
Simulating Non Stationary Operators in Search

Algorithms

Adrien Goëffon

LERIA, University of Angers (France)

Frédéric Lardeux

LERIA, University of Angers (France)

Frédéric Saubion

LERIA, University of Angers (France)

Abstract

In this paper, we propose new scenarios for simulating search operators whose
behaviours often changes continuously during the search. In these scenarios,
the performance of the operators decreases when they are applied. This is
motivated by the fact that operators for optimization problems are often
roughly classified into exploitation operators and exploration operators. Our
simulation model is used to compare the different performances of operator
selection policies and clearly identify their ability to adapt to such specific
operators behaviours. The experimental study provides interesting results on
the respective behaviours of operator selection policies when faced to such
non stationary search scenarios.

Keywords: Island Models, Adaptive Operator Selection

1. Introduction

Given an optimization problem, a search algorithm mainly consists in
applying basic solving operators — heuristics — in order to explore and ex-
ploit the search space for retrieving solutions, as in well-known metaheuris-
tics algorithms (Gendreau and Potvin, 2010; Eiben and Smith, 2003; Hoos
and Stützle, 2004). Metaheuristics algorithms have been developed through

Preprint submitted to Applied Soft Computing February 20, 2015

numerous metaphors (Sörensen, 2015) but they nevertheless share some com-
mon principle according to this notion of basic search operators, especially
when they have been combined to get hybrid metaheuristics. Such oper-
ators are especially important for combinatorial, i.e. discrete optimization
problems for which the topology of the search space has to be carefully de-
fined by the possible encoding of the problem. For instance, variation op-
erators (mutation and recombination) are used in evolutionary algorithms,
neighborhood-based operators are used in local search - especially when con-
sidering variable neighborhood search (Mladenovic and Hansen, 1997), lo-
cal improvement operators are used in ant colony optimization (Dorigo and
Stützle, 2004) or velocity and position update functions, and sometimes lo-
cal optimization processes, have to be defined in particle swarm optimization
(Kennedy and Eberhart, 1995). Most of the time, the designer of such al-
gorithms has many choice concerning these search components. Therefore,
selecting the most suitable operators in a search algorithm when solving op-
timization problems is an active research area (Eiben et al., 2007; Lobo et al.,
2007). The choice of the successive operators along the search process is often
driven by means of parameters. The improvement of the performance of the
algorithm thus relies on an adequate setting of these parameters. An optimal
setting may be achieved by an optimal operator selection policy. Unfortu-
nately, according to the underlying intuitions provided by the No Free Lunch
theorems for optimization (Wolpert and Macready, 1997), this optimal policy
may strongly depend on the instances of the problems to be solved. Initial
parameters setting can be achieved by automated tuning algorithms (Hutter
et al., 2009; Nannen et al., 2008). In this case the set of benchmarks chosen for
tuning may have an important impact (Liao et al., 2015). Nevertheless, the
values of the parameters may require more continuous control (Fialho, 2010)
and should rather not be fixed during the whole search process. Adaptive
operator selection is strongly related to reinforcement learning problems, and
especially to multi-armed bandit problems (Fialho et al., 2008; Costa et al.,
2008). Various methods for managing the famous exploration vs. exploitation
balance in search heuristics have been investigated in the literature; see for
instance (Maturana et al., 2009a; Lobo et al., 2007; Thierens, 2005).

Motivations and Related Work
The performance of adaptive selection policies depends on the character-

istics of the problem’s search space, as well as on the specificities of the search
operators. Therefore different families of practical problems have been han-

2

dled (e.g., permutation based problems (Veerapen et al., 2012), satisfiability
problems (Maturana et al., 2010)), but also more abstract operators mod-
els in order to provide more general and comprehensive testing frameworks.
Note that abstract frameworks have been widely used in order to experi-
ment and analyze the behaviour and the performance of search algorithms,
especially in evolutionary computation (Mitchell et al., 1991), with the use
of Onemax, Royal Road problems, NK-landscape benchmarks (Vérel et al.,
2011) or more generally combinatorial fitness landscape Basseur and Goffon
(2015).

Focusing now on the adaptive selection of operators, Thierens (2005)
proposes epoch based scenarios in which rewards, drawn from a constant
uniform distribution, are assigned to operators during each epoch. In (Costa
et al., 2008), Boolean scenarios are proposed in order to consider null rewards
for some operators and outliers scenarios that produce higher variance in the
rewards. In (Fialho et al., 2010), the authors have introduced two-values
benchmarks in order to consider two possible levels of rewards for operators.
Nevertheless, changes of the efficiency of the operators are only consider by
means of successive epochs.

In this paper, we propose an new model for simulating search opera-
tors whose behaviour often change continuously during the search. In these
scenarios, the performance of operators decreases when they are applied.
This is motivated by the fact that operators for optimization problems are
often roughly classified into exploitation operators and exploration opera-
tors. Exploitation operators aim at focusing on the evaluation of the visited
configurations of the search space in order to converge quickly to a local op-
timum. Exploration operators aim at diversifying the search trajectory by
visiting sparse areas of the search space. Unfortunately, it is not possible
to always exploit nor explore the search space. For instance, it is unlikely
that an exploitation operator will always improve a configuration and find
directly an optimal solution (except for simple problems). Therefore, de-
creasing performance may be observed along the search as well as changing
behaviours of operators, according to the current state of the search and to
possible interactions between operators. For example, the relative improve-
ments of an intensification operator are likely to decrease when approaching
a local optimum. Note that such behaviours have been already observed
when solving OneMax problem with adaptive operator selection mechanisms
in an evolutionary algorithm (Candan et al., 2012), as well as for permutation
problems with different neighborhoods in local search algorithms (Veerapen

3

et al., 2012; Desport et al., 2015). Note that it as also observed that crossover
role may change during the search with regards to the notion of exploitation
and exploration (Ochoa et al., 1999).

Contributions
Our simulation model is used to compare the different performances of

operator selection policies and clearly identify their ability to adapt to such
specific operators behaviours and can be used as a surrogate operator model
when designing new adaptive search algorithms. While metaheuristics algo-
rithms have been widely developed using different formulations (Sörensen,
2015), we choose here to focus on a simple common scheme. Hence, the
general description of operator based search algorithms may be helpful in
this design process when the user has to precisely identify the components
and performance criteria that are used in the adaptive process. We propose
here a new abstract scenario that is useful in order to compare the rela-
tive advantages of different operators selection policies in order to manage
operators. Of course, these policies may be easily introduced in various meta-
heuristics in order to schedule dynamically their basic search heuristics, as it
has been already investigated for evolutionary algorithms (Maturana et al.,
2012) or local search (Veerapen et al., 2013). These abstract scenarios allow
the user to model operators whose behaviours may be subjected to progres-
sive changes and interactions that require more intricate combinations when
being applied.

Our scenarios consider operators whose gains decrease if they are too
much applied, which corresponds, as mentioned above to intensification op-
erators approaching a local optimum. Of course two different operators with
such decreasing gain may use different heuristics as thus should be alternated
in order to improve their performance. For instance, local search intensifca-
tion operators that use different neighborhood may be used complementary
in order to avoid getting stuck into a local optima (since may have different
local optima with regards to theri neighborhood). Moreover, we also con-
sider operators with null gain that may be used for diversification or that
correspond to inefficient operators for the current instance of the problem.
This may be very useful when considering generic solvers that may include
large number of possible solving strategies. Therefore, our scenarios allows
to model very different type of search situations, focusing on the operator
management.

The experimental study provides interesting results on the respective be-

4

haviours of operator selection policies when faced to such non stationary
search scenarios. Our study shows that none of the selection policies achieve
the best performance in every situation but it highlights that their respective
performances rather depend on the specificities of the operators. Therefore,
these results may help a user the most appropriate selection policy according
to her/his problem at hand.

At last, considered as a multi-armed bandit problem, AOS in the case
of non stationary operators corresponds to a specific restless bandit prob-
lem that could be used to model different real applications as soon as the
efficiency of a given action decreases according to successive frequent uses.
For instance, such reinforcement learning techniques are now widely used for
recommendation on the web (Li et al., 2010) in order to manage adaptive
content. Our model could be pertinent in this context since it may be clear
that the relevance of an advertisement decreases if it is too much shown to
the same user. Other cases of such repeated decreasing actions may actually
be observed in various application domains.

Organization of the paper
In section 2, we describe optimization algorithms that are based on appli-

cations of basic search operators. We also define the problem of designing the
best possible operator selection policy and show its relationship with multi-
armed bandit problems. Section 3 is dedicated to review different operator
selection policies. Section 4 presents our model for simulating non stationary
operators. Experiments are presented in section 5.

2. Operator Based Search Algorithms for Optimization Problems

In this section, we propose to precisely define the components of a search
algorithm in the context of solving optimization problems, in order to be
able to manage their behaviour. We focus on algorithms that use operators
— also commonly called heuristics — in order to find solutions in the search
space. Our purpose is to progressively introduce and discuss the different
aspects that must be taken into account when one wants to improve search
algorithms.

We first propose a generic algorithmic scheme that allows us to precisely
define the main components of an operator based search algorithm. We
discuss the notion of performance with regards to the operational semantics
of the algorithm and recall two general methodologies for improving this

5

performance, namely tuning and control. Focusing on the dynamic control
of search algorithms, we focus then on the notion of policy, that defines how
the operators should be scheduled in a search process. Some criteria are
introduced in order to compare different policies and thus to characterize
the notion of optimal policy. The following table 1 summarizes the main
notations used in this section.

P instance of an optimization problem
S search space
Ω set of operators
Θ parameter space
π operator selection policy
K control function that allows to modify the parameters

Table 1: Table of used symbols

2.1. Main Concepts

Definition 1 (Optimization Problem). An optimization problem is a pair
(S, f) where S is a search space whose elements represent solutions (or con-
figurations) of the problem and f : S → R is an objective function. An
optimal solution (for maximization problems) is an element s∗ ∈ S such that
∀s ∈ S, f(s∗) > f(s).

Example 1. As a simple running example, we may consider the toy One-
Max problem, where S = {0, 1}n, for a given size n. Given a solution s =
(s1, . . . , sn) ∈ S, si is thus the value of the ith bit of s. The objective function
is simply f(s) =

∑n
i=1 si.

Defining a search algorithm. A general solving algorithm may be abstracted
according to the following components.

