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This study considers a well-known critical node detection problem that aims to minimize a pairwise con-

nectivity measure of an undirected graph via the removal of a subset of nodes (referred to as critical nodes)

subject to a cardinality constraint. Potential applications include epidemic control, emergency response,

vulnerability assessment, carbon emission monitoring, network security and drug design. To solve the prob-

lem, we present a “reduce-solve-combine” memetic search approach that integrates a problem reduction

mechanism into the popular population-based memetic algorithm framework. At each generation, a common

pattern mined from two parent solutions is first used to reduce the given problem instance, then the reduced

instance is solved by a component-based hybrid neighborhood search that effectively combines an articula-

tion point impact strategy and a node weighting strategy, and finally an offspring solution is produced by

combining the mined common pattern and the solution of the reduced instance. Extensive evaluations on

42 real-world and synthetic benchmark instances show the efficacy of the proposed method, which discovers

9 new upper bounds and significantly outperforms the current state-of-the-art algorithms. Investigation of

key algorithmic modules additionally discloses the importance of the proposed ideas and strategies. Finally,

we demonstrate the generality of the proposed method via its adaptation to solve the node-weighted critical

node problem.

Key words : Critical Node Problem; Memetic Search; Instance Reduction; Reduce-Solve-Combine;

Heuristic Search.
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1. Introduction

Given an undirected graph G= (V,E) with vertex (or node) set V and edge set E, critical

node detection problems (CNDPs) (Arulselvan et al. 2009, Naoum-Sawaya and Buchheim

2016, Zhou et al. 2019, Baggio et al. 2021, Zhou et al. 2021a, Salemi and Buchanan 2022)

aim to identify a subset of nodes (referred to as critical nodes) S ⊆ V whose removal

enhances (decreases) the graph connectivity of the residual graph G[V \ S] evaluated by

a given connectivity measure σ. According to different cases of |S| and σ, CNDPs can

be divided into two categories: K-vertex-CNDP and β-connectivity-CNDP. The former is

to optimize (minimize or maximize) the connectivity measure σ, such that no more than

K nodes are deleted (i.e., |S| ≤K), while the latter aims to minimize the set of deleted

nodes, such that the connectivity measure σ is bounded by a given threshold β (Zhou et al.

2023d). A detailed taxonomy of CNDPs is provided in (Zhou et al. 2021a). In addition,

node-weighted CNDPs (Chen et al. 2020, Zhou et al. 2021c) and distance-based CNDPs

(Salemi and Buchanan 2022, Zhou et al. 2023c) have been receiving increasing attention

in the literature.

The critical node problem (CNP) (Arulselvan et al. 2009, Zhou et al. 2019, Baggio

et al. 2021) is a fundamental CNDP, which belongs to the category of K-vertex-CNDPs.

It seeks a set S ⊆ V of at most K nodes, the deletion of which minimizes the total pairwise

connectivity in G[V \S]. Formally, the objective function f(S) of CNP can be written as

follows:

f(S) =
M∑
i=1

|Ci|(|Ci| − 1)

2
(1)

where Ci is a connected component, and M is the total number of connected components in

the residual graph G[V \S]. Hence, the residual graph G[V \S] is composed of M connected

components, i.e.,
∑M

i=1∪Ci =G[V \S]. From (1), we observe that a good solution of CNP

should generate a residual graph that maximizes the number of connected components

while simultaneously minimizing the variance in the component sizes.

CNP has a wide spectrum of applications in many fields. For example, the overall trans-

missibility of a virus can be limited by identifying only a specific number of people to be
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vaccinated in epidemic control (Doostmohammadian et al. 2020). Emergency response can

be modeled as a CNP by identifying some critical nodes that can be used to plan good

emergency evacuations on a disaster case (Vitoriano et al. 2011). Besides epidemic control

and emergency response, CNP is also a convenient model for other applications such as

vulnerability assessment (Nguyen et al. 2013, Zhou et al. 2021b), carbon emission mon-

itoring (Zhang et al. 2020), network security (Mugisha and Zhou 2016) and drug design

(Abbas et al. 2021).

CNP is known to be NP-hard on general graphs (Arulselvan et al. 2009). Its solution

space grows exponentially with its size. As indicated in (Veremyev et al. 2014a), CNP

can be solved exactly on medium sparse graphs with up to 1500 nodes under the time

limit 50000 seconds. However, CNP instances from real-world applications can be consid-

erably larger. To deal with such instances, computationally efficient heuristic algorithms

have been developed to provide high-quality solutions in reasonable computation time. To

the best of our knowledge, two population-based memetic algorithms with fixed or vari-

able population represent the current state-of-the-art for solving CNP (Zhou et al. 2019,

2021a). However, these algorithms are time-consuming, which becomes a handicap when

they are applied on large graphs. This motivates us to incorporate a strategy based on

the divide-and-conquer principle that divides an original problem into several subprob-

lems to solve them separately, followed by combining the solutions of the subproblems to

yield an overall solution of the original problem. To take advantage of both the memetic

search framework and the divide-and-conquer principle, this work introduces a “reduce-

solve-combine” memetic algorithm that integrates a problem reduction mechanism into

the popular memetic algorithm framework.

The main contributions of the work are summarized as follow:

� The proposed algorithm, called Instance Reduction-based Memetic Search (IRMS),

incorporates a “reduce-solve-combine” mechanism within the popular population-based

memetic algorithm framework. At each generation, a common pattern mined from two par-

ent solutions is first used to reduce the original instance, then the reduced instance is solved,

and an offspring solution is finally obtained by combining the mined common pattern and

the solution of the reduced instance. In addition, a component-based hybrid neighborhood

search that combines the articulation point impact and node weighting strategies is devel-

oped to ensure an effective local optimization. It is worth noting that the reduced instance
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can be approximately solved by a heuristic solver or optimally solved by an exact solver in

the “reduce-solve-combine” module. Moreover, this module is of a generic nature, which

can be combined with other heuristic algorithms to improve their search performances.

� The proposed IRMS algorithm achieves a high level of performance on the 42 syn-

thetic and real-world benchmark instances commonly used in the literature that compares

very favorably with the state-of-the-art CNP algorithms, finding new upper bounds for 9

instances. Our experimental results also disclose the superiority of IRMS over the most

recent FPBS (Zhou et al. 2022), which is based on mining patterns from a set of high-

quality solutions with a time-consuming frequent itemset mining algorithm to guide the

offspring solution construction. Experimental analyses on key algorithmic modules of the

proposed algorithm are performed to identify the elements underlying the effectiveness of

the proposed ideas and techniques.

� We also demonstrate the inherent generality of the proposed IRMS algorithm by

an application to solve the node-weighted critical node problem, where this generalized

version of IRMS performs significantly better than the best-performing algorithm for the

node-weighted problem in terms of both the best and average values.

The rest of this paper is organized as follows. After a brief review of previous studies on

CNP and instance reduction techniques in Section 2, we present IRMS for CNP in Section

3. Section 4 conducts experimental studies of the proposed algorithm and compares its

results with those of the state-of-the-art methods. The generalization of IRMS that adapts

it to the node-weighted CNP is presented in Section 5. Key issues of IRMS are analyzed

in Section 6, followed by conclusions in Section 7.

2. Related Work
2.1. Previous Studies on CNP

The critical node problem (CNP) has been shown to be NP-hard (Arulselvan et al. 2009)

and has attracted widespread research attention (Arulselvan et al. 2009, Pullan 2015, Zhou

et al. 2019, Veremyev et al. 2019, Zhou et al. 2021a). Existing solution approaches can

be divided into two categories: exact and heuristic algorithms. Exact algorithms can the-

oretically guarantee the optimality of their obtained solutions. For example, Arulselvan

et al. (2009) presented the first integer programming model with O(|V |2) variables and

O(|V |3) constraints for CNP and used CPLEX to solve the model. Di Summa et al. (2012)

further proposed two improved formulations: an extended formulation of (Arulselvan et al.
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2009) and a quadratic programming reformulation considering the complete form of CNP.

Both of them are solved with the branch-and-cut framework. Due to the large number of

constraints (i.e., O(|V |3)), the exact algorithms could solve CNP to optimality only for

small sparse graphs with up to 150 nodes. Veremyev et al. (2014b) developed an improved

compact linear reformulation with only O(|V |2) constraints, which was able to provide

exact solutions for CNP with up to 1200 nodes, and further developed a general inte-

ger programming framework for solving different CNDPs (Veremyev et al. 2014a). Rezaei

et al. (2021) proposed an efficient exact iterative algorithm (EIA-CNDP) to solve a CNDP

whose objective is to minimize the size of the largest connected component. In addition,

they provided a comprehensive survey on both exact and heuristic algorithms for solving

different CNDPs.

To deal with large instances, heuristic algorithms are required to solve CNP approxi-

mately in an affordable computation time. Existing heuristics for CNP can be grouped into

two categories: local search and population-based methods. Local search methods manipu-

late only a single candidate solution of the given problem in each search step. For example,

Arulselvan et al. (2009) presented an early heuristic that starts with an independent set

and is coupled with a 2-exchange local search. Ventresca (2012) proposed a simulated

annealing (SA) algorithm for CNP using a combinatorial unranking-based problem rep-

resentation. Pullan (2015) developed a multi-start greedy algorithm for CNP (CNA1 for

short). Addis et al. (2016) proposed several hybrid heuristic algorithms by combining the

two basic greedy rules (i.e., add-back and remove) with some flavor of local search. Based

on two smart and computationally efficient neighborhoods, Aringhieri et al. (2016b) pre-

sented two metaheuristic algorithms for CNP based on the iterated local search (ILS)

and variable neighborhood search (VNS) frameworks. More recently, de San Lázaro et al.

(2021) proposed an improved VNS algorithm and Wang and Di (2022) proposed a cluster

expansion method called CEMCNP for CNP. CEMCNP utilizes a strategy similar to that

of the multi-start ILS algorithm, supplemented by integrating a contraction mechanism

to greedily alleviate the effect of vertex scale without loss of accuracy and an incremen-

tal cluster expansion approach to iteratively separate the graph into many disconnected

components whose sizes are kept within reasonable bounds.

In contrast to the preceding local search methods, population-based methods often main-

tain a population of candidate solutions that are manipulated and evaluated during the
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search process. For instance, Ventresca (2012) proposed a population-based method for

CNP called the population-based incremental learning (PBIL) algorithm, which employed

an unranking-based problem representation and obtained higher quality solutions than

SA. However, SA found solutions faster than PBIL. Aringhieri et al. (2016a) designed a

general evolutionary algorithm framework for different classes of CNDPs, which followed a

simple genetic algorithm framework that made use of greedy rules to repair and correct the

solution during the reproduction and mutation phases. Purevsuren et al. (2017) combined

a greedy randomized adaptive search procedure (GRASP) with exterior path-relinking for

CNP. Following this, Zhou et al. (2019) presented a memetic algorithm for CNP (MACNP

for short) and subsequently proposed a variable population memetic search (VPMS) (Zhou

et al. 2021a), employing a strategic population sizing mechanism to dynamically adjust

the population size during the search process. These memetic algorithms adopt a strategy

for combining solutions to create new ones similar to that of the path relinking approach

(Glover 1997), which invites the relationship between these approaches to be investigated

more fully. Unlike the general local search and population-based algorithms, Nabli and

Carvalho (2020) proposed a multi-agent reinforcement learning framework to learn to solve

a multilevel budgeted combinatorial problem. A case study on the multilevel CNP show

this learning algorithms outperforms classical reinforcement learning algorithms.

