equivalent to W1. Using k = 2 leads to
the least precise approximation of worst improvement but is sufficient to induce
a behavior quite different from first improvement F. Using k = 16 allow a very
precise approximation of worst improvement and very similar results despite a
reduced cost.

In the following we note ILSF the iterated local search which uses a first
improvement climbing rule and ILSWk

iterated local searches which use Wk. For
each triplet (landscape, method, P ) 100 runs starting from the same set of 100
randomly generated solutions are performed. The set of methods is composed of
ILSF, ILSW2 , ILSW4 , ILSW8 , ILSW16 .Each run stops after 100 million of evalu-
ation and returns the fitness value of the best solution encountered during the
search. For each triplet we record the average of the 100 resulting fitness values.
In the next section we mainly report the best average fitness values obtained
for each couple (landscape, method) as well as the value of P leading to this
average.

4.2 Results

On considered NK landscapes (tab. 3), we note that a first improvement based
ILS always lead toward better local optima averages than using a worst improve-



ment approximation Wk for climbing processes. The better quality in average
of local optima obtained through climbers using Wk is not sufficient to coun-
terbalance the higher number of local optima reached with climbers F, since
an ILS process only returns the best local optimum encountered. Note that the
number of perturbations required to reach the best averages is always higher on
smooth NK landscapes (K = 1 or K = 2). It could probably come from the fact
that on smooth landscapes local optima are less numerous with larger basins of
attraction. Succesfully escaping from these local optima requires more random
moves.

Landscape ILSF ILSW2 ILSW4 ILSW8 ILSW16

NK128,1 .7245[20] .7245[20] .7245[20] .7166[20] .7155[20]

NK128,2 .7423[15] .7415[15] .7403[15] .7394[15] .7387[15]

NK128,4 .7958[5] .7956[5] .7946[5] .7941[5] .7938[5]

NK128,6 .7995[5] .7955[5] .7916[5] .7892[5] .7877[5]

NK128,8 .7949[5] .7896[5] .7842[5] .7818[5] .7795[5]

NK128,10 .7847[5] .7784[5] .7742[5] .7717[5] .7700[5]

NK128,12 .7724[5] .7676[5] .7631[5] .7601[5] .7588[5]

NK256,1 .7200[20] .7179[20] .7148[20] .7124[20] .7111[20]

NK256,2 .7425[5] .7396[10] .7373[10] .7351[10] .7339[15]

NK256,4 .7917[5] .7899[5] .7883[5] .7876[5] .7874[5]

NK256,6 .8007[5] .7957[5] .7922[5] .7907[5] .7899[5]

NK256,8 .7892[5] .7828[5] .7785[5] .7751[5] .7742[5]

NK256,10 .7782[5] .7721[5] .7666[5] .7642[5] .7629[5]

NK256,12 .7663[5] .7602[5] .7556[5] .7527[5] .7520[5]

NK512,1 .7040[20] .6984[20] .6926[20] .6894[20] .6882[20]

NK512,2 .7453[5] .7419[10] .7393[10] .7381[10] .7371[5]

NK512,4 .7806[5] .7770[5] .7750[5] .7742[5] .7736[5]

NK512,6 .7940[5] .7899[5] .7872[5] .7858[5] .7850[5]

NK512,8 .7886[5] .7842[5] .7801[5] .7783[5] .7773[5]

NK512,10 .7781[5] .7731[5] .7676[5] .7651[5] .7641[5]

NK512,12 .7671[5] .7612[5] .7552[5] .7524[5] .7512[5]

NK1024,1 .7087[15] .7012[20] .6942[20] .6907[20] .6898[20]

NK1024,2 .7428[20] .7385[20] .7353[20] .7332[15] .7321[15]

NK1024,4 .7797[5] .7759[5] .7736[5] .7726[5] .7718[5]

NK1024,6 .7890[5] .7857[5] .7835[5] .7817[5] .7813[5]

NK1024,8 .7850[5] .7826[5] .7801[5] .7787[5] .7787[5]

NK1024,10 .7753[10] .7735[5] .7710[5] .7694[5] .7690[5]

NK1024,12 .7656[5] .7640[5] .7609[5] .7583[5] .7582[5]

Table 3. Best averages fitnesses obtained from 100 ILS runs on NK landscapes. Values
between brackets correspond to the number of perturbations P driving toward the
reported best averages.

