
PUSH: a Generalized Operator for the

Maximum Vertex Weight Clique Problem

Yi Zhou a, Jin-Kao Hao a,b,∗, Adrien Goëffon a

aLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
bInstitut Universitaire de France, Paris, France

European Journal of Operational Research,
http://dx.doi.org/10.1016/j.ejor.2016.07.056

Abstract

The Maximum Vertex Weight Clique Problem (MVWCP) is an important gener-
alization of the well-known NP-hard Maximum Clique Problem. In this paper, we
introduce a generalized move operator called PUSH, which generalizes the conven-
tional ADD and SWAP operators commonly used in the literature and can be
integrated in a local search algorithm for MVWCP. The PUSH operator also offers
opportunities to define new search operators by considering dedicated candidate
push sets. To demonstrate the usefulness of the proposed operator, we implement
two simple tabu search algorithms which use PUSH to explore different candidate
push sets. The computational results on 142 benchmark instances from different
sources (DIMACS, BHOSLIB, and Winner Determination Problem) indicate that
these algorithms compete favorably with the leading MVWCP algorithms.

Keywords: Local search; Cliques; Tabu search; Heuristics.

1 Introduction

Given an undirected graph G = (V,E,w) with vertex set V and edge set
E ⊆ V × V , let w : V → R+ be a weighting function that assigns to each
vertex v ∈ V a positive value wv. A clique C ⊆ V of G is a subset of vertices
such that its induced subgraph is complete, i.e., every two vertices in C are
pairwise adjacent in G (∀u, v ∈ C, (u, v) ∈ E). For a clique C of G, its weight

∗ Corresponding author.
Email addresses: zhou@info.univ-angers.fr (Yi Zhou),

hao@info.univ-angers.fr (Jin-Kao Hao), goeffon@info.univ-angers.fr
(Adrien Goëffon).

Preprint submitted to Elsevier 7 August 2016

is given by W (C) =
∑

v∈C wv. The Maximum Vertex Weight Clique Problem
(MVWCP) is to determine a clique C∗ of maximum vertex weight.

MVWCP is an important generalization of the classical Maximum Clique
Problem (MCP) [27]. Indeed, when the vertices of V are assigned the unit
weight of 1, MVWCP is equivalent to MCP which is to find a clique C∗ of
maximum cardinality. Given that the decision version of MCP is NP-complete
[11], the generalized MVWCP problem is at least as difficult as MCP. Con-
sequently solving MVWCP represents an imposing computational challenge
in the general case. Note that MVWCP is different from another MCP vari-
ant – the Maximum Edge Weight Clique Problem [1,23] where a clique C∗ of
maximum edge weight is sought.

Like MCP which has many practical applications, MVWCP can be used to
formulate and solve some relevant problems in diverse domains. For example,
in computer vision, MVWCP can be used to solve image matching problems
[2]. In combinatorial auctions, the Winner Determination Problem can be
recast as MVWCP and solved by MVWCP algorithms [28,29].

Given the significance of MVWCP, much effort has been devoted to design
various algorithms for solving the problem over the past decades. On the one
hand, there are a variety of exact algorithms which aim to find optimal so-
lutions. For instance, in 2001, Österg̊ard [17] presented a branch-and-bound
(B&B) algorithm where the vertices are processed according to the order pro-
vided by a vertex coloring of the given graph. This MVWCP algorithm is in
fact an adaptation of an existing B&B algorithm designed for MCP [18]. In
2004, Kumlander [12] introduced a backtrack tree search algorithm which also
relies on a heuristic coloring-based vertex order. In 2006, Warren and Hicks
[25] exposed three B&B algorithms which use weighted clique covers to gen-
erate upper bounds and branching rules. In 2016, Wu and Hao [29] developed
an algorithm which introduces new bounding and branching techniques us-
ing specific vertex coloring and sorting. In 2016, Fang et al. [8] presented an
algorithm which uses Maximum Satisfiability Reasoning as a bounding tech-
nique. On the other hand, local search heuristics constitute another popular
approach to find high-quality sub-optimal or optimal solutions in a reason-
able computing time. In 1999, Mannino and Stefanutti [15] proposed a tabu
search method based on edge projection and augmenting sequence. In 2000,
Bomze et al. [4] formulated MVWCP as a continuous problem which is solved
by a parallel algorithm using a distributed computational network model. In
2006, Busygin [5] exposed a trust region algorithm. The same year, Singh and
Gupta [22] introduced a hybrid method combining genetic algorithm, a greedy
search and the exact algorithm of [7]. In 2008, Pullan [20] adapted the Phase
Local Search for the classical MCP to MVWCP. In 2012, Wu et al. [26] intro-
duced a tabu search algorithm integrating multiple neighborhoods. In 2013,
Benlic and Hao [3] presented the Breakout Local Search algorithm which also

2

explores multiple neighborhoods and applies both directed and random per-
turbations. Recently in 2016, Wang et al. [24] reformulated MVWCP as a
Binary Quadratic Program (BQP) which was solved by a probabilistic tabu
search algorithm designed for BQP.

As shown in the literature, local search represents the most popular and the
dominating approach for solving MVWCP heuristically. Typically, local search
heuristics explore the search space by iteratively transforming the incumbent
solution into another solution by means of some move (or transformation) op-
erators. Existing heuristic algorithms for MVWCP [3,20,24,26,28] are usually
based on two popular move operators for search intensification: (1) ADD which
inserts a vertex to the incumbent solution (a feasible clique), and (2) SWAP
which exchanges a vertex in the clique against a vertex out of the clique. In
studies like [3,26], another operator called DROP was also used, which simply
removes a vertex from the current clique. The algorithms using these opera-
tors have reported remarkable results on a large range of benchmark problems.
Still as we show in this work, the performance of local search algorithms could
be further improved by employing more powerful search operators.

This work introduces a generalized move operator called PUSH, which in-
serts one vertex into the clique and removes k ≥ 0 vertices from the clique to
maintain the feasibility of the transformed clique. The proposed PUSH oper-
ator shares similarities with some restart and perturbation operators used in
MCP and MVWCP algorithms like [3,10] and finds its origin in these previous
studies. Meanwhile, as we show in this work, the PUSH operator not only gen-
eralizes the existing ADD and SWAP operators, but also offers the possibility
of defining additional clique transformation operators. Indeed, dedicated local
search operators can be obtained by customizing the set of candidate vertices
considered by PUSH. Such alternative operators can then be employed in a
search algorithm as a means of intensification or diversification.

To assess the usefulness of the PUSH operator, we experiment two restart
tabu search algorithms (ReTS-I and ReTS-II), which explore different can-
didate push sets for push operations. ReTS-I operates on the largest possi-
ble candidate push set while ReTS-II works with three customized candidate
push sets. Both algorithms share a probabilistic restart mechanism. The pro-
posed approach is assessed on three sets of well-known benchmarks (DIMACS,
BHOSLIB, and Winner Determination Problem) of a total of 142 instances.
The computational results indicate that both ReTS-I and ReTS-II compete
favorably with the leading MVWCP algorithms of the literature. Moreover,
the generality of the PUSH operator could allow it to be integrated within
any local search algorithm to obtain enhanced performances.

The paper is organized as follows. Section 2 formally introduces the PUSH op-
erator. Section 3 presents the two push-based tabu search algorithms. Section

3

4 reports our experimental results and comparisons with respect to state-of-
the-art algorithms. Section 5 is dedicated to an experimental analysis of the
restart strategy while conclusions and perspectives are given in Section 6.

2 PUSH : a generalized operator for MVWCP

2.1 Preliminary definitions

Let G = (V,E,w) be an input graph as defined in the introduction, C ⊆ V
a feasible solution (i.e., a clique) such that any two vertices in C are linked
by an edge in E (throughout the paper, C is used to designate a clique), and
v ∈ V an arbitrary vertex. We introduce the following notations:

- N(v) and N̄(v) denote respectively the set of adjacent and non-adjacent
vertices of a vertex v in V , i.e., N(v) = {u : (v, u) ∈ E} and N̄(v) = {u :
(v, u) /∈ E}.

- NC(v) and N̄C(v) denote respectively the set of adjacent and non-adjacent
vertices of a vertex v in C, i.e., NC(v) = C ∩N(v) and N̄C(v) = C ∩ N̄(v).

- Ω is the search space including all the cliques of G, i.e., Ω = {C ⊆ V :
∀v, u ∈ C, v ̸= u, (v, u) ∈ E}.

- m is a move operator which transforms a clique to another one. We use
C ⊕m to designate the clique C ′ = C ⊕m obtained by applying the move
operator m to C. C ′ is called a neighbor solution (or neighbor clique) of C.

- Nm is the set of neighbor solutions that can be obtained by applying m to
an incumbent solution C.

The weight W (C) =
∑

v∈C wv of a solution (clique) C ∈ Ω is used to measure
its quality (fitness). For two solutions C and C ′ in Ω, C ′ is said to be better
than C if W (C ′) > W (C). The weight W (C∗) of the best solution ever found
by a search procedure is abbreviated as W ∗.

2.2 Motivations for the PUSH operator

As shown in the literature, local search is the dominating approach for tackling
MVWCP (see for example, [3,20,26,28]). Local search typically explores the
search space by iteratively transforming an incumbent solution C to a neighbor
solution (often of better quality) by means of the following move operators:

• ADD extends C with a vertex v ∈ V \ C which is necessarily adjacent to
all the vertices in C. Each application of ADD always increases the weight
of C and leads to a better solution.

4

• SWAP exchanges a vertex v ∈ V \ C with another vertex v′ ∈ C, v being
necessarily adjacent to all vertices in C except v′. Each application of SWAP
can increase the weight of C (if wv > wv′), keep its weight unchanged (if
wv = wv′) or decrease the quality of C (if wv < wv′).

In some cases like [3,26], a third move operator (DROP) was also employed
which simply removes a vertex from C (thus always leading to a worse neighbor
solution).

Generally, local search for MVWCP aims to reach solutions of increasing qual-
ity by iteratively moving from the incumbent solution to a neighbor solution.
This is typically achieved by applying ADD whenever it is possible to increase
the weight of the clique, applying SWAP when no vertex can be added to the
clique and occasionally calling for DROP to escape local optima.

However, as both ADD and SWAP have a prerequisite on the operating vertex
in V \ C, these operators may miss improving solutions in some cases. To
illustrate this point, we consider the example of Fig. 1 where vertex weights
are indicated in brackets next to the vertex labels. As shown in Fig. 1(a),
C = {a, b, c} is a clique with a total weight of 12. Since vertex d is neither
adjacent to a nor b, d cannot join clique C by means of the ADD and SWAP
operators. Meanwhile, one observes that if we insert vertex d into the clique
and remove both vertices a and b, we obtain a new clique C ′ (Fig. 1(b)) of
weight of 13, which is better than C.

Inspired by this observation, the PUSH operator proposed in this work ba-
sically transforms C by pushing a vertex v taken from a dedicated subset of
V \ C into C and removing, if needed, one or more vertices from C to re-
establish solution feasibility. Indeed, when the added vertex v is not adjacent
to all the vertices in C, the vertices of C which are not adjacent to v (i.e., the
vertices in the set N̄C(v) as defined in Section 2.1) need to be removed from
C to maintain the feasibility of the new solution. In the above example, C can
be transformed to a better solution by pushing vertex d into the clique and
then expelling both a and b.

2.3 Definition of the PUSH Operator

Let C be a clique, and v an arbitrary vertex which does not belong to C
(v ∈ V \ C). PUSH(v, C) (or PUSH(v) for short if the current clique does
not need to be explicitly emphasized) generates a new clique by first inserting
v into C and then removing any vertex u ∈ C such that (u, v) /∈ E (i.e.,
u ∈ N̄C(v), see Section 2.1).

Formally, the neighbor clique C ′ after applying PUSH(v) (v ∈ V \ C) to C

5

(a) (b)

Fig. 1. An example which shows that a better solution can be reached by the PUSH
operator, but cannot be attained by the traditional ADD and SWAP operators.

is given by:

C ′ = C ⊕ PUSH(v) = C \ N̄C(v) ∪ {v}

Consequently, the set of neighbor cliques induced by PUSH(v) in the general
case, denoted by NPUSH is given by:

NPUSH =
∪

v∈V \C
{C ⊕ PUSH(v)} (1)

For each neighbor solution C ′ = C ⊕ PUSH(v) generated by a PUSH(v, C)
move, we define the move gain (denoted by δv) as the variation in the objective
function value between C ′ and C:

δv = W (C ′)−W (C) = wv −
∑

u∈N̄C(v)

wu (2)

Thus, a positive (negative) move gain indicates a better (worse) neighbor
solution C ′ compared to C while the zero move gain corresponds to a neighbor
solution of equal quality.