To the best of our knowledge, most state-of-the-art results of the CNP instances were

obtained by memetic algorithms (i.e., MACNP and VPMS), which rely on a fixed or

variable population of candidate solutions to explore the search space. However, these algo-

rithms are very time-consuming and have trouble to effectively solve very large instances.

It is necessary to propose computationally efficient algorithms capable to deal with such

large instances.

2.2. Previous Studies on Instance Reduction

To solve large scale instances, instance reduction is a useful strategy for a number of difficult

combinatorial optimization problems, as shown in various studies in the literature (Zheng

and Xue 2010, Wu and Hao 2012, Chen and Hao 2014, Delgadillo et al. 2016, Kenny et al.

2018, de Holanda Maia et al. 2020, Zhang et al. 2021, Le et al. 2022). In the following, we

briefly review some representative instance reduction methods fitting different categories.

The divide-and-conquer strategy is a popular and general approach to solve large-scale

problems. The main idea is to decompose the original large problem into smaller sub-

problems that can be solved individually. For the arc routing problem, a commonly used
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divide-and-conquer strategy is to divide the task into subsets, and then solve the subprob-

lems induced by the task subsets separately. For example, Zhang et al. (2021) proposed

a novel problem decomposition operator called the route cutting off operator, and inte-

grated it within two state-of-the-art divided-and-conquer algorithms to solve large scale

capacitated arc routing problems.

Reduce-and-solve methods represent a closely related derivative of divide-and-conquer

approaches illustrated by the work of Zheng and Xue (2010) who employ formal calculation

rules to divide a discrete optimization problem into subproblems with smaller search spaces

and accompanied by efficient implicit algorithms to incrementally construct a complete

solution from the solutions to the subproblems. Chen and Hao (2014) developed a reduce-

and-solve heuristic approach for the multiple-choice multidimensional knapsack problem,

which combined problem reduction techniques with the CPLEX solver. Its basic idea is

to employ some dedicated heuristics to fix a number of groups and variables in order to

obtain a reduced critical subproblem which is then solved by the CPLEX solver.

Similarly, Wu and Hao (2012) proposed an effective approach called EXTRACOL to

coloring large graphs. It first applied a preprocessing procedure to extract large indepen-

dent sets from the graph, and then used a memetic algorithm to color the residual graph.

However, if an independent set extracted in the preprocessing is not part of the optimal

coloring, it can never be repaired. To cope with this issue, the authors developed an extrac-

tion and expansion method called E2COL, which integrates an expansion phase to allow

the coloring process to reconsider each extracted independent set on a one-by-one basis

(Wu and Hao 2013). They further extended E2COL by proposing additional strategies,

resulting in an improved extraction and expansion algorithm named IE2COL (Hao and Wu

2012) which employed a forward independent set extraction strategy to reduce the initial

graph, followed by a backward coloring process which uses extracted independent sets as

new color classes for intermediate subgraph coloring.

Inspired by the concept of immunization by vaccination derived from artificial immune

systems, Montiel et al. (2013) proposed a reduce-optimize-expand method to improve exist-

ing discrete optimization algorithms for large-scale traveling salesman problems (TSPs)

composed of three steps. The first step decreases the problem complexity by a heuristic for

reducing the number of nodes of the original problem. The next step applies an exact or

heuristic algorithm to obtain an intermediate solution which is expanded in the third step
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to produce a final solution. Based on the reduce-optimize-expand method, Delgadillo et al.

(2016) presented an intelligent strategy with a fuzzy logic classifier to obtain systematic

reductions of TSP instances. In related work, de Holanda Maia et al. (2020) proposed a

MineReduce approach to improve a heuristic for the heterogeneous fleet vehicle routing

problem by performing problem reductions.

Blum et al. (2016) proposed an alternative hybrid metaheuristic framework called con-

struct, merge, solve & adapt (CMSA) for combinatorial optimization problems that simi-

larly employs reduced problem instances and works in three phases. First, it generates a

reduced sub-instance of the original problem instance by a process that ensures a solution

to the sub-instance is also a solution to the original instance. Second, it applies an exact

solver to the reduced sub-instance to obtain a high-quality solution of the original instance.

Finally, it makes use of the results of the exact solver as feedback for the next algorithm

iteration. The method has been successfully applied to solve the minimum common string

partition problem and minimum covering arborescence problem.

Kenny et al. (2018) presented a problem reduction metaheuristic called merge search

(MS). It consists of three main modules: an initial solution construction heuristic, a SA-

based local search to quickly generate a population of neighbouring solutions, and a merge

operation that uses information from all solutions in the population to produce a reduced

subproblem, which is then solved by a mixed integer programming solver. The method has

been further extended with an improved population generation and variable aggregation

heuristics for the constrained pit problem in (Kenny et al. 2019). The main difference

between MS and CMSA is that CMSA generates solutions from scratch, while MS starts

with a single initial seed solution and uses local search to generate a population of neigh-

bouring solutions to the initial seed solution.

Mihic et al. (2018) presented a general purpose local search approach called randomized

decomposition (RD) for solving hard, nonlinear, nonconvex mathematical programs. RD

utilizes a novel decomposition to partition the solution space into random subspaces and

then find a local optimum in each subspace independently. In addition to the quadratic

assignment problem, the RD decomposition method has been successfully applied to a wide

range of other problems, including revenue management (Cooper and Homem-de-Mello

2007) and traveling salesman problems (Subramanyam and Gounaris 2018).
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As mentioned previously, memetic algorithms (i.e., MACNP (Zhou et al. 2019) and

VPMS (Zhou et al. 2021a)) are the best performing heuristic algorithms for CNP. In this

work, we present an instance reduction-based memetic search (IRMS) approach for CNP,

where a “reduce-solve-combine” instance reduction mechanism is integrated into the well-

known memetic algorithm to join the merits of these two strategies for solving large and

hard CNP applications.

3. Instance Reduction-based Memetic Search for CNP

Our instance reduction-based memetic search algorithm for CNP is based on the following

key modules.

3.1. Solution Representation and Evaluation

Given a CNP instance with an integer K, any subset S ⊂ V of size K is a feasible solution,

i.e., |S|=K. A candidate solution S can be represented by S = {vS(1), vS(2), . . . , vS(K)} such

that S(i) is the index of node i in V or equivalently a binary vector of size |V | such that

exactly K variables receive the value of 1 and the other |V | −K variable receive 0. The

solution space Ω contains all possible subsets of K nodes, i.e., Ω = {S ⊂ V : |S|=K}. The

size of Ω is given by
(|V |
K

)
= |V |!

K!(|V |−K)!
and increases rapidly with increases in |V | and K.

According to (1), the solution cost of S can be evaluated by a modified depth first search

(DFS) algorithm (Hopcroft and Tarjan 1973) in O(|V |+ |E|).

3.2. General Scheme

The general scheme of the proposed IRMS approach is illustrated in Figure 1. One distinct

feature of IRMS is that a common pattern mined from only two parent solutions is used

to guide the instance reduction, and the reduced instance is then solved by a fast local

search heuristic. Finally, a promising offspring solution is obtained by directly combining

the common pattern and the solution of the reduced instance. From the perspective of

algorithm architecture, IRMS is composed of five modules (see Algorithm 1): 1) population

Initialization (Section 3.3), 2) component-based hybrid neighborhood search (Section 3.4),

3) common pattern mining (Section 3.5), 4) “reduce-solve-combine” mechanism (Section

3.6), and 5) population updating (Section 3.7).

The IRMS approach starts with an initial population of λ high-quality solutions (line

1). At each generation, it randomly selects two parent solutions SF and SM from the

population P (line 4). A common pattern mining procedure is then applied to find a
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Figure 1 Diagram of the Proposed IRMS Approach

common pattern ζ between SF and SM (line 5). An offspring solution S is then generated

by the “reduce-solve-combine” (RSC) mechanism (line 6), which is further improved by

a component-based hybrid neighborhood search (CHNS) procedure (line 7). Finally, a

population updating procedure is used to accept or discard the offspring solution (line 11).

The process repeats until a given stopping condition is satisfied, such as a time limit t̂ or

a given number of generations.

Algorithm 1 Pseudo Code of IRMS Approach for CNP

Input: A CNP instance I (i.e., an undirected graph G with an integer K), population size λ, selection

probability θ, and maximal idle iteration count ξ̂

Output: The best found solution S∗

1: P ←PopulationInitialization(λ) /* Build an initial population */

2: S∗← arg min{f(Si) : i= 1,2, . . . , λ} /* Record the best solution S∗ */

3: while a stopping condition is not satisfied do

4: Randomly select two solutions SF and SM from P

5: ζ←CommonPatternMining(SF , SM) /* Mine common pattern between two parents */

6: S←RSC(I, ζ) /* Construct an offspring solution */

7: S′←CHNS(S, θ, ξ̂) /* Improve the solution */

8: if f(S′)≤ f(S∗) then

9: S∗← S′

10: end if

11: P ←PopulationUpdating(P,S′) /* Update the population */

12: end while

13: return The best found solution S∗
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3.3. Population Initialization

The initial population is composed of λ diverse and high-quality solutions, where each

solution is created as follows. A random solution is first generated, which is then improved

to a high-quality local optimum by the component-based neighborhood search procedure

(Zhou et al. 2019). Then the improved solution is added into the population P if the

solution does not duplicate any existing solution in the current population, and the process

repeats until λ different high-quality solutions are obtained.

3.4. Component-based Hybrid Neighborhood Search

3.4.1. Basic Idea: To perform local optimization, we propose a component-based

hybrid neighborhood search (CHNS), which effectively combines the node weighting and

articulation point impact strategies. As shown in Algorithm 2, CHNS starts from a candi-

date solution S, and then iteratively improves it by adding a new node to S (lines 4-11)

and greedily removing a node from S (lines 12-13). CHNS stops when the idle iteration

count ξ (i.e., the number of iterations without improvement) reaches an allowed maximal

value ξ̂.

Definition 1 (Large Connected Component). A connected component C is con-

sidered as a large connected component if its size is greater than (χ̂+ χ̌)/2, where χ̂ =

maxi∈{1,...,M} |Ci| and χ̌= mini∈{1,...,M} |Ci| present the size of largest and smallest connected

components in the residual graph G[V \S], respectively.

At each iteration, a large connected component C is selected randomly. Then, CHNS

employs a hybrid node selection strategy to select a node v from C and combines the

node weighting and articulation point impact strategies in a probabilistic way. That is, a

node v is selected by the articulation point impact strategy with a selection probability

θ (0 ≤ θ ≤ 1), and otherwise is selected by a node weighting strategy as in (Zhou et al.

2019). CHNS can be considered as an improved form of component-based neighborhood

search (CBNS) (Zhou et al. 2019) that includes a way to remove a node from a large

connected component C with the articulation point impact strategy described next.

3.4.2. Articulation Point Impact Strategy: Let C = (VC,EC) be a large connected

component, where VC and EC denote the node set and edge set in C, respectively. The

articulation point impact strategy aims to select a node whose removal maximally decreases

the connectivity of C (see Algorithm 3). To quickly find such a node in C, we design a
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Algorithm 2 Pseudo Code of CHNS

Input: A solution S, selection probability θ, and maximal idle iteration count ξ̂

Output: The best solution S∗ found

1: S∗← S

2: ξ← 0 /* Idle iteration count */

3: while ξ < ξ̂ do

4: Randomly select a large connected component C

5: Generate a random probability p∈ (0,1)

6: if p < θ then

7: v←ArticulationPointImpact(C) /* Executed with the pre-defined selection probability θ */

8: else

9: v←NodeWeighting(C) /* Executed with the probability 1− θ */

10: end if

11: S← S ∪{v}

12: u← arg min{f(S \ {w})− f(S)|w ∈ S}

13: S← S \ {u}

14: if f(S)< f(S∗) then

15: S∗← S

16: ξ← 0

17: else

18: ξ← ξ+ 1

19: end if

20: end while

21: return The best solution S∗ found

TarjanInComponent procedure based on the algorithm of (Tarjan 1972) that traverses

every node in a component in only one round with time complexity O(|VC|+ |EC|) (line

11). The detailed pseudo code of TarjanInComponent is provided in Algorithm 1 of the

online supplement (Zhou et al. 2023b). The articulation point impact strategy starts its

search from a root of the large connected component C. Note that any node in C can be

considered as a root node.

