Breakout local search for the traveling salesman
problem with job-times

Yuji Zou?, Jin-Kao Hao®*, Qinghua WuP

“LERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France
bSchool of Management, Huazhong University of Science and Technology, No. 10387, Luoyu
Road, Wuhan, China

Ezxpert Systems with Applications 225: 120020, September 2023
https://doi.org/10.1016/j.eswa.2023.120020

Abstract

The traveling salesman problem with job-times combines two classic NP-hard
combinatorial optimization problems: the traveling salesman problem and the
scheduling problem. In this problem, a traveler visits sequentially n locations
with given travel-times between locations and assigns, to each visited location,
one of n jobs with location-dependent job-times. When a job is assigned to a
specific location, the job starts to run at that location for its given duration. The
goal of the problem is to find a job assignment to minimize the maximum com-
pletion time of the n jobs. This work presents an effective heuristic algorithm for
the problem based on the breakout local search method. The algorithm employs
a local search procedure to find high-quality local optimal solutions and a ded-
icated perturbation procedure to escape local optimum traps. The local search
procedure is based on the 2-opt and j-swap moves adapted to the problem, while
the perturbation procedure combines both informed and random 2-opt and j-
swap operations. To speed up the search, we introduce a dedicated strategy
to identify promising neighboring solutions. We evaluate the algorithm on the
310 benchmark instances in the literature. Computational results show that the
proposed algorithm outperforms the previous methods, by reporting improved
best results (new upper bounds) for 291 instances and equal best results for 16
other instances. The main search components of the algorithm are investigated
to shed light on their contributions to the performance of the algorithm.

Keywords: Heuristics; routing-assignment problems; combinatorial
optimization; local search.

*Corresponding author
Email addresses: yujizou6@gmail.com (Yuji Zou), jin-kao.haoQuniv-angers.fr
(Jin-Kao Hao), qinghuawul005@gmail.com (Qinghua Wu)

Preprint submitted to Elsevier April 13, 2023

1. Introduction

The Traveling Salesman Problem with Job-times (TSPJ) (Mosayebi et al.,
2021) combines the traveling salesman problem (TSP) and the scheduling prob-
lem. In this problem, a traveler starts from the depot 0, visits n given locations
exactly once, and returns to the depot. For each visited location I (except the
depot), one job j among n given jobs with location-dependent processing times
(job-times) jt;; is assigned and the job starts to run during that time while
the traveler moves to the next location. For a given job j assigned to location
[, its completion time equals the arriving time at location ! plus the process-
ing time jt;;. For a Hamiltonian tour with the n job-location assignment, the
completion time of the n jobs is the maximum completion time among the n
jobs. The goal of the TSPJ is then to find the Hamiltonian tour starting from
and ending at the depot 0 and including the n job-location assignments such
that the maximum completion time among the n jobs is minimized. The TSPJ
belongs thus to the class of min-max problems and is at least as challenging as
its composing location and assignment problems. A mathematical formulation
of the problem was introduced in Mosayebi et al. (2021) based on a conventional
integer programming formulation for the TSP (see Appendix A).

A TSPJ instance is defined with two input data: 1) a symmetric edge-
weighted complete graph G = (V, E) where a node in the vertex set V represents
a location (node 0 being the depot) and the weight of an edge in the edge
set F represents the travel time between two locations, and 2) a location-job
matrix indicating the processing time of each job (job-time) at each location.
Given a TSPJ instance with n jobs and n locations, a candidate solution can be
represented by two n-dimensional permutation vectors. Let 71 : {1,...,n} —
{1,...,n} be a permutation representing a TSP tour starting from and ending
at the depot 0 and let II; denote the set of all these permutations. Let w5 :
{1,...,n} — {1,...,n} be a job-location assignment and let IIy denote the
set of all these assignments. Then a candidate solution can be represented as
S = (m,m2), m € Iy, my € II5. The search space € is given by

QZ{(ﬂ'l,Tr2)I7T1€H1,7T2€H2} (1)

Let S € Q be a candidate solution, its objective value f(S) is defined as
follows (Mosayebi et al., 2021).

f(S) = max{max{TS; + Z Ziijtii b, TS+ XD}t Yi=1,....,n (2)

j=1

where T'S; is the start time of the job assigned to location [, the binary
variable Z;; = 1 if job j is assigned to location ! and Z;; = 0 otherwise, jt;;
is the job time of job j at location [, the binary variable Xj;q equals 1 or 0
according to whether the TSP tour goes from location [to the depot 0 and Dq
is the travel time from location [to the depot. From Eq. (2), one observes that
f(S) equals either 1) the largest job completion time (makespan) (the inner

max), or 2) the travel time starting and ending at the depot (T'S; + X;0Djg).
Case 2) corresponds to the situation when the travel time of the TSP tour is
higher than the largest job completion time. The TSPJ aims to find a solution
that minimizes the objective function f.

As an illustrative example, Table 1 shows the input data of a TSPJ instance
where Nodes denote the depot 0 and the locations. The left part gives the travel
times between the locations and the right part indicates the job-time of each
job at each location. Fig. 1 shows two candidate solutions (a) and (b). For
each TSP tour (sequence of black cycles), the arriving time (i.e., the processing
start time) at each location node is shown next to the node and the job-time of
the assigned job at the node is indicated in red.

Table 1: A TSPJ instance where the left part shows the travel time from one node to another
node and the right part shows the location-job matrix indicating the processing time of each

job (job-time) at each location.

Nodes
Nodes

(travel-time between nodes)

Jobs

(location dependent job-time jtlj)

-

2

w

5

J1

J2

J3

J4

J5

Je

J7

[
WONTUMO XD

NOURWN=O
~Novomwuaro | o
COU O 0O N
GO 0wWwo T o
CUMOWNN® [~

WO oD TO

[
momwumoooo o
UMW UL |

12
12
10

10

10

8
10

9
12
10
10
10

10
10
11
10
11
11
11

11

9
11
11
11
11
11

8
13
8
8
12
9
12

9
11
14
11

8

8
13

Table 2: The processing start time and completion time of each job assigned to its location
node for the two candidate solutions in Fig. 1.

solution of Fig. 1(a)

solution of Fig. 1(b)

Nodes
start time (arriving time T S}) completion time start time (arriving time TS}) completion time

0 56 - 56 -

1 14 25 (Js5) 41 52 (Js5)

2 6 18 (J1) 15 25 (J3)

3 35 45 (Jg) 28 40 (J7)

4 21 32 (J7) 8 18 (Jy)

5 27 39 (Jg) 36 45 (Jg)

6 44 54 (J3) 47 55 (J7)

7 49 60 (Jg) 23 35 (Jg)

Table 2 shows the detailed information of the start time and completion
time of each job assigned to the indicated node. The value of 56 for node 0 is
the travel time starting and ending at the depot. The completion time of job j
assigned to node [is the arriving time at node [(T'S; in Table 2) plus the job-
time (jt;; in Table 1). According to Eq. (2), the objective value of a solution is
determined by the maximum job completion time or the time required to return
to the depot. So the objective value of the solution of Fig. 1(a) equals the job
completion time of job J4 at node 7 (49 + 11 = 60). For solution of Fig. 1(b),
since the travel time starting and ending at the depot (47 + 9 = 56 where 9 is
the travel time from the last node 6 to the depot, see Table 1) is greater than

12 11 10 10
2 1 4 2
o o/ [N N
6 14 8 15
oF of
49 44 47 41
11 10 8 11
(a) Node 7 in this solution has a completion time of 60. (b) Depot in this solution has a return time of 56. So its
So its objective is 60. objective is 56.

Figure 1: Two candidate solutions for the TSPJ instance of Table 1 are shown. The solution
(a) has an objective value of 60, which is the maximum completion time of job Js assigned
to location node 7. The solution (b) has an objective value of 56 because the maximum
completion time among the jobs is 55 with job J7 assigned to location node 6, which is
however smaller than the travel time starting and ending at the depot 0.

the largest completion time (4748 = 55 of J; at location node 6), the objective
value of solution of Fig. 1(b) is 56.

It is easy to see that the NP-hard TSP is a special case of the TSPJ when
the job-times equal 0. As a result, the TSPJ is at least as difficult as the TSP
and solving the problem is computationally challenging.