Typically, a local search algorithm makes its decision of moving from the
incumbent solution to a neighbor solution based on the move gain information
at each iteration. In order to be able to efficiently compute the move gains
of neighbor solutions, we present in Section 3.5 fast streamlining evaluation
techniques with the help of dedicated data structures.

One notices that PUSH shares similarities with some customized restart or
perturbation operators used in [3,10] and finds its origin in these previous
studies. In the iterated local search algorithm designed for MCP by Grosso
et al. [10], the clique delivered at the end of each local optimization stage is
perturbed by insertion of a random vertex and serves then as a new starting

6

point for the next stage of local optimization. In the BLS algorithm for MCP
and MVWCP presented by Benlic and Hao [3], each random perturbation adds
a vertex such that the resulting clique must satisfy a quality threshold. In these
two previous studies, clique feasibility is established by a repair process which
removes some vertices after each vertex insertion.

2.4 Special cases of PUSH

From the general definition of PUSH given in the last section, we can cus-
tomize the move operator by identifying a dedicated vertex subset of V \ C
called candidate push set (CPS) that provides the candidate vertices for PUSH.
We first discuss two special cases by considering non-adjacency information
convoyed by N̄C(v) (see the notations introduced in Section 2.1).

- If CPS is given by A = {v : |N̄C(v)| = 0, v ∈ V \ C}, then PUSH is
equivalent to ADD.

- If CPS is given by B = {v : |N̄C(v)| = 1, v ∈ V \ C}, then PUSH is
equivalent to SWAP.

We can also use other information like move gain to constrain the candidate
push set, as illustrated by the following examples.

(1) If CPS is given by M1 = {v : δv > 0, v ∈ V \ C}, then PUSH always
leads to a neighbor solution better than C.

(2) If CPS is given by M2 = {v : δv ≤ 0, |N̄C(v)| = 1, v ∈ V \C}, then PUSH
exchanges one vertex in V \C with one vertex in C, leading to a solution
of equal or worse quality relative to C.

(3) If CPS is given by M3 = {v : δv ≤ 0, |N̄C(v)| > 1, v ∈ V \ C}, then
PUSH inserts one vertex into C and removes at least two vertices from
C, leading to a solution of equal or worse quality relative to C.

(4) If CPS is given by V \C, then the candidate push set is not constrained.
One notices that V \ C = M1 ∪M2 ∪M3.

An example of these special cases is provided in Fig. 2.

In addition to the ADD and SWAP operators, several restart rules of local
search algorithms for MCP can also be recast with the PUSH operator. In
particular, the restart Rule 1 in [10] (previously used in [19]) states that C :=
[C ∩ N(v)] ∪ {v}, v picked at random in V \ C (i.e., add a random vertex v
in the clique while keeping in the clique the adjacent vertices of v). This rule
is equivalent to push a vertex from candidate push set V \C into the current
solution. As to the restart Rule 2 in [10], let us define the candidate push set
Sq = {v : δv ≤ 1− q, v ∈ V \ C} (q > 0 is a fixed parameter). Then the Rule
2 is to push a random vertex from Sq into C if Sq is not empty; otherwise,

7

Fig. 2. A simple graph labeled with vertex weights in brackets. The current clique
is C = {a, b, c, d}, W (C) = 2 + 3 + 4 + 5 = 14, N̄C(e) = ∅, N̄C(f) = {a},
N̄C(g) = {a, b}, N̄C(h) = {c, d}, N̄C(i) = {a, b, c}, thus, δe = 2, δf = 0, δg = 1,
δh = −1, δi = −3. According to the definitions, A = {e}, B = {f}, M1 = {e, g},
M2 = {f}, M3 = {h, i}.

push a random vertex from V \ C. Moreover, in the BLS algorithm for MCP
and MVWCP [3], the so-called random perturbation modifies the incumbent
clique by adding vertices such that the quality of the resulting clique is not
deteriorated more than a quality threshold. This random perturbation strategy
can simply be considered as applying the PUSH operator to vertices from the
candidate push setM4 = {v : δv > (α−1)∗W (C), v ∈ V \C} (where 0 < α < 1
is a predefined parameter).

Finally, by considering other candidate push sets subject to specific conditions,
it is possible to obtain multiple customized search operators that can be em-
ployed by any local optimization procedure to effectively explore the search
space. In the next section, we present two local search algorithms based on
the above M1, M2, M3 and V \ C candidate push sets.

3 PUSH-based tabu search

In this section, we introduce two simple Restart Tabu Search [9] algorithms
(denoted by ReTS-I and ReTS-II). Both algorithms rely on the PUSH opera-
tor, but explore different candidate push sets. In ReTS-I, the candidate push
set considered includes all the vertices out of the clique (i.e., CPS = V \ C)
while in ReTS-II, the algorithm jointly considers the candidate push sets M1,
M2 and M3 introduced in Section 2.3.

8

Both ReTS-I and ReTS-II share the same restart local search framework as
shown in Algorithm 1, but implement different local optimization procedures
with different CPS (line 5, see Sections 3.3 and 3.4). The general framework
starts from an initial solution C (or initial clique) generated by means of
Random Solution (Section 3.1). The solution is then improved by one of the
dedicated tabu search procedures described respectively in Sections 3.3 and
3.4. When the search stagnates in a deep local optimum, the search restarts
from a new solution, which is constructed either by Reconstruct Solution
(Section 3.2) with probability ρ ∈ [0.0, 1.0] (a parameter), or byRandom Solution
(Section 3.1) with probability 1 − ρ. It is noted that Reconstruct Solution
reconstructs a new solution from C, while Random Solution randomly gener-
ates a new solution from scratch. The whole search process repeats the above
procedure until a prefixed stopping condition is met. The details of the tabu
search optimization procedures and restart procedures are described in the
following sections.

Algorithm 1: Framework of the Restart Tabu Search algorithms for MVWCP

Input: G = (V,E,w) - MVWCP instance, ρ - restart probability parameter,
L - maximum number of consecutive non-improving iterations.

Output: C∗ - maximum vertex weight clique.
begin1

C∗ ← ∅ ; /* C∗ maintains the best solution found so far */2

C ← Random Solution(G); /* Section 3.1. C is the current solution */3

while stopping condition is not met do4

(C,C∗)← Tabu Search(G,C,C∗, L); /* Sections 3.3 and 3.4 */5

if random number ∈ [0, 1] < ρ then6

C ← Reconstruct Solution(G,C) ; /* Section 3.2 */7

else8

C ← Random Solution(G); /* Section 3.1 */9

end10

return C∗
11

3.1 Random initial solution

The Random Solution(G) procedure (Alg. 1, lines 3 and 9) starts from an
initial clique C composed by an unique random vertex. Then iteratively, a
vertex v in candidate push set A = {v : |N̄C(v)| = 0, v ∈ V \ C} (Sections
2.3 and 2.4) is randomly selected and added into C. A is then updated by
A ← A \ ({v} ∪ N̄A(v)). The procedure continues until the candidate push
set A becomes empty. A maximal clique (i.e., ∀v ∈ V \ C, |N̄C(v)| > 0) is
then reached and returned as the initial solution of the search procedure. This
initialization procedure ignores the solution quality (the clique weight), but

9

ensures a good randomness of the initial solutions generated. Such a feature
represents a simple and useful diversification technique which helps the search
algorithm to start the search in a different region of each repeated run. The
initialization procedure can be efficiently implemented with a time complexity
of O(|V ||E|). This process is similar to the initial constructive phase preceding
the first SWAP move in the MCP algorithm of [10] and also applied in the
MVWCP algorithms of [3,26].

3.2 Solution reconstruction

The reconstruction procedure (Alg. 1, line 7) generates a new solution by it-
eratively replacing vertices of a given solution. At the beginning, considering
a clique C, all the vertices of V \ C are marked available to join C by means
of the PUSH operator. Then, at each iteration, the available vertex belonging
to candidate push set M1 (see Section 2.4) with the maximum δ value (ties
are broken randomly) is selected and pushed into C. Vertices which are re-
moved from C during the PUSH operation are then marked unavailable. As a
consequence, they cannot rejoin the solution during the remaining iterations.
The reconstruction procedure stops after |C| iterations or when no available
vertex may be found from M1. The current clique C is then returned as the
reconstructed solution. Such a reconstruction procedure perturbs the given
solution C but, in most cases, does not decrease the quality heavily. The time
complexity of each iteration is bounded by O(|V |+ (maxv∈V {|N̄(v)|})2) as it
scans the M1 set and calls the PUSH operator (The time complexity of the
push operator is discussed in Section 3.5). This reconstruction procedure can
also be viewed as an objective-guided strong perturbation procedure since the
vertices in the original solution are totally replaced and vertex insertions are
subject to the stipulation of the maximum δ value.

3.3 ReTS-I: Tabu search with the largest candidate push set

The first tabu search procedure denoted by ReTS-I uses a greedy rule which
gives preference, at each step of the search, to neighbor solutions having the
best objective value. ReTS-I implements this heuristic with the largest possible
candidate push set V \C. To prevent the search from falling into cycles, a tabu
mechanism [9] is incorporated.

The general process of ReTS-I is shown in Algorithm 2, where each element
tabuv of vector tabu (called the tabu list) records the earliest iteration number
that vertex v is allowed to move inside C. At each iteration, one vertex is
allowed to join the current solution only when it is not forbidden by the tabu
list. Nevertheless, a move leading to a solution better than the best solution

10

found so far is always accepted (this is the so-called aspiration criterion, line
7, Alg. 2). If v is the vertex to be pushed into C, then all the vertices moving
out of C (i.e., those of N̄C(v)) are forbidden to rejoin the solution for the
next tt(v) (tabu tenure) iterations (lines 9-10, Alg. 2). The TS procedure ends
when the best solution cannot be improved for L (a parameter) consecutive
iterations. Note that similar strategies which temporarily forbid the removed
vertices to rejoin the solution have been used in [3,10,20,26]. Also note that
the added vertex is free to leave the clique. This rule is based on the fact that
due to the objective of maximizing the clique weight, an added vertex has
little chance to be removed anyway.

The tabu tenure tt(v) for a vertex v is empirically fixed as follows:

tt(v) = 7 + random(0, η(v)) (3)

where η(v) = |{u ∈ V \ C : N̄C(u) = N̄C(v)}| is the number of vertices which
have as many non-adjacent vertices in C as v, and random(0, n) returns a
random integer in range [0, n).

Since ReTS-I needs to scan V \ C at each iteration (line 6, Alg. 2), the time
complexity of each iteration of ReST-I is bounded by O(|V |). The ReTS-I
algorithm is quite simple, but performs well as shown by the experimental
outcomes presented in Section 4.

3.4 ReTS-II: Tabu search with three decomposed candidate push sets

Contrary to ReTS-I which explores the whole and unique candidate push set
V \ C, ReTS-II, as shown in Algorithm 3, considers more features of the
candidate vertices for PUSH. For this algorithm, we decompose V \ C into
three candidate push sets M1, M2 and M3 as defined in Section 2.4. At each
iteration, the three CPS are evaluated in a fixed order: M1 →M2 →M3 (lines
7-15) and a vertex with the largest δ value is chosen by PUSH to perform the
move. Note that M1 contains preferable vertices as they necessarily increase
the weight of the incumbent clique. If no candidate vertex is available in M1,
selecting a vertex fromM2 orM3 will degrade the solution (or keep the solution
unchanged). Pushing these vertices may be useful to help the search to leave
the current local optimum. M2 is evaluated before M3 since pushing a vertex
from M2 will generally lead to less vertices to be removed from C than pushing
a vertex from M3. The motivation of using these three sets with a preference
order is thus to keep the improvement possibilities as much as possible and
proceed to more important perturbations only when no other alternative is
possible.

11

Algorithm 2: ReTS-I: Tabu search with the largest candidate push set

Input: C - current solution, C∗ - best solution ever found, L - maximum
number of consecutive non-improving iterations.