6

Algorithm 1 Operator Based Algorithm (OBA)

Require: an optimization problem (S, f), a set of operators Ω =
{o1, . . . , on}, a parameter vector θ ∈ Θ, where Θ is a parameter space1,
a policy π : Θ×N→ Ω.

1: Sol(0) ← Init(S)
2: s∗ ← best(Sol(0))
3: t← 0
4: while not (stop condition) do
5: o← π(θ, t)
6: Sol(t+1) ← o(Sol(t))
7: b← best(Sol)
8: if f(b) > f(s∗) then
9: s∗ ← b

10: end if
11: end while
12: return s∗

Typically, the initialization function (line 1) takes as input2 the whole
search space S — or a part of it — and returns a single element (e.g., in
local search algorithms) or a set of elements of this search space (e.g., in
population based algorithms). From a practical point of view, initialization
is often insured by a random generation of points of the search space or by
a greedy algorithm that builds a suboptimal solution. Note that we do not
want to distinguish the different solving paradigms that use different data
structures for their search processes, e.g., tree-based search, neighborhood
search or population-based search. We only pay attention to the fact that
these algorithms use basic search operators (e.g., branching heuristics, con-
straint propagation, hill climbing or recombination of solutions) that they
apply on a sub part of the search space (stored into Sol(t)). The policy π
determines the operator to apply at each iteration of the algorithm (line 5).
π can be called an operator selection (OS) policy and may depend on the
parameters vector θ and the iteration t, as it will be illustrated later on. The
notion of iteration is here directly linked to the application of one opera-
tor in a steady state fashion; this general model can anyway be adapted for

2This input represents indeed the knowledge that is required by the initialization func-
tion.

7

coarser granularities of iterations. Note that the stop condition (line 4) may
correspond to a global optimum that has been reached (e.g., for maximal
satisfaction problems) or to a maximal number of iterations.

Example 2. Back to our running example, let us consider a simple evo-
lutionary algorithm for the One-Max problem. The algorithm includes an
initialization function such that Sol(0) is an initial population, randomly gen-
erated. The set of operators may include flipping (mutation) operators (e.g.,
1-flip is an operator that flips one bit — i.e., one position — of a config-
uration s ∈ S) and crossover operators (e.g., uniform crossover). In this
case, let us consider an operator o1−flip : S → S. Note that here, oper-
ators are applied on a population and are supposed to include their own
selection and insertion processes, in a steady state fashion. For instance, let
Sol(t) = {000, 111, 110}, o1−flip(Sol

(t)) = {010, 111, 110}, which means that
the individual 000 of Sol(t) has been selected for mutation and the resulting
mutated (by flipping one bit) individuals has replaced the selected one. Of
course, many selection and replacement methods exist in the literature. An
example of parameter vector could be θ = (psize, σ1, . . . , σn) where psize is
the size of the population Sol(t), and σi is the probability of application of
an operator oi. The OS policy may be π(θ, t) = oi with a probability σi, that
corresponds to a roulette wheel selection (as described later in Section 3).
Note that, in this case, we consider that θ remains constant over iterations,
i.e., π(θ, t) does not depend on t.

Running the algorithm. The operational semantics of a search algorithm
can be defined by means of its runs. We define S (resp. Ω) as the set of
sequences over 2S (resp. Ω).

Definition 2 (Run of an OBA). For an optimization problem P = (S, f),
a run of an OBA A, defined as in algorithm 1, is a pair (s, o) ∈ S ×Ω where:

• s = Sol(0), Sol(1), . . . , Sol(l) with Sol(0) = Init(S) and Sol(l) satisfies
the stop condition

• o = o(1), . . . , o(l)

• ∀1 ≤ t ≤ l, o(t) = π(θ, t)

• ∀1 ≤ t ≤ l, Sol(t) = o(t)(Sol(t−1))

8

The set of all possible runs of A for problem P is denoted Run(A,P).

Runs may have different lengths depending on the stop criteria. Of course,
if the algorithm is fully deterministic, this set is a singleton (i.e., a single run
for a given problem).

Performance evaluation Given a run r ∈ Run(A,P), we suppose that
there exists a performance function such that Perf P (A, r) ∈ R evaluates the
performance of r. Note that we use the notation PerfP since this perfor-
mance function has to be defined according to the problem P (e.g., with
regard to the objective function). This performance function may vary ac-
cording to the type of algorithm and the type of problem (satisfaction or op-
timization). Typically, the performance of a run can be defined by the value
of the best solution obtained during this run, i.e. s∗ (line 12 of algorithm 1).
A run r is considered better than a run r′ if Perf P (A, r) > Perf P (A, r′). This
performance function can be extended to a subset of runs R ⊆ Run(A,P).
Note that this extension has to be defined carefully. For instance one may
consider the mean values of the performances of the runs in R or the max-
imal value. Based on this notion of performance, we may now turn to the
optimization of the algorithm itself by managing its operators. We use here
the classical terminology of tuning and control (Lobo et al., 2007; Hamadi
et al., 2012).

Tuning of the algorithm Now let us define a notion of optimality for
the performance of the algorithms that corresponds to tuning point of view
(Hoos, 2012). Various methods have been proposed to this aim (Birat-
tari et al., 2002; Smit and Eiben, 2009; Hutter et al., 2009). From these
consideration, the optimal tuning only considers the parameters vector θ.
For an optimization problem P , an OBA with parameter vector θ is opti-
mally tuned for a problem P iff for all algorithm A’ with parameters vector
θ′, P erfP (A′, Run(A′, P)) 6 PerfP (A,Run(A,P)). In practice the tuning of
the algorithm can only be estimated on a subset R of runs. Note that we
consider here tuning by means of parameters vector θ and not directly on
the possible policies.

Control of the algorithm Only algorithms with fixed parameters and pol-
icy have been considered in the previous definitions. We have to take into
account adaptive algorithms in which parameters may change during the
search. As previously, a policy uses parameters θ and may be then intrinsi-
cally submitted to adaptive changes by means of these parameters. There-

9

fore, we may generalize our definition of an OBA to an adaptive OBA by
considering a control function K : Θ ×N → Θ that updates the parameter
vector with regards to the current iteration. K is the set of control functions.

We must insert in algorithm 1, between lines 10 and 11, the following line :
θ ← K(t, θ). Optimal control of an adaptive OBA consider the performances
of algorithm with a function control K against all possible control functions
K ′ as above for tuning purposes.

2.2. Abstracting Operators

We focus now on the control of the algorithms through their OS policies
and control functions. According to the previous notations, an adaptive
control policy is a pair (π,K), which associates a policy and a parameter
control function. Following (Lobo et al., 2007; Hamadi et al., 2012), such a
policy is called an adaptive operator selection (AOS) policy. Note that the
case where K is the identity function corresponds to a non adaptive policy.
Therefore, in the remaining of the paper, we consider OS policies, including
adaptive policies and fixed policies cases.

Example 3. Back to the example, we may consider an adaptive roulette
wheel instead of the fixed one as previously mentioned. The control function
may thus update the probability according to the observed performances of
the operators by means of the function K, which is known as probability
matching (see Section 3.1.1).

From performance to operator gains Given an optimization problem
P , our purpose is to generate a policy (π,K) that produces optimal runs
(s, o), i.e. an optimal sequence of operator applications o. It is clear that
the impact of the operators depends on the elements of s on which they are
applied. In order to consider a more abstract point of view, we consider
that each operator provides a gain when it is applied; this gain may be
estimated by a gain function gP : Ω × S → R. In practice the gain of an
operator can be computed using the fitness function of the problem, e.g.
fitness improvements, or other criteria, e.g. diversity of the population in
population based algorithms (see Maturana et al. (2009b); Maturana and
Saubion (2007) for instance). Of course the gain has to be defined according
to the notion of performance. The gain obtained by a policy (π,K) for a
run r can be defined as GP ((π,K), r) =

∑
o(k)∈o gP (o(k), (Sol(0), . . . , Sol(k)))

where r = (s, o) ∈ Run((Init,Ω, θ, π,K), P). This gain function shoud be

10

defined such that for two runs r and r′ obtained by an algorithm A using
a policy (π,K), we have GP ((π,K), r) ≤ GP ((π,K), r′) iff PerfP (A, r) ≤
PerfP (A, r′) (i.e., the gain function should estimate the performance of the
algorithm).

Optimizing the algorithm At last, the operator selection policy problem
can be defined as follows.

Definition 3 (OS Policy Problem). Given P = (S, f), the components
Init, Ω and θ of an OBA, the operator selection policy problem consists in
finding a policy

(π,K)opt = argmax
π∈Π,K∈K

∑
r∈Run(A,P) GP ((π,K), r)

with A = (Init,Ω, θ, π,K)

Again, since most of the time the whole set Run(A,P) cannot be exten-
sively computed, the optimal policy has to be approximated on a subset of
Run(A,P). From a practical point of view, there is a connection between
the notion of optimal control and the notion of optimal policy. Therefore,
searching for an optimal policy which chooses at each step operators that
maximize the overall gain may be related to bandit problems (Costa et al.,
2008; Fialho, 2010).

2.3. Multi-Armed Bandits

The initial stochastic multi-armed bandit (MAB) (Robbins, 1952; Bradt
et al., 1956; Rodman, 1978) is formulated as follow. Given several possible
actions — usually called arms according to the gambling machine analogy —
that have different individual gains (or rewards), one has to select a sequence
of actions that maximizes the total gain. Definition 4 proposes a more formal
definition of this general problem.

Definition 4 (Stochastic MAB). Let us consider n independent arms.
For each arm i ∈ {1, . . . , n}, we have:

• a set of possible states Si;

• a set of probabilities Probi = {σij→k, j, k ∈ Si} such that σij→k is the
probability of being in state k if the arm i is played3 from state j;

3We use the verb play according gain to the gambling analogy.

11

• a set of gains Gi = {gij, j ∈ Si} where gij is the gain obtained when arm
i is played from state j.

Given a stochastic MAB, the problem is to find a policy that maximizes
over a finite4 horizon T , ΣT

t=0gtγ
t, where gt is the expected gain of the policy

at time t and γ ∈ [0, 1] is a discount factor.
Four features can be identified to characterize a MAB problem (Mahajan

and Teneketzis, 2008):

1. only one arm is played at each time;

2. states of unplayed arms do not change;

3. arms are independent;

4. arms that are not played do not contribute any gain.