Along with the introduction of the TSPJ, Mosayebi et al. (2021) introduced
four heuristic algorithms as well as four sets of 310 benchmark instances. They
performed comprehensive assessments of these heuristic algorithms on these
benchmark instances. They also used the CPLEX MIP solver to solve the
integer programming model shown in Appendix A. We review these heuristic
algorithms and related works in Section 2.

Given the relevance of the TSPJ and its computational challenge, it is worth
developing effective methods able to provide satisfactory solutions. Currently,
such methods are still scarce in the literature, this work aims to fill the gap by
presenting a new heuristic algorithm for the TSPJ. Our main contributions are
summarized as follows.

We propose an effective algorithm based on the breakout local search method
(BLS) (Benlic & Hao, 2013a,b,c) that features two key complementary search
components. First, BLS uses a dedicated tabu search procedure to explore can-
didate solutions based on two specific neighborhoods combined with a neighbor-
hood reduction strategy to make the neighborhood examination more focused.
Second, BLS employes a combined perturbation strategy that adaptively ap-
plies a random perturbation and a frequency-based perturbation to help the
algorithm to escape local optimum traps.

To show the effectiveness of the algorithm, we carry out extensive compu-
tational experiments on the four sets of 310 benchmark instances of (Mosayebi
et al., 2021). We show that our BLS algorithm significantly outperforms the ex-
isting algorithms in the literature. Specifically, we report improved best-known

results (new upper bounds) for 291 instances and equal best-known results for
16 other instances. We present additional experiments to shed light on the in-
fluences of the main search components over the performance of the algorithm.

Finally, we will make the code of our algorithm publicly available, which
can be used by researchers and practitioners working on the TSPJ and related
problems.

In Section 2, we review related works. In Section 3, we present the proposed
algorithm. In Section 4, we provide experimental results and comparisons with
existing methods. In Section 5, we analyze the main components of the al-
gorithm to shed light on their roles. Conclusions are provided in Section 6.

2. Related works

2.1. Ezisting algorithms for the TSPJ

In Mosayebi et al. (2021), four heuristic procedures were presented for the
TSPJ. These four algorithms are different combinations of the following basic
heuristics: Nearest Neighbor for TSPJ (TSPJ-NN), 2-opt for TSPJ (TSPJ-2-
opt) and local search improvement (LST).

The TSPJ-NN heuristic is adapted from the popular NNH-X heuristic for the
TSP. NNH-X starts with any node and then chooses the nearest node among
the unvisited nodes as the next node to be visited. After all the nodes have
been chosen as the first node, the tour with the shortest length is selected as
the final solution. TSPJ-NN extends NNH-X to fit the TSPJ and applies the
so-called reverse assignment strategy to assign the jobs. Specifically, for each
tour given by NNH-X, TSPJ-NN considers the location nodes one by one in
the reserve order they are visited by starting from the last node and assigns to
the node under consideration the job with the minimum job-time. After all the
nodes have been chosen as the first node, the solution with the minimum job
completion time is retained as the final solution.

The TSPJ-2-opt heuristic uses the popular TSP 2-opt heuristic to generate
new tours and the reverse assignment to assign jobs to locations. It starts
with the first node in the current tour and applies the 2-opt move to swap all
combinations of node pairs in the tour. For each new tour from 2-opt, the jobs
are assigned to the location nodes using the reverse assignment as in the TSPJ-
NN heuristic. The 2-opt move is accepted as long as the resulting tour improves
the current solution. The process is repeated until no further improvement can
be achieved by swapping any pair of nodes in the tour.

The local search improvement heuristic LSI is composed of two main steps.
Step 1 reassigns jobs to different location nodes while step 2 changes the se-
quence of location nodes. Let l,, be the node which results in the maximum
completion time Cy,q. (€.g., node 7 in Fig 1(a)). Step 1 repetitively reduces
Cinaz by re-assigning to [, another job with less job-time (e.g., Jo or J3 in
Fig 1(a)) without increasing Cj,qz, followed by re-assigning the remaining jobs
with the reverse assignment strategy. Then the solution is further improved by

swapping the job assigned to [,, with another job assigned to a location node
behind [, in the tour. When step 1 cannot decrease C,,,, anymore, step 2 is
used to change the sequence of location nodes with the so-called ”predecessor
node swap” and ”"multi-node swap”. The predecessor node swap exchanges the
node [,,, with the node immediately preceding [,,, in the tour and this is repeated
as long as the solution is improved. The multi-node swap, which follows, can be
viewed as a modification of 2-opt and swaps node [,,, with one of its predecessors
in the tour while reversing the sequence of the location nodes between the two
nodes in the tour. Like the predecessor node swap, the multi-node swap is ac-
cepted as long as it leads to an improvement of the solution. The LSI heuristic
repeats step 1 and step 2 until no improvement is possible.

Based on these basic heuristics, Mosayebi et al. (2021) defined four TSPJ
heuristic procedures.

e Procedure I first uses TSPJ-NN to obtain an initial solution and then uses
TSPJ-2-0pt to further improve the solution.

e Procedure II successively applies NNH-X to obtain an initial tour, 2-opt
to improve the tour, reverse assignment to assign the jobs and local search
improvement LSI to further raise the quality of the solution.

e Procedure III successively applies TSPJ-NN to obtain an initial solution,
local search improvement LSI followed by TSPJ-2-opt to further improve
the quality of the solution.

e Procedure IV first identifies the node with the largest distance from the
depot as the last node in the tour and uses this node as the last node in
the tour. It then runs TSPJ-NN to complete the tour and local search
improvement LSI to further improve the solution.

As shown in (Mosayebi et al., 2021), these procedures have reached compet-
itive results compared to the CPLEX MIP solver. Meanwhile, one notices that
these procedures are mainly based on the principle of greedy or descent search.
They have a limited capability to escape local optimum traps and can miss high-
quality solutions. In this work, we investigate a stochastic local search approach
(Hoos & Stiitzle, 2004) that is able to visit multiple local optima solutions to
find the best possible solution.

2.2. Related works on iterated local search

Our proposed BLS algorithm is based on iterated local search (ILS) (Lourengo
et al., 2003) and especially breakout local search (BLS), which enhances the ILS
framework with an adaptive multi-perturbation strategy. In what follows, we
provide a brief review of some representative works on these frameworks applied
to several difficult problems, especially TSP-like problems.

Zhou et al. (2022) introduced a multi-neighborhood simulated annealing-
based iterated local search approach for the colored traveling salesman problem.
The algorithm uses the intra-route and inter-route moves to explore candidate

TSP tours and applies an enhanced edge assembly crossover to find nearby
high-quality solutions around a local optimum. It relies on the the Metropo-
lis condition and a solution reconstruction procedure to escape local optimum
traps.

Nogueira et al. (2021) proposed an iterated local search with tabu search
for the weighted vertex coloring problem. The algorithm iterates a multi-
neighborhood local search procedure to find local optimal solutions and a per-
turbation procedure to escape from local optima. The perturbation randomly
selects p vertices and assigns to each chosen vertex a random color, where p
is adjusted by an adaptive mechanism such that p is increased if the search is
considered to be stagnating.

Archetti et al. (2018) proposed an iterated local search algorithm to solve
the traveling salesman problem with release dates and completion time mini-
mization. The algorithm relies on a local search to find local optimal solutions
and a a destroy-and-repair procedure to escape from local optimum traps. The
destroy-and-repair procedure removes « customers from the route and reassign
them in the route, where « is adjusted in an adaptive manner during the search
such that « varies between a lower bound «,,;, and an upper bound ;4.

Benlic & Hao (2013c) presented the first breakout local search to solve the
quadratic assignment problem. To go beyond local optima found by the descent
search, the algorithm probabilistically applies three types of perturbations (di-
rected, frequency-based and random perturbations) depending on the search
state. Additionally, the number of moves applied by the chosen perturbation
(called jump magnitude or perturbation length) is adjusted through an adaptive
mechanism. Starting from a weak jump magnitude, it is gradually increased if
the jump is not sufficient to escape the current local optimum trap.