Output: C - renewed current solution, C∗ - maximum vertex weight clique.
begin1

Iter ← 0 ; /* Counter of iterations */2

for each v ∈ V do3

tabuv ← 0 ; /* tabuv is the earliest iteration vertex v is allowed to join C */4

l← 0 ; /* Counter of consecutive iterations where C∗ is not improved */5

while l < L do6

M ← {v ∈ V \ C, tabuv ≤ Iter or W (C) + δv > W (C∗)} ; /* M is the7

set of eligible vertices for PUSH */

v ← argmaxv∈M δv;8

for u ∈ C \NC(v) do9

tabuu ← Iter + tt(v)10

C ← C ⊕ PUSH(v);11

if W (C) > W (C∗) then12

C∗ ← C;13

l← 0;14

else15

l← l + 1;16

Iter ← Iter + 1;17

end18

return C, C∗
19

Moreover, when M3 is used, only a random sample (of a predetermined size
r) of vertices in M3 are evaluated for each PUSH operation if no appropriate
vertex is found in M1 and M2. Also, let us precise that PUSH selects the
vertex with the best δ value in the sample set. This sampling strategy and
its variants were previously used in several studies (ID-Walk [16], Candidate
List [9], Best from Multiple Choices [6]). This strategy is obviously more cost
effective than evaluating an entire candidate set.

ReTS-II uses the same tabu mechanism as ReTS-I. Note that the aspiration
criterion does not need to be considered for pushing a vertex from M2 and M3

as better solutions cannot be reached in these cases. Vertices dropped from C
by applying PUSH to M2 or M3 are forbidden to rejoin C for consecutive tt(v)
iterations (lines 18-19, Alg. 3). The tabu tenure tt(v) is tuned in the same way
as in ReTS-I (Section 3.3).

Finally, it is interesting to contrast ReTS-I and ReTS-II. In fact, like ReTS-I,
ReTS-II also gives priority to candidate vertices leading to a solution of better
quality. Meanwhile, when no such kind of vertex exists, ReTS-II may choose a

12

different vertex for the PUSH operation. For example, suppose that the same
candidate push set M = {a, b} is applied in Algorithms 2 and 3 with δa = −1,
δb = −3, |N̄C(a)| = 2, |N̄C(b)| = 1. Then ReTS-I chooses vertex a while
ReTS-II selects vertex b for the PUSH operation. Therefore, by using different
candidate push sets, ReTS-I and ReTS-II visit different search trajectories to
explore the search space. The computational experiments shown in Section 4
will allow us to observe the relative performances of both algorithms.

Algorithm 3: ReTS-II: Tabu search with three candidate push sets

Input: C - current solution, C∗ - best solution ever found, L - maximum
number of consecutive non-improving iterations, r - maximum
sample size of M3.

Output: C - renewed current solution, C∗ - maximum vertex weight clique
found.

begin1

Iter ← 0;2

for each v ∈ V do3

tabuv ← 0;4

l← 0;5

while l < L do6

M ← {v ∈ V \ C,W (C) + δv > W (C∗)};7

if M ̸= ∅ then8

l← 0 ; /* New best solution */9

else10

M ← {v ∈ V \ C, δv > 0 and tabuv ≤ Iter} ; /* Restricted M1 */11

if M = ∅ then12

M ← {v ∈ V \ C, δv ≤ 0 and |N̄C(v)| = 1 and tabuv ≤ Iter} ;13

/* Restricted M2 */

if M = ∅ then14

M ← Randomly sample r vertices from {v ∈ V \ C, tabuv ≤15

Iter} ; /* Restricted M3 */

l← l + 1;16

Randomly select v ∈ argmaxv∈M δv;17

for each u ∈ C \NC(v) do18

tabuu ← tt(u)19

C ← C ⊕ PUSH(v);20

if l = 0 then21

C∗ ← C;22

Iter ← Iter + 1;23

end24

return C, C∗
25

13

3.5 Fast evaluation of move gains

As presented in Section 2.3, each neighbor solution relative to a current clique
leads to a move gain δ, which can be positive, null or negative. Since move
gain evaluations are frequent in the TS procedures, we elaborate a fast stream-
lining technique which enables a direct access to all possible δ values (i.e.,
corresponding to the insertion in the current clique of each candidate vertex),
as well as a fast update of the impacted move gains at each iteration. In this
section, we present this incremental evaluation mechanism.

Let us consider a vector ∆ = (δv)v∈V such that δv represents the move gain
W (C⊕Push(v))−W (C). According to the definition in Section 2.3, a PUSH
operation is composed of two basic operations: adding a vertex to the cur-
rent clique C (ADD), and possibly removing one or several vertices from C
(DROP). Pushing a vertex v into a clique C can be viewed as adding v in C
before removing from C every vertex which is not adjacent to v. Nevertheless
this decomposition implies to consider infeasible solutions between vertex in-
sertion and removals. We propose then to update incrementally ∆ after each
basic operation (ADD, DROP) by first removing from C the vertices which
are not adjacent to the pushed vertex v, and finally adding v to C.

If a vertex v′ is removed (dropped) from the current solution C, then the move
gain δu of any vertex u ∈ V is updated as follows:

∀u ∈ V, δu ←

δu + wv′ , if u ∈ N̄(v′)

wu , if u = v′

δu , otherwise

(4)

To speed up the update process, we use the complementary graph Ḡ of
the input graph G, so that N̄(v) sets can be explicitly defined. Since only
the move gains associated to vertices of N̄(v′) ∪ {v′} need to be updated,
the time complexity of updating ∆ after a DROP operation is bounded by
O(maxv∈V {|N̄(v)|}).

Similarly, when a vertex v is added into the current solution C, then ∆ is
updated as follows:

δu ←

δu − wv , if u ∈ N̄(v)

0 , if u = v

δu , otherwise

(5)

This operation is obviously also bounded in time by O(maxv∈V {|N̄(v)|}).

14

Thus updating the move gains after a PUSH operation can be performed
in O((maxv∈V {|N̄(v)|})2), since operation C ⊕ Push(v) involves one ADD
operation and |N̄C(v)| DROP operations, with |N̄C(v)| being bounded by
maxv∈V {|N̄(v)|}.

4 Computational experiments

This section is dedicated to an experimental assessment of the two tabu search
algorithms using the generalized PUSH operator. The assessment was based
on three sets of 142 well-known benchmark instances and comparisons with
state-of-the-art MVWCP algorithms.

4.1 Benchmarks

The three benchmark sets include the following instances: 80 DIMACS in-
stances, 40 BHOSLIB instances, and 22 instances from the Winner Determi-
nation Problem in combinatorial auctions.

• DIMACS benchmarks. This set of 80 instances originated from the sec-
ond DIMACS implementation challenge for the maximum clique problem 1 .
These instances cover both real world problems (coding theory, fault diag-
nosis, Steiner Triple Problem...) and random graphs. They include small
graphs (50 vertices and 1,000 edges) to large graphs (4,000 vertices and
5,000,000 edges). Though DIMACS graphs were originally collected for
benchmarking MCP algorithms, these graphs are still very popular and
widely used as a testbed for evaluating MVWCP algorithms [3,8,15,20,24,26].
Considering that vertices are unweighted in these instances, we assign to
each vertex i (i is an index number) the weight i mod 200 + 1, following
the rule in [20].
• BHOSLIB benchmarks. The BHOSLIB (Benchmarks with Hidden Opti-
mum Solutions) instances were generated randomly in the SAT phase tran-
sition area according to the model RB 2 . The 40 instances included in this
set were widely used to test MCP and MVWCP algorithms. The sizes of
these instances range from 450 vertices and 17,794 edges, to 1,534 vertices
and 127,011 edges. The weight of each vertex is assigned following the afore-
mentioned rule, i.e., i mod 200 + 1 for vertex i.
• Winner Determination Problem (WDP) benchmarks. The Winner
Determination Problem can be reformulated as a MVWCP and thus solved

1 http://www.cs.hbg.psu.edu/txn131/clique.html
2 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

15

by MVWCP solvers [28,29]. Therefore, benchmark instances for WDP can
also be used to test the performance of MVWCP solvers. Three sets of a total
number of 530 instances were reported in [28,29], from which we selected 22
representative instances 3 . Six in instances, whose number of vertices varies
among 1,000, 1,500 and 2,000, come from [13]; Ten Decay, Random, Uniform
and Wrandom instances are obtained from a generator [21]; Paths and
Regions instances are generated using the Combinatorial Auction Test Suite
(CATS, [14]). Contrary to the DIMACS and BHOSLIB instances which are
defined using integer weights, WDP weights are fractional.

4.2 Experimental protocol

As shown in Algorithms 1 to 3, ReTS-I and ReTS-II share two common pa-
rameters: the probability parameter ρ which controls the two types of restart,
and the maximum number L of consecutive non-improving iterations before
a restart. Besides, ReTS-II has one additional parameter which is the sample
size r. For our experiments, we used the following default values: L = 4, 000,
r = 50, and ρ = 0.7. We provide an analysis of ρ in Section 5. In general, we
observed that varying the parameter values around the default values did not
alter much the computational outcomes for most of the tested instances even
if some results can be further improved by fine-tuning the parameters.

ReTS-I and ReTS-II were coded in C++ 4 and compiled with g++ 4.4.7 with
optimization flag -o3. Our experiments were performed on a computer with
an AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Linux
2.6.32. When solving the DIMACS machine benchmarks 5 without compilation
optimization flag, the run time on our machine is 0.40, 2.50 and 9.55 seconds
respectively for instances r300.5, r400.5 and r500.5.

Following the literature [3,24,26], both algorithms were run 100 times to solve
each benchmark instance. For the DIMACS and BHOSLIB instances, a maxi-
mum of 108 iterations were allowed per run while for the WDP instances, the
stopping condition was set to be a cutoff time limit of 10 minutes per run. As
discussed in Section 4.4, these settings correspond to the computational effort
used by the state-of-the-art MVWCP algorithms in the literature.

3 www.info.univ-angers.fr/pub/hao/wdp.html
4 Our source code will be available at:
www.info.univ-angers.fr/pub/hao/ReTS.html.
5 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/

16

4.3 Computational results

Tables 1 to 3 report the computational results obtained by ReTS-I and ReTS-
II on the DIMACS, BHOSLIB and WDP instances respectively. In these ta-
bles, column BKV reports the best-known objective values (BKV) ever found
by the previous algorithms [3,8,20,24,26] (proven optima are indicated with
the star symbol ’*’ with the BKV values). For each algorithm, column best(hit)
indicates the best objective value W ∗ found by ReTS-I and ReTS-II among
100 trials as well as the number of trails hitting the best value (success rate);
column ave(std) denotes the average value and the standard deviation of the
100 W ∗ values; column time gives the average seconds of the trails hitting the
W ∗ value. The value of 0.00 in columns time indicates that the corresponding
average time in seconds is inferior to 0.005.

Table 1 discloses that ReTS-I and ReTS-II reach all the best-known results of
DIMACS instances except MANN a45 and MANN a81 (indicated in italic),
which are believed to be quite challenging for heuristic algorithms [8]. More-
over, for 73 out of 80 instances (> 91%), both algorithms attain the best-
known results in every single trial. For the remaining 7 instances except
MANN a45 and MANN a81, each algorithm still hits the best-known results
in more than 30 trials. In terms of computational time, most of these instances
are solved in less than 1 second. For the 3 hard MANN instances (MANN a27,
MANN a45, MANN a81), results are attained in 1 to 17 minutes.

From Table 2 on the BHOSLIB instances, one finds that ReTS-I and ReTS-
II improve the best-known result of the literature on frb53-24-3 (from 5,640
to 5,655). Although both algorithms attain the best-known solutions on 38
out of 40 instances, each algorithm fails to do so in 2 cases (frb50-23-4 and
frb56-25-5 for ReTS-I, frb56-23-3 and frb 56-23-4 for ReTS-II, indicated in
italic). Interestingly, both algorithms achieve a success rate of at least 93% on
the first 20 instances while the success rate drops to less than 50% on most
of the last 20 instances. Concerning the computational time, both algorithms
require more time to find the best-known solutions when the sizes of the
graphs increase, but each average time is inferior to 12 minutes. In general,
BHOSLIB instances are more difficult than DIMACS ones for ReTS-I and
ReTS-II, but both algorithms still perform quite well by attaining together all
the best-known results and finding even an improved best-known result (new
best lower bound).