On UBQP landscapes (see table 4), we observe that on least large landscapes
(N ≤ 1024), almost all considered methods always reach the same local optimum,



which we expect to be the global optimum2. Interestingly, 1024-dimensional ran-
dom NK landscapes are conversely considered as large landscapes since even ef-
ficient evolutionary techniques fail to easily detect a global optimum. We then
perform an additional analysis in order to obtain the number of evaluations re-
quired by each ILS to reach an expected global optimum (on these landscapes
derived from easy UBQP instances). Results are reported in figure 3 which com-
pare, for each landscapes, the computational budget used by F and W2 for reach-
ing an expected global optimum: ILSF is faster than ILSW2

, but the difference
is relatively low.

On all larger UBQP landscapes N ≥ 2048, ILSW2
leads in average toward

better local optima than ILSF. Moreover, on 4096-dimensional UBQP land-
scapes, generating up to 4 and sometimes 8 improving neighbors before selecting
the one with the lowest fitness can be more relevant than using first improve-
ment.

Fig. 2. Evolution of the best average fitness among all considered ILSF and all consid-
ered ILSW2 on UBQP landscape where N = 4096 and d = 100.

Figure 2 depicts the evolution of the best average fitness during runs on
an UBQP landscape instance (N = 4096, d = 100), for ILSF and ILSW2 . On
this landscape, ILSW2

starts to outperform ILSF around 10 million evaluations.
Let us notice that ILSF and ILSW2

have a similar compared evolution during
the search on all considered large landscapes. Let us recall that single climbing
processes using W2 require more than twice evaluations than a climbing process
using first (see table 2). In particular, on considered UBQP landscapes with
N ≥ 2048 a single first improvement climber requires on average 49k to 188k
evaluations before terminate, whereas a W2 climber requires from 112k to 437k
evaluations.

2 In the following we use the term expected global optimum when a same local optimum
is always reached by a set of methods. Of course, constantly obtaining the same final
solution (or fitness) does not guarantee its optimality, which could only be proved
using complete methods.
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Landscape best avg ILSF ILSW2 ILSW4 ILSW8 ILSW16

UBQP128,25 24087.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP128,50 33440.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP128,75 46180.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP128,100 51130.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP256,25 70861.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-30.50] 0.0[5-20]

UBQP256,50 102914.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-30]

UBQP256,75 133641.0 0.0[10-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP256,100 146377.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP512,10 134112.0 0.0[5-80] 0.0[5-80] 0.0[5-50] 0.0[5-30] 0.0[5-20]

UBQP512,50 102914.0 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-80]

UBQP512,75 133641.0 0.0[10-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-20]

UBQP512,100 424728.0 0.0[10-80] 0.0[5-80] 0.0[5-80] 0.0[5-80] 0.0[5-60]

UBQP1024,10 356679.0 0.0[60-80] 0.0[40-50] -0.7[30] -0.7[20] -21.8[20]

UBQP1024,50 808138.0 0.0[50-80] 0.0[40] 0.0[20] -0.2[10] -16.6[10]

UBQP1024,75 1007737.0 0.0[30-80] 0.0[20-40] 0.0[10] -0.5[5] -8.3[10]

UBQP1024,100 1145975.0 0.0[20-80] 0.0[20-80] 0.0[20-80] 0.0[10-40] 0.0[10-20]

UBQP2048,10 1004593.1 -34.5[80] 0.0[60] -64.2[40] -154.8[30] -390.0[30]

UBQP2048,25 1641377.7 -75.8[70] 0.0[50] -117.6[20] -209.5[10] -197.5[10]

UBQP2048,50 2398651.0 -49.4[80] 0.0[50] -51.7[30] -145.5[20] -597.8[10]

UBQP2048,100 3100346.3 -832.8[80] 0.0[80] -382.5[40] -813.3[30] -1499.8[30]

UBQP4096,10 2809642.0 -953.7[80] 0.0[80] -277.5 [50] -818.1[30] -1033.7[30]

UBQP4096,25 4597565.2 -1536.5[80] 0.0[80] -155.1[60] -731.0[30] -1640.4[20]

UBQP4096,50 6530759.4 -2914.8[80] 0.0[80] -216.3[70] -1634.4[40] -3725.8[30]

UBQP4096,100 9095931.9 -4640.3[80] 0.0[80] -49.3[60] -1940.0[30] -5023.4[30]

Table 4. Comparative ILS results on UBQP landscapes (fitness gaps from best aver-
age).