Krari et al. (2018) introduced a breakout local search approach for solving
the TSP. The algorithm performs a local search phase and a perturbation-based
diversification phase. The local search procedure uses the2-opt based steepest
descent. The perturbation is achieved by varying the type of moves (2-opt,
insert, and swap) and the jump magnitude. The most fitting perturbation
for each diversification period is adaptively selected by an adaptive mechanism
similar to Benlic & Hao (2013c) according to the search state.

Ghandi & Masehian (2015) applied breakout local search to the assembly
sequence planning problem. The algorithm first utilizes a simple hill-climbing
local search to reach a local optimum. Then the perturbation is applied to escape
the local optimum. Four types of move operators (flip, exchange, insertion, and
inversion) are employed to perform the perturbation, and the selection of the
applied perturbation operators is based on the consecutive non-improving local
search phases.

2.3. Possible applications of the TSPJ

As discussed in Mosayebi et al. (2021), the TSPJ is a relevant model for a va-
riety of practical scenarios including autonomous robotics (Bays & Wettergren,
2017), equipment maintenance (Rashidnejad et al., 2018), highly automated

manufacturing (Das & Nagendra, 1997), agricultural harvesting (Basnet et al.,
2006), and disaster recovery (Barbarosoglu et al., 2002).

To provide a representative application example, we consider the Sequence-
Dependent Robotic Assembly Line Balancing Problem of type 2 (SDRALBP-2)
(Lahrichi et al., 2020). In this problem, there are a set of operations, a set of sta-
tions and a set of robots of different types with different abilities. There are three
decision problems. One needs to assign the operations to the stations placed in
a straight line and sequence the operations at the same station while satisfy-
ing precedence relations between the operations. Finally, one needs to assign a
robot to process the operations at each station. The start time of an operation
is sequence-dependent since the operations should be processed one by one, and
there is a setup time between the operations. The operation processing time is
dependent on the robot assigned to the station. The goal of the SDRALBP-2 is
to minimize the maximum workload time among all the stations to achieve the
balance purpose. Another relevant application is the unrelated parallel machine
scheduling problem with sequence and machine-dependent setup times, limited
worker resources, and learning effect (Zhang et al., 2021). In this problem, a set
of jobs need to be processed with a set of parallel machines. The setup time is
sequence and machine-dependent. And the job processing time is dependent on
the machine. The purpose of this problem is to minimize the maximum com-
pletion time among all jobs. Both applications can be conveniently formulated
with the TSPJ model.

Given the relevance of the TSPJ and the limited number of algorithms for
solving the problem, we propose in this work an effective algorithm based on
the breakout local search method, which advances the state of the art of solving
this challenging problem. Indeed, the BLS method has been successfully applied
to several difficult optimization problems including maximum clique (Benlic &
Hao, 2013a), max-cut (Benlic & Hao, 2013b), quadratic assignment (Benlic &
Hao, 2013c; Aksan et al., 2017), constrained Steiner tree problem (Fu & Hao,
2014), assembly sequence planning (Ghandi & Masehian, 2015), and TSP (Krari
et al., 2018). As this work shows, BLS is also a highly competitive approach for
solving the TSPJ.

3. Breakout local search for the TSPJ

This section is dedicated to the breakout local search algorithm for solving
the TSPJ. A typical BLS algorithm iterates a dedicated local search procedure
to find high-quality local optimal solutions and an adaptive perturbation pro-
cedure to escape local optimum traps. BLS enhances the popular iterated local
search, which typically applies random perturbations, by employing an adap-
tive multi-perturbation strategy to ensure a suitable search diversification. This
is achieved by dynamically determining the perturbation strength for different
types of perturbation (e.g., random or informed perturbations). By iterating
the local search and the adaptive perturbation, BLS favors the balance of search
intensification and diversification and helps to better explore the search space.

8.1. The BLS procedure

Algorithm 1: Pseudo-code of BLS for the TSPJ
Input: Problem instance, time limit ¢4z, search depth w, minimum perturbation
length Ly, maximum perturbation length Ly,qz.
Output: The best solution S found so far.

1 L+ Lpmin ; /* perturbation length */
2 Nolmprove < 0 ; /* counter of consecutive loops fpest is not improved */
3 Sinitial < TSPJ-NN() ; /* generation of initial solution with TSPJ-NN x/
a S <+ Sinitial ; /* current solution */
5 Sp S /* best solution found so far */
6 while t,,42 s not reached do

7 S, Se + tabu search(S,w, Lmin) ; /* Section 3.4 */
8 if f(S1)<f(Sp) then

9 L Sb «— Sl;

10 S+ perturbation(Se, L) ; /* Section 3.5 */
11 if L < Lyqx then

12 L L+ L+1;

13 return Sp; /* return the best solution found during the search */

The proposed BLS algorithm for the TSPJ (see Algorithm 1) integrates two
key complementary ingredients responsible for its effectiveness: a dedicated tabu
search procedure exploring two neighborhoods enhanced with a neighborhood
reduction technique and a combined perturbation strategy for search diversifica-
tion. BLS starts from an initial solution built with the TSPJ-NN heuristic (line
3). Then it alternates iteratively between a tabu search phase and a dedicated
perturbation phase (lines 7-10). The best solution S, found so far is updated
each time an improved local best solution S; is discovered during the tabu
search (lines 8-9). Meanwhile, the perturbation length is updated during the
tabu search according to the search information. When the tabu search phase
stops upon reaching its search depth w, the search is considered to stagnate in
a local optimum. In this case, the perturbation phase is triggered to modify
the current solution S. with the perturbation length L to help the algorithm
to escape the current local optimum (line 10). Following this, the perturbation
length is increased by 1 so long as it does not reach the limit L,,,,. The solution
produced by the perturbation becomes the starting point of the next round of
the tabu search.

3.2. Initial solution

BLS needs an initial solution to start its search and a good initial solution is
helpful for the algorithm to discover high-quality solutions. To obtain a starting
solution of reasonable quality, BLS adopts the TSPJ-NN heuristic presented in
(Mosayebi et al., 2021) and reviewed in Section 2.1.

The time complexity of constructing a solution using NNH is O(n?). As-
signing the jobs using reverse assignment requires O(n) time. Computing the
objective value takes O(n?) time. In TSPJ-NN, every node is used to be the

L. Iy .
(a)
- lc ld
O &W
l/n lu lhKf,f
(b)
OW(L b
L =

(©)

Figure 2: Three possible 2-opt moves according to the position of the node with the maximum
completion time denoted by lp,. (a) lm belongs to the reversed edge, (b) I, is before the first
node of 2-opt, (c) lp, is behind the second node of 2-opt.

first node of the tour. Thus, the time complexity of obtaining an initial solution
is bounded by O(n?).

8.8. Neighborhoods

Tabu search examines candidate solutions by exploring two neighborhoods
induced by the basic 2-opt and j-swap move operators.

8.8.1. 2-opt neighborhood

2-opt (Lin, 1965) is a well-known operator to generate neighboring solutions
for the TSP. The 2-opt operator basically breaks the given tour by deleting
two edges and reconnects the broken tour by adding two new edges (see Fig.
2 for an illustrative example). For the TSP, the objective variation between
the current solution and a neighboring solution is related to the tour length
difference between the two added edges and the two removed edges. The TSPJ
has a quite different objective which depends not only on the arriving time
at a node (i.e., job start time), but also the location-dependent job time. So
the objective variance after a 2-opt move for the TSPJ is much more complex
to calculate. The basic way to obtain the objective value after a 2-opt move
is to calculate, for each location node of the tour, the arriving time, i.e., job
start time, thus getting the assigned job completion time. However, this is
time-consuming.

To limit the computational burden in terms of the objective evaluation of
neighboring solutions, our BLS algorithm uses a neighborhood reduction method
to eliminate unpromising neighboring solutions. Let [, denote the node that
has the maximum completion time in the current solution. As shown in Fig.
2(c), when [, is visited behind the second node involved in the 2-opt move, if
A = Dge+ Dyg — Doy — Deq > 0, where D, is the travel time from node z to

10

node y, then we know that such a move results in a longer tour, increases the job
start time at node [,,,, and raises the job completion time. Thus, it is no use to
consider such moves. In our BLS algorithm, we ignore the neighboring solutions
generated by these unpromising 2-opt moves. Our experiments show that [, is
often visited late in the sequence. So most neighboring solutions produced by
the 2-opt move correspond to the situation shown in Fig. 2(c), that are not
considered by BLS.