Many variants of the initial stochastic MAB have been studied in the
literature. In this paper we focus on the restless MAB, first introduced in
(Whittle, 1988). In this formulation, the gains of the arms change over time,
while they are supposed to be fixed — but of course unknown — in the
initial stochastic MAB formulation. In fact, restless bandits may be defined
as in Definition 4 except that, when an arm is not played, its state may
change, which corresponds to a relaxation of Feature 2. Hence, restless MABs
involve two kinds of probabilities in Probi, namely σij→k, which represents
the probability of being in state k if the arm i is played, and σ̃ij→k, that is
the probability of being in state k if the arm i is not played.

It is clear that arms will be operators whose gain and probabilities of
gains will be defined by scenarios in order to simulate their behaviour in the
context of a search algorithm.

3. Operator Selection Policies

In this sections we first explain how operator selection in operator based
algorithms can be directly related to the choice of the most suitable sequence
of actions in the context of multi-armed bandit problems. We review then
different possible selection policies that can be used to achieve an optimal
schedule of the operators.

4Note that we restrict the problem to finite horizon MAB. The most general problem
is often presented over infinite horizon.

12

3.1. Operator Selection in Operator Based Algorithms

Let us consider an adaptive OBA A = (Init,Ω, θ, π,K). Here, we are
not interested in the initialization function Init. Let Ω = {o1, . . . , on} be the
set of n operators. We have to define the control policy (π,K) which selects
an operator at each iteration of the algorithm in order to build a run (s, o).
We review here different policies and we distinguish between policies based
on probabilities of application of the operators and policies based on upper
confidence bounds.

The gain of an operator (see Definition ??) is generally specific to the
problem, since it uses the notion of performance of a run. In order to have
a more general approach, a general notion of utility5, which reflects the suc-
cessive gains obtained by the operators, can be introduced.

Considering a run (s, o), such that s = s(0), . . . , s(n) and o = o(1), . . . , o(n),

an utility u
(t)
i is associated to each operator i ∈ {1..n} for any iteration

t ∈ {1..n}. This utility has to be re-evaluated at each time, classically using a

formula u
(t)
i = (1−α)u

(t−1)
i +α.g(oi, s

(0), . . . , s(t−1)), with u
(0)
i = 0. This utility

uses the gain associated to the application of operator i (which corresponds
thus to the immediate utility) and α which is a coefficient that controls the
balance between past and immediate utilities, as in classic reinforcement
learning techniques (Sutton and Barto, 1998). If an operator is not selected
at iteration t, its gain is 0 for this iteration.

3.1.1. Policies based on probabilities of application

In this context, given the set of operators Ω = {o1, . . . , on}, we use the
parameter vector θ to associate a probability of selecting the operator, θ =
(σ1, . . . , σn) such that

∑n
i=1 σi = 1. The OS policy π is then a roulette

selection wheel that selects each operator oi according to its probability of
selection σi. Different operator selection policies have been proposed in the
literature (Lobo et al., 2007; Hamadi et al., 2012); we review here some of
the most used of them.

• Fixed Roulette Wheel

A first possibility consists in keeping θ fixed during the run, i.e. ∀t ∈
N, K(θ, t) = θ. Note that these values can be determined by an auto-
mated tuning process (Hoos, 2012; Eiben and Smit, 2012).

5Note that we use the term utility here, which should be clearly related to the notion
of action value in reinforcement learning (Sutton and Barto, 1998).

13

• Adaptive Roulette Wheel

Contrary to a static tuning of the operator application rates, adaptive
operator selection consists in selecting the next operator to apply at
iteration t+ 1 by adapting the selection probability during the search.
In this case, we have θ(t) = (σ

(t)
1 , . . . , σ

(t)
n). The control function K :

Θ × N → Θ is defined as K(θ(t), t + 1) = θ(t+1). Defining K consists

in defining the probabilities σ
(t+1)
i with regards to the evolution of the

operator’s utilities.

A classic mechanism is the probability matching selection rule:

σ
(t+1)
i = pmin + (1− n.pmin)

u
(t+1)
i∑n

k=1 u
(t+1)
i

(1)

where a non negative value pmin insures a non zero selection probability
for all operators. Note that, in order to insure a coherent behaviour,
pmin should be in the interval [0, 1

n
].

• Adaptive Pursuit

An alternative proportional selection rule has been proposed in Thierens
(2005), called adaptive pursuit (AP), that distinguishes the best cur-
rent operator from the others:{

σ
(t+1)
i∗ = σ

(t)
i∗ + β(pmax − σ(t)

i∗)

σ
(t+1)
i = σ

(t)
i + β(pmin − σ(t)

i)
(2)

where i∗ ∈ argmax
i∈{1,...,n}

u
(t+1)
i , pmax = 1− (n− 1)pmin and β is a parameter

to adjust balance of this winner-take-all strategy.

3.1.2. Policies based on upper confidence bounds

Optimal strategies have been initially proposed by Feldman (1962) and
Gittins (1979) for the multi-armed bandit problem. Later, Auer (2002) pro-
posed to use this problem to manage the compromise between exploration
and exploitation in optimization algorithms. The following policies consists
in computing an upper confidence bound of the expected gain and to select
thus the most promising arm.

14

• UCB (upper confidence bound)

The UCB1 criterion (Auer et al., 2002) is defined as:

∀oi ∈ Ω, UCB1(oi, t) = u
(t)
i +

√√√√2 log(
∑

16k6n nb
(t)
k)

nb
(t)
i

(3)

where nb
(t)
i denotes the number of times operator oi has been applied.

Note that this formula is defined for gains that should be normalized
between 0 and 1. The left term of the formula uses the successive
utilities that are obtained by the arms in order to focus of the best
arm, while the right term aims at providing the opportunity to be
selected for less used arms. This formula attempts thus to achieve a
compromise between exploitation and exploration.

Therefore, we may define the control policy (π,K) for a given iteration
t as:

 π(θ(t), t) = argmax
i∈{1,...,n}

θ
(t)
i

K(θ(t), t) = θ(t+1) = (UCB1(o1, t+ 1), . . . , UCB1(on, t+ 1))
(4)

Here no parameter is required. Note that UCB has originally be de-
signed for fixed gain distributions. Since the gain of the operators is
likely to change along the search, UCB has been extended to dynamic
multi-armed bandit has to be considered.

• DMAB (Dynamic MAB algorithm based on UCB)

UCB has been revisited in Costa et al. (2008). A standard test —
known as Page Hinkley (Hinkley, 1970) — for the change hypothesis
is used. We may add a parameter in θ which indicates if the process
has to be restarted. In this case the control function K use the Page
Hinkley test to detect statistical changes in the successive utilities of
the operators and may re-initialize the values of the operators utilities.
Moreover, it can be useful to add a scaling factor to the right term of
the UCB1 formula in order to take into account the value range for
utilities. The test is parametrized by γ that controls its sensitivity and

15

δ that manages its robustness. We refer the reader to Fialho et al.
(2010) for more details.

3.2. Policies based on Transition Matrix

Based on previous work on island models for operators selection (Candan
et al., 2012), we present here a selection policy based on a probabilistic
transition matrix. The underlying motivation is not only to detect the best
possible operators but also possible relationships between operators.

Given an OBA A, we define a matrix M of size |Ω| × |Ω|. M(oi, oj)
represents the probability of applying operator oj after having applied oi.
According to our previous notations, M corresponds to the θ parameter of
the selection policy (introducing a two-dimensional parameter structure).

From an operational point of view, contrary to previous policies, this pol-
icy uses simultaneously several possible runs of the OBA in order to acquire
its knowledge. Let us consider a set P (t) of psize runs of length t + 1 pro-
duced by the algorithm A at iteration t (remind that runs are numbered from
index 0 in definition 2). psize is a parameter of this policy. For each oper-

ator oi ∈ Ω, let P
(t)
i be the set of runs (s(0) . . . s(t), o(1) . . . o(t)) ∈ P (t) where

o(t) = oi. Hence, this set is the set of all runs whose last applied operator is
oi, and we have P (t) =

⋃
o∈Ω

P
(t)
o .

The control policy (π,K) can thus be defined from M . Firstly, the pol-
icy π is defined by a roulette selection whose probabilities are given by M .
Secondly, the update of M is performed by the control function K as:

K(M (t)(i, k), t) = M (t+1)(i, k)

= (1− β)(α.M (t)(i, k) + (1− α)R
(t)
i (k)) + βN (t)(k)

(5)

where N (t) is a stochastic vector such that ||N (t)|| = 1 and R
(t)
i is the reward

vector that is computed by using the utility of the operators that have been
used after applying i. More precisely:

R
(t)
i (k) =

{
1
|B| if k ∈ B,
0 otherwise,

(6)

with B = argmax
ok∈Ω

(
max

{s∈S|∃r∈P (t)
k ,r=(s,o(1)...o(t−1)=oi,o(t)=ok)}

g(ok, s)

)

16

B is the set of the best operators that have been applied after an operator
oi, i.e. that have provided the best gain. We could also update R

(t)
i (k) by

using the mean of the improvements. Remark also that this policy does not
use the utility which is indeed computed within the update process.

The parameter α represents the importance of the knowledge accumulated
(inertia or exploitation) and β is the amount of noise, which is necessary to
explore alternative possibilities. The influence of these parameters has been
studied in Candan et al. (2012).

This approach can be related to reinforcement techniques for MDP (Markov
Decision Processes) (Sutton and Barto, 1998). Nevertheless island models use
several populations in order to learn simultaneously from several sequences
of operators.

4. Modelling Scenarios for Gain Functions

In practice, the gain function g may be difficult to compute and is very
specific to the problem at hand. Therefore we may approximate such a gain
function by using distributions. Comparisons of operator selection policies
would be then easier and faster. As previously defined, we use a gain function
g(o, t) which represents an estimation of the gain of an operator o if it is
applied at iteration t. Several scenarios for modelling g can be envisioned.

In Section 2, the gain associated to an operator is defined according to
the performance improvements that it provides during a given run of the
algorithm. Remind that, for an optimization problem P = (f,S), the effect
of operators can be defined according to the evaluation function f . For
instance, given an element s ∈ S, the variation of evaluation f induced by
an operator o is given as f(o(s)) − f(s). This function can be extended to
S. Of course different performance criteria could be taken into account.

4.1. Fixed Gains

For each operator o, the gain g is defined independently from iteration t by
a binomial probability distribution (po, go), i.e., ∀i ∈ I,Pr[g(o, i) = go] = p0

and Pr[g(o, i) = 0] = (1 − po). Such distributions have been proposed in
Costa et al. (2008) for studying operator selection policies.