Table 3 (WDP instances) shows that ReTS-I and ReTS-II attain the best-
known solutions on all WDP instances considered except the 4 Decay instances
and Paths2000 100 (in italic); for Paths2000 100, the algorithms have a success
rate of 88% and 76% respectively, while this rate drops to 10% or less for
the 4 Decay instances, confirming that these Decay instances are particularly

17

Table 1
Computational results of ReTS-I and ReTS-II on 80 DIMACS instances.

instance BKV
ReTS-I ReTS-II

best(hit) ave(std) time best(hit) ave(std) time
C1000.9 9254 9254(100) 9254.00(0.00) 2.50 9254(100) 9254.00(0.00) 1.73
C125.9 2529 2529(100) 2529.00(0.00) 0.00 2529(100) 2529.00(0.00) 0.00
C2000.5 2466 2466(100) 2466.00(0.00) 2.34 2466(100) 2466.00(0.00) 7.39
C2000.9 10999 10999(92) 10996.44(8.72) 417.56 10999(82) 10993.08(12.76) 474.23
C250.9 5092* 5092(100) 5092.00(0.00) 0.01 5092(100) 5092.00(0.00) 0.01
C4000.5 2792 2792(100) 2792.00(0.00) 116.05 2792(100) 2792.00(0.00) 298.05
C500.9 6955 6955(100) 6955.00(0.00) 0.06 6955(100) 6955.00(0.00) 0.08

DSJC1000 5 2186* 2186(100) 2186.00(0.00) 0.38 2186(100) 2186.00(0.00) 0.37
DSJC500 5 1725* 1725(100) 1725.00(0.00) 0.13 1725(100) 1725.00(0.00) 0.10
MANN a27 12283* 12283(78) 12282.78(0.41) 82.77 12283(99) 12282.99(0.10) 60.03
MANN a45 34265* 34259 (1) 34253.60(1.11) 157.98 34254 (58) 34253.43(0.74) 357.19
MANN a81 111386 111370 (1) 111351.19(6.63) 990.02 111277 (1) 111233.47(26.42) 477.75
MANN a9 372 372(100) 372.00(0.00) 0.00 372(100) 372.00(0.00) 0.00
brock200 1 2821 2821(100) 2821.00(0.00) 0.00 2821(100) 2821.00(0.00) 0.00
brock200 2 1428 1428(100) 1428.00(0.00) 0.00 1428(100) 1428.00(0.00) 0.00
brock200 3 2062 2062(100) 2062.00(0.00) 0.00 2062(100) 2062.00(0.00) 0.00
brock200 4 2107 2107(100) 2107.00(0.00) 0.00 2107(100) 2107.00(0.00) 0.00
brock400 1 3422* 3422(100) 3422.00(0.00) 0.04 3422(100) 3422.00(0.00) 0.05
brock400 2 3350* 3350(100) 3350.00(0.00) 0.04 3350(100) 3350.00(0.00) 0.07
brock400 3 3471* 3471(100) 3471.00(0.00) 0.07 3471(100) 3471.00(0.00) 0.06
brock400 4 3626* 3626(100) 3626.00(0.00) 2.04 3626(100) 3626.00(0.00) 1.43
brock800 1 3121* 3121(100) 3121.00(0.00) 0.14 3121(100) 3121.00(0.00) 0.20
brock800 2 3043* 3043(100) 3043.00(0.00) 0.39 3043(100) 3043.00(0.00) 0.61
brock800 3 3076* 3076(100) 3076.00(0.00) 0.39 3076(100) 3076.00(0.00) 0.51
brock800 4 2971* 2971(31) 2970.31(0.46) 835.03 2971(93) 2970.93(0.26) 506.41
c-fat200-1 1284 1284(100) 1284.00(0.00) 0.00 1284(100) 1284.00(0.00) 0.00
c-fat200-2 2411 2411(100) 2411.00(0.00) 0.00 2411(100) 2411.00(0.00) 0.00
c-fat200-5 5887 5887(100) 5887.00(0.00) 0.00 5887(100) 5887.00(0.00) 0.00
c-fat500-1 1354 1354(100) 1354.00(0.00) 0.01 1354(100) 1354.00(0.00) 0.01
c-fat500-10 11586 11586(100) 11586.00(0.00) 0.11 11586(100) 11586.00(0.00) 0.03
c-fat500-2 2628 2628(100) 2628.00(0.00) 0.02 2628(100) 2628.00(0.00) 0.01
c-fat500-5 5841 5841(100) 5841.00(0.00) 0.09 5841(100) 5841.00(0.00) 0.03

gen200 p0.9 44 5043* 5043(100) 5043.00(0.00) 0.00 5043(100) 5043.00(0.00) 0.00
gen200 p0.9 55 5416* 5416(100) 5416.00(0.00) 0.12 5416(100) 5416.00(0.00) 0.00
gen400 p0.9 55 6718 6718(100) 6718.00(0.00) 0.18 6718(100) 6718.00(0.00) 0.12
gen400 p0.9 65 6940 6940(100) 6940.00(0.00) 0.05 6940(100) 6940.00(0.00) 0.04
gen400 p0.9 75 8006* 8006(100) 8006.00(0.00) 0.03 8006(100) 8006.00(0.00) 0.02
hamming10-2 50512* 50512(100) 50512.00(0.00) 0.20 50512(100) 50512.00(0.00) 0.20
hamming10-4 5129 5129(100) 5129.00(0.00) 26.25 5129(100) 5129.00(0.00) 15.74
hamming6-2 1072 1072(100) 1072.00(0.00) 0.00 1072(100) 1072.00(0.00) 0.00
hamming6-4 134 134(100) 134.00(0.00) 0.00 134(100) 134.00(0.00) 0.00
hamming8-2 10976 10976(100) 10976.00(0.00) 0.01 10976(100) 10976.00(0.00) 0.01
hamming8-4 1472 1472(100) 1472.00(0.00) 0.00 1472(100) 1472.00(0.00) 0.00
johnson16-2-4 548 548(100) 548.00(0.00) 0.00 548(100) 548.00(0.00) 0.00
johnson32-2-4 2033* 2033(100) 2033.00(0.00) 0.04 2033(100) 2033.00(0.00) 0.04
johnson8-2-4 66 66(100) 66.00(0.00) 0.00 66(100) 66.00(0.00) 0.00
johnson8-4-4 511 511(100) 511.00(0.00) 0.00 511(100) 511.00(0.00) 0.00

keller4 1153 1153(100) 1153.00(0.00) 0.00 1153(100) 1153.00(0.00) 0.00
keller5 3317 3317(100) 3317.00(0.00) 1.12 3317(100) 3317.00(0.00) 0.33
keller6 8062 8062(100) 8062.00(0.00) 532.74 8062(96) 8059.91(10.78) 929.74

p hat1000-1 1514* 1514(100) 1514.00(0.00) 0.14 1514(100) 1514.00(0.00) 0.28
p hat1000-2 5777* 5777(100) 5777.00(0.00) 0.11 5777(100) 5777.00(0.00) 0.11
p hat1000-3 8111 8111(100) 8111.00(0.00) 0.19 8111(100) 8111.00(0.00) 0.21
p hat1500-1 1619* 1619(100) 1619.00(0.00) 0.32 1619(100) 1619.00(0.00) 0.39
p hat1500-2 7360 7360(100) 7360.00(0.00) 0.35 7360(100) 7360.00(0.00) 0.44
p hat1500-3 10321 10321(100) 10321.00(0.00) 2.06 10321(100) 10321.00(0.00) 0.50
p hat300-1 1057 1057(100) 1057.00(0.00) 0.00 1057(100) 1057.00(0.00) 0.00
p hat300-2 2487 2487(100) 2487.00(0.00) 0.01 2487(100) 2487.00(0.00) 0.01
p hat300-3 3774 3774(100) 3774.00(0.00) 0.01 3774(100) 3774.00(0.00) 0.01
p hat500-1 1231* 1231(100) 1231.00(0.00) 0.03 1231(100) 1231.00(0.00) 0.04
p hat500-2 3920* 3920(100) 3920.00(0.00) 0.02 3920(100) 3920.00(0.00) 0.03
p hat500-3 5375* 5375(100) 5375.00(0.00) 0.04 5375(100) 5375.00(0.00) 0.05
p hat700-1 1441* 1441(100) 1441.00(0.00) 0.04 1441(100) 1441.00(0.00) 0.05
p hat700-2 5290* 5290(100) 5290.00(0.00) 0.06 5290(100) 5290.00(0.00) 0.05
p hat700-3 7565 7565(100) 7565.00(0.00) 0.10 7565(100) 7565.00(0.00) 0.08
san1000 1716* 1716(100) 1716.00(0.00) 71.07 1716(100) 1716.00(0.00) 12.08

san200 0.7 1 3370 3370(100) 3370.00(0.00) 0.21 3370(100) 3370.00(0.00) 0.13
san200 0.7 2 2422* 2422(100) 2422.00(0.00) 0.04 2422(100) 2422.00(0.00) 0.01
san200 0.9 1 6825* 6825(100) 6825.00(0.00) 0.04 6825(100) 6825.00(0.00) 0.01
san200 0.9 2 6082* 6082(100) 6082.00(0.00) 0.00 6082(100) 6082.00(0.00) 0.00
san200 0.9 3 4748* 4748(100) 4748.00(0.00) 0.01 4748(100) 4748.00(0.00) 0.01
san400 0.5 1 1455 1455(100) 1455.00(0.00) 0.19 1455(100) 1455.00(0.00) 0.11
san400 0.7 1 3941* 3941(97) 3932.00(51.18) 172.04 3941(100) 3941.00(0.00) 74.66
san400 0.7 2 3110* 3110(97) 3105.26(26.95) 234.69 3110(100) 3110.00(0.00) 40.11
san400 0.7 3 2771* 2771(100) 2771.00(0.00) 0.41 2771(100) 2771.00(0.00) 0.07
san400 0.9 1 9776* 9776(100) 9776.00(0.00) 2.38 9776(100) 9776.00(0.00) 0.44
sanr200 0.7 2325* 2325(100) 2325.00(0.00) 0.00 2325(100) 2325.00(0.00) 0.00
sanr200 0.9 5126* 5126(100) 5126.00(0.00) 0.00 5126(100) 5126.00(0.00) 0.00
sanr400 0.5 1835* 1835(100) 1835.00(0.00) 0.02 1835(100) 1835.00(0.00) 0.02
sanr400 0.7 2992* 2992(100) 2992.00(0.00) 0.03 2990(100) 2990.00(0.00) 1.54

18

Table 2
Computational results of ReTS-I and ReTS-II on 40 BHOSLIB instances.