Formally, the reduced neighborhood Ny (S) is defined as Egs. (3) - (5), where
S is the given solution, N7 (S) is the whole 2-opt neighborhood, and Ny (S) is
the set of neighboring solutions generated by unpromising 2-opt moves discussed
above, e; = (l4,1p) and ex = (I, l4) are the two deleted edges with their nodes
lay by leyla, S @ 2-0pt(la,lp,le,lq) is the resulting neighboring solution. Let p
represent the position of the location node in the tour such that [, is the p,th
location node to be visited. We use A” to denote the tour length variation
resulting from the 2-opt move.

N1(8) = Ni(S) \ Ny (9) (3)

N{(S)={S5":58" =85®2-0pt(la,lp,lc,la), (o, lp) = €1, (le,lg) = e2,e1,e2 € E}
(4)

Ns1(S) ={9": 58" =8 ® 2-0pt(la,lv,lc, la), P = max{pa, Py, Pe, pat, A" > 0}
(5)
Since 2-opt can delete and reconnect all possible pairs of edges, the whole 2-
opt neighborhood N{(S) has the size of O(n?). Ny1(S) is the set of neighboring
solutions omitted from the N{(S) and its size is bounded by O(n?). In the worst
case, none of the neighboring solutions is contained in N¢1(.S) (i.e., Nf1(S) = 0),
then the size of Ni(S) is O(n?). For a given neighboring solution, its objective
value can be calculated in O(n). As a result, the time complexity of exploring
the reduced neighborhood Np(S) is bounded by O(n?) in the worst case. In
the best situation (when [, is the last location node in the tour and A” > 0
for all neighboring solutions induced by 2-opt moves), all neighboring solutions
contained in N{(S) are also included in Ny;(S), implying that N;(S) = 0. In
this case, we only need to calculate the A” value for each neighboring solution
in N7(S) to decide whether it can be omitted for further objective evaluation.
Given that the calculation of A” for a neighboring solution in N7 (S) is achieved
in O(1) and the size of Nj(S) is O(n?), the time complexity of exploring Ny (S)
is bounded by O(n?) in the best case.

3.3.2. j-swap neighborhood

The j-swap operator is inspired by the popular swap operator, which is
extremely effective for permutation-based assignment problems like quadratic
assignment (Benlic & Hao, 2013c, 2015; Taillard, 1991). Since the TSPJ includes
a job assignment task, we naturally adopt j-swap for this problem.

11

o oje OJe oji OJ
SR S S A
L L
J7 J-swap

Jo o oje i o)
Oi%ﬁi%

Figure 3: j-swap, exchange the job je assigned to the node having the maximum completion
time [, with another job j; assigned to location node ;.

The j-swap operator exchanges the assignments of two jobs (see Fig. 3 for
an example). Thus only the job processing times of the two involved nodes
are exchanged without changing the processing start time of each exchanged
job. Tt is easy to observe that only changing the job assigned to the node with
the maximum completion time (i.e. l,,) may decrease (improve) the objective
value. So in our algorithm, we force j-swap to focus on the moves related to
that job only. In other words, j-swap only changes the job at the location with
the maximum completion time with another job.

Formally, the constrained j-swap neighborhood Ny is defined as follows,
where j, and j. are the jobs exchanged in j-swap, and m is the index of the
location node with the maximum completion time I,,.

No(S) ={S": 8" = S & j-swap(jv, je), jtmp < Jtme} (6)

As shown in Fig. 3, one job involved in j-swap is selected to be the job
assigned to l,,,, the size of the j-swap neighborhood is bounded by O(n). As
the objective value of each j-swap neighboring solution can be calculated in
O(1), the time complexity of exploring the constrained j-swap neighborhood is
bounded by O(n), reducing significantly the time complexity O(n?) for exploring
the whole neighborhood induced by the unconstrained j-swap move.

3.4. Ezamination of candidate solutions with tabu search

BLS uses tabu search (TS) (Glover & Laguna, 1997) to examine candidate
solutions by exploring the 2-opt and j-swap neighborhoods presented in Section
3.3.

8.4.1. General tabu search procedure

The general scheme of the tabu search procedure is summarized in Algorithm
2 while its main components are presented in the following subsections. Starting
from a given input solution S, the algorithm iteratively examines other candi-
date solutions by exploring the two neighborhoods N; and N of Section 3.3.

12

Algorithm 2: Pseudo-code of tabu search

Input: Input solution S, reduced neighborhood Ni, N3, search depth w, minimum
perturbation length L., current global best solution found so far Sp.
Output: The current solution S¢, the local optimal solution found during tabu

search Sj.

1 Nolmprove <— 0 ; /* initialization of non-improvement iteration counter */
2 Sec + S; /* S. is the current solution */
3 S;+ S; /* S; records the local best solution found during tabu search */
a4 while Nolmprove < w do

5 if N1(S¢) U Na(Se) # ? then

6 Choose the best eligible neighboring solution S’ € N1 (Sc) U N2(Se);

7 Se +— S’;

8 else

9 L Sc « perturbation(Se, 1) ; /* Section 3.5 */
10 if f(Sc)<f(S;) then
11 L S; < Se;
12 if f(S¢)<f(Sp) then

13 Nolmprove < 0;
14 L <+ Lpin;
15 else
16 L Nolmprove <— Nolmprove + 1;
17 | Update the tabu list TL and the frequency vectors Fe,F; ; /* Section 3.5 */

18 return Sj, Sc;

At each iteration, TS chooses the best eligible neighboring solution among the
available neighboring solutions in N7 and N5 to become the current solution .S,
(lines 5-7). If no neighboring solution is available due to neighborhood reduction
(see Section 3.3), the current solution is slightly perturbed (with perturbation
length of 1) (line 9). Each time the current solution S. becomes better than
the recorded local best solution S; found by the current tabu search run, .5; is
updated by S, (lines 10-11). If S, is also better than the global best solution
Sp from the BLS algorithm, the counter for consecutive non-improvement loops
is reset to 0 and the perturbation length L is reset to its minimum L,,;, (lines
12-14). Otherwise, if the current iteration does not update Sy, the consecutive
non-improvement counter Nolmprove is incremented by 1 (line 16). After the
move operation (i.e., 2-opt or j-swap), the tabu list is updated according to
the information of the move and current iteration. Meanwhile, we update the
frequency vectors F and F};, which respectively record the number of times an
edge or a job is involved in a 2-opt or j-swap operation. When the Nolmprove
counter reaches w (a parameter), the search is considered to be trapped in a
deep local optimum. In this case, the TS procedure terminates and returns the
local best solution S; and its current solution S.. As shown in Algorithm 1
(Section 3.1), S; will be used by the BLS algorithm to conditionally update the
global best solution, while S, will be used as input of the perturbation procedure
(Section 3.5).

13

3.4.2. Tabu list management

Our BLS algorithm employs two tabu lists to avoid short-term cycling: an
edge tabu list for 2-opt move and a job tabu list for j-swap. For 2-opt, once
an edge e is deleted from the solution by the 2-opt move, the edge is added to
the edge tabu list and is forbidden to be added again to the solution during the
next consecutive [iterations (f is the so-called tabu tenure). So if any of the
two new edges used by the 2-opt move is in tabu status, this move will not be
performed. Similarly, for j-swap, when a job j is removed from a location node
[, the job is forbidden to be assigned to this location node [again during the
next consecutive [iterations.

During the search process, the best neighboring solution not forbidden by any
tabu list is selected to replace the current solution. Notice that the tabu statue
of a move is ignored if it can produce a solution better than the best solution
ever found, which is called aspiration criterion (Glover & Laguna, 1997).

Now we consider the time complexity of the tabu search procedure. Each
iteration of the tabu search jointly explores the 2-opt and j-swap neighborhoods
(see Sections 3.3.1 and 3.3.2). Thus, the time complexity for each iteration of
the tabu search is between between O(n?) and O(n3). As the search depth of the
tabu search is w, then the time complexity for the whole tabu search procedure
is between O(n%w) and O(n3w).