In this context, if the values (po, go) are fixed during the whole run of
the algorithm, then determining the best policy just consists in finding the
operator that has the greatest expected gain po.go. This is indeed a ba-
sic stochastic multi-armed bandit problem (Definition 4), where operators

17

correspond to arms with only one state. Of course, it is unlikely that, in
real optimization problems, the effect of an operator remains unaltered in a
whole run. Therefore it would be more realistic and interesting to consider
gain functions that may evolve during the run.

4.2. Epoch Based Gains

In Thierens (2005), uniform distributions are associated to each operator
in different overlapping intervals of values. The distributions are fixed dur-
ing a given number of iterations — called epoch — and then are re-assigned
according to a permutation. The gain of the operator is thus non stationary
during the algorithm’s execution and the AOS has to discover the best oper-
ator to apply at each epoch. Such scenarios have been studied using various
techniques including adaptive pursuit (Thierens, 2007), dynamic UCB (Fi-
alho et al., 2008) and genetic algorithms (Koulouriotis and Xanthopoulos,
2008).

4.3. Non stationary gains with sliding time windows

In this section we define a new scenario in order to model operators whose
behaviour evolves more continuously during the solving process. We want to
consider more continuous changes in the gain distributions. The idea is to
provide a model where the gain of an operator decreases proportionally to
its use. In such a model, the AOS policy must not detect the best operator
during an epoch but rather identify suitable sequences of operators.

Within a run (s, o) of length n of an OBA, such that o = o1, . . . , on,
we compute the gain of operator o at iteration t thanks to a gain function
gwsize(o, t), defined as:

gwsize(o, t) = go.

(
1− Occwsize(s, o, t)

wsize

)
(7)

go is a fixed maximal gain of operator o, and Occwsize(s, o, t) is the num-
ber of applications of operator o during the last wsize iterations. More for-
mally, Occwsize(s, o, t) = |{i ∈ 1..|w|, ωi = o}|}, where w is the subsequence
ot−wsize, . . . , ot−1 that records the wsize last applied operators. wsize is a
fixed parameter of the scenario.
This scenario can be formalized as a restless MAB problem:

• An arm i is associated to each operator oi ∈ Ω.

18

• For each operator oi ∈ Ω, we define a set of states Si = {0..(2(wsize+1)−
1)}, such that each state represents the previous use of the arm by a
binary number. For instance, for a window of size wsize = 4, the state
1001 means that the arm has been played at iteration t − 1 and t − 4
only.

• The set of transition probabilities Probi between states can be defined
as:

1. σij→k =

{
1 if k = Lshift(j) + 1

0 otherwise

2. σ̃ij→k =

{
1 if k = Lshift(j)

0 otherwise

Lshift(j) = denotes the logical left shift of a binary number of fixed
size wsize. Note that we need σ̃ probabilities since we are modelling a
restless MAB problem (see definition 4 and section 2.3).

• When an arm i is played from state j, the reward can be straightfor-
wardly defined as rij = go.(1− #1(j)

wsize
), where #1(j) is the number of bits

being equal to 1 in state j.

This restless bandit problem involves a two states transition matrix whose
size is in O((n.2wsize)2). Of course in practice, one has to memorize the wsize
previous applications of operators.

4.4. Non Stationary Binary Scenarios

In optimization algorithms, operators are often classified intuitively in
two classes : diversification operators and intensification operators, whose
behaviours should be understood as orthogonal. In order to better under-
stand such scenarios we consider here two types of operators, according to
the previous notations: (1, 1) and (1, 0), that we denote here respectively
1 and O. The 1 operators theoretically always gain 1 but their efficiency
will decrease proportionally to their use according to our sliding window. O
always gain 0. We choose here probability of 1 for all operators in order to
avoid probability side effects in our analysis. We also use gain values whose
range is in [0, 1].

19

An instance of a non stationary binary scenario can be fully defined by a
triple (Nop, N1, wsize) where Nop is the number of operators, N1 is the num-
ber of 1 operators and wsize is the length of the window used for computing
the decay of the operator’s gains (see section 3). .

It can be shown that, independently from the size of the windows, the
score obtained by a uniform choice of the operators is constant:

Property 1. Given an instance (Nop, N1, wsize), the expectation of gain for
a 1 operator is:

∀t ∈ N,E[g(1, t)] = 1− 1

Nop

(8)

Indeed, Pr[Occwsize(s, o, t) = k] =
(

1
Nop

)k
(
1 − 1

Nop

)wsize−k(wsize
k

)
, with a cor-

responding gain of
(
1− k

wsize

)
.p.r for a (p, r) operator, i.e.

(
1− k

wsize

)
for a

1 operator. Considering that Occwsize(s, o, t) is a binomially distributed ran-
dom variable of parameters wsize and 1

Nop
, then E[Occwsize(s, o, t)] = wsize

Nop
,

and E[g(1, t)] = E
[
1− Occwsize(s,o,t)

wsize

]
= 1− 1

Nop
.

More generally, we have then the following property:

Property 2. Given an instance J ≡ (Nop, N1, wsize), the gain expectation
per iteration is equal to N1

Nop

(
1− 1

Nop

)
.

Therefore the behaviour of a uniform selection of the operators is indepen-
dent from wsize, for a given Nop. The total expected gain for N1 operators
can easily be computed according to the number of allowed iterations. A
uniform choice policy may thus serve as baseline for other selection processes
(see Section 5).

We may suppose that the 1 operators are numbered 1..N1 and O are
numbered N1 + 1..Nop. The optimal policy problem can be formulated as a
discrete constraint optimization problem.

Definition 5 (Optimal Policy for Binary Non Stationary Scenarios).
Given a non stationary binary scenario (Nop, N1, wsize) and an horizon T
(the number of allowed iterations) we define

• the set of variables X = {x1, . . . , xT}, such that xi is the operator
applied at iteration i (decision variables)

20

• ∀i ∈ {1, . . . , T}, xi ∈ {1, . . . , Nop} (domains of the decision variables)

• ∀j ∈ {1, . . . , N1}, gj = 1
wsize

∑T−wsize
k=1

(∑
i∈k..k+wsize|xi=j i

)
(gains for

all operators whose value is 1)

• the objective function is max
∑

j∈{1..N1} gj

Due to the size of the induced search space, this problem cannot be solved
pratically for large values of T . Nevertheless, we may restrict this problem to
a limited window and compute suboptimal policies. We consider a restricted
model. Note that, since we are only interested in maximizing the gain, the
O operators are all equivalent and we may consider only one O operator,
i.e., Nop = N1 + 1 or Nop = N1 if no O operator is considered. We consider
here a circular scenario of length Sc on which the total gain is computed in
order to simulate the successive repetitions of this scenario. Since we want
to be able to compute circularly the total gain induced by such a scenario,
we have to consider a computation sequence comps that is both a multiple
of the length of the windows wsize and of the length of the scenario Sc (i.e.,
the least common multiple lcm).

Definition 6 (Suboptimal Policy for Binary NS Scenarios). Given a
non stationary binary scenario (Nop, N1, wsize) and scenario length Sc (the
number of allowed iterations of operators in the scenario) we define

• comps = lcm(wsize, Sc) (the length of the computation sequence)

• nbseq = comps div Sc (the number of sequence of length Sc in the
total computation windows)

• the set of variables X = {x1, . . . , xcomps}, such that xi is the operator
applied at iteration i (decision variables)

• ∀i ∈ {1, . . . , comps}, xi ∈ {1, . . . , Nop} (domains of the decision vari-
ables)

• ∀i ∈ {1, . . . , comp}, k ∈ {1, . . . , nbseq−1}, (xi = xi+(k∗Sc)) (the scenario
is repeated nbseq times in the computation sequence)

• ∀i ∈ {(wsize+ 1), . . . , comps} such that xi ∈ {1, . . . , ..N1},
gi = 1

wsize

∑
{k∈(i−wsize)..i|xk=xi} k (standard gains for operators in the

computation sequence)

21

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0.500 0.333 0.500 0.400 0.500 0.428 0.500 0.333 0.500 0.454 0.500 0.461 0.500 0.400
2 0.250 0.333 0.375 0.300 0.333 0.357 0.375 0.333 0.300 0.363 0.375 0.346 0.357 0.333
3 0.333 0.222 0.333 0.333 0.333 0.286 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
4 0.250 0.250 0.250 0.300 0.333 0.321 0.313 0.278 0.300 0.318 0.333 0.326 0.321 0.300
5 0.300 0.267 0.300 0.240 0.300 0.314 0.325 0.311 0.300 0.273 0.300 0.308 0.314 0.320
6 0.250 0.222 0.292 0.267 0.250 0.286 0.313 0.315 0.317 0.303 0.292 0.269 0.286 0.300
7 0.286 0.238 0.286 0.257 0.286 0.035 0.286 0.302 0.314 0.312 0.310 0.297 0.286 0.267
8 0.125 0.250 0.063 0.275 0.135 0.268 0.031 0.278 0.150 0.307 0.312 0.308 0.152 0.292

Table 2: Expected gain per iteration w.r.t. window size (wsize) on lines and computation
sequences (comps) on column for Nop = 2 and N1 = 1

• ∀i ∈ {1, . . . , wsize} such that xi ∈ {1, . . . , ..N1},

gi = 1
wsize

(∑
{k∈1..i|xk=xi} k +

∑
{k∈(comps−wsize+i)..comps|xk=xi} k

)
(circu-

lar case)

• the objective function is max
∑

j∈{1..N1} gj

This model can be used to compute sub-optimal policies. We have used
the Minizinc (NICTA, 2014) constraint modelling and solving framework in
order to compute such policies. Table 2 shows the expected gain per iteration
for different scenario window sizes, considering one O operator and one 1
operator. Note that this is a complete exhaustive search performed by a tree
based constraint solver for discrete variables.

5. Experimental Results

In this section, we study the behaviour of different operator selection poli-
cies on binary non stationary scenarios. Note that, as mentioned above, the
behaviour of these policies for fixed gain operators or epoch based scenarios
has already been studied and will not be considered here.

5.1. Experimental Settings

The following notations are used for the different policies :

• GR is a basic greedy selection policy that always selects the operator
with the current maximal utility. This policy is used without any learn-
ing stage, which cannot be efficient here since the gains of the operators
continuously change.