instance BKV
ReTS-I ReTS-II

best(hit) ave(std) time best(hit) ave(std) time
frb30-15-1 2990* 2990(100) 2990.00(0.00) 1.43 2990(100) 2990.00(0.00) 1.54
frb30-15-2 3006* 3006(100) 3006.00(0.00) 2.09 3006(100) 3006.00(0.00) 0.28
frb30-15-3 2995* 2995(100) 2995.00(0.00) 1.84 2995(100) 2995.00(0.00) 1.31
frb30-15-4 3032* 3032(100) 3032.00(0.00) 0.31 3032(100) 3032.00(0.00) 0.17
frb30-15-5 3011* 3011(100) 3011.00(0.00) 0.80 3011(100) 3011.00(0.00) 1.16
frb35-17-1 3650 3650(100) 3650.00(0.00) 5.10 3650(100) 3650.00(0.00) 3.19
frb35-17-2 3738 3738(100) 3738.00(0.00) 87.05 3738(100) 3738.00(0.00) 65.51
frb35-17-3 3716 3716(100) 3716.00(0.00) 22.26 3716(100) 3716.00(0.00) 10.17
frb35-17-4 3683 3683(100) 3683.00(0.00) 14.80 3683(100) 3683.00(0.00) 1.89
frb35-17-5 3686 3686(100) 3686.00(0.00) 2.70 3686(100) 3686.00(0.00) 6.40
frb40-19-1 4063 4063(100) 4063.00(0.00) 51.68 4063(100) 4063.00(0.00) 61.32
frb40-19-2 4112 4112(100) 4112.00(0.00) 71.72 4112(100) 4112.00(0.00) 73.87
frb40-19-3 4115 4115(99) 4114.94(0.60) 127.00 4115(100) 4115.00(0.00) 79.66
frb40-19-4 4136 4136(98) 4135.92(0.56) 160.48 4136(100) 4136.00(0.00) 44.45
frb40-19-5 4118 4118(100) 4118.00(0.00) 34.72 4118(98) 4117.96(0.28) 208.18
frb45-21-1 4760 4760(98) 4759.76(1.68) 161.39 4760(93) 4759.10(3.29) 231.63
frb45-21-2 4784 4784(100) 4784.00(0.00) 68.11 4784(100) 4784.00(0.00) 35.50
frb45-21-3 4765 4765(90) 4764.80(0.60) 253.27 4765(100) 4765.00(0.00) 53.80
frb45-21-4 4799 4799(100) 4799.00(0.00) 105.52 4799(100) 4799.00(0.00) 31.81
frb45-21-5 4779 4779(100) 4779.00(0.00) 11.23 4779(100) 4779.00(0.00) 10.56
frb50-23-1 5494 5494(4) 5485.18(4.01) 154.05 5494(4) 5482.58(5.64) 590.72
frb50-23-2 5462 5462(9) 5451.94(3.20) 393.53 5462(44) 5455.27(6.08) 458.97
frb50-23-3 5486 5486(57) 5485.24(1.59) 358.92 5486(87) 5485.82(0.50) 292.35
frb50-23-4 5454 5453 (91) 5452.54(1.48) 243.84 5454(6) 5450.70(4.36) 548.32
frb50-23-5 5498 5498(100) 5498.00(0.00) 118.21 5498(94) 5497.31(2.80) 277.51
frb53-24-1 5670 5670(33) 5661.37(8.67) 349.95 5670(58) 5664.29(8.05) 325.66
frb53-24-2 5707 5707(1) 5685.28(8.73) 880.86 5707(5) 5689.22(10.82) 415.40
frb53-24-3 5640 5655(3) 5636.51(6.54) 417.69 5655(3) 5632.08(8.50) 457.64
frb53-24-4 5714 5714(4) 5696.85(17.10) 421.52 5714(7) 5693.46(17.38) 402.50
frb53-24-5 5659 5659(1) 5651.39(2.96) 777.93 5659(5) 5649.69(6.01) 381.24
frb56-25-1 5916 5916(59) 5906.48(14.25) 344.18 5916(51) 5900.01(18.76) 428.24
frb56-25-2 5886 5886(9) 5873.03(8.70) 516.06 5886(37) 5878.44(8.03) 470.10
frb56-25-3 5859 5859(1) 5832.31(13.27) 450.99 5854 (1) 5821.85(14.57) 30.19
frb56-25-4 5892 5892(2) 5866.11(13.48) 477.79 5885 (2) 5856.77(13.99) 449.13
frb56-25-5 5853 5841 (1) 5812.23(9.32) 354.28 5853(2) 5816.87(13.86) 514.91
frb59-26-1 6591 6591(20) 6578.65(7.24) 521.08 6591(32) 6576.59(11.57) 432.31
frb59-26-2 6645 6645(13) 6589.14(25.69) 505.28 6645(25) 6599.84(30.81) 660.05
frb59-26-3 6608 6608(1) 6579.05(13.05) 973.94 6608(25) 6593.63(12.32) 455.84
frb59-26-4 6592 6592(71) 6585.08(12.12) 377.92 6592(18) 6565.23(20.67) 541.34
frb59-26-5 6584 6584(3) 6558.48(10.04) 320.54 6584(9) 6563.39(10.95) 399.46

hard [21]. Actually, as shown in Section 4.4, these instances also represent
a challenge for one of the best performing reference heuristics MN/TS [26].
Finally, one observes that ReTS-II attains the best-known results every run
on the in instances in less than 4 seconds, while ReTS-I fails to consistently
hit the best results and requires longer computing times for these instances.
Nevertheless we cannot claim that ReTS-II always dominates ReTS-I since
the latter performs better on Uniform2000 400 10 in terms of successful trials
and computing time.

19

T
ab

le
3

C
om

p
u
ta
ti
on

al
re
su
lt
s
of

R
eT

S
-I

an
d
R
eT

S
-I
I
o
n
2
2
se
le
ct
ed

W
D
P

in
st
a
n
ce
s.

in
st
a
n
ce

B
K
V

R
eT

S
-I

R
eT

S
-I
I

be
st
(h

it
)

a
v
e(
st
d
)

ti
m
e

be
st
(h

it
)

a
v
e(
st
d
)

ti
m
e

in
1
0
1

7
2
7
2
4
.6
1

7
2
7
2
4
.6
2
(6
3
)

7
2
2
4
3
.6
8
(7
3
1
.2
4
)

2
1
6
.9
2

7
2
7
2
4
.6
2
(1
0
0
)

7
2
7
2
4
.6
2
(0
.0
0
)

0
.3
1

in
1
0
8

7
5
8
1
3
.2
1

7
5
8
1
3
.2
1
(1
0
0
)

7
5
8
1
3
.2
1
(0
.0
0
)

5
.0
2

7
5
8
1
3
.2
1
(1
0
0
)

7
5
8
1
3
.2
1
(0
.0
0
)

1
.8
7

in
1
1
5

7
0
2
2
1
.5
6

7
0
2
2
1
.5
6
(7
6
)

7
0
1
4
9
.2
1
(1
2
8
.7
5
)

2
3
4
.3
0

7
0
2
2
1
.5
6
(1
0
0
)

7
0
2
2
1
.5
6
(0
.0
0
)

1
.7
6

in
2
0
1

8
1
5
5
7
.7
4

8
1
5
5
7
.7
4
(1
0
0
)

8
1
5
5
7
.7
4
(0
.0
0
)

2
.3
5

8
1
5
5
7
.7
4
(1
0
0
)

8
1
5
5
7
.7
4
(0
.0
0
)

0
.4
1

in
2
0
7

9
3
1
2
9
.2
5

9
3
1
2
9
.2
5
(1
0
0
)

9
3
1
2
9
.2
5
(0
.0
0
)

1
1
.5
7

9
3
1
2
9
.2
5
(1
0
0
)

9
3
1
2
9
.2
5
(0
.0
0
)

0
.6
5

in
2
0
9

8
7
2
6
8
.9
6

8
7
2
6
8
.9
6
(1
1
)

8
6
8
1
2
.2
5
(1
6
0
.5
7
)

2
5
4
.6
5

8
7
2
6
8
.9
6
(1
0
0
)

8
7
2
6
8
.9
6
(0
.0
0
)

0
.9
8

in
4
0
1

7
7
4
1
7
.4
8
*

7
7
4
1
7
.4
8
(1
0
0
)

7
7
4
1
7
.4
8
(0
.0
0
)

0
.6
9

7
7
4
1
7
.4
8
(1
0
0
)

7
7
4
1
7
.4
8
(0
.0
0
)

0
.0
4

in
4
0
3

7
4
8
4
3
.9
6
*

7
4
8
4
3
.9
6
(1
0
0
)

7
4
8
4
3
.9
6
(0
.0
0
)

0
.0
5

7
4
8
4
3
.9
6
(1
0
0
)

7
4
8
4
3
.9
6
(0
.0
0
)

0
.0
4

in
4
0
4

7
8
7
6
1
.6
9
*

7
8
7
6
1
.6
9
(1
0
0
)

7
8
7
6
1
.6
9
(0
.0
0
)

0
.4
8

7
8
7
6
1
.6
9
(1
0
0
)

7
8
7
6
1
.6
9
(0
.0
0
)

0
.1
4

in
6
0
1

1
0
8
8
0
0
.4
5

1
0
8
8
0
0
.4
5
(1
0
0
)

1
0
8
8
0
0
.4
5
(0
.0
0
)

7
6
.2
6

1
0
8
8
0
0
.4
5
(1
0
0
)

1
0
8
8
0
0
.4
5
(0
.0
0
)

3
.3
4

in
6
0
4

1
0
7
7
3
3
.8
0

1
0
7
7
3
3
.8
0
(4
0
)

1
0
7
0
6
2
.4
0
(5
4
8
.2
0
)

2
5
7
.7
6

1
0
7
7
3
3
.8
0
(1
0
0
)

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.9
0

in
6
1
4

1
0
8
3
6
4
.5
8

1
0
8
3
6
4
.5
8
(1
0
0
)

1
0
8
3
6
4
.5
8
(0
.0
0
)

2
4
.6
6

1
0
8
3
6
4
.5
8
(1
0
0
)

1
0
8
3
6
4
.5
8
(0
.0
0
)

0
.8
4

D
ec
a
y
2
0
0
0
2
0
0

1
5
9
.6
7
*

1
5
6
.9
7
(1
0
)

1
5
4
.6
3
(0
.9
1
)

4
9
6
.6
8

1
5
7
.3
4
(4
)

1
5
5
.9
9
(0
.5
2
)

2
1
5
.5
7

D
ec
a
y
2
0
0
0
3
0
0

2
2
6
.8
2
*

2
2
1
.1
7
(1
)

2
1
8
.4
6
(1
.2
4
)

1
1
6
.7
2

2
2
1
.9
2
(9
)

2
1
9
.7
4
(0
.7
7
)

2
0
1
.1
9

D
ec
a
y
2
0
0
0
4
0
0

2
7
7
.0
1
*

2
7
0
.9
0
(5
)

2
6
7
.7
9
(1
.3
6
)

1
2
7
.1
4

2
7
1
.1
6
(5
)

2
6
9
.8
5
(0
.6
5
)

4
9
5
.2
6

D
ec
a
y
2
0
0
0
5
0
0

3
4
0
.8
1
*

3
3
4
.3
6
(1
)

3
3
0
.1
2
(1
.4
5
)

1
1
4
.0
2

3
3
3
.8
0
(5
)

3
3
0
.7
7
(1
.0
9
)

5
5
2
.0
7

R
a
n
d
o
m
2
0
0
0
5
0
0

1
2
.6
3
*

1
2
.6
3
(1
0
0
)

1
2
.6
3
(0
.0
0
)

0
.1
9

1
2
.6
3
(1
0
0
)

1
2
.6
3
(0
.0
0
)

0
.1
8

U
n
if
o
rm

2
0
0
0
4
0
0
1
0

2
2
.0
2

2
2
.0
2
(1
0
0
)

2
2
.0
2
(0
.0
0
)

8
3
.7
6

2
2
.0
2
(9
0
)

2
2
.0
0
(0
.0
6
)

1
9
7
.0
4

U
n
if
o
rm

2
0
0
0
5
0
0
1
0

2
6
.5
6

2
6
.5
6
(1
0
0
)

2
6
.5
5
(0
.0
3
)

2
4
4
.5
4

2
6
.5
6
(1
0
0
)

2
6
.5
0
(0
.0
7
)

2
9
4
.1
5

W
ra
n
d
o
m
2
0
0
0
5
0
0

3
7
.6
9
*

3
7
.6
9
(1
0
0
)

3
7
.6
9
(0
.0
0
)

0
.2
0

3
7
.6
9
(1
0
0
)

3
7
.6
9
(0
.0
0
)

0
.1
9

P
a
th

s2
0
0
0
1
0
0

3
6
.7
7
*

3
5
.5
6
(8
8
)

3
5
.1
3
(0
.1
3
)

4
5
.9
0

3
6
.3
2
(7
2
)

3
6
.0
5
(0
.0
9
)

5
4
.5
3

R
eg

io
n
s2
0
0
0
4
0

4
5
5
8
.9
0
*

4
5
5
8
.9
0
(1
9
)

4
5
0
3
.9
4
(3
5
.2
5
)

2
2
3
.7
9

4
5
5
8
.9
0
(5
4
)

4
5
4
0
.0
9
(2
2
.6
9
)

2
2
0
.7
5

20

4.4 Comparisons with state-of-the-art algorithms

As indicated in the introduction, a large number of heuristic algorithms for
the Maximum Vertex Weight Clique Problem have been reported in the liter-
ature, including particularly AugSearch [15], HSSGA [22], PLS [20], MN/TS
[26], BLS [3], and BQP-PTS[24]. To further assess the performance of the pro-
posed approach, we compared ReTS-I and ReTS-II with three state-of-the-art
algorithms (MN/TS, BLS and BQP-TS). Besides, these reference algorithms
have been run on computing platforms which are the same as or very similar
to our computer (2.8GHz and 2GB RAM running Linux 2.6.32). For the WDP
instances, we used CPLEX as an additional reference as it achieves more com-
petitive results than heuristic algorithms on some specific instances [28]. Since
CPLEX did not perform well on DIMACS and BHOSLIB instances [8], it was
not used for our comparisons for these two benchmarks.