3.5. Combined perturbation

Algorithm 3: Pseudo-code of combined perturbation

Input: Input solution S., frequency vectors Fe and Fj.
Output: Perturbed S.
Identify the job assigned to the node with the maximum completion time j,, in Sc
if rand(0,1) < 0.5 then

//With probability 0.5, apply random perturbation;
if rand(0,1) < 0.5 then

e1, ez + Two randomly choosed edges in S¢;
L S < Execute the 2-opt operation with e; and eg;

o ook W N K

else
jr < A randomly choosed job;
S + Exchange jm, and jr;

®

10 else

11 //With probability 0.5, apply frequency-based perturbation;

12 if rand(0,1) < 0.5 then

13 L e3,eq < Two edges with the least and the second least move frequency;

14 S + Execute the 2-opt operation with e3 and eq;

15 else
16 j¢ < The job with the least move frequency;
17 S < Exchange jm and jy;

18 Update the frequency matrices Fe and F};
19 return S;

The tabu mechanism can prevent the search from the short-term cycles, but

14

it may fail to prevent the algorithm from being trapped into deep local optima.
To boost the global diversification of the algorithm, we introduce a dedicated
perturbation strategy, which is triggered when the search is judged to be stagnat-
ing. According to the general BLS approach, our BLS algorithm for the TSPJ
mixes two types of perturbations: informed perturbation (guided by historical
search information related to move frequencies) and random perturbation. In-
deed, frequency-guided perturbation has proved to be quite successful in several
algorithms (Zhou & Hao, 2017; Li et al., 2020), while random perturbation is
very popular in iterated local search algorithms.

The perturbation strategy is described in Algorithm 3. We choose the per-
turbation type with an equal probability. There are two move operators for
perturbation, which are applied with an equal probability as well. For the ran-
dom perturbation, we randomly select two edges to be replaced for the 2-opt
move and a job to exchange with the job assigned to the location node with the
maximum completion time (lines 3-9). For the frequency-based perturbation,
we use the move frequency of the edges and the jobs to guide the perturbation
(lines 10-17). For this, we maintain a long-term memory represented by two
vectors F, and F} to record the number of times an edge or a job is involved
in a 2-opt or j-swap move. We select the edges or location nodes that have the
least and second least frequency to perform the perturbation. The specific steps
are as follows:

- Initially, set the frequency of all edges and jobs to 0, i.e., Fe(e) =0, F;(j) =0
for each edge e € F, job j € J, where E is the edge set and J is the job set.

- Subsequently, during the search process, F, and F}; are updated each time a
2-opt or j-swap move is performed.

- Finally, the random or frequency-based perturbation is applied with equal
probability and each chosen perturbation performs, with equal probability,
either the 2-opt or j-swap move L times (L is the perturbation length). During
the perturbation process, the frequency vectors are updated.

The time complexity of the perturbation procedure can be estimated as
follows. Each step of the perturbation consists of applying either the 2-opt or
J-swap move to the solution, requiring O(1) time. Given that the perturbation
repeats L times and the objective calculation after a perturbation move can be
achieved in O(n), the time complexity of the combined perturbation is bounded
by O(nL).

8.6. The time complexity analysis of the BLS algorithm

Our BLS algorithm starts with an initial solution produced by the TSPJ-NN
procedure and then iterates the tabu search procedure and the combined pertur-
bation procedure until the given time limit is reached. As indicated previously,
the time complexity of the TSPJ-NN procedure is O(n?), the time complexity
of the tabu search is bounded by O(n®w) (w is the tabu search depth), and the
time complexity of the combined perturbation procedure is bounded by O(nL)
(L is the perturbation length). Therefore, the time complexity for one iteration
of our BLS algorithm is no more than O(n3w).

15

4. Computational results

We now report extensive computational results of the proposed BLS algo-
rithm on benchmark instances and comparisons with state-of-the-art algorithms.

4.1. Benchmark instances

Our experiments are based on four sets of 310 instances with different sizes
introduced in Mosayebi et al. (2021). The traveling distance between different
locations of the instances in Set I is from the TSPLIB (Reinelt, 1991), whose
optimal solutions for the TSP are known. The job processing time in different
location nodes is generated randomly and is required to be between 50 to 80
percent of the optimal tour length. The traveling time and the job processing
time in other sets are all produced randomly. The job processing time is required
to be under 50 to 80 percent of the tour length obtained by the NNH-X heuristic
and 2-opt. More information about these instances can be found in Mosayebi
et al. (2021)1.

Set I (10 instances): These instances are constructed based on 10 TSP
instances from the TSPLIB: grl7, gr21, gr24, fri26, bays29, gr48, €il51, berlin52,
€il76, and eil101.

Set II, Set ITI, Set IV (100 instances per set): The instances from these
sets are constructed randomly. The node and job numbers are from 40 to 50,
400 to 500, and 1000 to 1200, respectively, which cover small, medium, and
large instances.

4.2. Experimental protocol and reference algorithms

Table 3: Parameters tuning results.

Parameters Section Description Considered values Final value
w 3.4 search depth {0.14,0.56, 0.30, 0.08} 0.08
B 3.4.2 tabu tenure {0.35,0.50,0.07,0.14} 0.07
Lonin 3.5 minimum perturbation length {0.06,0.03,0.04, 0.07} 0.04
Lmazx 3.5 maximum perturbation length {0.27,0.20,0.15,0.30} 0.15

Parameter setting. BLS has four parameters: tabu tenure (3, search depth
w, minimum perturbation length Iy, maximum perturbation length [,,4.. In
order to calibrate these parameters, we used the ”IRACE” (Ldpez-Ibéniez et al.,
2016) package to automatically identify a set of suitable parameter values. In
this experiment, we randomly selected 1 instance from Set I, 3 instances from
Set II, Set III, Set IV, respectively. The maximum number of runs (tuning
budget) was set to be 1000. The candidate values of these parameters and the
final selected values are shown in Table 3.

Reference algorithms. For our comparative study, we use as our refer-
ence methods the four heuristic algorithms proposed in Mosayebi et al. (2021)

IThe instances are available at https://github.com/TSPJLIB

16

(detonated by Pro.I, Pro.Il, Pro.III and Pro.IV), which represent the state-of-
the-art for solving the TSPJ. Given that the source codes of these algorithms
are unavailable, we faithfully re-implemented them, and verified that the results
from our implementation match the results initially reported in Mosayebi et al.
(2021). In addition to these main reference algorithms, we also run the CPLEX
solver on the mathematical model presented in Appendix A with a time limit
of 7200 seconds.

Experimental setting. BLS and the re-implemented reference algorithms
were programmed in C++2 and complied with the g++ compiler with the -O3
option. All the experiments were conducted on a computer with an Intel Xeon
E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux. In order to
eliminate stochastic factors, each algorithm was run 10 times on each instance
with a different random seed per run.

Stopping condition. The reference algorithms are of deterministic nature
and stop when no improvement can be reached. To make a fair comparison
between BLS and the reference algorithms, we identify the average running
time required by the four reference algorithms from Mosayebi et al. (2021) to
reach their best solutions for the 10 instances of Set I and the average running
time required by them to find their best solutions for the 100 instances of Set
II, Set III and Set IV.

Specifically, for Set I, the cutoff time is set to be 60 seconds for €il101-J, 30
seconds for grd8-J, eil51-J, berlin52-J and €il76-J, 10 seconds for the 5 remaining
instances. For the other sets, the cutoff time is 0.0012 seconds for Set II, 2.19
seconds for Set III and 33.93 seconds for Set IV. As such, our BLS algorithm is
run under a fair stopping condition compared to the reference algorithms.

Finally, in order to better show the long term behavior of our BLS algorithm,
we additionally run BLS with a relaxed stopping condition, 30 seconds for Set
I1, 50 seconds for Set III and 70 seconds for Set IV.

4.8. Computational results and comparison

This section reports the comparative results between the proposed BLS algo-
rithm and reference algorithms (denotated by Pro.I, Pro.Il, Pro.IIT and Pro.IV).
The results are obtained according to the experimental protocol above.