22

• EGR is an ε-greedy policy that selects greedily the best operator ac-
cording to its current utility,but uses an exploration coefficient ε. There-
fore at each iteration the operator with the current maximal utility is
selected with probability 1−ε and a randomly selected operator is used
with probability ε. Note that GR and EGR are basic reinforcement
learning strategies. Despite their poor results, these policies just serve
here as baseline to highlight that a simple operator policy cannot be
efficient for our scenarios.

• OR is a myopic oracle that is aware of the gains of the operators and
the last applied operators in order to select the next operator with the
best expected value according to the variation of total gain . Note that
this oracle is different from the suboptimal policy that can be computed
using Definition 6.

This oracle does not compute the optimal solution for a given number
of iterations since it does not take into account future operators appli-
cations that are used to compute gains. In particular, compare to the
optimal and suboptimal policies described in section 4.4, OR does not
fully make use of the size of the windows wsize.

• U is a uniform selection choice rule. It correspond to a fixed roulette
with equal probabilities.

• ARW is an adaptive probability matching selection rule (adaptive
roulette wheel) using a minimal probability pmin, as defined in Section
3.1.1.

• AP is the adaptive pursuit method with parameters pmin and β (See
section 3.1.1).

• UCB uses the upper confidence bound UCB1 as described in Section
3.1.2.

• DMAB is the dynamic selection based on UCB1 with the Page Hink-
ley test. This method requires several parameters for the test (see
description in Section 3.1.2).

• IM is the island model implementation of the policy based on transition
matrix as described in Section 3.2. We do not detail the algorithmic

23

implementation here and refer the reader to Candan et al. (2012) for
more details.

We first set the experimental conditions:

• Each policy is run 20 times on each instance. Since island models use 80
individuals, the mean value (MeanV) corresponds to the average score
of the 20 best individuals obtained at each run. In order to achieve
fair comparisons, other policies have been run 20×80 times and the 20
best scores have been extracted from each sequence of 80 runs. Note
that the value 80 has been chosen here since we use a scenario with 8
operators and we thus use sub-populations of size 10 for each operators.

• Parameters

Method Parameters Range Value Tuned values
GR - - -
EGR ε [0, 1] 0.05
OR - - -
U - - -
ARW pmin [0, 1] 0.05

IM
α [0, 1] 0.8
β [0, 1] 0.01
nbind N 80

AP
β [0, 1] 0.7
pmin [0, 1] 0.1

UCB - - -

DMAB
γ [0,∞] 0
δ [0,∞] 0

Note that parameters have been tuned using a principled approach
inspired by F-Race (Birattari et al., 2002), using a set of randomly
generated training scenarios from different sizes. Note that here there
are indeed few parameters for these policies. Moreover the tuned values
corresponds to classic settings for such methods (and are quie intuitive).
Concerning DMAB as commented later the parameters controlling the
dynamic behavior of the policy have a rarther bad influence for this
type of scenario.

24

• The policies have all been implemented using Scilab (Scilab Enterprise,
2014). Experiments have been run on a desktop computer with Intel
Core i5 CPU, 2.6 GHz, 4 Go RAM.

5.2. Results

The following tables 3 and 4 compare different methods for windows sizes
wsize varying from 1 to 8, using binary non stationary scenarios with Nop = 8
and N1 varying from 1 to 8, as defined in Section 4.4. We report average
scores of the best 20 runs and their standard deviation.

In order to highlight the respective advantages and drawbacks of the
different selection policies, Figure 1 proposes a graphical view of some of
these results.

5.3. Comments

• Considering the first column of tables 3 and 4, i.e. scenario with
Nop = 1, it should be noted that the suboptimal optimization solu-
tion presented in Section 4.4 provides better results than OR. This
is due to the fact that OR is a myopic oracle while the suboptimal
circular policy based on circular scenarios takes into account sequences
of applications (in a dynamic programming fashion).

• As expected, greedy strategies cannot insure a good schedule of the
different operators in this non stationary context.

• UCB and DMAB are equivalent since no restart of the learning pro-
cess is used here — all DMAB parameters are set to 0. Note that these
parameters are useful when the distribution of gains is varying accord-
ing to epochs (epochs based scenarios previously described). Here,
since gains change continuously, such restart strategy is not efficient
— or would induce too much noise in the learning process. This has
been checked by experiments. Note that here the standard UCB can be
used directly without any reward normalization factor, since all rewards
range from 0 to 1.

• According to the results mentioned in Section 4.4, the uniform choice
U provides the same results independently from the size of the window.

• ARW and AP obtain comparable results, with a slight superiority of
ARW. Both policies give more importance to the best operator along