Fig. 3. Number of evaluations required to reach an expected global optimum from 100
runs of ILSF and ILSW2 on UBQP landscapes.

Perturbations used by these iterated local searches to escape from local op-
tima (strategy: P random moves from the last local optimum reached) generally
lead toward solutions slightly better than while restarting the search from a new
random solution, especially since climbings following perturbations are faster
than the first one. For instance, with the computational budget of the initial
climbing process of ILSW2

, ILSF can proceed to many hill-climbings (as F is
quicker than W2, and following ILSF climbings are also quicker than F). Thus
the fact that it requires almost 10 million of evaluations for ILSW2 to outperform
ILSF makes sense.

4.3 ILS performances and landscape features

Experiments show a difference of overall efficiency between ILSWk
and ILSF on

NK and UBQP landscapes. This subsection is devoted to obtain insights on
when using Wk within ILS leads toward better local optima. To this aim we
measure for all considered landscapes the k-ruggedness evolution as well as the
repartition of local optima.

k-ruggedness values are computed from sets of 100,000 pairs of solutions
which are distant by k bits. In tables 5 and 6 , we report percentages corre-
sponding to the ratios between the numbers of distinct 1-flips required to reach
a given k-ruggedness value, and the maximal value N − 1. We also estimate the



1-ruggedness of landscapes (ie. the proportion of 1-sign-epistasis) since local sign
epistasis is an obstacle for climbers and directly affects their performance.

Results show that on NK landscapes (table 5), the k-ruggedness grows faster
on more rugged landscapes (when K increases) and is stable when N increases.
For a given value of N , the 1-ruggedness is higher on more rugged landscapes
and for a given value of K, the 1-ruggedness decreases on larger landscapes. This
last observation is coherent since a single mutation has more impact on smaller
NK landscapes than on larger ones. In random NK landscapes, the ruggedness is
directly correlated with the parameters ratio K/N . So we use these observations
as references to understand the structure of UBQP landscapes.

Landscape
k-ruggedness

1-rug. Landscape
k-ruggedness

1-rug.≥ 0.1 ≥ 0.25 ≥ 0.1 ≥ 0.25

NK128,1 15.7% 43.3% 0.5% NK256,1 16.1% 43.9% 0.3%
NK128,2 7.9% 22.9% 1.2% NK256,2 7.5% 22.4% 0.6%
NK128,4 3.1% 10.2% 3.1% NK256,4 3.1% 10.2% 1.5%
NK128,6 2.4% 7.1% 5.2% NK256,6 1.9% 6.7% 2.6%
NK128,8 1.6% 4.7% 7.4% NK256,8 1.2% 4.7% 4.1%
NK128,10 1.6% 3.9% 9.6% NK256,10 1.2% 3.9% 5.3%
NK128,12 0.8% 3.1% 11.8% NK256,12 0.8% 3.1% 6.5%

NK512,1 16.7% 45.0% 0.1% NK1024,1 15.7% 42.7% 0.1%
NK512,2 7.0% 22.3% 0.3% NK1024,2 7.6% 23.6% 0.2%
NK512,4 2.9% 10.4% 0.8% NK1024,4 2.9% 10.1% 0.4%
NK512,6 1.8% 6.4% 1.4% NK1024,6 1.8% 6.5% 0.7%
NK512,8 1.2% 4.7% 2.1% NK1024,8 1.2% 4.8% 1.1%
NK512,10 0.9% 3.7% 2.7% NK1024,10 0.9% 3.7% 1.4%
NK512,12 0.7% 3.1% 3.6% NK1024,12 0.7% 3.1% 1.8%

Table 5. Ruggedness information of NK landscapes.