A conversion from an original connected component to a DFS tree is illustrated in

Figure 2, where Figure 2(a) and (b) respectively present a connected component of nine

nodes and a corresponding DFS tree rooted at node a. As shown in Figure 2(b), black

solid arrows indicate tree edges that are taken when visiting unvisited nodes, while red

dashed arrows denote back edges taken when visiting visited nodes. After removing the
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Algorithm 3 Pseudo Code of Articulation Point Impact Strategy

Input: A large connected component C

Output: The selected node v∗

1: root← a random node in C /* Randomly select a node as the root node */

// Initialize all arrays

2: Count← 0 /* Time stamp */

3: for all nodes v ∈ C do

4: dfn[v] =ψ[v] = 0

5: γ[v] = η[v] = 1

6: end for

// Calculate the impact of each node

7: TarjanInComponent(C, root,Count, γ, η)

8: for each node v ∈ VC do

9: if v is an articulation point then

10: ψ[v]+ = (Count−η[v])(Count−η[v]−1)
2

11: else

12: ψ[v]+ = (Count−1)(Count−2)
2

13: end if

14: v∗← arg min{ψ[v] : v ∈ VC}

15: end for

16: return The selected node v∗

node d, the two shaded areas that correspond to two resulting connected components are

obtained.

𝑐𝑐

𝑒𝑒 𝑖𝑖𝑎𝑎

𝑏𝑏

𝑑𝑑

𝑓𝑓

𝑔𝑔 ℎ

(a)  A component

𝑎𝑎

𝑏𝑏

𝑐𝑐

𝑑𝑑

𝑓𝑓

𝑔𝑔

ℎ

𝑒𝑒

𝑖𝑖

(b) A DFS tree rooted at node 𝑎𝑎

tree edge
back edge

Convert

Figure 2 An Illustrative Example of a Conversion between (a) an Original Component and (b) the Corresponding

DFS Tree
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Unlike the approach of (Ventresca and Aleman 2015), our articulation point impact

strategy builds a DFS tree and evaluates its nodes simultaneously. To achieve this, two

arrays are defined to record the states of nodes in the tree, i.e., time stamps (dfn) and

trace values (low). The former presents the time stamp when a node is first visited (i.e.,

the traverse sequence number), while the latter records the trace value of the node (i.e.,

the smallest time stamp of the current node’s neighbour visited). Therefore, we can obtain

dfn, low, γ and η values of the above-mentioned example, as summarized in Table 1.

Table 1 Related Parameter Values of the Example Shown in Figure 2

Node a b c d e f g h i

Time Stamp (dfn) 1 2 3 6 4 7 8 9 5

Trace Value (low) 1 1 1 3 3 6 6 8 4

γ 9 8 7 4 2 3 2 1 1

η 1 1 7 4 2 3 2 1 1

Definition 2 (Articulation Point). An articulation point (or cut vertex) of a graph

is a node whose deletion with associated edges makes the original graph disconnected, or

more precisely, increases the number of connected components in the graph.

From a DFS tree, we have two simple observations:

Remark 1. A leaf node is not an articulation point.

Remark 2. A root node with at least two subtrees is an articulation point.

Suppose u is an internal node (i.e., neither a leaf node nor a root node), v is an arbitrary

node, and e(u, v) is the edge between nodes u and v. We calculate low values according to

the following rules,

� If e(u, v) is a tree edge of the graph, then we have low[u] = min{low[u], low[v]};
� If e(u, v) is a back edge of the graph and v is not the parent of u, then we have

low[u] = min{low[u], dfn[v]}.
To evaluate each node in a component, we define an impact function ψ that calculates

the impact of removing a node in a recursive way as in (Ventresca and Aleman 2015). The

impact function value ψ(v) of a node v ∈ C is calculated based on two auxiliary parameters

γ and η, where γ identifies the number of nodes that are descendants of v (i.e., φ(v))

including v, and η indicates the sum of the node v and nodes of all new components

which come from v’s subtrees if removing v. It is worth noting that γ and η have the

same value if v is an articulation point and is not the root node of a component, i.e.,
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γ[v] = η[v] = φ(v) + 1. Let δ(v) be the set of children nodes of v in the DFS tree, and φ(v)

denote the total number of nodes that are descendants of v. Then φ(v) can be recursively

computed as follows,

φ(v) =
∑
w∈δ(v)

φ(w), if w is a root or an internal node

1, if w is a leaf node
(2)

Once an articulation point v is removed, the component C is divided into two parts:

ancestors and descendants. The descendants consist of multiple children subtrees that

can be transformed into a series of new components. Therefore, the contribution of v’s

descendants to the objective function value can be calculated as follows:∑
ti∈T (v)

|ti|(|ti| − 1)

2
(3)

where |ti| is the number of nodes in the children subtree ti ∈ T (v), and T (v) is the children

subtree set of v. Accordingly, the increment in the objective function can be simplified as

ψ[v] = f ′(C \ {T (v)∪{v}}) +
∑

ti∈T (v)

|ti|(|ti| − 1)

2
(4)

where the first part f ′(C \ {T (v) ∪ {v}}) computes the total pairwise connectivity of the

ancestors, while the second part presents the total pairwise connectivity of the descendants.

After traversing the component C, a node v∗ with the minimum ψ value is added to the

solution S. Note that the chosen node must be the node whose removal will maximally

decrease the objective function f(S). Once a node v is added into S based on the node

weighting or articulation point impact strategies, i.e., S← S∪{v}, a node u whose removal

minimally deteriorates the objective function f(S) is removed from S, i.e., S← S \{u}. The

graph changes along with the add and remove operations, accompanied by disintegration

of old components and regeneration of new components.

3.4.3. Node Weighting Strategy: The node weighting strategy is an effective diversi-

fication technique for local search that has been successfully used to solve many combi-

national optimization problems, such as boolean satisfiability (Thornton et al. 2004) and

vertex cover (Cai et al. 2011) problems. Our node weighting strategy employs an idea sim-

ilar to that of the node weighting scheme used in (Zhou et al. 2019). Each node of a large

connected component is associated with a positive integer number as its weight. Weights



Zhou et al.: “Reduce-Solve-Combine” Memetic Search for the CNP
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

are initially set to 1. At each step, we select the node v from C with the largest weight

(breaking ties randomly) to add to S. Then, the weights of the remaining nodes in C are

incremented. Once an exchange operation is made between v ∈ C and u ∈ S, we set the

weight of u to 1. As the search processes, the “hard to remove” nodes of a large connected

component will have larger weights, and thus have a higher chance to be selected and

removed from the large connected component in subsequent search.

3.5. Common Pattern Mining

Identifying common patterns that frequently appear in a set of high-quality solutions can

be naturally modeled as a frequent pattern mining task (Grahne and Zhu 2005), where

common patterns refer to frequent patterns. CNP is a typical subset selection problem,

its solution is usually represented as a set of removed nodes. Based on this characteristic,

the problem of performing frequent pattern mining on a set of high-quality CNP solutions

is reduced to mine frequent itemsets that often appear together. Note that an itemset is

composed of multiple removed nodes, and each removed node is an item. Besides itemsets,

frequent patterns can also be represented as complex entities such as subsequences and

substructures.

To mine useful information from high-quality solutions, considerable efforts have been

made to hybridize frequent pattern mining with metaheuristic algorithms (Ribeiro et al.

2006, Plastino et al. 2014, Arnold et al. 2021, Zhou et al. 2022). A pioneer algorithm

called DM-GRASP (Ribeiro et al. 2006) was proposed to solve the set packing problem,

where a data mining procedure is first applied to mine useful patterns from an elite set

of solutions, and then the mined pattern is used to guide the search of GRASP. MDM-

GRASP (Plastino et al. 2014) improved DM-GRASP by performing data mining as soon

as the elite set becomes stable (i.e., no change occurs in the elite set throughout a given

number of iterations) and whenever the elite set has been changed and has become stable

again, instead of performing data mining only once. Recently, Zhou et al. (2022) presented

a frequent pattern based search (FPBS) method for the quadratic assignment problem,

where frequent patterns mined from the population by FPmax* algorithm are used to guide

the offspring solution construction. Although numerous frequent pattern mining algorithms

are available in the literature (Luna et al. 2019), they are time consuming.

To quickly find frequent itemsets, we focus on mining common elements from only two

parent solutions, randomly selecting two parent solutions SF and SM from the population
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at each generation. We observe that if all mined common elements between SF and SM

are used to guide instance reduction, the size of the reduced instance tends to become very

small. To avoid this problem and keep some randomness, we inherit each common element

with a random probability. Therefore, the resulting frequent itemset ζ has no more than

β|SF ∩SM | elements, i.e., |ζ| ≤ β|SF ∩SM |, where β (0<β ≤ 1) is a proportional factor.

3.6. “Reduce-Solve-Combine” Mechanism

Inspired by the divide-and-conquer strategy, we propose a “reduce-solve-combine” (RSC)

method to generate promising offspring solutions. RSC consists of three main stages, as

shown in Algorithm 4. At the reduction stage, the original instance I is reduced to I ′ based

on a common pattern ζ (i.e., a l-itemset, where l= |ζ|). All nodes of the pattern ζ and all

edges associated with the nodes are deleted from the original instance I (lines 1-4). At the

solution stage, from a random solution S, we apply the fast local search heuristic CHNS

of Section 3.4 to find an improved solution S′ for the reduced instance I ′ (lines 5-6). The

improved solution S′ can be treated as a part of the final offspring solution So. At the

combination stage, a feasible solution of the original instance I is obtained by combining

the common pattern ζ and the local optimal solution S′ of I ′, i.e., So← ζ ∪ S′ (line 7).

For some types of graphs, the reduced instance I ′ is usually small, and can be solved by

a fast exact algorithm instead of a heuristic (i.e., CHNS). Consequently, IRMS can be

implemented as a matheuristic (Boschetti and Maniezzo 2022, Archetti et al. 2017).

Figure 3 illustrates the basic idea of the RSC mechanism applied to an original instance

I of 12 nodes and 16 edges with a common pattern ζ = {f, g}. Figure 3(b) presents the

reduced instance I ′ with 10 nodes and 9 edges by deleting all nodes of ζ and their associated

edges from I. Figure 3(c) shows a high-quality local optimal solution S′ = {c,h} of I ′

found by CHNS. Figure 3(d) gives the feasible solution So = {f, g, c, h} that is obtained by

combining the common pattern ζ = {f, g} and the solution S′ = {c,h} of I ′.