25

w
s
iz

e
=

1
N

1
1

2
3

4
5

6
7

8
m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

4
7
6
.1
0

1
.6
6

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
4
6
5
.4
0

1
.9
6

9
5
5
.4
0

6
.7
2

9
6
6
.6
0

3
.3
7

9
7
3
.9
0

2
.0
8

9
8
2
.6
0

0
.9
7

9
8
8
.8
0

1
.0
3

9
9
4
.3
0

1
.3
4

9
9
8
.5
0

0
.5
3

G
R

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

1
.0
0

0
.0
0

E
G
R

5
7
.3
0

2
.0
0

2
2
7
.7
0

5
4
.8
6

2
4
5
.9
0

4
0
.9
5

2
7
8
.6
0

3
2
.6
4

3
1
8
.0
0

3
4
.6
6

3
4
0
.2
0

2
8
.9
0

3
5
5
.6
0

2
4
.1
1

3
6
5
.8
0

2
6
.6
8

U
1
2
9
.8
0

3
.5
2

2
4
5
.6
0

4
.9
3

3
5
6
.9
0

3
.3
8

4
7
2
.1
0

4
.8
4

5
8
4
.3
0

8
.1
5

6
9
1
.9
0

5
.2
6

7
9
4
.1
0

3
.4
1

9
0
1
.8
0

4
.8
3

U
C
B

8
6
.0
0

0
.0
0

5
2
6
.7
0

1
2
9
.2
3

9
0
9
.1
0

9
6
.2
3

9
5
8
.3
0

0
.6
7

9
6
9
.9
0

0
.3
2

9
7
7
.0
0

0
.0
0

9
8
4
.0
0

0
.0
0

9
9
1
.0
0

0
.0
0

A
R
W

2
4
9
.3
0

2
.4
1

4
8
1
.2
0

7
.5
4

5
9
4
.1
0

9
.3
0

6
6
5
.3
0

3
.6
8

7
3
6
.0
0

4
.4
0

7
9
3
.5
0

6
.9
2

8
4
4
.7
0

4
.7
6

8
9
5
.6
0

2
.9
9

A
P

2
3
0
.5
0

4
.8
4

3
3
0
.0
0

3
.6
5

4
2
6
.2
0

2
.2
0

5
1
6
.9
0

3
.8
1

6
1
1
.3
0

6
.1
5

7
0
0
.7
0

5
.3
6

7
8
5
.9
0

7
.3
1

8
7
6
.9
0

5
.2
4

D
M

A
B

8
6
.0
0

0
.0
0

5
0
2
.4
0

8
3
.0
3

9
2
2
.1
0

4
9
.9
3

9
5
8
.7
0

0
.4
8

9
6
9
.9
0

0
.3
2

9
7
7
.0
0

0
.0
0

9
8
4
.0
0

0
.0
0

9
9
1
.0
0

0
.0
0

w
s
iz

e
=
2

N
1

1
2

3
4

5
6

7
8

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

3
2
4
.1
5

0
.9
1

6
7
8
.1
0

1
.5
4

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
9
1
.9
5

3
.9
4

5
0
7
.7
0

2
.3
4

9
5
6
.6
5

4
.0
6

9
6
6
.3
5

3
.5
6

9
7
3
.4
0

3
.5
0

9
7
9
.1
0

2
.3
1

9
8
3
.0
5

1
.1
9

9
8
7
.1
5

1
.2
7

G
R

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

1
.5
0

0
.0
0

E
G
R

5
7
.3
0

3
.2
3

3
0
3
.2
0

5
9
.4
1

3
4
2
.7
0

6
2
.1
0

3
6
5
.9
0

2
6
.2
4

3
9
8
.6
0

3
8
.2
5

4
4
8
.1
0

6
0
.3
7

4
6
4
.7
5

4
7
.8
6

4
7
2
.4
5

3
9
.1
3

U
1
2
9
.9
5

2
.2
3

2
4
4
.1
5

4
.8
1

3
6
0
.5
0

5
.3
1

4
6
8
.9
5

4
.4
2

5
8
0
.0
0

6
.8
4

6
8
4
.5
0

4
.5
5

7
8
8
.3
5

3
.2
7

8
9
2
.7
5

2
.6
0

U
C
B

1
1
6
.0
0

0
.0
0

6
7
6
.4
5

0
.3
7

7
0
0
.8
5

0
.8
5

9
4
4
.1
0

2
1
.1
3

9
7
1
.6
5

0
.2
4

9
7
9
.2
5

0
.2
6

9
8
6
.5
0

0
.0
0

9
9
4
.0
0

0
.0
0

A
R
W

2
4
5
.4
5

3
.3
7

4
7
3
.9
5

2
.2
5

5
8
6
.5
0

2
.4
0

6
6
1
.7
0

5
.1
4

7
3
0
.0
5

4
.0
7

7
8
5
.7
5

6
.1
7

8
3
8
.2
0

4
.0
9

8
8
8
.4
5

2
.5
9

A
P

2
2
8
.3
5

4
.0
8

3
3
1
.3
0

4
.5
3

4
2
9
.0
5

4
.9
6

5
2
0
.4
5

7
.5
1

6
1
2
.1
0

4
.4
6

7
0
4
.5
5

3
.3
2

7
8
7
.4
0

4
.4
0

8
7
4
.1
5

2
.9
0

D
M

A
B

1
1
6
.0
0

0
.0
0

6
7
6
.4
0

0
.2
1

7
0
2
.3
0

1
.4
6

9
4
8
.4
5

6
.9
6

9
7
1
.7
0

0
.4
8

9
7
9
.0
0

0
.0
0

9
8
6
.5
0

0
.0
0

9
9
4
.0
0

0
.0
0

w
s
iz

e
=
3

N
1

1
2

3
4

5
6

7
8

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

2
4
5
.7
7

0
.3
5

6
6
7
.3
3

0
.0
0

8
4
1
.0
7

0
.8
4

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
8
0
.8
3

2
.4
6

6
4
3
.6
3

1
.6
1

6
7
3
.5
0

2
.7
1

9
6
0
.9
0

4
.2
7

9
6
6
.7
3

2
.8
1

9
7
2
.5
3

3
.1
8

9
7
5
.7
3

3
.0
1

9
7
8
.6
0

2
.3
0

G
R

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

2
.0
0

0
.0
0

E
G
R

5
9
.6
3

2
.2
5

3
1
4
.0
3

4
9
.5
6

4
0
8
.0
7

5
0
.5
7

4
5
7
.3
0

5
3
.1
8

5
0
5
.1
3

4
4
.4
3

5
1
8
.2
7

2
6
.3
6

5
4
6
.2
0

6
6
.4
5

5
4
9
.0
7

2
4
.6
4

U
1
2
7
.5
3

2
.7
5

2
4
4
.4
7

3
.8
6

3
5
7
.1
0

5
.0
5

4
6
7
.3
3

5
.7
0

5
7
8
.2
7

3
.1
4

6
8
3
.1
0

3
.1
2

7
9
0
.2
7

3
.6
7

8
9
0
.7
0

2
.7
7

U
C
B

1
4
2
.0
0

0
.0
0

5
9
2
.3
0

0
.1
1

7
7
3
.3
0

7
.3
0

8
0
0
.9
0

0
.7
2

9
6
5
.0
0

4
.0
6

9
7
8
.9
0

0
.4
7

9
8
7
.8
0

0
.2
3

9
9
5
.2
3

0
.1
6

A
R
W

2
4
1
.1
3

1
.6
9

4
7
1
.4
3

3
.9
4

5
8
1
.8
3

3
.5
6

6
6
0
.6
0

6
.1
3

7
2
7
.7
3

4
.5
5

7
8
3
.0
0

4
.3
5

8
3
8
.9
0

3
.8
2

8
8
6
.5
7

2
.8
5

A
P

2
2
6
.5
3

2
.7
1

3
3
2
.8
0

3
.9
4

4
2
7
.9
0

5
.1
0

5
2
2
.2
3

7
.2
8

6
1
4
.3
0

4
.7
3

7
0
0
.8
0

4
.2
1

7
9
2
.2
7

5
.6
5

8
7
5
.0
7

2
.6
2

D
M

A
B

1
4
2
.0
0

0
.0
0

5
9
2
.2
7

0
.1
4

7
7
0
.0
3

1
0
.9
2

8
0
0
.6
0

1
.0
3

9
6
4
.6
7

3
.2
3

9
7
8
.5
0

0
.3
6

9
8
7
.6
0

0
.2
1

9
9
5
.1
3

0
.1
7

w
s
iz

e
=
4

N
1

1
2

3
4

5
6

7
8

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

1
9
8
.5
3

0
.4
0

6
0
8
.0
0

1
.5
8

8
0
7
.1
3

0
.9
3

9
0
5
.9
5

0
.8
1

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
8
5
.1
7

3
.0
8

5
0
9
.3
0

1
.3
0

7
3
5
.0
2

1
.5
2

7
6
2
.5
8

1
.6
2

9
6
5
.5
0

3
.5
9

9
6
9
.9
5

2
.8
3

9
7
3
.1
5

1
.9
4

9
7
6
.9
2

2
.2
9

G
R

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

2
.5
0

0
.0
0

E
G
R

5
8
.8
8

3
.3
0

4
1
4
.8
2

4
7
.1
3

4
5
0
.0
2

3
8
.7
6

4
8
6
.5
5

3
0
.6
7

5
1
7
.7
0

2
5
.9
4

5
3
3
.1
3

3
7
.0
5

5
7
0
.3
3

4
6
.0
5

5
8
9
.1
5

4
2
.2
7

U
1
2
8
.9
7

3
.4
0

2
4
3
.7
5

3
.7
6

3
5
6
.6
5

3
.7
3

4
6
8
.7
0

6
.3
2

5
8
0
.4
8

4
.3
5

6
8
2
.5
5

5
.4
0

7
8
8
.0
5

3
.5
3

8
8
7
.0
0

1
.7
0

U
C
B

1
6
4
.5
0

0
.0
0

5
6
6
.0
0

1
.7
0

8
0
5
.8
3

0
.6
5

8
3
5
.5
8

0
.1
7

8
5
4
.7
0

1
.3
9

9
7
4
.7
0

2
.2
1

9
8
7
.0
0

0
.2
6

9
9
6
.1
7

0
.1
7

A
R
W

2
4
1
.3
2

2
.4
9

4
7
1
.0
5

3
.4
9

5
8
1
.1
5

4
.7
4

6
5
9
.9
0

2
.2
0

7
2
7
.4
2

4
.4
7

7
8
0
.8
5

3
.2
1

8
3
6
.1
5

2
.0
4

8
8
5
.5
2

3
.1
5

A
P

2
2
5
.3
5

1
.6
9

3
3
3
.3
8

4
.6
7

4
2
8
.3
2

4
.0
1

5
2
2
.7
5

4
.2
8

6
1
4
.1
3

3
.4
1

7
0
0
.6
7

4
.4
7

7
9
2
.8
8

2
.0
4

8
7
5
.1
0

2
.2
3

D
M

A
B

1
6
4
.5
0

0
.0
0

5
6
5
.6
0

1
.5
5

8
0
6
.2
0

0
.4
2

8
3
5
.6
0

0
.1
7

8
5
4
.4
2

1
.1
2

9
7
6
.2
5

0
.9
3

9
8
7
.0
0

0
.2
6

9
9
6
.1
7

0
.1
2

Table 3: Results for wsize ∈ {1 . . . 4}
26

w
s
iz

e
=

5
N

1
1

2
3

4
5

6
7

8
m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

1
6
6
.7
0

0
.1
9

6
0
1
.2
0

0
.0
0

8
0
0
.6
0

0
.0
0

8
7
2
.5
6

0
.7
5

9
3
7
.5
6

0
.6
1

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
9
1
.5
2

4
.6
6

5
8
2
.4
0

1
.2
3

7
6
8
.5
6

2
.6
2

7
9
4
.5
4

2
.4
1

8
1
9
.1
6

2
.7
0

9
7
0
.4
8

2
.6
3

9
7
1
.5
8

3
.0
7

9
7
5
.1
6

2
.5
7

G
R

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

3
.0
0

0
.0
0

E
G
R

5
8
.2
0

2
.1
5

4
3
0
.3
4

7
3
.9
3

4
8
4
.9
8

5
1
.3
9

5
3
6
.2
8

1
9
.6
8

5
2
8
.4
6

2
3
.4
6

5
7
2
.2
4

3
1
.4
4

5
9
9
.7
4

1
0
.3
6

6
1
1
.7
6

2
1
.1
7

U
1
3
0
.5
2

2
.9
2

2
4
3
.3
8

3
.6
7

3
5
8
.2
8

6
.1
4

4
6
6
.4
0

7
.1
2

5
7
6
.9
4

4
.8
2

6
8
3
.5
6

7
.0
1

7
8
8
.4
2

3
.3
3

8
8
7
.8
4

1
.3
5

U
C
B

1
8
4
.8
0

0
.0
0

5
7
4
.9
4

1
.9
3

7
3
8
.4
4

0
.8
6

8
5
4
.0
8

0
.9
4

8
7
2
.4
2

0
.2
4

8
8
7
.3
8

0
.5
0

9
7
4
.8
0

7
.0
1

9
9
4
.2
2

0
.3
7

A
R
W

2
4
0
.6
8

1
.7
5

4
6
9
.2
2

3
.3
3

5
8
0
.2
0

3
.4
0

6
5
9
.1
0

4
.0
4

7
2
4
.7
2

2
.6
2

7
8
1
.5
8

3
.4
7

8
3
4
.3
6

3
.6
1

8
8
3
.4
6

2
.0
7

A
P

2
2
6
.3
0

2
.6
9

3
3
4
.3
8

4
.4
5

4
3
0
.5
2

4
.3
5

5
2
6
.7
4

6
.7
4

6
1
6
.2
6

7
.4
3

7
0
7
.0
2

5
.6
1

7
9
4
.0
2

3
.5
1

8
7
5
.7
0

1
.9
1

D
M

A
B

1
8
4
.8
0

0
.0
0

5
7
4
.2
6

0
.3
0

7
3
8
.5
2

0
.8
1

8
5
4
.3
8

0
.8
1

8
7
2
.4
4

0
.2
6

8
8
7
.2
0

0
.4
5

9
8
0
.0
4

4
.1
6

9
9
4
.1
4

0
.2
8

w
s
iz

e
=

6
N

1
1

2
3

4
5

6
7

8
m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

1
4
4
.1
2

0
.2
7

5
7
8
.7
2

1
.3
3

7
6
8
.2
7

0
.6
5

8
6
2
.3
3

0
.6
6

9
0
9
.5
7

0
.7
4

9
5
5
.8
5

0
.4
7

1
0
0
0
.0
0

0
.0
0

1
0
0
0
.0
0

0
.0
0

IM
9
6
.5
7

3
.1
1

5
1
0
.2
3

0
.4
9

6
7
1
.0
8

0
.9
9

8
1
3
.6
0

2
.1
5

8
3
5
.0
0

1
.5
8

8
5
7
.2
0

3
.1
8

9
7
3
.1
5

3
.8
6

9
7
4
.3
5

2
.5
2

G
R

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

3
.5
0

0
.0
0

E
G
R

5
9
.3
7

2
.3
2

4
3
3
.1
3

2
8
.6
5

4
9
8
.9
8

3
4
.0
3

5
1
0
.1
5

4
3
.9
4

5
6
8
.2
7

5
3
.5
0

6
0
4
.8
8

2
3
.0
8

6
4
7
.5
5

2
9
.9
7

6
6
2
.8
3

2
6
.9
9

U
1
2
8
.2
8

3
.7
9

2
4
4
.9
8

4
.9
4

3
5
7
.3
5

4
.6
0

4
6
7
.8
2