• MN/TS is a tabu search algorithm with multiple move operators, designed
for solving both MCP and MVWCP [26]. The results reported for MN/TS
on the DIMACS and BHOSLIB instances have been obtained using a max-
imum of 108 iterations per run (on a computer cadenced at 2.83GHz and
8GB RAM). Besides, the results of MN/TS on the WDP instances within
300 seconds per run were reported in [28]. Each instance was solved for 100
independent trials in all these experiments. Thus, both the stopping condi-
tion and the computing platform are almost the same as those used in our
experiments.
• BLS (Breakout Local Search) incorporates an adaptive perturbation strat-
egy for the resolution of MCP and MVWCP [3]. BLS reported compu-
tational results on the sets of DIMACS and BHOSLIB benchmarks, by
running the algorithm 100 times on each instance on the same computing
platform as our algorithms (2.83GHZ Xeon E5440 CPU and 2GB RAM).
The stopping condition for each of the 100 runs was set to 1.6× 108 itera-
tions, which was superior to the computational limit used by MN/TS and
our algorithms.
• BQP-PTS is a probabilistic tabu search algorithm designed for solving un-
constrained Binary Quadratic Programs (BQP) [24]. To solve the MVWCP
instances, each instance is first recast into a BQP which is then solved by the
probabilistic tabu search algorithm. The DIMACS and BHOSLIB instances
were tested by this method on a PC with a Pentium 2.83GHz CPU and
2GB RAM. Each benchmark instance was solved by 100 independent trails,
each trail being limited to 3,600 seconds, but extended to 36,000 seconds
for large instances C4000.5, MABNN a27, MANN a45, MANN a81.
• CPLEX. For the WDP instances, we include the results reported in [28],
which were obtained by the exact solver, CPLEX 12.4, within a maximum
of 3600 seconds on a PC cadenced at 2.83GHz with 8GB of RAM.

21

T
ab

le
4

E
x
p
er
im

en
ta
l
re
su
lt
s
of

R
eT

S
-I
an

d
R
eT

S
-I
I
in

co
m
p
a
ri
so
n
w
it
h
3
re
fe
re
n
ce

a
lg
o
ri
th
m
s
o
n
2
7
se
le
ct
ed

D
IM

A
C
S
a
n
d
B
H
O
S
L
IB

in
st
an

ce
s.

R
eT

S
-I

R
eT

S
-I
I

M
N
/
T
S

B
L
S

B
Q
P
-P

T
S

in
st
an

ce
s

B
K
V

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

C
20
00
.9

10
99

9
0

92
41

7.
56

0
8
2

4
7
4
.2
3

0
7
2

1
6
8
.1
1

0
7
4

1
1
5
2
.7
8

0
7
2

2
7
11
.9
7

M
A
N
N

a2
7

12
28
3*

0
78

82
.7
7

0
9
9

6
0
.0
3

-2
1

8
8
.2
8

-2
1
6

3
9
6
.5
8

-6
4

1
22
64

M
A
N
N

a4
5

34
26
5*

-6
1

15
7.
98

-1
3

5
8

3
5
7
.1
9

-7
3

1
3
9
0
.5
8

-3
6

1
9
2
9
.4
1

-7
1

2
1
7
52
4.
05

M
A
N
N

a8
1

11
13
86

-1
6

1
99

0.
02

-1
0
9

1
4
7
7
.7
5

-2
5
8

1
8
3
2
.2
4

-1
4
9

1
2
9
4
2
.5
4

-2
4
9

1
6
16
7.
28

p
h
at
10
00
-3

81
11

0
10

0
0.
19

0
1
0
0

0
.2
1

0
9
6

1
8
8
.3
8

0
1
0
0

1
.7
8

0
1
0
0

0.
65

b
ro
ck
80
0
4

29
71

*
0

31
83

5.
03

0
9
3

5
0
6
.4
1

0
1
0
0

4
9
.7
0

0
1
0
0

3
3
9
.0
7

0
8

1
0
5.
35

ke
ll
er
6

80
62

0
10

0
53

2.
74

0
9
6

9
2
9
.7
4

0
5

6
0
6
.1
5

0
4
4

1
9
8
0
.1
6

0
2

3
41
8.
36

fr
b
50
-2
3-
1

54
94

0
4

15
4.
05

0
4

5
9
0
.7
2

0
6

1
8
6
.6
2

0
1
1

1
2
2
1
.7
2

0
2
0

1
9
11
.4
9

fr
b
50
-2
3-
2

54
62

0
9

39
3.
53

0
4
4

4
5
8
.9
7

0
3

1
4
9
6
6

0
5

2
8
3
7
.7
4

0
1
5

2
3
38
.4
0

fr
b
50
-2
3-
3

54
86

0
57

35
8.
92

0
8
7

2
9
2
.3
5

0
5
3

1
5
8
.7
1

0
9
8

5
3
7
.9
6

0
1
0
0

4
1
8.
35

fr
b
50
-2
3-
4

54
54

-1
91

24
3.
84

0
6

5
4
8
.3
2

0
9

1
7
6
.4
1

0
1
4

1
1
9
0
.4
3

0
2
8

1
9
57
.2
2

fr
b
50
-2
3-
5

54
98

0
10

0
11

8.
21

0
9
4

2
7
7
.5
1

0
8
9

1
1
0
.8
5

0
1
0
0

3
8
8
.1
8

0
1
0
0

7
5
1.
84

fr
b
53
-2
4-
1

56
70

0
33

34
9.
95

0
5
8

3
2
5
.6
6

0
5

2
3
3
.2
2

0
1
3

1
0
5
6
.8
2

0
4
3

9
81
.3
3

fr
b
53
-2
4-
2

57
07

0
1

88
0.
86

0
5

4
1
5
.4
0

0
6

1
4
5
.2
2

0
3

1
4
7
.6
5

0
2
5

1
2
65
.7
0

fr
b
53
-2
4-
3

56
40

1
5

3
41

7.
69

1
5

3
4
5
7
.6
4

0
1
5

2
1
5
.7
9

0
4
8

9
8
4
.5
3

0
9
0

1
4
86
.2
4

fr
b
53
-2
4-
4

57
14

0
4

42
1.
52

0
7

4
0
2
.5
0

0
7

4
4
9
.3
9

0
1
3

1
6
0
4
.5
0

0
2
5

1
7
53
.3
6

fr
b
53
-2
4-
5

56
59

0
1

77
7.
93

0
5

3
8
1
.2
4

0
5

2
9
4
.0
0

0
4

2
7
8
.9
1

0
6

2
80
2.
83

fr
b
56
-2
5-
1

59
16

0
59

34
4.
18

0
5
1

4
2
8
.2
4

0
3

3
0
8
.9
0

0
5

1
7
6
4
.8
7

0
1
9

1
0
35
.0
0

fr
b
56
-2
5-
2

58
86

0
9

51
6.
06

0
3
7

4
7
0
.1
0

-1
4

1
7
3
.2
5

0
1

1
0
1
3
.8
5

0
3

1
42
8.
18

fr
b
56
-2
5-
3

58
59

0
1

45
0.
99

-5
1

3
0
.1
9

0
1

1
9
1
.9
3

0
1

1
0
1
.4
8

0
5

1
75
6.
22

fr
b
56
-2
5-
4

58
92

0
2

47
7.
79

-7
2

4
4
9
.1
3

0
3

1
0
4
.5
8

0
1
2

1
2
5
6
.9

0
5

1
75
6.
22

fr
b
56
-2
5-
5

58
53

-1
2

1
35

4.
28

0
2

5
1
4
.9
1

0
1

3
2
2
.7
0

0
1

4
3
8
6
.6

0
1

3
54
9.
57

fr
b
59
-2
6-
1

65
91

0
20

52
1.
08

0
3
2

4
3
2
.3
1

0
3

1
6
6
.2
0

0
1
7

1
4
3
5
.9
9

0
6
7

2
2
28
.2
1

fr
b
59
-2
6-
2

66
45

0
13

50
5.
28

0
2
5

6
6
0
.0
5

0
3

2
1
2
.4
9

0
1
3

1
8
3
4
.9
3

0
4
0

1
8
20
.5
6

fr
b
59
-2
6-
3

66
08

0
1

97
3.
94

0
2
5

4
5
5
.8
4

0
1

2
3
2
.7
7

0
1

5
0
7
.9
3

0
1

2
56
1.
16

fr
b
59
-2
6-
4

65
92

0
71

37
7.
92

0
1
8

5
4
1
.3
4

0
1

3
1
8
.3
9

0
6

9
5
2
.3
4

0
5

3
32
2.
64

fr
b
59
-2
6-
5

65
84

0
3

32
0.
54

0
9

3
9
9
.4
6

0
1

1
6
1
.4
7

0
5

1
5
1
2
.0
9

0
9

7
4
7.
80

22

Table 5
Improved results of ReTS-I on frb50-23-4 and frb56-25-5 and improved results of
ReTS-II on frb56-25-3 and frb56-25-4 with an extended cutoff time limit.

solver instance BKV best(hit) ave(std) time

ReTS-I
frb50-23-4 5454 5454(3) 5452.99(0.44) 504.07
frb56-25-5 5853 5853(5) 5820.14(14.23) 763.00

ReTS-II
frb56-25-3 5859 5859(2) 5831.98(14.07) 1386.24
frb56-25-4 5885 5885(5) 5863.16(13.09) 1003.07

Considering that MN/TS, BLS and BQP-PTS have a 100% success rate on
most of the DIMACS instances in less than 1 second, we selected 7 hard and
representative instances from this set in order to summarize the performances
of the 5 compared algorithms. Moreover, as indicated in Section 4.3, the last 20
instances of BHOSLIB are more challenging for ReTS-I and ReTS-II than the
first 20 instances, we only highlight the comparative results on these last 20
instances. The results of this comparison are summarized in Table 4. Column
gap represents the gap between the objective value of the best solution found
by an algorithm and the best-known value in the literature (BKV). A positive
(negative) gap value indicates a better (worse) result compared to the current
best-known value.

Table 4 indicates that both ReTS-I and ReTS-II attain better results than
the 3 reference algorithms on 4 instances (highlighted in bold font). Though
the MANN aXX instances were reported as challenging for heuristic algo-
rithms, ReTS-I and ReTS-II reach the optimal solution of MANN a27 and
better solutions on MANN a45 and MANN a81. BLS and BQP-PTS reach
the best-known solutions for all other instances while the other algorithms
fail on 1 or 2 instances. However, they achieve such a performance by using a
larger cutoff time, which is also confirmed by the fact that the average time of
BLS and BQP-PTS is significantly longer than the 3 other algorithms. In an
additional experiment, we used a maximum of 1.6×108 iterations per run (the
same condition as that used by BLS) and re-ran ReTS-I to solve frb53-23-4
and frb56-2-5, ReTS-II to solve frb56-25-3 (setting ρ = 0.3 in this case) and
frb56-25-4. The results, shown in Table 5, indicate that ReTS-I and ReTS-II,
like BLS and BQP-PTS, are also able to hit all the BKVs with a similar com-
putational effort. Finally, we observe that MN/TS is the most time effective
heuristic among the compared algorithms.

To further compare the competing algorithms, we extract the rows from Table
4 where gap = 0 for all 5 algorithms (18 rows in total), and recalculate the
average number of the best trials (hits) for these 18 rows. Results are shown in
Table 6, and indicate that ReTS-II and ReTS-I are the most robust algorithms,
followed by BQP-PTS, BLS and MN/TS. We conclude thus that ReTS-I and
ReTS-II compete favorably compared to the reference algorithms in terms
of solution quality, robustness and computational time on the DIMACS and
BHOSLIB instances.

23

Table 6
Average hits on 18 selected instances.

ReTS-I ReTS-II MN/TS BLS BQP-PTS

38.8 46.4 25.5 34.0 36.5

Finally, Table 7 summarizes the results of ReTS-I, ReTS-II, MN/TS and
CPLEX on 10 representative WDP instances, including the most challeng-
ing ones (with respect to results taken from Table 3). If we look at the solu-
tion quality, we observe that the three heuristic algorithms (ReTS-I, ReTS-II,
MN/TS) attain the best-known solutions for the tested in instances (in101,
in108, in109) and the unique Uniform2000 400 10 instance while CPLEX fails
to solve these instances. However, CPLEX is able to find the optimum solu-
tions of Decay2000 yyy and Paths2000 100, contrary to the three heuristic
methods. Among the compared heuristic algorithms, ReTS-I finds the best
solution on 1 instance, ReTS-II on 2 instances and MN/TS on 2 (marked
by bold font). Therefore, no algorithm outperforms the other algorithms in
terms of solution quality and computational time. So, on the WDP instances,
ReTS-I, ReTS-II and MN/TS perform similarly. Finally, this experiment con-
firms that exact solvers like CPLEX and heuristics like ReTS-I, ReTS-II and
MN/TS are complementary solution methods and together can enlarge the
class of MVWCP instances that can be solved effectively.

5 Effectiveness of restart strategy

As shown in Section 3, the proposed approach uses a restart strategy to dis-
place the search to new regions when a deep local optimum is attained by
tabu search (Alg. 1, lines 6-9). The restart strategy initializes the new start-
ing solution of the next round of TS with either the reconstruction procedure
(Section 3.2) or the random procedure (Section 3.1). The choice between these
two restarting procedures is determined with a probability ρ. Intuitively, the
reconstruction procedure leads the search to a nearby region (since it is guided
by means of the objective function), while the random procedure diversifies
more strongly the search.