3.7. Population Updating

Following (Fu and Hao 2015, Zhou et al. 2019), we use a rank-based population updating

strategy to manage the population P . Once an improved offspring solution So is obtained,

we first tentatively insert it into P , i.e., P ′← P ∪{So}. All λ+1 individuals in P ′ are then
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Algorithm 4 Pseudo Code of RSC Procedure

Input: The CNP instance I, common pattern ζ, selection probability θ, and maximal idle iteration count ξ̂

Output: An offspring solution So

// Reduction stage

1: for all nodes v ∈ ζ do

2: E(v)← {all edges associated with v}

3: I ′← I \ {v,E(v)}

4: end for

// Solution stage

5: Randomly generate an initial solution S′ of I ′

6: S′←CHNS(S′, θ, ξ̂)

// Combination stage

7: So← ζ ∪S′

8: return An offspring solution So
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(c) A solution 𝑆𝑆′ = {𝑐𝑐, ℎ} of 𝐼𝐼′ (d) An offspring solution 𝑆𝑆 = {𝑓𝑓,𝑔𝑔, 𝑐𝑐, ℎ} of 𝐼𝐼

Figure 3 An Illustrative Example of the RSC Mechanism

evaluated by a combined score function Ψ(Si, P
′) that simultaneously considers the solu-

tion quality and solution distance. The combined score function Ψ(Si, P
′) can be formally

defined as follows:

Ψ(Si, P
′) = α ∗Φ(f(Si)) + (1−α) ∗Φ(D(Si, P

′)) (5)

where Φ(f(Si)) and Φ(D(Si, P
′)) represent the rank of solution Si with respect to its

objective value f and average distance D to the population P ′, respectively. Note that we

rank the solutions of P ′ in terms of solution quality and average distance in descending

order and ascending order, respectively. The parameter α is a weighting coefficient between
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solution quality and solution distance, which is empirically set to α= 0.6. Afterwards, the

worst solution Sw with respect to the combined score function is identified, i.e., Sw ←

argSi∈P ′ min Ψ(Si, P
′). Finally, if So is different from Sw, we replace Sw with So; otherwise

we discard So.

3.8. Discussion

IRMS enhances the canonical memetic algorithm framework (Neri and Cotta 2012, Zhou

et al. 2023c,a) with the “reduce-solve-combine” mechanism, which benefits from the merits

of both the instance reduction technique and the population-based algorithm for solving

large and hard CNP instances. As indicated by the review of Section 2.1, MACNP is one of

the best-performing heuristic algorithms for CNP (Zhou et al. 2019). IRMS distinguishes

itself from MACNP in the following four features. First, IRMS is an enhanced algorithm

that integrates an instance reduction mechanism into a memetic algorithm, while MACNP

is only a canonical memetic algorithm. Second, IRMS generates an offspring solution based

on the “reduce-solve-combine” mechanism instead of the backbone-based crossover opera-

tor used in MACNP. Third, IRMS employs a component-based hybrid neighborhood search

(CHNS) to perform local optimization, which reinforces the component-based neighbor-

hood search used in MACNP by an articulation point impact strategy. Accordingly, CBNS

can be considered as a special case of CHNS, where only the node weighting strategy

is applied. Finally, IRMS can use both heuristic and exact solvers to solve the reduced

instances in IRMS.

Compared to existing studies on combining frequent pattern mining with metaheuris-

tics (Ribeiro et al. 2006, Plastino et al. 2014, Arnold et al. 2021, Zhou et al. 2022),

IRMS employs frequent patterns mined from high-quality solutions to guide the instance

reduction instead of relying on solution construction processes. Moreover, IRMS performs

instance reduction by referencing to nodes common to only two high-quality solutions

instead of derived from multiple high-quality solutions as in the existing (time-consuming)

frequent pattern mining algorithms (e.g., FPmax* (Grahne and Zhu 2005)).

The “reduce-solve-combine” (RSC) mechanism is only an algorithmic component of

IRMS, while the “reduce-optimize-expand” (ROE) framework is an algorithm framework

(Montiel et al. 2013). RSC distinguishes itself from ROE in the three aspects. Firstly, RSC

reduces the original instance by directly removing some nodes, while ROE generates a
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reduced instance by creating fewer new nodes to represents a set of removed nodes. Sec-

ondly, RSC directly combines the removed nodes and the solution of the reduced instance

to obtain a feasible solution of the original instance. While ROE expands the solution of

the reduced instance by inserting the discarded nodes in an additional (heuristic) way.

Thirdly, once a feasible solution of the original instance is obtained, RSC employs a local

optimization procedure to further improve it to a high-quality solution.

3.9. Computational Complexity of IRMS

To analyze the computational complexity of IRMS, we consider each main module of

Algorithm 1. IRMS begins its search from a high-quality initial population generated by the

population initialization procedure in O(λK(|V |+ |E|)ξ̃), where λ denotes the population

size, and ξ̃ is the total number of iterations used in CBNS.

At each generation of the main loop of Algorithm 1, IRMS sequentially executes five

search procedures: parent selection, common pattern mining, RSC, CHNS and population

management. The parent selection procedure only takes time O(1). A common pattern

(i.e., a set of nodes) between two parent solutions can be found in O(K). The RSC mech-

anism consists of three phases: reduction, solution and combination. Both reduction and

combination phases can be executed in O(|V |), and the solution phase uses CHNS to solve

the reduced instance, whose complexity is O(ξK(|V |+ |E|)), where ξ is the total number

of iterations used in CHNS. Hence, the total complexity of IRMS at each generation is

O(ξK(|V |+ |E|)).

4. Computational Studies
4.1. Benchmark Instances and Experimental Settings

Our IRMS algorithm was implemented in C++, and compiled using GNU gcc 7.3.0 with

the “-O3” option on an Intel Xeon 8269CY 16-core processor with 2.5 GHz and 32 GB

RAM under the linux system. Please refer to Zhou et al. (2023b) for the instances, codes

and results of the experiments. Our experiments are conducted on two sets of widely used

benchmark instances.

� Synthetic benchmark set consists of 16 graphs belonging to 4 groups with different

characteristics. They are generated according to four classes of commonly used complex

network models: Barabási-Albert (BA), Erdős-Rényi (ER), Forest-Fire (FF), and Watts-

Strogatz (WS). BA graphs are scale-free networks and proved to be the easiest to process.
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ER graphs are random graphs. FF graphs reproduce the behaviour of how a fire spreads

through a forest, with a scale-free structure like BA graphs but a denser structure. WS

graphs are designed to mimic a dense small-world structure and are the most challenging to

solve. The detailed characteristics of these graphs can be found in (Ventresca and Aleman

2014).

� Real-world benchmark set is composed of 26 real-world networks from vari-

ous practical applications, such as social networks, transportation networks, communica-

tion networks, biological networks, and power networks. Their details are summarized in

(Aringhieri et al. 2016a).

In the following experiments, we employ the well-known two-tailed sign test (Demšar

2006) to check the statistical difference between the compared algorithms on each com-

parison indicator. At a significance level of 0.05, the critical value is CV42
0.05 = N/2 +

1.96
√
N/2≈ 27, where N is the total number of benchmark instances, i.e., N = 42. This

implies that algorithm A statistically outperforms algorithm B if A wins in at least 27 out

of 42 instances.

4.2. Parameter Sensitivity Analysis

Our computational results are obtained by running IRMS with the parameter settings

provided in Table 2. The parameter ξ̂ identifies the allowable maximal idle iteration count

used in CHNS. Since CHNS can be considered as an improved CBNS, we set ξ̂ = 1000 as

for CBNS (Zhou et al. 2019). For the values of the other three parameters, i.e., population

size (λ), selection probability (θ) and proportional factor (β), are determined according to

common practice in heuristic algorithm design by testing a limited number of parameter

configurations on representative problem instances (Cordeau et al. 2006). To identify an

appropriate value for a given parameter, we allow the chosen parameter to vary, while

fixing the values of other parameters.

Table 2 Parameter Settings of Our IRMS Method

Parameter Description Considered Values Final Value Section

λ Population Size {2,3,4,5,6,7,8,9,10} 5 3.2

ξ̂ Maximal Idle Iteration Count {1000} 1000 3.4
θ Selection Probability {0.2,0.3,0.4,0.5,0.6,0.7,0.8} 0.3 3.4
β Proportional Factor {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} 0.9 3.5
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Our parameter sensitivity analysis is conducted on a set of 10 representative instances

with different sizes and variable levels of difficulty, selected from both synthetic and real-

world instance sets, i.e., BA5000, ER941, FF500, WS250, TreniR, open-flights, H3000a,

H4000, powergrid and OClinks. In our experiment, each parameter value varies within a

range specified in the column “Considered Values” in Table 2, while the other parameters

are fixed to the “Final Values”. The total time budget for tuning is specified to be 30

executions of IRMS for each selected instance with a limit to 100 generations.
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Figure 4 Boxplots of IRMS with Different β Values

We take the parameter sensitivity analysis of the proportional factor β as an

example. Figure 4(a) and (b) show the box plots of IRMS with different β ∈

{0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} values in terms of the average performance gap ∆f

and the average computation time t, respectively. We calculate the performance gap as

∆f = f−BKV
BKV

, where BKV indicates the best known value. From Figure 4(a), we observe

that IRMS with β = 0.9 yields the best performance in terms of ∆f . We also observe that

large β values (β > 0.8) have a better performance than small ones (β ≤ 0.8) in terms of t,

as shown in Figure 4(b). To make a reasonable compromise between the solution quality

and computation time, we adopt β = 0.9 in IRMS.

4.3. Comparison between IRMS and FPBS

As indicated in (Zhou et al. 2022), the frequent pattern based search (FPBS) method

tries to construct an offspring solution guided by frequent itemsets which are minded from

a set of high-quality solutions by the pattern mining procedure FPmax* (Grahne and

Zhu 2005). Unlike FPBS, IRMS uses the mined common elements to guide the instance
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reduction, where the common elements are quickly identified from only two high-quality

solutions. To demonstrate the superiority of IRMS, we first adapt FPBS for CNP, and

then experimentally compare it with IRMS. We independently solve each instance 30 times

with different random seeds, and set the time limit of each run at t̂= 3600 seconds.

Detailed comparative results between IRMS and FPBS are summarized in Table 3, where

columns 1-5 present for each instance its name (Instance), number of nodes (|V |), K value,

K/|V | value, and best known value (BKV) reported in the literature. Columns 6-8 describe

the detailed results of IRMS, i.e., the best result (f̂) found during 30 runs, average result

(f), and average computation time to attain the best result (t) at each run. Similarly,

columns 9-11 provide the results of FPBS. The better values of the compared results in

terms of f̂ and f are indicated in bold. In addition, we also count the number of instances

in which IRMS’s solution are better (#Wins), equal (#Ties), and worse (#Loses) in terms

of each indicator compared to BKV and FPBS.

It is worth noting that 1) the tested instances have been studied for a long time since

year 2009 (Arulselvan et al. 2009); 2) the current best known results have been improved

progressively by a number of algorithms (Arulselvan et al. 2009, Ventresca 2012, Pullan

2015, Addis et al. 2016, Aringhieri et al. 2016a,b, Purevsuren et al. 2017, Zhou et al. 2019,

Veremyev et al. 2019, Zhou et al. 2021a, de San Lázaro et al. 2021, Wang and Di 2022),

and 3) no single algorithm can attain all best known results. Thus, it is challenging to

further improve the current best known results, even by a small order.

From Table 3, we observe that IRMS demonstrates an excellent performance by finding

new upper bounds for seven instances (marked by ‘?’), and matching the best-known upper

bounds on 22 instances. Compared to FPBS, IRMS finds better results in terms of f̂ on

26 out of 42 instances, and matches best known values on the remaining 16 instances

except for the instance astroph. For the f performance indicator, IRMS also shows a better

performance by attaining 28 better results and 14 equal results. At a significance level of

0.05, IRMS is significantly better than FPBS both in terms of f̂ (i.e., 34.0>CV42
0.05) and

f (i.e., 35.0>CV42
0.05).