4
.3
0

5
7
5
.3
2

4
.7
4

6
8
4
.3
3

4
.2
2

7
8
7
.5
8

3
.6
3

8
8
5
.8
0

1
.3
8

U
C
B

2
0
1
.1
7

0
.0
0

5
6
1
.0
0

0
.0
0

7
6
0
.2
5

0
.3
5

8
4
0
.1
5

7
.3
0

8
8
0
.7
5

0
.8
4

8
9
8
.5
8

0
.2
3

9
1
0
.2
3

0
.2
7

9
7
4
.5
8

8
.6
4

A
R
W

2
4
0
.3
3

2
.1
3

4
6
8
.5
8

2
.8
2

5
7
9
.2
2

1
.8
4

6
5
9
.0
7

3
.3
9

7
2
2
.5
0

2
.7
4

7
8
1
.1
3

3
.6
6

8
3
4
.1
2

3
.6
3

8
8
3
.2
3

1
.6
9

A
P

2
2
4
.9
8

2
.3
7

3
3
5
.7
3

5
.5
7

4
3
5
.2
2

6
.2
6

5
2
7
.1
3

5
.3
0

6
1
5
.9
0

5
.8
6

7
0
8
.1
0

4
.1
9

7
9
6
.2
7

2
.8
9

8
7
7
.1
2

2
.9
0

D
M

A
B

2
0
1
.1
7

0
.0
0

5
6
1
.0
0

0
.0
0

7
5
9
.6
0

1
.4
1

8
3
7
.4
2

6
.1
6

8
8
1
.7
7

2
.4
6

8
9
8
.5
8

0
.2
1

9
1
0
.1
0

0
.3
4

9
7
5
.2
7

1
4
.0
7

w
s
iz

e
=

7
N

1
1

2
3

4
5

6
7

8
m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

1
2
7
.1
3

0
.1
6

5
7
3
.1
4

0
.0
0

7
5
6
.3
9

0
.9
8

8
5
7
.7
1

0
.0
0

8
9
7
.5
4

0
.7
0

9
3
2
.1
9

0
.2
8

9
6
7
.1
1

0
.3
8

1
0
0
0
.0
0

0
.0
0

IM
1
0
0
.4
6

3
.2
9

5
5
6
.6
9

1
.8
1

7
0
2
.4
4

1
.3
4

8
2
5
.4
0

4
.2
6

8
4
7
.1
4

1
.6
1

8
6
5
.4
3

1
.7
0

8
8
6
.0
1

1
.5
0

9
7
6
.4
6

3
.0
1

G
R

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

4
.0
0

0
.0
0

E
G
R

5
9
.2
0

2
.0
5

4
7
0
.9
3

3
4
.5
9

5
1
9
.3
7

3
0
.6
6

5
4
2
.9
9

2
2
.5
1

6
0
7
.6
4

3
8
.3
4

6
4
5
.6
7

3
1
.4
5

6
7
5
.4
3

2
7
.4
4

6
9
1
.0
9

1
8
.5
3

U
1
2
9
.6
3

2
.8
0

2
4
5
.4
6

5
.6
4

3
5
5
.7
9

5
.3
3

4
6
4
.3
6

4
.7
9

5
7
7
.0
7

8
.1
5

6
8
2
.2
6

4
.3
4

7
8
5
.0
0

3
.1
9

8
8
4
.4
3

1
.1
4

U
C
B

2
1
7
.1
4

0
.0
0

5
4
8
.9
1

0
.7
8

7
1
1
.2
7

1
.3
0

8
0
6
.9
4

0
.1
4

8
6
3
.3
9

0
.0
7

9
0
5
.1
3

0
.8
5

9
1
7
.9
1

0
.1
2

9
2
9
.5
1

0
.1
9

A
R
W

2
4
0
.4
1

2
.1
4

4
6
7
.0
9

2
.7
5

5
8
2
.8
6

6
.9
3

6
5
6
.4
0

3
.2
6

7
2
1
.0
4

2
.2
6

7
8
1
.5
9

4
.0
8

8
3
3
.7
0

1
.9
9

8
8
2
.8
1

1
.3
6

A
P

2
2
4
.6
3

1
.5
9

3
3
5
.3
9

3
.1
3

4
3
4
.3
0

5
.2
5

5
2
7
.6
0

4
.2
7

6
2
0
.7
9

3
.4
9

7
0
7
.7
9

3
.8
7

7
9
5
.6
6

5
.0
8

8
7
7
.2
6

2
.0
9

D
M

A
B

2
1
7
.1
4

0
.0
0

5
4
8
.8
0

0
.6
9

7
1
0
.4
1

1
.1
2

8
0
6
.6
0

0
.5
7

8
6
3
.4
9

0
.3
0

9
0
5
.3
3

1
.2
2

9
1
7
.9
3

0
.2
9

9
2
9
.4
6

0
.1
1

w
s
iz

e
=

8
N

1
1

2
3

4
5

6
7

8
m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

m
e
a
n

st
d

O
R

1
1
3
.8
5

0
.1
3

5
6
3
.2
7

1
.1
0

7
5
1
.1
3

0
.0
0

8
3
7
.6
4

0
.6
1

8
9
3
.1
3

0
.9
9

9
2
0
.8
1

0
.4
7

9
4
7
.7
0

0
.5
9

9
7
4
.5
5

0
.3
7

IM
1
0
0
.3
9

4
.0
8

5
1
1
.0
0

1
.0
2

7
2
3
.5
0

2
.7
5

7
5
9
.1
0

1
.7
9

8
5
3
.7
9

2
.9
5

8
7
1
.4
1

1
.3
0

8
8
8
.5
8

1
.7
2

9
0
5
.3
6

1
.0
6

G
R

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

4
.5
0

0
.0
0

E
G
R

6
0
.3
0

2
.9
8

4
8
0
.6
1

2
1
.0
0

5
2
7
.4
6

3
2
.2
1

5
9
2
.4
2

2
1
.7
9

6
2
2
.7
7

3
1
.8
1

6
6
3
.1
4

3
7
.0
8

6
9
0
.8
0

2
8
.9
0

7
0
8
.1
6

1
1
.9
2

U
1
2
9
.5
7

3
.1
2

2
4
2
.6
1

4
.6
2

3
5
6
.1
4

3
.2
6

4
6
8
.7
9

7
.1
3

5
7
9
.9
0

4
.5
2

6
8
1
.9
2

3
.2
5

7
8
6
.2
3

4
.2
8

8
8
4
.5
9

1
.0
2

U
C
B

2
2
9
.1
3

0
.0
0

5
3
9
.8
9

0
.4
8

7
3
4
.3
8

3
.7
3

7
9
0
.5
2

1
.0
6

8
4
8
.6
0

0
.1
3

8
7
8
.4
1

3
.0
8

9
2
3
.5
0

0
.7
5

9
3
4
.9
5

0
.2
6

A
R
W

2
4
0
.4
0

2
.6
1

4
6
8
.7
5

2
.4
4

5
7
9
.4
4

2
.0
6

6
5
9
.1
5

2
.2
4

7
2
6
.0
2

4
.1
3

7
8
0
.9
9

2
.7
0

8
3
3
.8
0

1
.8
5

8
8
2
.0
2

1
.6
3

A
P

2
2
4
.3
0

1
.4
8

3
3
7
.0
6

4
.7
4

4
3
3
.5
6

3
.3
2

5
2
9
.6
6

2
.6
0

6
2
1
.5
4

2
.9
1

7
0
7
.5
8

4
.0
7

7
9
7
.2
5

3
.7
5

8
7
6
.9
9

1
.3
7

D
M

A
B

2
2
9
.1
3

0
.0
0

5
3
9
.8
0

0
.4
4

7
3
3
.0
1

4
.7
3

7
8
9
.6
7

0
.4
3

8
4
8
.6
5

0
.2
1

8
7
8
.7
5

3
.2
8

9
2
3
.6
6

0
.5
1

9
3
4
.9
4

0
.2
1

Table 4: Results for wsize ∈ {5 . . . 8}

27

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10

A
ve

ra
ge

 G
ai

n

of (1,1) operators

Wsize = 1

OR
IM

GR
EGR

U
UCB
ARW

AP
MAB

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10

A
ve

ra
ge

 G
ai

n

of (1,1) operators

Wsize = 4

OR
IM

GR
EGR

U
UCB
ARW

AP
MAB

Figure 1: Experiments with different window size

28

the search. Such a strategy is not necessary well suited for this prob-
lem, but is rather efficient when N1 is low. The balance adjustment
between O and 1 operators is insured by the pmin parameter. Note
that these policies obtain similar results independently from the size
of the window, which seems to mean that their behaviour is close to a
uniform choice, but restricted to the most efficient operators. When N1

increases, they become indeed equivalent to U. We have checked that,
studying the sequence of selected operators, no clear repeated sequence
of operators can be observed ; however the total amount of 1 operators
used remains similar in the different problem configurations.

• Concerning UCB, DMAB and IM, we may distinguish several different
ranges of results:

– When N1 = 1, UCB (and DMAB, but in the following, we will
only mention UCB) and IM cannot insure a good management
of the balance between O and 1 operators, certainly due to their
exploration component — ie. noise in IM and right member in
UCB formula (see section 3.1.2). .

– When 1 6 N1 6 wsize, UCB seems to provide better results than
IM on most instances. While N1 increases, the gap between the
policies reduces. Moreover, the policies are more and more close
to the oracle.

– When N1 = wsize + 1, one observes that OR is able to compute
an optimal schedule (1000). Indeed, it is possible here to alternate
between 1 operators only. We also observe that IM is also able to
increase its performance, and becomes then better than UCB.

– When N1 > wsize+1, the problem becomes easier since a uniform
choice U is then a reasonably efficient policy. Here, IM and UCB
have a performance close to OR.

• We may remark that the behaviour of the different policies is almost
the same when dimensions of the problem increase, shifted according to
the values of N1 and wsize. We have conducted experiments on other
dimensions (see Figure 2) with similar observations.

Discussion

29

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10

A
ve

ra
ge

 G
ai

n

of (1,1) operators

Wsize = 10

OR
IM

GR
EGR

U
UCB
ARW

AP
MAB

Figure 2: Experiments with wsize = 10

Our experiments have shown that the scenarios induce different possible
difficulties for identifying suitable operator selection policies, according to the
respective number of operators that have positive gains and null operators.
Operators that have positive gains may be understood as intensification op-
erators with regards to a given fitness criterion and operators with null gain
may be considered as diversification operators. In the previous comments, we
have highlighted that depending on the situations operators selection policies
may have different advantages and drawbacks. Therefore, in order to design
an automated operator selection mechanism in a search algorithm one has to
carefully choose the most suitable technique. Our scenarios can be used as
surrogate models in order to facilitate such choices. Given a set of operators
and a set of problem instances, it is possible to sample the behaviour of the
operators on the induced search spaces and to improve their dynamic schedule
with operator selection policies. Nevertheless, since most of these selection
policies aim at learning some regular information on the operator behaviour,
their performance would be rather limited when faced to very complex and
intricate search landscape, where poor correlation between fitness and solu-
tion topology can be found. Such policies can rather be used in order to help
the design of a search algorithm by allowing to quickly classify large set of
possible operators with regards to their observed behaviours.Tuning methods

30

consider a static point of view for evaluating a posteriori the performance of
the algorithm setting while the control approach explore more dynamically
the possible configurations of the algorithm.