1-ruggedness values of UBQP landscapes (see table 6) seem to increase ac-
cording to their density parameter. This value is the only one, among considered
values, differing on UBQP landscapes and corresponds to the 1-ruggedness of
non-smooth NK landscapes of same size. Moreover, on larger landscapes, the 1-
ruggedness decreases less than on NK landscapes of same size. The k-ruggedness
evolution is similar for all UBQP landscapes, but does not correspond to the
k-ruggedness evolution of any NK landscape . A k-ruggedness value superior
to 0.1 is quickly reached (with few mutations), such as on medium-rugged NK
landscapes. Yet, a k-ruggedness value superior to 0.25 is lately reached, such as
on smooth NK landscapes.

It means that the sign epistasis repartition, which directly affects the rugged-
ness, is different than the one of NK landscapes: the evolution of 1-ruggedness
shows that the local sign epistasis is high on UBQP landscapes whereas the k-
ruggedness global evolution leads to think that they globally have a reduced
sign epistasis like smooth landscapes. Consequently, we assume that consid-



ered UBQP landscapes are locally rugged but globally smooth. Indeed, the
1-ruggedness values, which refer to the sign epistasis between neighboring so-
lutions, reveal locally rugged landscapes. On the contrary, the k-epistasis with
high values of k, which refers to the sign epistasis between distant solutions,
reveals globally smooth landscapes.

Landscape
k-ruggedness

1-rug. Landscape
k-ruggedness

1-rug.≥ 0.1 ≥ 0.25 ≥ 0.1 ≥ 0.25

UBQP128,25 5.5% 27.6% 2.3% UBQP256,25 5.1% 28.6% 1.5%
UBQP128,50 4.7% 27.6% 3.1% UBQP256,50 5.5% 29.8% 2.1%
UBQP128,75 5.5% 31.5% 3.6% UBQP256,75 5.5% 31.8% 2.7%
UBQP128,100 5.5% 30.7% 4.3% UBQP256,100 5.1% 29.0% 2.8%

UBQP512,10 5.9% 32.5% 0.6% UBQP1024,10 5.2% 30.5% 0.5%
UBQP512,50 5.1% 32.3% 1.5% UBQP1024,25 4.9% 28.0% 1.0%
UBQP512,75 4.9% 29.3% 1.8% UBQP1024,50 5.0% 28.6% 1.1%
UBQP512,100 5.5% 32.5% 2.3% UBQP1024,100 5.2% 28.0% 1.5%

UBQP2048,10 5.2 % 29.5% 0.3% UBQP4096,10 4.7% 28.8% 0.2%
UBQP2048,25 5.0% 27.6% 0.7% UBQP4096,25 5.0% 28.9% 0.5%
UBQP2048,50 5.0% 29.2% 0.9% UBQP4096,50 4.7% 28.5% 0.3%
UBQP2048,100 4.8% 27.7% 1.0% UBQP4096,100 5.7% 30.0% 0.7%

Table 6. Ruggedness information of UBQP landscapes.

In addition we perform a sampling of local optima in considered landscapes.
Local optima are collected from 1000 hill-climbing algorithms using a first im-
provement hill-climbing. In tables 7 and 8 we report the average hamming dis-
tance between all distinct local optima found on each landscapes as well as the
number their numbers. Note that median distances are similar to average dis-
tances and are not reported. Results on NK landscapes (table 7) show that on
sufficiently rugged landscapes, the average hamming distance is close to N/2. It
means that local optima are uniformly distributed in the landscape, since N/2
corresponds to the average hamming distance between two random solutions. On
smooth NK landscapes the average hamming distance between considered local
optima is lower, meaning that local optima are packed in a relatively reduced
area of the landscape. On UBQP landscapes (table 8), the average distances of
local optima are largely lower than N/2 and even often lower than distances
observed on very smooth NK landscapes. Moreover, the number of distinct local
optima found on smaller considered landscapes are way lower than on same size
NK landscapes and could explain why associated problem instances are easier
to solve. The observed number and repartition of local optima on UBQP land-
scapes tend to confirm the assumed structure of such landscapes, that is locally
rugged but globally very smooth.