In this section, we investigate the impact of the joint use of these two restart
procedures by testing various probabilistic values ρ ∈ {k/10} (k ∈ J1, 10K).
The two extreme values ρ = 0 and ρ = 1 correspond to the cases where
only the random or the reconstruction procedure is applied. This study was
based on 7 representative instances selected from the 3 benchmark sets. Each
instance was solved 20 times by ReTS-I and ReTS-II with a given ρ value,
each run being limited to 120 seconds.

24

T
ab

le
7

C
om

p
ar
is
on

of
ou

r
R
eT

S
-I

an
d
R
eT

S
-I
I
al
g
o
ri
th
m
s
w
it
h
M
N
/
T
S
,
C
P
L
E
X

o
n
th
e
W

D
P

in
st
a
n
ce
s

R
eT

S
-I

R
eT

S
-I
I

M
N
/
T
S

C
P
L
E
X

in
st
an

ce
s

B
K
V

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

g
a
p

h
it

ti
m
e

g
a
p

ti
m
e

in
10
1

72
72

4.
61

0
6
3

2
1
6
.9
2

0
1
0
0

0
.3
1

0
1
0
0

5
.4
6

-5
6
2
2
.6
7

3
6
0
0

in
10
8

75
81

3.
21

0
1
0
0

5
.0
2

0
1
0
0

1
.8
7

0
7
3

1
1
3
.5
3

-1
1
7
5
.4
2

3
6
0
0

in
20
9

87
26

8.
96

0
1
1

2
5
4
.6
5

0
1
0
0

0
.9
8

0
1
0
0

1
1
.2
5

-4
1
0
2
.5
7

3
6
0
0

D
ec
ay

20
00

20
0

15
9.
67

*
-2
.7
0

1
0

4
9
6
.6
8

-2
.3
3

3
2
1
5
.5
7

-0
.4
9

3
2
2
0
.0
1

0
0
.3
9

D
ec
ay

20
00

30
0

22
6.
82

*
-5
.6
5

1
1
1
6
.7
2

-4
.9

9
2
0
1
.1
9

-6
.1
6

1
2
2
6
.2
3

0
0
.7
0

D
ec
ay

20
00

40
0

27
7.
01

*
-1
0
.1
1

5
1
2
7
.1
4

-6
.7
4

5
4
9
5
.2
6

-1
1
.1
4

1
2
5
6
.6
6

0
0
.7
2

D
ec
ay

20
00

50
0

34
0.
81

*
-6

.4
5

1
1
1
4
.0
2

-7
.0
1

5
5
5
2
.0
7

-2
4
.7
0

1
1
8
9
.3
6

0
1
.2
3

U
n
if
or
m
20
00

40
0
10

22
.0
2

0
1
0
0

8
3
.7
6

0
9
0

1
9
7
.0
4

0
1
0
0

7
9
.7
0

-2
.8
4

3
6
0
0

P
at
h
s2
00
0
10

0
36

.7
7*

-1
.2
1

8
8

4
5
.9
0

-0
.4
5

7
2

5
4
.5
3

-0
.3
6

1
2
2
5
.3
9

0
0
.0
9

R
eg
io
n
s2
00

0
40

45
58

.9
0

0
1
9

2
2
3
.7
9

0
5
4

2
2
0
.7
5

0
1
0
0

4
.6
3

0
0
.2
2

25

T
ab

le
8

Im
p
ac
t
of

th
e
p
ar
am

et
er

ρ
on

th
e
re
su
lt
s
of

R
eT

S
-I

a
n
d
R
eT

S
-I
I

A
lg
o
ri
th

m
ρ

in
6
0
4

D
ec
a
y
2
0
0
0
5
0
0

C
2
0
0
0
.9

M
A
N
N

a
4
5

k
el
le
r6

fr
b
5
0
-2
3
-2

fr
b
5
9
-2
6
-5

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

R
eT

S
-I

0
1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.0
7

3
3
0
.5
9
(2
.2
1
)
2
4
.3
7

1
0
9
4
7
.4
5
(3
3
.7
2
)
5
4
.1
4

3
4
1
7
5
.8
0
(5
.8
2
)

4
4
.1
7

7
8
1
8
.5
0
(1
0
5
.2
0
)
5
7
.8
8

5
4
4
6
.2
0
(7
.3
7
)

4
9
.4
2

6
5
3
9
.6
5
(1
5
.1
3
)
4
8
.7
4

0
.1

1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.6
0

3
2
9
.0
9
(1
.2
6
)
2
5
.0
8

1
0
9
5
1
.2
0
(3
7
.2
0
)
5
9
.4
3

3
4
2
3
5
.9
5
(4
.9
3
)

5
5
.5
5

7
8
4
1
.0
5
(1
0
3
.1
4
)
5
9
.3
4

5
4
4
5
.2
0
(8
.3
3
)

5
3
.6
0

6
5
3
0
.8
0
(1
2
.5
2
)
5
6
.8
3

0
.2

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.4
5

3
2
9
.3
2
(1
.3
6
)
3
7
.7
9

1
0
9
4
6
.6
0
(2
9
.5
4
)
4
4
.8
6

3
4
2
4
1
.7
5
(3
.0
8
)

4
9
.9
2

7
8
5
6
.1
5
(8
6
.9
0
)

6
0
.7
0

5
4
4
6
.8
0
(6
.3
8
)

6
3
.4
8

6
5
3
5
.8
0
(1
2
.3
4
)
4
6
.7
4

0
.3

1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.3
8

3
2
9
.7
5
(1
.4
5
)
3
8
.6
9

1
0
9
3
7
.2
0
(2
5
.0
6
)
5
7
.1
0

3
4
2
4
4
.5
5
(3
.0
1
)

6
3
.8
0

7
8
6
1
.8
5
(8
1
.0
5
)

6
6
.0
2

5
4
4
5
.1
0
(7
.3
9
)

5
9
.9
1

6
5
3
8
.9
0
(1
6
.7
3
)
4
8
.7
4

0
.4

1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.1
2

3
2
9
.3
0
(1
.1
2
)
3
5
.8
8

1
0
9
5
8
.3
5
(3
4
.9
0
)
6
6
.1
2

3
4
2
4
7
.1
5
(3
.9
5
)

5
3
.1
3

7
8
0
9
.7
5
(6
9
.2
6
)

6
2
.9
3

5
4
4
3
.7
5
(9
.0
9
)

5
4
.2
6

6
5
3
9
.0
5
(1
5
.5
5
)
5
8
.7
8

0
.5

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.0
7

3
2
9
.9
7
(1
.4
0
)
2
7
.3
7

1
0
9
3
5
.8
5
(2
9
.4
3
)
6
5
.6
0

3
4
2
4
9
.3
0
(3
.7
4
)

4
0
.5
7

7
8
6
6
.2
5
(1
0
0
.8
2
)
7
2
.5
2

5
4
4
6
.3
5
(7
.5
3
)

6
1
.5
4

6
5
4
1
.4
5
(1
5
.7
2
)
5
0
.7
8

0
.6

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.7
5

3
2
9
.6
9
(1
.0
5
)
4
5
.9
6

1
0
9
5
0
.0
5
(2
7
.0
0
)
5
2
.8
2

3
4
2
5
0
.7
0
(2
.4
3
)

5
4
.4
4

7
8
4
5
.9
0
(9
6
.0
6
)

5
0
.9
1

5
4
4
8
.6
5
(3
.6
4
)

5
3
.8
5

6
5
3
7
.5
0
(1
0
.5
7
)
6
9
.1
9

0
.7

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.7
6

3
3
0
.0
3
(1
.7
1
)
3
8
.2
2

1
0
9
5
6
.5
0
(2
6
.8
2
)
5
5
.7
5

3
4
2
5
1
.8
5
(1
.9
3
)

3
8
.7
8

7
8
9
9
.1
0
(1
0
2
.4
2
)
5
3
.6
5

5
4
3
9
.6
0
(8
.2
1
)

4
4
.1
7

6
5
4
3
.9
5
(1
3
.6
5
)
4
1
.1
2

0
.8

1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.3
4

3
2
9
.6
9
(1
.2
6
)
3
8
.4
6

1
0
9
3
4
.0
5
(2
9
.8
8
)
4
2
.4
3

3
4
2
5
2
.6
5
(0
.8
5
)

5
0
.0
9

7
8
8
3
.5
5
(8
8
.7
5
)

5
6
.2
9

5
4
4
5
.3
0
(8
.5
9
)

5
3
.9
7

6
5
4
4
.6
0
(1
3
.7
1
)
5
4
.7
1

0
.9

1
0
7
7
3
3
.8
0
(0
.0
0
)

2
.5
4

3
3
0
.1
6
(1
.1
1
)
5
2
.6
1

1
0
9
4
3
.7
0
(3
6
.1
2
)
7
2
.0
1

3
4
2
5
2
.7
5
(0
.9
4
)

3
5
.5
8

7
9
3
3
.7
5
(9
8
.1
5
)

6
8
.8
8

5
4
4
9
.3
0
(6
.4
9
)

6
1
.6
8

6
5
4
3
.1
5
(1
5
.3
7
)
5
8
.4
7

1
1
0
7
7
3
3
.8
0
(0
.0
0
)

3
.7
6

3
2
9
.3
3
(0
.8
7
)
3
7
.2
6

1
0
9
4
5
.2
5
(2
4
.5
2
)
5
4
.0
4

3
4
2
4
8
.1
0
(1
5
.9
4
)
3
2
.0
1

7
9
3
5
.7
0
(1
0
3
.4
2
)
5
6
.1
9

5
4
4
7
.9
0
(8
.3
9
)

6
3
.2
1

6
5
4
3
.9
5
(1
3
.6
1
)
7
6
.8
4

R
eT

S
-I
I

0
1
0
6
8
1
4
.2
1
(4
7
1
.7
6
)
5
5
.3
2

3
2
9
.9
2
(1
.7
3
)
1
7
.4
8

1
0
9
6
3
.8
0
(8
.6
2
)

2
7
.1
0

3
4
1
7
4
.5
0
(2
.2
5
)

5
6
.3
6

7
9
3
5
.7
0
(6
7
.8
2
)

4
9
.8
7

5
4
3
0
.6
0
(9
.2
5
)

3
6
.6
1

6
5
2
9
.3
0
(1
1
.3
3
)
4
6
.0
1

0
.1

1
0
6
9
5
0
.5
0
(5
1
2
.8
0
)
5
4
.4
6

3
2
9
.3
7
(1
.5
3
)
2
7
.4
2

1
0
9
6
7
.0
0
(1
3
.8
2
)
3
8
.9
5

3
4
2
4
5
.4
0
(4
.1
0
)

6
2
.4
6

7
9
7
6
.7
0
(5
7
.0
1
)

4
8
.0
9

5
4
3
9
.9
0
(1
2
.6
2
)
4
7
.1
0

6
5
2
9
.4
5
(1
5
.9
0
)
5
0
.6
0

0
.2

1
0
6
7
5
8
.2
6
(4
2
3
.2
4
)
5
5
.6
7

3
2
9
.7
3
(1
.8
5
)
2
2
.1
0

1
0
9
6
4
.1
5
(9
.0
3
)

3
8
.1
8

3
4
2
4
7
.4
0
(3
.5
0
)

6
8
.8
8

7
9
6
4
.2
0
(5
1
.3
7
)

4
8
.1
6

5
4
3
5
.4
0
(1
0
.9
8
)
4
7
.0
6

6
5
3
0
.6
5
(1
1
.7
2
)
4
3
.6
4

0
.3

1
0
6
7
2
6
.6
9
(3
3
5
.7
0
)
7
2
.2
9

3
2
9
.1
0
(1
.4
5
)
2
0
.0
9

1
0
9
7
1
.3
0
(1
6
.2
3
)
4
8
.5
8

3
4
2
4
9
.1
5
(3
.0
0
)

4
6
.5
4

7
9
9
5
.7
0
(4
9
.6
2
)

4
7
.7
5

5
4
4
1
.6
5
(9
.8
9
)

4
1
.8
8

6
5
3
1
.3
5
(1
6
.9
4
)
5
4
.2
3

0
.4

1
0
6
7
0
2
.3
1
(3
5
9
.7
9
)
5
6
.4
4

3
2
9
.5
1
(1
.7
9
)
2
1
.9
1

1
0
9
6
6
.7
5
(1
3
.7
4
)
3
8
.4
6

3
4
2
5
1
.9
0
(2
.0
5
)