6. Conclusion

In this paper, we have proposed a new model for simulating non stationary
operators in search algorithms that should alternate between intensification
and diversification stages in their search processes. The abstract model that
is defined here may serve to evaluate the performance of operator selection
policies in these search algorithms. We proposed here an experimental study
of different classic operator selection policies in order to highlight their re-
spective advantages and drawbacks in such search scenarios.

Our model can be considered as a possible surrogate model in order to de-
sign new adaptive search algorithms that aim at solving general optimization
problems without focusing on specific dedicated operators or search heuris-
tics. From a reinforcement learning point of view, our model corresponds to
specific restless bandit problems that could be used to model different real
applications as soon as the efficiency of a given action decreases according to
successive frequent uses.

References

Auer, P., 2002. Using confidence bounds for exploitation-exploration trade-
offs. Journal of Machine Learning Research 3, 397–422.

Auer, P., Cesa-Bianchi, N., Fischer, P., 2002. Finite-time analysis of the
multiarmed bandit problem. Machine Learning 47 (2-3), 235–256.

Basseur, M., Goffon, A., 2015. Climbing combinatorial fitness landscapes.
Applied Soft ComputingTo appear.

Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K., 2002. A racing algo-
rithm for configuring metaheuristics. In: GECCO ’02: Proceedings of the
Genetic and Evolutionary Computation Conference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp. 11–18.

Bradt, R. N., Johnson, S. M., Karlin, S., 1956. On sequential designs for max-
imizing the sum of n observations. The Annals of Mathematical Statistics
27 (4), 1060–1074.

31

Candan, C., Goëffon, A., Lardeux, F., Saubion, F., 2012. A dynamic is-
land model for adaptive operator selection. In: Genetic and Evolutionary
Computation Conference (GECCO’12). pp. 1253–1260.

Costa, L. D., Fialho, Á., Schoenauer, M., Sebag, M., 2008. Adaptive operator
selection with dynamic multi-armed bandits. In: Genetic and Evolutionary
Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA,
July 12-16, 2008. ACM, pp. 913–920.

Desport, P., Basseur, M., Goffon, A., Lardeux, F., Saubion, F., 2015. Empir-
ical analysis of operators for permutation based problems. In: Proceedings
of Learning and Intelligent OptimizatioN Conference LION 9.

Dorigo, M., Stützle, T., 2004. Ant Colony Optimization. Bradford Company,
Scituate, MA, USA.

Eiben, A., Smit, S., 2012. Autonomous Search. Springer, Ch. Evolutionary
Algorithm Parameters and Methods to Tune them, pp. 25–38.

Eiben, A., Smith, J., 2003. Introduction to Evolutionary Computing. Natural
Computing Series. Springer.

Eiben, A. E., Michalewicz, Z., Schoenauer, M., Smith, J. E., 2007. Parameter
control in evolutionary algorithms. In: Parameter Setting in Evolutionary
Algorithms. pp. 19–46.

Feldman, D., 1962. Contributions to the ”two-armed bandit” problem. The
Annals of Mathematical Statistics 33 (3), 847–856.

Fialho, Á., Dec. 2010. Adaptive operator selection for optimization. Ph.D.
thesis, Université Paris-Sud 11, Orsay, France.

Fialho, Á., Costa, L. D., Schoenauer, M., Sebag, M., 2008. Extreme value
based adaptive operator selection. In: Parallel Problem Solving from Na-
ture - PPSN X, 10th International Conference, Proceedings. Vol. 5199 of
Lecture Notes in Computer Science. Springer, pp. 175–184.

Fialho, Á., Costa, L. D., Schoenauer, M., Sebag, M., 2010. Analyzing bandit-
based adaptive operator selection mechanisms. Ann. Math. Artif. Intell.
60 (1-2), 25–64.

32

Gendreau, M., Potvin, J.-Y., 2010. Handbook of Metaheuristics, 2nd Edition.
Springer Publishing Company, Incorporated.

Gittins, J. C., 1979. Bandit processes and dynamic allocation indices. Journal
of the Royal Statistical Society. Series B (Methodological) 41 (2), 148–177.

Hamadi, Y., Monfroy, E., Saubion, F., 2012. Autonomous search. Springer-
Verlag.

Hinkley, D. V., 1970. Inference about the change-point in a sequence of ran-
dom variables. Biometrika 57 (1), 1–17.

Hoos, H., Stützle, T., 2004. Stochastic Local Search: Foundations & Appli-
cations. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Hoos, H. H., 2012. Autonomous Search. Springer Verlag, Ch. Automated
Algorithm Configuration and Parameter Tuning, pp. 37–71.

Hutter, F., Hoos, H., K.Leyton-Brown, Stützle, T., Sep. 2009. ParamILS: an
automatic algorithm configuration framework. J. Artif. Int. Res. 36 (1),
267–306.

Kennedy, J., Eberhart, R. C., 1995. Particle swarm optimization. In: Pro-
ceedings of the IEEE International Conference on Neural Networks. pp.
1942–1948.

Koulouriotis, D., Xanthopoulos, A., 2008. Reinforcement learning and evo-
lutionary algorithms for non-stationary multi-armed bandit problems. Ap-
plied Mathematics and Computation 196 (2), 913 – 922.

Li, L., Chu, W., Langford, J., Schapire, R. E., 2010. A contextual-bandit
approach to personalized news article recommendation. In: Proceedings
of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010. pp. 661–670.

Liao, T., Molina, D., Stützle, T., 2015. Performance evaluation of automati-
cally tuned continuous optimizers on different benchmark sets. Appl. Soft
Comput. 27, 490–503.

Lobo, F., Lima, C., Michalewicz, Z. (Eds.), 2007. Parameter Setting in Evo-
lutionary Algorithms. Vol. 54 of Studies in Computational Intelligence.
Springer.

33

Mahajan, A., Teneketzis, D., 2008. Multi-armed bandit problems. In: Hero,
AlfredO., I., Castan, D., Cochran, D., Kastella, K. (Eds.), Foundations
and Applications of Sensor Management. Springer US, pp. 121–151.

Maturana, J., Fialho, Á., aand Marc Schoenauer nd Frederic Lardeux, F. S.,
Sebag, M., 2012. Autonomous Search. Springer, Ch. Adaptive Operator
Selection and Management in Evolutionary Algorithms, pp. 161–190.

Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M., 2009a.
Compass and dynamic multi-armed bandits for adaptive operator selection.
In: Proc. of IEEE Congress on Evolutionary Computation CEC. IEEE, pp.
365–372.

Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M., 2009b.
Extreme compass and dynamic multi-armed bandits for adaptive operator
selection. In: Proceedings of IEEE Congress on Evolutionary Computation
CEC.

Maturana, J., Lardeux, F., Saubion, F., 2010. Autonomous operator man-
agement for evolutionary algorithms. J. Heuristics 16 (6), 881–909.

Maturana, J., Saubion, F., 2007. On the design of adaptive control strategies
for evolutionary algorithms. In: Proc. Int. Conf. on Artificial Evolution.
LNCS 4926, Springer.

Mitchell, M., Forrest, S., Holland, J. H., 1991. The royal road for genetic
algorithms: Fitness landscapes and ga performance. In: Proceedings of
the First European Conference on Artificial Life. MIT Press, pp. 245–254.

Mladenovic, N., Hansen, P., 1997. Variable neighborhood search. Computers
& OR 24 (11), 1097–1100.

Nannen, V., Smit, S. K., Eiben, Á. E., 2008. Costs and benefits of tuning
parameters of evolutionary algorithms. In: G. Rudolph et al. (Ed.), Parallel
Problem Solving from Nature - PPSN X, 10th International Conference
Dortmund, Germany, September 13-17, 2008, Proceedings. Springer, pp.
528–538.

NICTA, 2014. Minizinc.
URL http://www.minizinc.org/

34

Ochoa, G., Harvey, I., Buxton, H., 1999. On recombination and optimal mu-
tation rates. In: in Proceedings of Genetic and Evolutionary Computation
Conference (GECCO). Morgan Kaufmann, pp. 488–495.

Robbins, H., 1952. Some aspects of the sequential desing of experiments.
Bulletin Amrican Mathematical Society (55), 527–535.

Rodman, L., 1978. On the many-armed bandit problem. The Annals of Prob-
ability 6 (3), 491–498.

Scilab Enterprise, 2014. Scilab.
URL www.scilab.org

Smit, S., Eiben, G., 2009. Comparing parameter tuning methods for evolu-
tionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary
Computation.

Sörensen, K., 2015. Metaheuristics - the metaphor exposed. International
Transactions in Operational Research 22 (1), 3–18.

Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. MIT
Press.

Thierens, D., 2005. An adaptive pursuit strategy for allocating operator prob-
abilities. In: Genetic and Evolutionary Computation Conference, GECCO.
ACM, pp. 1539–1546.

Thierens, D., 2007. Adaptive Strategies for Operator Allocation. In: Lobo,
F., Lima, C., Michalewicz, Z. (Eds.), Parameter Setting in Evolutionary
Algorithms. Springer Verlag, pp. 77–90.

Veerapen, N., Hamadi, Y., Saubion, F., 2013. Using local search with adap-
tive operator selection to solve the progressive party problem. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, CEC 2013,
Cancun, Mexico, June 20-23, 2013. pp. 554–561.

Veerapen, N., Maturana, J., Saubion, F., 2012. An exploration-exploitation
compromise-based adaptive operator selection for local search. In: Ge-
netic and Evolutionary Computation Conference, GECCO ’12, Philadel-
phia, PA, USA, July 7-11, 2012. pp. 1277–1284.

35

Vérel, S., Ochoa, G., Tomassini, M., 2011. Local optima networks of NK
landscapes with neutrality. IEEE Trans. Evolutionary Computation 15 (6),
783–797.

Whittle, P., 1988. Restless bandits: Activity allocation in a changing world.
Journal of Applied Probability 25, 287–298.

Wolpert, D., Macready, W., 1997. No free lunch theorems for optimization.
IEEE Trans. Evolutionary Computation 1 (1), 67–82.

36