4.4. Comparison with State-of-the-art Algorithms

To further evaluate IRMS, we conduct a detailed comparison with four state-of-the-art

algorithms, i.e., CAN1 (Pullan 2015), MACNP (Zhou et al. 2019), VPMS (Zhou et al.
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Table 3 Comparison between IRMS and FPBS on Synthetic and Real-world Benchmarks under t̂= 3600

Seconds

FPBS◦ IRMS

Instance |V | K K/|V | BKV f̂ f t f̂ f t

BA500 500 50 0.10 195∗ 195 195.0 0.0 195 195.0 0.0
BA1000 1000 75 0.08 558∗ 558 558.0 28.8 558 558.0 3.1
BA2500 2500 100 0.04 3704∗ 3704 3704.0 3.6 3704 3704.0 3.9
BA5000 5000 150 0.03 10196∗ 10196 10196.0 20.8 10196 10196.0 16.8
ER235 235 50 0.21 295∗ 295 295.0 5.3 295 295.0 6.5
ER466 466 80 0.17 1524.0 1524 1551.9 2222.2 1524 1524.0 83.7
ER941 941 140 0.15 5012.0 5122.0 5303.7 1724.0 5012 5020.0 520.0
ER2344 2344 200 0.09 902498.0 1006653.0 1035422.4 1451.9 920748 944406.9 3146.7
FF250 250 50 0.20 194∗ 194 194.0 0.0 194 194.0 0.0
FF500 500 110 0.22 257∗ 257 257.0 1.4 257 257.0 1.4
FF1000 1000 150 0.15 1260∗ 1260 1260.0 95.5 1260 1260.0 22.2
FF2000 2000 200 0.10 4545∗ 4545 4545.5 1810.3 4545 4545.0 207.3
WS250 250 70 0.28 3083.0 3339.0 3542.2 1411.6 3085 3179.0 2013.2
WS500 500 125 0.25 2072.0 2088.0 2123.2 2076.1 2072 2080.1 297.7
WS1000 1000 200 0.20 109677.0 257569.0 280878.6 1715.6 138098 145969.1 1963.2
WS1500 1500 265 0.18 13098.0 13769.0 14256.5 1620.1 13098 13112.9 2028.7

Bovine 121 3 0.02 268.0 268 268.0 0.0 268 268.0 0.0
Circuit 252 25 0.10 2099.0 2099 2099.0 13.8 2099 2099.0 1.3
Ecoli 328 15 0.05 806.0 806 806.0 0.0 806 806.0 0.4
USAir97 332 33 0.10 4336.0 5444.0 5444.0 0.1 4336 4648.0 668.8
HumanDi 516 52 0.10 1115.0 1115 1115.0 0.7 1115 1115.0 0.1
TreniR 255 26 0.10 918.0 918 918.0 0.0 918 918.0 2.5
EU fli 1191 119 0.10 348268.0 350762.0 350887.1 1223.9 348268 348295.7 998.0
openfli 1858 186 0.10 26783.0 29130.0 29778.2 1647.0 27198 28757.5 1695.8
yeast1 2018 202 0.10 1412.0 1412 1412.0 187.1 1412 1412.0 37.8
H1000 1000 100 0.10 306349.0 322615.0 328173.6 1697.8 306349 308951.9 2165.2
H2000 2000 200 0.10 1242739.0 1331626.0 1360981.3 1721.2 1236503? 1254481.6 3028.8
H3000a 3000 300 0.10 2840690.0 3062331.0 3108832.5 1568.7 2804579? 2849985.8 3088.5
H3000b 3000 300 0.10 2837584.0 3064784.0 3104320.8 2111.0 2801186? 2842174.8 3164.3
H3000c 3000 300 0.10 2835369.0 3077676.0 3101625.7 1609.9 2801692? 2840618.6 3066.0
H3000d 3000 300 0.10 2828492.0 3054775.0 3100897.9 1903.3 2816590? 2864256.5 2940.0
H3000e 3000 300 0.10 2843000.0 3070679.0 3114306.9 2228.6 2836177? 2877807.4 2715.4
H4000 4000 400 0.10 5038611.0 5541031.0 5591268.4 1489.2 5021551? 5110687.5 3042.0
H5000 5000 500 0.10 7964765.0 8720111.0 8778198.6 1615.3 8029837 8188900.3 2741.0
powergr 4941 494 0.10 15862.0 16097.0 16182.9 1651.9 15866 15886.6 3021.6
Oclinks 1899 190 0.10 611253.0 616684.0 618350.7 1782.1 614467 614467.6 1038.9
facebook 4039 404 0.10 420334.0 1567137.0 1602706.4 2183.0 719722 741314.4 2852.1
grqc 5242 524 0.10 13591.0 13673.0 13708.7 2463.1 13594 13613.0 3201.9
hepth 9877 988 0.10 106276.0 122109.0 132995.7 2181.8 115133 119766.8 3159.4
hepph 12008 1201 0.10 6155877.0 11300876.0 11957556.6 1432.2 9401029 9781789.8 3077.4
astroph 18772 1877 0.10 53963375.0 61896814.0 62977189.9 1880.7 57592461 58649781.0 3271.4
condmat 23133 2313 0.10 2298596.0 9950262.0 10890742.9 2254.0 9670268 10789125.6 2286.2

#Wins|Ties|Loses 7|22|13 26|16|0 28|14|0 − − − −

Notes. “∗” presents the optimal solution, “?” indicates the improved best upper bounds, “◦” indicates an application
of the FPBS (Zhou et al. 2022) method for CNP.

2021a) and CEMCNP (Wang and Di 2022). To the best of our knowledge, these four meth-

ods are the best-performing algorithms for CNP in the literature, and they attain the best

known values available except for the facebook and condmat instances1. Since the source

code and executable program of CEMCNP are not available to us, we have re-implemented

1 For the facebook and condmat instances, the best known values were reported in (Aringhieri et al. 2016a) (Table
5), which were reached only by the ILS-N1-FC algorithm of (Aringhieri et al. 2016b).
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the method based on its pseudo code (Wang and Di 2022). Detailed comparisons between

the reported results and computational results of CEMCNP are summarized in the online

supplement (Zhou et al. 2023b). To guarantee a fair comparison, we run IRMS and these

four algorithms (with their source codes) on the same computational platform and under

the same time limit t̂. Table 4 summarizes the detailed results between IRMS and these

state-of-the-art algorithms on synthetic and real-world benchmark instances under the

time limit t̂= 3600 seconds.

Table 4 Comparison between IRMS and State-of-the-art Algorithms on Synthetic and Real-world Benchmarks

under t̂= 3600 Seconds

CAN1◦ MACNP◦ VPMS◦ CEMCNP◦ IRMS

Instance K BKV f̂ f f̂ f f̂ f f̂ f f̂ f

BA500 50 195∗ 195 195.0 195 195.0 195 195.0 195 195.0 195 195.0
BA1000 75 558∗ 558 558.1 558 558.0 558 558.0 558 558.0 558 558.0
BA2500 100 3704∗ 3704 3704.0 3704 3704.0 3704 3704.0 3704 3704.0 3704 3704.0
BA5000 150 10196∗ 10196 10196.0 10196 10196.0 10196 10196.0 10196 10196.0 10196 10196.0
ER235 50 295 295 295.0 295 295.0 295 295.0 297 302.8 295 295.0
ER466 80 1524 1524 1524.4 1524 1524.0 1524 1524.0 1569 1630.6 1524 1524.0
ER941 140 5012 5102 5221.7 5012 5014.5 5012 5030.6 5363 5635.3 5012 5020.0
ER2344 200 902498 993035 1010337.9 905472 922882.6 909510 938362.3 1012527 1060618.6 920748 944406.9
FF250 50 194∗ 194 194.0 194 194.0 194 194.0 194 194.0 194 194.0
FF500 110 257∗ 262 265.2 257 257.0 257 257.0 257 258.6 257 257.0
FF1000 150 1260∗ 1262 1266.1 1260 1260.1 1260 1260.0 1260 1260.0 1260 1260.0
FF2000 200 4545∗ 4548 4551.9 4545 4545.6 4545 4545.0 4546 4552.5 4545 4545.0
WS250 70 3083 3491 3820.7 3083 3114.5 3083 3090.6 4203 5447.9 3085 3179.0
WS500 125 2072 2086 2102.5 2072 2084.1 2081 2084.9 2085 2193.0 2072 2080.1
WS1000 200 109677 138212 159031.0 115075 136374.1 114066 140033.7 154899 169877.2 138098 145969.1
WS1500 265 13098 13784 13997.7 13103 13203.5 13098 13216.4 13664 27810.6 13098 13112.9

Bovine 3 268 268 268.0 268 268.0 268 268.0 268 268.0 268 268.0
Circuit 25 2099 2099 2099.0 2099 2099.0 2099 2099.0 2101 2188.7 2099 2099.0
Ecoli 15 806 806 806.0 806 806.0 806 806.0 806 808.8 806 806.0
USAir97 33 4336 4336 4336.0 4336 4372.1 4336 5175.4 4336 5149.5 4336 4648.0
humanDi 52 1115 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0
TreniR 26 918 918 918.0 918 918.0 918 918.0 918 918.0 918 918.0
EU fli 119 348268 348268 348334.3 348268 353026.5 348268 350180.1 350762 357502.7 348268 348295.7
openfli 186 26783 29534 30149.7 28560 28808.2 26874 28283.6 29481 31377.7 27198 28757.5
yeast1 202 1412 1416 1418.6 1412 1412.0 1412 1412.0 1412 1414.3 1412 1412.0
H1000 100 306349 315911 318845.9 306960 311398.7 307117 310827.9 330493 337217.0 306349 308951.9
H2000 200 1242739 1274815 1294724.6 1251076 1272246.2 1242907 1258529.7 1324988 1344914.2 1236503? 1254481.6
H3000a 300 2840690 2914000 2927166.6 2885246 2922682.4 2849192 2877853.3 2962661 3042695.4 2804579? 2849985.8
H3000b 300 2837584 2902347 2926677.7 2870707 2927682.0 2839130 2863625.1 2968601 3035272.7 2801186? 2842174.8
H3000c 300 2835369 2899932 2926225.4 2863929 2909535.2 2837599 2861449.2 2956916 3008793.3 2801692? 2840618.6
H3000d 300 2828492 2899196 2930428.5 2865406 2924250.5 2833030 2870559.0 2967747 3030236.3 2816590? 2864256.5
H3000e 300 2843000 2919830 2937228.7 2875727 2934267.0 2845660 2876424.3 3012046 3043889.5 2836177? 2877807.4
H4000 400 5038611 5196850 5241007.7 5211868 5322566.9 5098049 5186904.9 5261850 5383301.3 5021551? 5110687.5
H5000 500 7964765 8181618 8221915.3 8369202 8506623.6 8078843 8217193.6 8206499 8348589.5 8029837 8188900.3
powergr 494 15862 16141 16276.4 15882 15917.5 15957 16014.3 15965 16084.9 15866 15886.6
Oclinks 190 611253 611352 614711.5 614467 614728.9 612314 615030.6 622237 626701.5 614467 614467.6
facebook 404 420334 675630 754777.4 711505 785554.5 713625 794649.1 794938 857245.1 719722 741314.4
grqc 524 13591 15544 15874.9 13599 13632.4 13628 13666.4 13666 13701.7 13594 13613.0
hepth 988 106276 136635 221421.8 124269 132192.5 115168 120040.4 109504 111495.6 115133 119766.8
hepph 1201 6155877 10059965 10724290.3 11114770 11972968.7 9664750 10580257.6 8464199 10530358.9 9401029 9781789.8
astroph 1877 53963375 60078332 61679547.3 61667966 62931865.7 59811734 61171775.9 59476077 60449655.3 57592461 58649781.0
condmat 2313 2298596 14140443 15233424.7 10101966 10829853.5 11141111 12186050.0 3756761 4632078.6 9670268 10789125.6