The fact that ILSWk
is more efficient on UBQP landscapes than on NK

landscapes can be explained by the structure of these landscapes. UBQP land-
scapes are globally smooth, which at first glance is not an advantage for climbing



Landscape davg #LO Landscape davg #LO

NK128,1 24.48 991 NK256,1 50.22 1000
NK128,2 44.94 1000 NK256,2 93.73 1000
NK128,4 60.99 1000 NK256,4 121.43 1000
NK128,6 63.55 1000 NK256,6 126.66 1000
NK128,8 63.86 1000 NK256,8 127.69 1000
NK128,10 63.97 1000 NK256,10 127.92 1000
NK128,12 63.97 1000 NK256,12 127.99 1000

NK512,1 101.74 1000 NK1024,1 200.02 1000
NK512,2 187.37 1000 NK1024,2 366.87 1000
NK512,4 243.29 1000 NK1024,4 486.74 1000
NK512,6 253.28 1000 NK1024,6 507.17 1000
NK512,8 255.40 1000 NK1024,8 510.56 1000
NK512,10 255.85 1000 NK1024,10 511.75 1000
NK512,12 255.96 1000 NK1024,12 511.95 1000

Table 7. Average distance (davg) of distinct local optima on NK landscapes (obtained
from 1000 first improvement hill-climbings). #LO denotes the number of distinct local
optima.

strategies based on worst improvement, yet such landscapes are locally rugged.
Pivoting rules based on worst improvement help to bypass low quality local op-
tima and avoid to be trapped by them. Such strategies seem to lead toward
higher local optima on UBQP landscapes than on NK landscapes compared to
a basic first improvement.

On NK landscapes, the quality of local optima obtained during ILSWk
runs

is not sufficiently improved compare to those obtained during an ILSF, which is
able to perform more climbing processes with the same number of evaluations.
On UBQP landscapes, ILSWk

achieves a better balance between local optima
quality and number of evaluations to reach them than ILSF.

5 Conclusion

Most climbing processes of metaheuristics are based on first or best improvement
pivoting rules. As stated by a previous study [11], worst improvement is able to
reach good local optima despite its counter-intuitive nature. In this work, we
integrated worst improvement in an Iterative local search context in order to
obtain insights on the potential interest of using such a pivoting rule within
advanced metaheuristics. We performed experiments on binary-string problems
(NK landscapes and UBQP) and combined results observations with landscape
analysis. In these experiments we confronted worst improvement based ILS with
first improvement ILS. In order to obtain tradeoffs between local optima quality
and number of evaluations, proposed ILS use different levels of approximation of
worst improvement. Experiments show that on NK landscapes, first improvement
remains the most adequate pivoting rule in an ILS context, thanks to its small



Landscape davg #LO Landscape davg #LO

UBQP128,25 26.26 815 UBQP256,25 52.18 990
UBQP128,50 24.20 378 UBQP256,50 26.45 640
UBQP128,75 21.5 488 UBQP256,75 30.84 566
UBQP128,100 23.58 468 UBQP256,100 41.98 908

UBQP512,10 59.40 999 UBQP1024,10 156.11 1000
UBQP512,50 63.52 976 UBQP1024,50 157.62 1000
UBQP512,75 59.27 980 UBQP1024,75 130.15 1000
UBQP512,100 59.94 969 UBQP1024,100 133.19 1000

UBQP2048,10 269.67 1000 UBQP4096,10 536.15 1000
UBQP2048,25 230.67 1000 UBQP4096,25 512.03 1000
UBQP2048,50 238.1 1000 UBQP4096,50 483.50 1000
UBQP2048,100 307.22 1000 UBQP4096,100 486.59 1000

Table 8. Average distance of distinct local optima on UBQP landscapes.

number of evaluations that allow to reach more local optima. However, on large
UBQP landscapes, worst improvement approximations are able to outperform
first improvement in an ILS context, despite its heavier computation cost of each
climbing process.

We observed the ruggedness and repartition of local optima within all consid-
ered landscapes. We deduced that the structure of UBQP landscapes seem to be
globally smooth but locally rugged and that local optima are more packed within
the search space. These facts induce an advantage for the k worst improvement
which has a tendency to avoid to be prematurely trapped in low quality local
optima. On such landscapes this advantage has more impact than the small
number of evaluations induced by first improvement climbers and allow the ILS
versions to be efficient.

It should be interesting to extend this type of work to other problems and/or
other metaheuristics in order to determine if alternative pivoting rules could be
successfully used in other contexts.
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