The comparative results of the BLS and the four reference algorithms are
summarized in Table 4 while the detailed results on each instance are provided
in Appendix B (Table B.7 - Table B.13). In Table 4, the first column indicates
the benchmark set. Column 2 presents the cut-off time running by our BLS,
for Set I which has detailed results in Mosayebi et al. (2021). Column 3 shows
the compared algorithms including the best-known solutions (BKS). Columns
4 - 6 indicate the number of instances for which BLS obtains a better, equal, or
worse fpest value compared to each reference algorithm. To check the statistical
significance of the compared results, the p-values from the Wilcoxon signed-rank

2The source codes of our BLS algorithm and the four re-implemented reference algorithms
will be available at https://github.com/YujiZou/TSPJ

17

Table 4: Summary of the number of instances where BLS reports a better (B), equal (E) or
worse (W) fpest value compared to the the best-known solutions (BKS) reported in Mosayebi
et al. (2021) and each reference procedure (Pro.I, Pro.Il, Pro.IIl and Pro.IV) presented in
Mosayebi et al. (2021). We also show the p-values from the Wilcoxon singed-rank test on the
benchmark sets between BLS and each reference algorithm.

Instance Cut-off time(s) Pair algorithms B B W p-value
BLS vs. BKS 9 1 0 0.0077
BLS vs. Pro.I 9 1 0 0.0077
Set I 60 or 30, 10 BLS vs. Pro.Il 10 0 0 0.0020
BLS vs. Pro.III 9 1 o] 0.0077
BLS vs. Pro.IV 9 1 0 0.0077
BLS vs. BKS 46 18 36 0.6662
BLS vs. Pro.l 80 13 7 2.389e-12
Set IT 0.0012 BLS vs. Pro.Il 69 7 29 1.384e-4
BLS vs. Pro.III 76 16 8 8.332e-12
BLS vs. Pro.IV 79 11 10 3.580e-12
BLS vs. BKS 98 0 2 4.500e-18
BLS vs. Pro.l 100 o] 0 3.876e-18
Set III 2.19 BLS vs. Pro.Il 98 0 2 4.371le-17
BLS vs. Pro.IIl 100 0 0 3.877e-18
BLS vs. Pro.IV 100 0 0 3.877e-18
BLS vs. BKS 97 0 3 9.246e-17
BLS vs. Pro.I 99 0 1 4.874e-17
Set IV 33.93 BLS vs. Pro.Il 98 0 2 8.479e-16
BLS vs. Pro.IIl 99 0 1 5.166e-17
BLS vs. Pro.IV 98 0 2 5.399e-17
BLS vs. BKS 84 15 1 1.363e-15
BLS vs. Pro.l 91 8 1 8.580e-17
Set II 30.00 BLS vs. Pro.Il 97 3 0 1.130e-17
BLS vs. Pro.IIl 88 11 1 2.754e-16
BLS vs. Pro.IV 91 8 1 1.231e-16
BLS vs. BKS 99 0 1 3.980e-18
BLS vs. Pro.l 100 o] 0 3.881e-18
Set IIT 50.00 BLS vs. Pro.Il 99 o] 1 3.998e-18
BLS vs. Pro.III 100 0 0 3.882e-18
BLS vs. Pro.IV 100 0 0 3.883e-18
BLS vs. BKS 99 0 1 7.547e-17
BLS vs. Pro.l 99 0 1 3.186e-19
Set IV 70.00 BLS vs. Pro.Il 99 0 1 7.548e-17
BLS vs. Pro.IIl 99 0 1 3.234e-17
BLS vs. Pro.IV 99 0 1 2.711le-17

test on the fyes¢ values over the instances from the same set between BLS and
the compared algorithms are shown in column 7 and a p-value smaller than 0.05
indicates a significant difference.

From the upper part of Table 4 (i.e., Rows 2 - 5), where we show the results
of BLS under the same cut-off times as the reference algorithms, we observe
that in terms of BKS, BLS performs remarkably well on Set I, Set III, and Set
IV, by reporting 204 better results, five worse results, and equal results for the
remaining instances for the 210 instances in total. Meanwhile, the dominance
of BLS is less important on Set II under the very short cut-off time condition
(0.0012 second). Still BLS gets 46 better results, 18 equal results, and 36 worse
results.

From the lower part of Table 4 (i.e., Rows 6 - 8) and the detailed results of
Appendix B, we observe that our BLS algorithm performs extremely well com-
pared to the algorithms proposed in (Mosayebi et al., 2021) when the running
time is prolonged (30 seconds for Set II, 50 seconds for Set IIT and 70 seconds
for Set IV). In particular, BLS discovers 291 record-breaking results (new upper
bounds) out of the 310 instances while matching the best-known results for 16
other instances. BLS reports a slightly worse result only on 3 instances (instance
36 in Set II, instance 48 in Set III, instance 19 in Set IV), with a small gap to

18

the best-known result of 0.38%, 0.03%, and 0.2% respectively.

The small p-values (< 0.05) from the Wilcoxon signed-rank test between
the results of BLS and each reference algorithm confirm that BLS significantly
dominates each compared algorithm on each benchmark set.

4.4. Convergence analysis

14900
14800
14700
L 14600
2 14500
5 14400
=2 14300
3 14200
£ 14100
§ 14000
£ 13900
Q.
£ 13800
13700
13600
13500
K | | | | | | | I 1 I I
B35 30 3 40 &5 50 5 0 6 70
Running time(seconds)

Figure 4: Convergence curves (running profiles) of BLS and three reference procedures for
solving instance 61 from set IV.

To illustrate the running behavior of the compared algorithms during the
search process, we provide in Fig. 4 their convergence curves (also called running
profiles) of the BLS algorithm and three reference procedures on instance 61
from set IV, where the X-axis and Y-axis show the running time in seconds
and the best objective value, respectively. The procedure II is ignored in this
study because it focuses on the tour length optimization first, then constructs
the final solution with the job reverse procedure. Hence, it is impossible to get
the objective value of this procedure during the search process.

From Fig. 4, we observe that BLS and Pro.IV improve their best solutions
more drastically than Pro.I and Pro.Il. More importantly, BLS is able to con-
tinue its improvement along the time while the reference procedures fail to do
so from some time point. This indicates that BLS has a lasting search capacity,
making it possible for the algorithm to reach high-quality solutions that the
reference algorithms cannot attain.

5. Assessment of algorithmic components

In this section, we analyze the two essential components of our BLS algo-
rithm: neighborhood reduction and frequency-based perturbation.

19

5.1. Importance of the neighborhood reduction

To verify the importance of the neighborhood reduction on the BLS algo-
rithm, we created a BLS variant named BLS-NoReduction, which did not use
the neighborhood reduction. We run the two algorithms independently 10 times
on the large size instances of set IV, using the parameters in Section 4.2 and
a cut-off time of 70 seconds per run and per instance. Table 5 summarizes
the comparative results of BLS and BLS-NoReduction on these 100 instances.
From these two tables, one observes that BLS significantly dominates BLS-
NoReduction, indicating that the performance of BLS deteriorates greatly if
the neighborhood reduction is removed from the algorithm. This experiment
confirms thus the usefulness of the neighborhood reduction as a critical tech-
nique contributing to the effectiveness of the BLS algorithm.

Table 5: Summarized results of BLS and BLS-NoReduction on the 100 large instances of Set
IIT in terms of average result and running time together with the p-values from the Wilcoxon
singed-rank test.

BLS-NoReduction BLS
Average 14932.40 13653.00
Tavg 70.01 31.09
p-value 4.960e-18

5.2. Influence of the frequency-based perturbation

The frequency-based perturbation is designed to help the algorithm to es-
cape local optimum traps. To show the influence of this strategy, we created
a variant of BLS named BLS-Random which only applies the random pertur-
bation mentioned in Section 3.5. We ran BLS-Random on all the instances
under the relaxed stopping condition discussed in Section 4.2. The results were
summarized in Table 6. In this table, columns 2 and 3 show for BLS and BLS-
Random the grand average of the best objective values of all the instances of
each set. Columns 5-7 present the number of instances for which the BLS algo-
rithm reached a better, the same and a worse result compared to BLS-Random.