#Wins|Ties|Loses − 26|14|2 31|10|1 17|21|4 23|14|5 16|20|6 21|16|5 26|13|3 31|9|2 − −
Notes. “∗” presents the optimal solution, “?” indicates the improved best upper bounds, and “◦” indicates the results of
CNA1, MACNP and VPMS are obtained by executing their source codes, while the results of CEMCNP are obtained by

executing our re-implemented CEMCNP algorithm, which are slightly different from their reported results.
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From Table 4, we observe that IRMS competes very favorably with these state-of-the-

art algorithms, by attaining seven new upper bounds and matching 22 best-known upper

bounds. At a significance level of 0.05, IRMS significantly outperforms CAN1 both in terms

of f̂ (i.e., 33.0 > CV42
0.05 = 27.0) and f (i.e., 36.0 > CV42

0.05). For the comparison between

MACNP and IRMS, we can obtain similar observations. That is, IRMS is significantly

better than MACNP in terms of f̂ (i.e., 27.5>CV42
0.05), and it also outperforms MACNP

in terms of f (i.e., 30.0 > CV42
0.05). Compared to VPMS, IRMS wins in 26.0 instances in

terms of f̂ , which is just slightly smaller than the critical value CV42
0.05 = 27.0. For the f

indicator, IRMS significantly outperforms VPMS, i.e., 29.0> CV42
0.05. For the comparison

between IRMS and CEMCNP, we find that IRMS significantly outperforms CEMCNP

both in terms of f̂ (i.e., 32.5>CV42
0.05) and f (i.e., 35.5>CV42

0.05). These observations show

that IRMS is highly effective compared to the state-of-the-art algorithms.

To further demonstrate the performance of IRMS, we report detailed results of IRMS

under the longer time limit t̂ = 7200 seconds in Table 1 of the online supplement (Zhou

et al. 2023b). We observe that IRMS improves its results with this extended time limit by

finding two new upper bounds for the instances H5000 and grqc.

Finally, we note that IRMS has trouble to attain the best known results for facebook and

condmat. On the other hand, we observe that these instances are challenging for almost all

algorithms, except the ILS-N1-FC algorithm of (Aringhieri et al. 2016b), which reported

the current best known results for these two instances (under the time limits of 3000 and

16000 seconds, respectively), but does not perform so well on a number of other instances,

as shown in Table 5 of (Aringhieri et al. 2016a).

5. Application to the Node-weighted Critical Node Problem

To show that our IRMS method may be applied to solve other optimization problems, we

consider the node-weighted critical node problem (NWCNP) (Chen et al. 2020, Zhou et al.

2021c), which consists of minimizing the pairwise connectivity of a given node-weighted

graph by removing a subset of nodes subject to a budgetary constraint. We start with

an introduction of NWCNP, followed by reporting a detailed comparative results between

IRMS and existing methods.
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5.1. Node-weighted Critical Node Problem

NWCNP is a node-weighted version of CNP, which aims to minimize the objective function

(1) as well as CNP, and simultaneously satisfies the following budgetary constraint (6).

Subset to

|S|∑
i=1

w(vS(i))6K (6)

where the terms w(vS(i))> 0 are positive weights associated with each node and K > 0 is

a predefined budget limit.

Note that CNP can be considered as a special case of NWCNP where the weight of each

node is set to 1, i.e., w(vi) = 1,∀vi ∈ V . As pointed out by Zhou et al. (2021c), an optimal

solution of CNP is not necessarily optimal for NWCNP, and NWCNP is at least as chal-

lenging computationally as CNP (Arulselvan et al. 2009). Recently, some efforts have been

devoted to solve it. For example, Chen et al. (2020) studied CNP in undirected weighted

networks, and proposed a mixed-integer quadratic programming model and a greedy algo-

rithm. Zhou et al. (2021c) introduced an iterative local search algorithm (ILS-NWCNP

for short) by iterating through a late acceptance-based local search and a destructive-

constructive perturbation, which achieved the state-of-the-art results for NWCNP.

5.2. Computational Results on NWCNP

As benchmark instances for NWCNP are not available, we generated new weighted

instances starting from the widely used synthetic and real-world CNP benchmarks. The

only information required to be added is the weighting information for each node in the

sparse graph. Following (Zhou et al. 2021c), we adopt a random weighting scheme to assign

a weight to each node given by w(vi)∈ [0.2,3],∀vi ∈ V . Please refer to Zhou et al. (2023b)

for both our implemented programs and generated benchmark instances.

To adapt IRMS to solve NWCNP, some modifications to main algorithmic modules

(e.g., solution initialization and CHNS) of IRMS are necessary. According to the budgetary

constraint (6), a feasible solution of NWCNP must satisfy the constraint dictating that the

total weight of all removed nodes should be no more than K. Therefore, an initial solution

is constructed by iteratively removing nodes from the graph until the total weight of all

removed nodes is large than K. Note that a feasible solution of NWCNP is not necessary

to have K nodes. In addition, at each iteration, CHNS selects a removed node according

to both impact function value ψ and node weight w instead of value ψ only.
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We use IRMS-NWCNP to denote the resulting IRMS algorithm for NWCNP. Note that

the source code of ILS-NWCNP is available to us, which is responsible for achieving most of

state-of-the-art results for NWCNP in the literature. While for CEM-NWCNP, it is a new

adaption of CEMCNP (Wang and Di 2022) for NWCNP. Correspondingly, the resulting

algorithm for NWCNP is denoted as CEM-NWCNP. Therefore, we focus on experimentally

comparing IRMS-NWCNP with both ILS-NWCNP and CEM-NWCNP and report the

results in Table 5.

From Table 5, we observe that IRMS-NWCNP outperforms ILS-NWCNP in terms of

both f̂ and f̄ , finding better f̂ values for 37 instances, and equal f̂ values for 2 out of

the 5 remaining instances. In terms of f̄ , IRMS-NWCNP achieves better results than

ILS-NWCNP except for three instances (i.e., WS1000, WS1500 and facebook). At a sig-

nificance level of 0.05, IRMS-NWCNP significantly outperforms ILS-NWCNP in terms of

both f̂ (i.e., 38 > CV 42
0.05) and f̄ (i.e., 39 > CV 42

0.05). Compared to CEM-NWCNP, IRMS-

NWCNP also shows better performance. At a significance level of 0.05, IRMS-NWCNP is

significantly better than CEM-NWCNP in terms of f̂ , i.e., 34.5>CV 42
0.05. While for the per-

formance indicator f̄ , IRMS-NWCNP also significantly outperforms CEM-NWCNP (i.e.,

37.5>CV 42
0.05).

6. Experimental Analysis

In this section, we perform additional testing to gain a deeper understanding of IRMS, by

conducting three groups of experiments: 1) to study the run-time distributions of IRMS

and state-of-the-art algorithms, 2) to investigate the benefit of the component-based hybrid

neighborhood search procedure, and 3) to confirm the effectiveness of the “reduce-solve-

combine” mechanism.

6.1. Run-time Distributions of IRMS and State-of-the-art Algorithms

To further compare IRMS with the three state-of-the-art algorithms, we employ time-to-

target (TTT) plots (Aiex et al. 2007) to show the algorithmic run-time distributions on

representative instances. We execute each algorithm 100 times for each instance and record

the computation time to obtain a solution at least as good as a given target value at each

run. The 100 computation times are sorted in ascending order, and a probability pi = i−0.5
100

is associated with the i-th sorted computation time ti. A TTT plot is then obtained by

plotting these 100 points (ti, pi), i= 1,2, . . . ,100. Figure 5 presents the TTT plots of IRMS
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Table 5 Comparison between IRMS-NWCNP and Reference Algorithms on Weighted Synthetic and Real-world

Benchmarks under t̂= 3600 Seconds

ILS-NWCNP◦ CEM-NWCNP IRMS-NWCNP

Instance K f̂ f t f̂ f t f̂ f t

BA500 50 283 286.7 65.0 278 280.7 1.1 269 271.4 1946.1
BA1000 75 820 835.8 703.4 819 829.3 3.2 815 823.4 2098.5
BA2500 100 4910 4973.2 1153.1 4784 4909.7 55.8 4825 4884.4 2544.0
BA5000 150 13722 13907.4 162.6 13346 13640.3 535.3 13672 13797.1 2600.0
ER235 50 724 1495.7 680.4 922 1591.0 0.2 616 638.0 2081.8
ER466 80 19104 23745.6 92.8 19870 27351.1 0.6 4274 5117.9 1989.0
ER941 140 63079 78285.9 1407.5 55194 78522.3 35.7 38654 43229.0 3073.9
ER2344 200 1397614 1491688.6 2885.2 1495253 1629017.5 69.5 1334743 1355718.0 2845.2
FF250 50 479 514.8 196.3 522 547.0 0.1 466 475.2 1661.5
FF500 110 532 556.4 356.9 561 580.4 1.5 514 525.5 2992.4
FF1000 150 2469 2509.1 1918.0 2345 2494.5 11.5 2374 2402.1 2912.4
FF2000 200 8715 8822.4 824.0 7837 8212.2 180.2 8435 8535.9 2731.7
WS250 70 8801 10270.9 414.2 9724 14414.2 205.8 8304 8468.5 1408.9
WS500 125 5924 6553.2 785.4 13810 25821.4 4.2 4679 5049.9 3081.1
WS1000 200 222092 228611.7 2048.3 277755 311422.1 628.7 247187 260977.6 2721.2
WS1500 265 78142 95715.1 2577.0 236725 344796.0 58.9 134518 158567.2 2409.3

Bovine 3 954 954.6 237.5 954 954.0 0.0 954 954.0 0.1
Circuit 25 3498 4254.6 395.8 4718 7253.7 0.1 3160 3204.0 1826.1
Ecoli 15 1348 1360.0 759.4 1368 1591.4 0.3 1348 1348.0 0.5
USAir97 33 9484 9545.0 865.5 9441 9955.0 0.7 9313 9345.1 978.3
humanDi 52 1843 1867.2 575.7 1727 1826.1 2.0 1693 1700.7 1824.5
TreniR 26 647 648.8 962.9 627 695.3 0.6 597 634.7 2537.0
EU flights 119 395636 399652.6 955.0 400991 407205.3 75.3 386809 388392.8 2144.6
openflights 186 91072 95801.6 2093.8 95097 103457.7 183.6 87420 87939.6 2474.7
yeast1 202 3569 3700.2 1344.7 3320 3495.9 206.2 3317 3373.0 2917.6
H1000 100 345971 353678.8 1005.0 381567 398257.1 168.7 317208 325771.1 2908.5
H2000 300 1412216 1444356.3 490.4 1574504 1608151.6 743.4 1331567 1356273.3 2889.0
H3000a 300 3146558 3234620.3 1654.6 3581933 3690692.4 899.9 3098206 3133268.5 2755.0
H3000b 300 3169598 3224242.6 1214.0 3614080 3679776.8 1056.7 3047488 3077125.0 2991.0
H3000c 300 3180822 3224308.1 1892.6 3523237 3650634.8 759.3 3074841 3118908.1 2553.1
H3000d 300 3159049 3205091.0 1519.1 3499408 3635271.7 970.8 3089828 3124039.0 2875.4
H3000e 300 3156667 3221055.5 1160.7 3630227 3660257.7 1282.0 3097630 3145617.3 2877.8
H4000 400 5650385 5712357.8 2014.2 6435143 6539854.0 1428.0 5563646 5629050.2 2868.9
H5000 500 8915291 8999620.4 2593.4 10190504 10268278.5 1724.9 8799566 8950070.3 2973.4
powergrid 494 36639 41493.8 2019.5 28702 30541.8 2479.8 36395 37144.5 2793.2
Oclinks 190 798262 807393.5 1991.5 812214 826705.5 604.8 775689 782060.6 2851.2
facebook 404 1444026 1469417.4 3095.0 1444559 2011511.2 2224.1 1570192 1585472.6 2862.8
grqc 524 47604 52548.5 1720.8 41914 46216.3 2381.1 44664 47360.7 2747.7
hepth 988 8016122 8225523.5 3436.0 8924436 9908367.9 3524.0 6934032 7070319.2 2714.5
hepph 1201 25775334 26101767.5 3399.9 28084670 30582642.5 3361.6 23594695 24177629.2 2851.7
astroph 1877 82976199 84203164.2 3568.2 96874011 100752411.9 3532.4 77314231 78730627.0 2991.2
condmat 2313 72014730 75003163.3 3555.2 93241452 97411338.5 3580.1 60805637 66817701.5 3365.8