5
7
.7
7

7
9
7
7
.6
5
(5
6
.8
0
)

5
2
.7
4

5
4
3
7
.8
5
(9
.4
7
)

6
1
.2
1

6
5
4
2
.4
5
(1
7
.1
6
)
6
8
.4
1

0
.5

1
0
6
5
9
0
.4
1
(1
0
6
.2
7
)
6
2
.7
8

3
2
9
.8
4
(2
.3
4
)
1
6
.8
5

1
0
9
7
1
.9
5
(1
6
.1
3
)
4
4
.6
3

3
4
2
5
1
.4
5
(1
.6
6
)

5
4
.1
6

7
9
9
0
.0
0
(6
0
.0
1
)

4
5
.3
5

5
4
4
0
.2
0
(1
0
.4
7
)
5
4
.1
0

6
5
4
0
.9
5
(1
6
.8
7
)
4
6
.5
1

0
.6

1
0
6
8
3
8
.5
9
(4
4
7
.6
1
)
5
5
.5
9

3
2
9
.8
7
(2
.0
2
)
2
7
.7
6

1
0
9
6
5
.1
0
(1
1
.8
3
)
4
6
.1
6

3
4
2
5
2
.2
0
(1
.8
3
)

5
7
.7
3

8
0
1
0
.6
5
(5
4
.6
2
)

4
8
.8
7

5
4
4
5
.0
0
(9
.1
4
)

4
7
.4
3

6
5
4
1
.7
5
(1
4
.8
7
)
5
3
.4
8

0
.7

1
0
6
8
0
5
.3
6
(4
8
6
.0
1
)
5
8
.4
8

3
2
8
.9
5
(1
.8
3
)
1
8
.8
6

1
0
9
6
4
.8
0
(1
1
.7
8
)
3
3
.7
9

3
4
2
5
2
.3
0
(1
.1
4
)

5
2
.7
5

7
9
9
8
.7
0
(5
0
.9
7
)

5
1
.4
7

5
4
4
5
.8
5
(8
.6
4
)

5
2
.9
7

6
5
4
4
.3
5
(1
1
.8
9
)
4
8
.3
0

0
.8

1
0
6
7
2
6
.6
9
(3
3
5
.7
0
)
4
3
.2
1

3
2
9
.0
6
(2
.1
3
)
1
7
.2
2

1
0
9
6
4
.7
5
(1
1
.7
6
)
5
7
.5
1

3
4
2
5
1
.9
0
(1
.3
0
)

3
9
.5
1

7
9
7
4
.9
0
(6
4
.7
2
)

5
5
.5
8

5
4
4
1
.8
0
(9
.8
2
)

3
1
.9
5

6
5
4
5
.8
5
(1
2
.5
9
)
3
4
.3
1

0
.9

1
0
6
5
3
9
.0
6
(7
5
6
.1
9
)
7
3
.4
7

3
2
9
.3
6
(2
.4
2
)
2
0
.0
8

1
0
9
6
7
.8
5
(1
3
.5
1
)
3
6
.5
0

3
4
2
5
1
.6
0
(1
.6
2
)

3
8
.4
7

8
0
1
8
.3
0
(3
7
.9
8
)

4
8
.2
7

5
4
4
4
.5
5
(8
.9
6
)

4
3
.3
4

6
5
4
4
.5
0
(9
.4
6
)

6
1
.4
1

1
1
0
6
5
1
1
.7
8
(4
4
9
.0
3
)
3
9
.0
2

3
2
7
.9
7
(2
.4
8
)

7
.6
0

1
0
9
6
8
.5
0
(1
5
.4
0
)
4
1
.8
6

3
4
2
5
1
.6
0
(1
.4
3
)

5
8
.7
5

7
9
4
4
.5
5
(6
4
.3
9
)

6
1
.4
3

5
4
4
4
.9
5
(8
.9
5
)

4
4
.4
5

6
5
5
1
.5
5
(1
1
.0
7
)
4
2
.1
7

26

Table 9
Value of ρ which allows each algorithm to reach its best performance.

in604 Decay2000 500 C2000.9 MANN a45 keller6 frb50-23-2 frb59-26-5

ReTS-I 0.0-1.0 0.0 0.4 0.9 1.0 0.9 0.8

ReTS-II 0.1 0.0 0.5 0.7 0.9 0.7 1.0

Table 8 reports the results of this experiment. Column ave(std) indicates the
average and standard deviation of the best objectives for the 20 runs, and
column time shows the average time in seconds needed to reach the best
objective values of the 20 runs. We additionally report in Table 9 the values
of parameter ρ which lead to the maximum average objective values.

According to Table 8, setting ρ to small values close to 0 lead to better results
on instances in604 and Decay2000 500, while high values of ρ are preferable on
other instances, which indicates that the reconstruction procedure guided by
the objective function is helpful to attain better solutions in most cases. This
observation also emphasizes the use of ρ = 0.7 for the experiments of Section
4. Moreover, Table 9 shows that for each instance, ReTS-I and ReTS-II have
close best ρ values, which attests the relevance of integrating both algorithms
into the same search framework.

Finally, Table 8 discloses that the impact of ρ on the performance of ReTS-I
and ReTS-II varies according to the instances. In particular, for MANN a45,
the result is gradually improved with increasing ρ values, reaching the best
objective value when ρ = 0.7 for ReTS-I and 0.9 for ReTS-II respectively.

6 Conclusion and Perspective

In this paper, we presented the generalized PUSH operator for the Maximum
Vertex Weight Clique Problem (MVWCP). PUSH(v,C) adds to the current
clique C a vertex v taken from a candidate push set of vertices, and removes
from C any vertex which is not adjacent to v to keep the resulting clique
feasible. By customizing the candidate push set, the PUSH operator can be
used to define various dedicated neighborhoods which can be explored by any
local optimization algorithm. In particular, we showed that the traditional
ADD and SWAP operators as well as some restart and perturbation rules are
also covered by the PUSH operator.

To demonstrate the usefulness of the PUSH operator for solving MVWCP, we
introduced two restart tabu search algorithms (ReTS-I and ReTS-II) which
apply PUSH on different candidate push sets. In ReTS-I, PUSH operates with
the single largest candidate push set V \C, while ReTS-II explores three cus-
tomized candidate push sets. Both ReTS-I and ReTS-II also share the same
restart strategy which generates, according to a probability, new starting so-

27

lutions either with an objective-guided reconstruction procedure or a random-
ized procedure.

ReTS-I and ReTS-II were evaluated on 3 sets (DIMACS, BHOSLIB andWDP)
of 142 benchmark instances. Experimental results indicated that both algo-
rithms compete very favorably with the state-of-the-art algorithms on the
tested instances in terms of computational effort and solution quality. Both
algorithms are even able to find an improved best-known result (new lower
bound) for one instance (frb53-24-3). In addition to these interesting results,
the generality of the PUSH operator enables a wider application surpassing
the studied tabu search procedures.

As future work, since the ρ parameter impacts the performance of both algo-
rithms, it would be interesting to investigate ways of making this parameter
self-adaptive during the search. Also, given that the idea of the proposed
PUSH operator is rather general, it is worth of testing the idea on other
similar problems like relaxed clique problems.

Acknowledgment

We are grateful to the anonymous referees for valuable suggestions and com-
ments which helped us improve the paper. The work was partially supported
by the PGMO (2014-0024H) project from the Jacques Hadamard Mathemat-
ical Foundation (Paris, France). Support for Yi Zhou from the China Schol-
arship Council is also acknowledged.

References

[1] B. Alidaee, F. Glover, G. Kochenberger, H. Wang, Solving the maximum edge
weight clique problem via unconstrained quadratic programming, European
Journal of Operational Research 181(2), (2007) 592–597.

[2] D. H. Ballard, C. M. Brown, Computer vision, Prentice-Hall Englewood Cliff,
1982.

[3] U. Benlic, J.K. Hao, Breakout local search for maximum clique problems,
Computers & Operations Research 40 (1) (2013) 192–206.

[4] I. R. Bomze, M. Pelillo, V. Stix, Approximating the maximum weight clique
using replicator dynamics, IEEE Transactions on Neural Networks 11 (6) (2000)
1228–1241.

[5] S. Busygin, A new trust region technique for the maximum weight clique
problem. Discrete Applied Mathematics 154 (2006) 2080–2096.

28

[6] S. Cai, Balance between complexity and quality: local search for minimum
vertex cover in massive graphs, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI (2015) 25–31.

[7] R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum clique
problem, Operations Research Letters 9 (6) (1990) 375–382.

[8] Z. Fang, C.-M. Li, K. Xu, An exact algorithm based on MaxSAT reasoning
for the Maximum Weight Clique Problem, Journal of Artificial Intelligence
Research 55 (2016) 799–833.

[9] F. Glover, M. Laguna, Tabu Search, Springer, 2013.

[10] A. Grosso, M. Locatelli, W. Pullan, Simple ingredients leading to very efficient
heuristics for the maximum clique problem, Journal of Heuristics 14(6) (2008)
587-612.

[11] R. M. Karp, Reducibility among combinatorial problems, Springer, 1972.

[12] D. Kumlander, A new exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring and a backtrack search, in: Proc. 5th Intl
Conf. on Modelling, Computation and Optimization in Information Systems
and Management Sciences, Citeseer, 2004, pp. 202–208.

[13] H. C. Lau, Y. G. Goh, An intelligent brokering system to support multi-agent
web-based 4th-party logistics, in: Proceedings of the 14th IEEE International
Conference on Tools with Artificial Intelligence, IEEE, 2002, pp. 154–161.

[14] K. Leyton-Brown, M. Pearson, Y. Shoham, Towards a universal test suite for
combinatorial auction algorithms, in: Proceedings of the 2nd ACM conference
on Electronic commerce, ACM, 2000, pp. 66–76.

[15] C. Mannino, E. Stefanutti, An augmentation algorithm for the maximum
weighted stable set problem, Computational Optimization and Applications
14 (3) (1999) 367–381.

[16] B. Neveu, G. Trombettoni, F. Glover, Id walk: A candidate list strategy
with a simple diversification device, Principles and Practice of Constraint
Programming (CP) (2004), Lecture Notes in Computer Science 3258, 423–437,
Springer.

[17] P. R. Österg̊ard, A new algorithm for the maximum-weight clique problem,
Nordic Journal of Computing 8 (4) (2001) 424–436.

[18] P. R. Österg̊ard, A fast algorithm for the maximum clique problem A
new algorithm for the maximum-weight clique problem, Discrete Applied
Mathematics 120(1-3) (2002) 197–207

[19] W. Pullan, H.H. Hoos. Dynamic local search for the maximum clique problem,
Journal of Artificial Intelligence Research 25 (2006) 159–185.

[20] W. Pullan, Approximating the maximum vertex/edge weighted clique using
local search, Journal of Heuristics 14 (2) (2008) 117–134.

29

[21] T. Sandholm, Algorithm for optimal winner determination in combinatorial
auctions, Artificial intelligence 135 (1) (2002) 1–54.

[22] A. Singh, A. K. Gupta, A hybrid heuristic for the maximum clique problem,
Journal of Heuristics 12 (1-2) (2006) 5–22.

[23] G. van Dijkhuizen, U. Faigle. A cutting-plane approach to the edge-weighted
maximal clique problem, European Journal of Operational Research 69(1)
(1993) 121–130.

[24] Y. Wang, J.K. Hao, F. Glover, Z, Lü, Q. Wu, Solving the maximum
vertex weight clique problem via binary quadratic programming, Journal of
Combinatorial Optimization (2016) 32(2): 531–549.

[25] J. S. Warren, I. V. Hicks, Combinatorial branch-and-bound for the maximum
weight independent set problem, Technical Report, Texas A&M University,
(2006) http://www.caam.rice.edu/ ivhicks/jeff.rev.pdf

[26] Q. Wu, J.K. Hao, F. Glover, Multi-neighborhood tabu search for the maximum
weight clique problem, Annals of Operations Research 196 (1) (2012) 611–634.

[27] Q. Wu, J.K. Hao, A review on algorithms for maximum clique problems,
European Journal of Operational Research 242 (3) (2015) 693–709.

[28] Q. Wu, J.K. Hao, Solving the winner determination problem via a weighted
maximum clique heuristic, Expert Systems with Applications 42 (1) (2015)
355–365.

[29] Q. Wu, J.K. Hao, A clique-based exact method for optimal winner
determination in combinatorial auctions, Information Sciences 334 (2016) 103–
121.

30