Table 6 shows that BLS with the frequency-based perturbation performs
significantly better than the variant with the random perturbation only. This
experiment confirms the benefit of the frequency-based perturbation for the
performance of the BLS algorithm.

Table 6: Summarized results of BLS and BLS-Random, including the number of instances
for which BLS reports a better (B), equal (T) or worse (W) average value compared to BLS-
Random and the p-values from the Wilcoxon singed-rank test.

Instance BLSAug BLS»RandomA,Ug p-value B T W
Set T 3729.90 3730.41 - 2 8 0
Set II 280.85 281.58 0.00018 46 56 8
Set III 3463.19 3469.73 3.176e-7 62 24 14
Set IV 13625.51 13642.81 4.960e-18 69 26 5

20

6. Conclusion

As a combined routing and scheduling problem, the Traveling Salesman
Problem with Job-time has a number of relevant practical applications in real
life. This paper introduced a breakout local search algorithm, which employs
a tabu search to explore two dedicated neighborhoods and applies a combined
perturbation to escape local optima. A neighborhood reduction strategy was
designed to identify promising neighbor solutions and accelerate the search pro-
cess.

The proposed algorithm has been assessed on four sets of 310 instances in the
literature and showed a highly competitive performance compared to the cur-
rent best methods. Specifically, our algorithm has established new best-known
results (updated upper bounds) for 291 out of the 310 benchmark instances
(> 93% cases). Additional experiments have confirmed the usefulness of the
neighborhood reduction and combined perturbation for the performance of the
algorithm.

The algorithm in this work can be further improved. First, since the TSPJ
involves two classic NP-hard problems, the search space is extremely complex.
It is worth investigating other neighborhoods based on dedicated features of the
problem to be able to explore the space more effectively. Second, the algorithm
needs to make decisions during its search process (e.g., when should the pertur-
bation be triggered, which type of perturbation should be applied...). To ensure
informative decisions, reinforcement learning techniques could be useful. Third,
memetic algorithms have been successfully applied to solve many NP-hard prob-
lems such as critical node problems (Zhou et al., 2019, 2023), TSP and routing
problems (He et al., 2021; He & Hao, 2023; Vidal et al., 2013), and quadratic
assignment problem (Benlic & Hao, 2015). It would be interesting to investigate
this approach for solving the TSPJ as well. In particular, the proposed BLS
algorithm or its variant can be beneficially used as the main local optimization
component of a memetic algorithm. Finally, the existing exact approach for the
problem relies on the general MIP solver CPLEX and can only obtain optimal
solutions for some small instances. It would be interesting to design dedicated
exact algorithms able to solve larger instances.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions,
which helped us to improve the work. We thank the authors of (Mosayebi et al.,
2021) for making the TSPJ benchmark instances available and answering our
questions. This work was partially supported by the National Natural Science
Foundation Program of China (Grant No. 72122006). Support from CSC (Grant
No. 202106050037) for the first author is acknowledged.

21

References

Aksan, Y., Dokeroglu, T., & Cosar, A. (2017). A stagnation-aware cooperative
parallel breakout local search algorithm for the quadratic assignment problem.
Computers € Industrial Engineering, 108, 105-115.

Archetti, C., Feillet, D., Mor, A., & Speranza, M. G. (2018). An iterated local
search for the traveling salesman problem with release dates and completion
time minimization. Computers & Operations Research, 98, 24-37.

Barbarosoglu, G., Ozdamar, L., & Cevik, A. (2002). An interactive approach
for hierarchical analysis of helicopter logistics in disaster relief operations.
European Journal of Operational Research, 140, 118-133.

Basnet, C. B., Foulds, L. R., & Wilson, J. M. (2006). Scheduling contractors’
farm-to-farm crop harvesting operations. International Transactions in Op-
erational Research, 13, 1-15.

Bays, M. J., & Wettergren, T. A. (2017). Service agent—transport agent
task planning incorporating robust scheduling techniques. Robotics and Au-
tonomous Systems, 89, 15-26.

Benlic, U., & Hao, J.-K. (2013a). Breakout local search for maximum clique
problems. Computers & Operations Research, 40, 192-206.

Benlic, U., & Hao, J.-K. (2013b). Breakout local search for the max-cut problem.
Engineering Applications of Artificial Intelligence, 26, 1162-1173.

Benlic, U., & Hao, J.-K. (2013c). Breakout local search for the quadratic as-
signment problem. Applied Mathematics and Computation, 219, 4800-4815.

Benlic, U., & Hao, J.-K. (2015). Memetic search for the quadratic assignment
problem. FExpert Systems with Applications, 42, 584-595.

Das, S. K., & Nagendra, P. (1997). Selection of routes in a flexible manufacturing
facility. International Journal of Production Economics, 48, 237-247.

Fu, Z.-H., & Hao, J.-K. (2014). Breakout local search for the steiner tree problem
with revenue, budget and hop constraints. Furopean Journal of Operational
Research, 232, 209-220.

Gavish, B., & Graves, S. C. (1978). The travelling salesman problem and re-
lated problems. Working paper, GR-078-78, Operations Research Center,
Massachusetts Institute of Technology.

Ghandi, S., & Masehian, E. (2015). A breakout local search (BLS) method for
solving the assembly sequence planning problem. Engineering Applications of
Artificial Intelligence, 39, 245-266.

Glover, F., & Laguna, M. (1997). Tabu search. Springer.

22

He, P., & Hao, J.-K. (2023). Memetic search for the minmax multiple travel-
ing salesman problem with single and multiple depots. Furopean Journal of
Operational Research, 307, 1055-1070.

He, P., Hao, J.-K., & Wu, Q. (2021). Grouping memetic search for the colored
traveling salesmen problem. Inf. Sci., 570, 689-707.

Hoos, H. H., & Stiitzle, T. (2004). Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann.

Krari, M. E., Ahiod, B., & Benani, B. E. (2018). Breakout local search for the
travelling salesman problem. Computing and Informatics, 37, 656—672.

Lahrichi, Y., Deroussi, L., Grangeon, N., & Norre, S. (2020). A min-
max path approach for balancing robotic assembly lines with sequence-
dependent setup times. In Proceedings of 13¢me Conference Internationale de
Modélisation, Optimisation et Simulation (MOSIM 2020), 12-1 November,
Agadir, Marocco.

Li, M., Hao, J.-K., & Wu, Q. (2020). General swap-based multiple neighborhood
adaptive search for the maximum balanced biclique problem. Computers &
Operations Research, 119, 104922.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell
System Technical Journal, 44, 2245—-2269.

Lépez-Ibanez, M., Dubois-Lacoste, J., Céaceres, L. P., Birattari, M., & Stiitzle,
T. (2016). The irace package: Iterated racing for automatic algorithm con-
figuration. Operations Research Perspectives, 3, 43-58.

Lourengo, H. R., Martin, O. C., & Stiitzle, T. (2003). Iterated local search. In
Handbook of Metaheuristics (pp. 320-353). Springer.

Mosayebi, M., Sodhi, M., & Wettergren, T. A. (2021). The traveling salesman
problem with job-times (TSPJ). Computers & Operations Research, 129,
105226.

Nogueira, B., Tavares, E., & Maciel, P. (2021). Iterated local search with tabu
search for the weighted vertex coloring problem. Computers & Operations
Research, 125, 105087.

Rashidnejad, M., Ebrahimnejad, S., & Safari, J. (2018). A bi-objective model
of preventive maintenance planning in distributed systems considering vehicle
routing problem. Computers & Industrial Engineering, 120, 360-381.

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA
Journal on Computing, 3, 376-384.

Taillard, E. D. (1991). Robust taboo search for the quadratic assignment prob-
lem. Parallel Computing, 17, 443-455.

23

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle
routing problems with time-windows. Computers and Operations Research,
40, 475-489.

Zhang, L., Deng, Q., Lin, R., Gong, G., & Han, W. (2021). A combinatorial evo-
lutionary algorithm for unrelated parallel machine scheduling problem with
sequence and machine-dependent setup times, limited worker resources and
learning effect. Expert Systems with Applications, 175, 114843.

Zhou, Y., & Hao, J.-K. (2017). Frequency-driven tabu search for the maximum
s-plex problem. Computers & Operations Research, 86, 65-78.