#Wins|Ties|Loses 37|2|3 39|0|3 − 34|1|7 37|1|4 − − − −

Note. “◦” presents the results of ILS-NWCNP are obtained by executing its source code in our computational platform.

and the three state-of-the-art algorithms on four representative instances, i.e., BA1000

(10196), FF1000 (1271), humanDi (1115) and yeast1 (1421). Note that the target value of

each instance is indicated in the parentheses after each instance name.

From Figure 5, we observe that IRMS is likely to find a target solution faster than the

compared algorithms. For example, for the synthetic instance BA1000, the probability of

reaching the target value 10196 in at most 130 seconds is approximately 60% for both CAN1

and VPMS, and 100% for both MACNP and IRMS. For the real-world instance humanDi,
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Figure 5 TTT Plots of IRMS and State-of-the-art Algorithms

the probability of finding the target value 1115 in at most 5 seconds is approximately 40%

for CAN1, 50% for VPMS and 75% for MACNP, while it is at least 95% for IRMS. These

observations further confirm that IRMS outperforms the state-of-the-art algorithms.

6.2. Benefit of the Component-based Hybrid Neighborhood Search

As previously noted, IRMS employs component-based hybrid neighborhood search (CHNS)

to perform local optimization, using the articulation point impact strategy to improve on

the component-based neighborhood search (CBNS) algorithm (Zhou et al. 2019). To show

the benefit of CHNS, we experimentally compare IRMS with a variant named IRMS′ that

is obtained from IRMS by replacing CHNS with CBNS. That is, IRMS′ selects a node

based on the node weighting strategy rather than the articulation point impact strategy

during the search. Detailed comparative results between IRMS′ and IRMS on both the

synthetic and real-world benchmarks are summarized in Table 6.

Table 6 shows that IRMS dominates IRMS′ by achieving better results on 19 instances

and equal results on the 22 remaining instances in terms of f̂ . IRMS statistically beats

IRMS′ on 30.0 instances (i.e., 30.0 > CV42
0.05) at a significance level of 0.05. For the f

indicator, IRMS finds better results on 24 instances, and equal results on the 16 remaining

instances. At a significance level of 0.05, IRMS significantly outperforms IRMS′ (i.e., 32.0>

CV42
0.05). These results confirm the benefit of CHNS over CBNS.
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Table 6 Comparison between IRMS and IRMS′ on Synthetic and Real-world Benchmarks under t̂= 3600

Seconds

IRMS′ IRMS

Instance K BKV f̂ f t f̂ f t

BA500 50 195∗ 195 195.0 0.0 195 195.0 0.0
BA1000 75 558∗ 558 558.0 1.3 558 558.0 3.1
BA2500 100 3704∗ 3704 3704.0 5.3 3704 3704.0 3.9
BA5000 150 10196∗ 10196 10196.0 15.8 10196 10196.0 16.8
ER235 50 295 295 295.0 2.8 295 295.0 6.5
ER466 80 1524 1524 1524.0 651.6 1524 1524.0 83.7
ER941 140 5012 5012 5048.1 1724.0 5012 5020.0 520.0
ER2344 200 902498 929333 951425.0 3010.4 920748 944406.9 3146.7
FF250 50 194∗ 194 194.0 0.1 194 194.0 0.0
FF500 110 257∗ 257 257.0 0.8 257 257.0 1.4
FF1000 150 1260∗ 1260 1260.0 27.0 1260 1260.0 22.2
FF2000 200 4545∗ 4545 4545.0 115.4 4545 4545.0 207.3
WS250 70 3083 3324 3600.2 2067.5 3085 3179.0 2013.2
WS500 125 2072 2072 2079.0 436.4 2072 2080.1 297.7
WS1000 200 109677 244708 274428.2 1567.4 138098 145969.1 1963.2
WS1500 265 13098 13100 13121.2 1670.6 13098 13112.9 2028.7

Bovine 3 268 268 268.0 0.0 268 268.0 0.0
Circuit 25 2099 2099 2099.0 0.8 2099 2099.0 1.3
Ecoli 15 806 806 806.0 0.0 806 806.0 0.4
USAir97 33 4336 4336 4736.9 1365.0 4336 4648.0 668.8
HumanDi 52 1115 1115 1115.0 4.4 1115 1115.0 0.1
TreniR 26 918 918 918.0 1.8 918 918.0 2.5
EU fli 119 348268 348268 349321.2 1683.3 348268 348295.7 998.0
openfli 186 26783 28718 28880.0 1946.7 27198 28757.5 1695.8
yeast1 202 1412 1412 1412.0 51.9 1412 1412.0 37.8
H1000 100 306349 308299 310940.3 2576.1 306349 308951.9 2165.2
H2000 200 1242739 1271562 1310345.4 2422.2 1236503 1254481.6 3028.8
H3000a 300 2840690 2914963 2992166.4 2528.1 2804579 2849985.8 3088.5
H3000b 300 2837584 2929494 3011990.2 2692.4 2801186 2842174.8 3164.3
H3000c 300 2835369 2925015 2983251.7 2343.5 2801692 2840618.6 3066.0
H3000d 300 2828492 2938989 3007547.3 2451.9 2816590 2864256.5 2940.0
H3000e 300 2843000 2960196 3014327.4 2783.2 2836177 2877807.4 2715.4
H4000 400 5038611 5313533 5421596.1 2641.3 5021551 5110687.5 3042.0
H5000 500 7964765 8297260 8575610.7 2392.2 8029837 8188900.3 2741.0
powergr 494 15862 15866 15891.3 3171.9 15866 15886.6 3021.6
Oclinks 190 611253 614467 614651.4 1676.8 614467 614467.6 1038.9
facebook 404 420334 919158 1258604.9 2991.4 719722 741314.4 2852.1
grqc 524 13591 13601 13626.6 3147.3 13594 13613.0 3201.9
hepth 988 106276 116527 119693.3 3228.1 115133 119766.8 3159.4
hepph 1201 6155877 11353914 11951940.6 2447.0 9401029 9781789.8 3077.4
astroph 1877 53963375 62237249 63050133.4 2242.8 57592461 58649781.0 3271.4
condmat 2313 2298596 9642594 10902735.5 2233.3 9670268 10789125.6 2286.2

#Wins|Ties|Loses − − 19|22|1 24|16|2 − − − −

Note. “∗” presents the optimal solution.

6.3. Effectiveness of the “Reduce-Solve-Combine” Mechanism

To evaluate the effectiveness of the “reduce-solve-combine” (RSC) mechanism used by

IRMS, we compare IRMS with an alternative version called IRMS′′ obtained from IRMS

by disabling the RSC mechanism and directly constructing an offspring solution based

on the frequent pattern and the offspring construction method used in frequent pattern

based search (Zhou et al. 2022). Table 7 describes the comparative results between IRMS
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and IRMS′′ on both the synthetic and real-world instances under the time limit t̂= 3600

seconds.

Table 7 Comparison between IRMS (with “reduce-solve-recombine” mechanism) and IRMS′′ (without

“reduce-solve-combine” mechanism) on Synthetic and Real-world Benchmarks under t̂= 3600 Seconds

IRMS′′ IRMS

Instance K BKV f̂ f t f̂ f t

BA500 50 195∗ 195 195.0 0.0 195 195.0 0.0
BA1000 75 558∗ 558 558.0 0.5 558 558.0 3.1
BA2500 100 3704∗ 3704 3704.0 2.7 3704 3704.0 3.9
BA5000 150 10196∗ 10196 10196.0 26.1 10196 10196.0 16.8
ER235 50 295 295 295.0 1.8 295 295.0 6.5
ER466 80 1524 1524 1524.0 240.9 1524 1524.0 83.7
ER941 140 5012 5012 5076.0 1929.7 5012 5020.0 520.0
ER2344 200 902498 965168 991942.3 2190.0 920748 944406.9 3146.7
FF250 50 194∗ 194 194.0 0.1 194 194.0 0.0
FF500 110 257∗ 257 257.0 0.6 257 257.0 1.4
FF1000 150 1260∗ 1260 1260.0 24.3 1260 1260.0 22.2
FF2000 200 4545∗ 4545 4545.0 388.4 4545 4545.0 207.3
WS250 70 3083 3090 3275.8 1678.5 3085 3179.0 2013.2
WS500 125 2072 2072 2080.9 1769.3 2072 2080.1 297.7
WS1000 200 109677 141667 146811.2 2039.8 138098 145969.1 1963.2
WS1500 265 13098 13858 14144.3 1888.9 13098 13112.9 2028.7

Bovine 3 268 268 268.0 0.0 268 268.0 0.0
Circuit 25 2099 2099 2099.0 0.5 2099 2099.0 1.3
Ecoli 15 806 806 806.0 0.0 806 806.0 0.4
USAir97 33 4336 4336 4674.0 314.4 4336 4648.0 668.8
HumanDi 52 1115 1115 1115.0 0.3 1115 1115.0 0.1
TreniR 26 918 918 918.0 0.4 918 918.0 2.5
EU fli 119 348268 348268 348350.8 1705.8 348268 348295.7 998.0
openfli 186 26783 29118 29497.6 2059.9 27198 28757.5 1695.8
yeast1 202 1412 1412 1412.0 52.7 1412 1412.0 37.8
H1000 100 306349 312592 316868.3 2392.4 306349 308951.9 2165.2
H2000 200 1242739 1283398 1303858.8 2059.1 1236503 1254481.6 3028.8
H3000a 300 2840690 2909699 2961854.3 1670.9 2804579 2849985.8 3088.5
H3000b 300 2837584 2927637 2959051.0 1520.3 2801186 2842174.8 3164.3
H3000c 300 2835369 2906920 2948294.3 2130.8 2801692 2840618.6 3066.0
H3000d 300 2828492 2935313 2965419.8 2146.9 2816590 2864256.5 2940.0
H3000e 300 2843000 2927917 2964465.5 2202.5 2836177 2877807.4 2715.4
H4000 400 5038611 5246420 5317627.6 1881.6 5021551 5110687.5 3042.0
H5000 500 7964765 8289948 8388331.1 1929.4 8029837 8188900.3 2741.0
powergr 494 15862 15938 15990.4 2692.5 15866 15886.6 3021.6
Oclinks 190 611253 614467 614467.1 1402.9 614467 614467.6 1038.9
facebook 404 420334 755714 805713.6 1894.0 719722 741314.4 2852.1
grqc 524 13591 13635 13652.6 2764.6 13594 13613.0 3201.9
hepth 988 106276 126106 137745.1 1652.7 115133 119766.8 3159.4
hepph 1201 6155877 10255932 11239245.2 2946.7 9401029 9781789.8 3077.4
astroph 1877 53963375 62169348 63174914.0 2410.7 57592461 58649781.0 3271.4
condmat 2313 2298596 9943424 10804865.5 2416.2 9670268 10789125.6 2286.2

#Wins|Ties|Loses − − 21|21|0 25|16|1 − − − −

Note. “∗” presents the optimal solution.

As seen from Table 7, IRMS demonstrates a better performance than IRMS′′ by obtain-

ing better results on 21 instances, and equal results on the 21 remaining instances in terms

of f̂ . Similar observations apply to the f indicator, where IRMS attains the same or better

results on all 42 instances except for the instance Oclinks. At a significance level of 0.05,
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IRMS significantly outperforms IRMS′′ in terms of both the f̂ (i.e., 31.5>CV42
0.05) and f

(i.e., 33.0>CV42
0.05) indicators, confirming the effectiveness of RSC.

7. Conclusion

Finding an optimal set of nodes, called critical nodes, whose removal will maximally

decrease the pairwise connectivity of the remaining graph, is a fundamental critical node

detection problem. To solve this problem, we propose an instance reduction-based memetic

search (IRMS) method that integrates a “reduce-solve-combine” instance reduction mech-

anism with the well-known population-based memetic algorithm framework. Extensive

experimental results on 42 synthetic and real-world benchmark instances show that IRMS

is highly effective compared to the state-of-the-art heuristic algorithms, by discovering 9

new upper bounds. Investigations are also performed that identify the benefit of differ-

ent search modules and techniques used by the IRMS algorithm. In addition, we report

computational results that demonstrate a generalization of IRMS likewise outperforms the

previous best algorithm for the node-weighted critical node problem. The updated upper

bounds can be useful for future research.

As future work, several potential research directions can be pursued. First, it would be

interesting to optimally solve the reduced instance by an exact solver instead of approx-

imately solving by a heuristic solver in the “reduce-solve-combine” module. Second, the

“reduce-solve-combine” mechanism being a general-purpose technique for the instance

reduction, its generality can be further verified by combining it with other metaheuris-

tics, such as large neighborhood search (Schaap et al. 2022) and path relinking (Wu et al.

2020). Third, it is worth adapting IRMS to solver other problem variants, such as the

distance-based critical node problem (i.e., there is a cost associated to each pair of nodes in

the residual graph) (Salemi and Buchanan 2022, Zhou et al. 2023c) and connected critical

node problem (Hosteins et al. 2022). Finally, this work could benefit exact algorithms.

For instance, we can employ IRMS to generate a high-quality initial solution for a given

instance, whose objective function value is used as a tight starting upper bound.
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Appendix. Online Supplement

A. Detailed Results of IRMS under the Time Limit t̂= 7200 Seconds

Table 1 summarizes the detailed results of IRMS under a long time limit t̂ = 3600 seconds. In Table 1,

columns 1-3 describe for each instance its name (Instance), K value, and best known value (BKV) reported

in the literature, respectively. Columns 4-6 report the results of IRMS, including the best result (i.e., f̂)

found during 30 runs, the average result (i.e., f̄), and average computation time (i.e., t̄) at each run. From

it, we observe that IRMS also performs excellent performance. In particular, it finds new upper bounds for

nine instances, and matches previous best-known upper bounds on 23 instances.

Table 1 Results of IRMS on Synthetic and Real-world Benchmarks under t̂= 7200 Seconds

IRMS

Instance K BKV f̂ f̄ t̄

BA500 50 195∗ 195 195.0 0.0
BA1000 75 558∗ 558 558.0 1.5
BA2500 100 3704∗ 3704 3704.0 4.5
BA5000 150 10196∗ 10196 10196.0 18.8
ER235 50 295 295 295.0 7.9
ER466 80 1524 1524 1524.0 79.2
ER941 140 5012 5012 5023.3 1817.8
ER2344 200 902498 918952 941170.2 5673.8
FF250 50 194∗ 194 194.0 0.0
FF500 110 257∗ 257 257.0 0.7
FF1000 150 1260∗ 1260 1260.0 18.5
FF2000 200 4545∗ 4545 4545.0 264.2
WS250 70 3083 3083 3132.7 4127.2
WS500 125 2072 2072 2078.1 813.2
WS1000 200 109677 137766 144237.3 3149.4
WS1500 265 13098 13098 13103.4 2461.6
Bovine 3 268 268 268.0 0.0
Circuit 25 2099 2099 2099.0 1.3
Ecoli 15 806 806 806.0 0.0
USAir97 33 4336 4336 4596.0 1452.8
HumanDi 52 1115 1115 1115.0 1.5
TreniR 26 918 918 918.0 1.3
EU fli 119 348268 348268 348268.0 749.4
openfli 186 26783 26875 28363.8 4400.1
yeast1 202 1412 1412 1412.0 34.0
H1000 100 306349 306349 308345.0 3561.5
H2000 200 1242739 1236887? 1250761.8 5352.7
H3000a 300 2840690 2799868? 2840491.0 6055.2
H3000b 300 2837584 2794262? 2821455.9 6184.0
H3000c 300 2835369 2783248? 2825113.4 6682.2
H3000d 300 2828492 2802615? 2838392.3 5612.8
H3000e 300 2843000 2798688? 2841275.9 5836.7
H4000 400 5038611 4977344? 5074711.6 5894.7
H5000 500 7964765 7956481? 8058861.6 6062.2
powergr 494 15862 15863 15870.8 5764.8
Oclinks 190 611253 614467 614467.0 1494.1
faceboo 404 420334 705403 723233.5 5915.9
grqc 524 13591 13590? 13598.0 5945.4
hepth 988 106276 110352 114505.1 6367.1
hepph 1201 6155877 9309386 9543464.4 5009.6
astroph 1877 53963375 56849750 57688316.6 5149.1
condmat 2313 2298596 9359852 10415923.6 4155.8

Notes. “∗” presents the optimal solution, and “?” indicates the
improved best upper bounds.
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B. Detailed Results of CEMCNP under the Time Limit t̂= 3600 Seconds

Since the source code of CEMCNP is not available to us, we have re-implemented it according its pseudo

code. Detailed comparison between our implemented CEMCNP algorithm and reported CEMCNP algorithm

are summarized in Table 2. From it, we observe that our implemented CEMCNP algorithm performs slightly

worse performance than the reported results on most of instances. However, some reported results are

obtained under a longer computation time than the time limit. For example, at least 4000 seconds are

required to achieve the results of H3000e, hepth, hepph and condmat. It is worthy noting that for some

instances (e.g, grqc, hepth and condmat), our implemented CEMCNP algorithm achieves better performance

than the original version.

Table 2 Detailed Results of CEMCNP on Synthetic and Real-world Benchmarks under t̂= 3600 Seconds

Reported Results Implemented Results

Instance K BKV f̂ t f̂ f t

BA500 50 195 195 0.0 195 195.0 0.0
BA1000 75 558 558 0.2 558 558.0 54.0
BA2500 100 3704 3704 0.2 3704 3704.0 347.3
BA5000 150 10196 10196 1.8 10196 10196.0 9.6
ER235 50 295 295 19.8 297 302.8 0.0
ER466 80 1524 1524 98.4 1569 1630.6 1.7
ER941 140 5012 5012 694.6 5363 5635.3 2.7
ER2344 200 902498 912346 3069.0 1012527 1060618.6 847.9
FF250 50 194 194 0.3 194 194.0 178.2
FF500 110 257 257 0.2 257 258.6 0.3
FF1000 150 1260 1260 120.6 1260 1260.0 1080.9
FF2000 200 4545 4545 486.4 4546 4552.5 1458.1
WS250 70 3083 3083 623.1 4203◦ 5447.9 0.5
WS500 125 2072 2072 105.8 2085 2193.0 153.7
WS1000 200 109677 109935 1256.2 154899 169877.2 19.3
WS1500 265 13098 13098 658.2 13664 27810.6 108.0

Bovine 3 268 268 0.0 268 268.0 0.0
Circuit 25 2099 2099 0.1 2101 2188.7 0.1
Ecoli 15 806 806 0.0 806 808.8 0.1
USAir97 33 4336 4336 856.4 4336 5149.5 0.1
HumanDi 52 1115 1115 0.5 1115 1115.0 319.9
TreniR 26 918 918 0.2 918 918.0 10.9
EU fli 119 348268 348325 431.6 350762 357502.7 89.5
openfli 186 26783 26796 3165.8 29481 31377.7 86.4
yeast1 202 1412 1412 9.8 1412 1414.3 1085.8
H1000 100 306349 307113 1068.4 330493 337217.0 211.4
H2000 200 1242739 1245637 1527.2 1324988 1344914.2 126.4
H3000a 300 2840690 2842695 1204.3 2962661 3042695.4 165.2
H3000b 300 2837584 2840867 2040.0 2968601 3035272.7 438.0
H3000c 300 2835369 2831643 2159.3 2956916 3008793.3 903.6
H3000d 300 2828492 2830284 3895.2◦ 2967747 3030236.3 51.6
H3000e 300 2843000 2846536 4035.6◦ 3012046 3043889.5 25.9
H4000 400 5038611 5096437 1563.7 5261850 5383301.3 347.5
H5000 500 7964765 8007638 2024.1 8206499 8348589.5 696.5
powergr 494 15862 15906 856.7 15965 16084.9 3393.5
Oclinks 190 611253 615467 267.8 622237 626701.5 836.1
faceboo 404 420334 589763 3526.9 794938 857245.1 685.4
grqc 524 13591 13743 1025.0 13666 13701.7 3391.1
hepth 988 106276 115309 4521.4◦ 109504 111495.6 1602.3
hepph 1201 6155877 7556094 4025.1◦ 8464199 10530358.9 3513.9
astroph 1877 53963375 57895042 3105.2 59476077 60449655.3 3512.9
condmat 2313 2298596 7658643 4203.5◦ 3756761 4632078.6 3555.9

Note. “◦” indicates a longer computation time than 3600 seconds.
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C. TarjanInComponent Procedure

Algorithm 1 realizes the TarjanInComponent procedure used in the articulation point impact strategy. It

starts the search from a root node, and recursively builds a depth first search (DFS) tree. During DFS phase,

all articulation points are identified. Once all nodes are visited, the evaluation of all nodes is finished.

Algorithm 1 Pseudo Code of TarjanInComponent Procedure

Input: A large connected component C, root node x, time stamp Count, γ and η

1: dfn[x]←+ +Count

2: low[x]← dfn[x]

3: for each neighbour w of x in C do

4: if w has not been visited then

5: TarjanInComponent(C,w,Count, γ, η)

6: low[x]←min{low[x], low[w]}

// w is not the parent of v

7: if dfn[x]<dfn[w] then

8: γ[x]+ = γ[w]

9: end if

10: if dfn[x]< low[w] then

11: The number of x’s subtrees increases one

12: if x is not the root node then

13: x is marked as an articulation point

14: η[x]+ = γ[w]

15: ψ[x]+ = γ[w](γ[w]−1)

2

16: else

17: if x is the root ∧ x has more than one subtree then

18: x is marked as an articulation point

19: end if

20: end if

21: end if

22: else

23: low[x]←min{low[x], dfn[w]}

24: end if

25: end for
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