Zhou, Y., Hao, J.-K., & Glover, F. W. (2019). Memetic search for identifying
critical nodes in sparse graphs. IEEFE Transactions on Cybernetics, 49, 3699—
3712.

Zhou, Y., Wang, G., Hao, J.-K., Geng, N., & Jiang, Z. (2023). A fast tri-
individual memetic search approach for the distance-based critical node prob-
lem. Furopean Journal of Operational Research, 308, 540-554.

Zhou, Y., Xu, W., Fu, Z.-H., & Zhou, M. (2022). Multi-neighborhood simulated
annealing-based iterated local search for colored traveling salesman problems.
IEEE Transactions on Intelligent Transportation Systems, 23, 16072-16082.

Appendix A. Mathematical model of the TSPJ (Mosayebi et al.,
2021)

The mathematical model of the TSPJ presented in (Mosayebi et al., 2021)
is based on the classical TSP model proposed by Gavish & Graves (1978). The
TSPJ can be defined on an complete graph G = (L, E) and a job set J. Let E
be a set of edges, and L = (lp,l1,...,l,) be the set of location nodes with the
node 0 being the depot. Some other notions used in the model are:

Parameters:

Yii: The sequence number of edges visited;

Cinaz: The maximum completion time among all the jobs;

TS;: The arriving time at node [, also the time to start work of the job
assigned to this node;

Dy.: The travel-time from node [to node k;

jti;: The processing time of job j assigned to node I;

Variables:
Xik: Indicating whether the edges Ej; is traversed from node [to node k;
715 Indicating whether the job j is assigned to the location node ;

24

On the basis of the above mentioned parameters and decision variables, the
TSPJ is formulated as the following mixed integer program:

min Cras (A1)
st. Comax 2 TS+ Zijty; Vi=1,...,n (A.2)
j=1
CmamZTSl"_Zleth Vl:lvvn (Ag)
> Ziy=1 Vj=1,...,n (A.4)
=1
Y Zij=1 Vi=1,...,n (A.5)
j=1
S Xi=1 VI=0,....n l#k (A.6)
k=0
> Xi=1 Vk=0,....,n 1#k (A7)
=0
S V=) Yu=1 Vi=1,....n l#k (A.8)
k=0 k=0
}/lkSnXlk VZZI,,’H, Vk:(),,n l#k (Ag)
TSl—l—le—(l—Xlk)MSTSk Vi=0,....n Vk=1,....n 1#k
(A.10)
Xlk,leE{O,l}, TS[,Y}]CZO Vi=1,...,.n k=0,...,n j=1...,n
(A.11)

Egs. (A.1)-(A.3) are used to calculate the objective value. Egs. (A.4)
and (A.5) are the job assignment constraints, which require that one job is
assigned to one location node and vice versa. Egs. (A.6) and (A.7) are the
route restrictions that force that all the nodes are visited only once. Egs. (A.8)
and (A.9) are the subtour eliminators. Eq. (A.10) is the job processing start
time restriction between different location nodes; the node arriving time (i.e.,
the job processing start time) cannot be less than the arriving time of the
precedent location node plus the traveling time between them. M is a large
enough number. Eq. (A.11) defines the domain of each variable X, 7Y and
TSs.

Appendix B. Detailed results

This section shows detailed computational results of the proposed BLS al-
gorithm compared to the results of the reference algorithms in (Mosayebi et al.,
2021) on the four sets of TSPJ benchmark instances. The results of the CPLEX

25

MIP solver with the model of Appendix A with a time limit of 7200 seconds
are also included for the (small) instances of Set I.

Table B.7 shows the results on the 10 instances of Set I. In this table, col-
umn 1 gives the name of instances, columns 2 and 3 show the upper bound
and lower bound obtained by GAMS/CPLEX, columuns 4 and 5 show the best
results among the reference algorithms and the time needed to reach each re-
sult. The data in columns 2 - 5 are directly extracted from (Mosayebi et al.,
2021). Columns 6 and 7 give the results obtained by our BLS algorithm under
the cutoff conditions given in Section 4.2. gap-1 and gap-2 in columns 8 and 9
are the gaps between our results with respect to the best upper bound obtained
by CPLEX and the reference algorithms, respectively. A negative gap (in bold)
indicates an improved upper bound. We observe that BLS can find improved
upper bounds for all instances except one case.

Table B.8 shows the results on the 100 instances of Set II. Column 1 is
the name of the instance, columns 2 - 3 show the best results among the four
reference algorithms of (Mosayebi et al., 2021) and the times needed to attain
these best results. Columns 4 - 7 are the results of our BLS algorithm according
to two stopping conditions (see Section 4.2) and the time to get these results.
BLS-1 shows the results under the cutoff condition of (Mosayebi et al., 2021)
(0.0012 seconds for Set II). BLS-2 shows the results under the relaxed cutoff
condition (30 seconds for Set II). Columns 8 and 9 show the upper and lower
bound from the CPLEX MIP solver using the model of Appendix A. Columns
10 - 11 show the gaps between BLS with the best-known results. A negative
gap (in bold) indicates an improved upper bound. We observe that BLS can
find improved upper bounds for all instances except 17 cases.

Tables B.9 and B.10 shows the results on the 200 instances of sets III and
IV with the same information as in Table B.8 except that the results of CPLEX
are not reported due to the fact that CPLEX reports within 7200 seconds bad
results for the instances of Set III and even fails to find a feasible solution for the
instances of Set IV. From these results, we observe that BLS is able to improve
all previous upper bounds for the 200 instances of sets III and IV except 2 cases.

Finally, Tables B.11 - B.13 show the best results and the times to get these
results of the four re-implemented algorithms of (Mosayebi et al., 2021) on each
instance of Set II, Set III, and Set IV, respectively. These results were obtained
under the cutoff condition of (Mosayebi et al., 2021). We observe that compared
to the results reported in (Mosayebi et al., 2021), our reimplementation obtains
slightly better results for Set II and better results for sets III and IV.

26

Table B.7: Computational results of the proposed BLS algorithm and comparison with the best-
known results from the four references of (Mosayebi et al., 2021) on instances from Set I.

CPLEX Reference algorithm BLS
Instance gap-1 gap-2
UB LB Foks this Foest thest
gri2-J 2760.00 2760.00 2760.00 0.13 2760.00 0.0001 0.000 0.00
gr21-J 7788.00 7712.00 7956.00 0.21 7788.00 0.001 0.000 -2.11
gr24-J 1806.00 1802.00 1818.00 0.34 1806.00 0.001 0.000 -0.66
£ri26-J 1283.00 1282.94 1326.00 0.22 1283.00 0.001 0.000 -3.24
bays29-J 2937.00 2892.88 2940.00 0.57 2916.00 0.001 -0.715 -0.82
gra8-J 7288.00 7215.36 7499.00 2.48 7282.00 0.019 -0.082 -2.89
eil51-J 630.00 627.94 640.20 5.69 628.51 0.014 -0.237 -1.83
berlin52-J 11087.50 10976.96 11225.77 1.41 11087.21 0.001 -0.003 -1.23
€il76-J 802.27 799.47 822.46 3.32 801.91 6.260 -0.045 -2.50
€il101-J 947.42 940.59 975.94 14.75 946.33 59.340 -0.115 -3.03

27

8¢

Table B.8: Computational results of the proposed BLS algorithm and comparison with the best
results from the four references of (Mosayebi et al., 2021) on the instances from Set II.

Instance Reference algorithms BLS-1 BLS-2 UB LB gap-1 gap-2
Foks thks foest thest foest thest
1 319 0.0011 301 0.0011 301 0.0022 367 125.00 -5.64 -5.64
2 273 0.0012 279 0.0010 267 0.0016 300 106.00 2.20 -2.20
3 288 0.0012 285 0.0010 280 0.0026 319 120.00 -1.04 -2.78
4 289 0.0019 291 0.0011 283 0.0018 376 114.00 0.69 -2.08
5 282 0.0025 281 0.0011 280 0.0034 356 118.00 -0.35 -0.71
6 305 0.0006 303 0.0008 299 0.0009 347 127.00 -0.66 -1.97
7 286 0.0025 288 0.0012 285 0.0021 332 113.00 0.70 -0.35
8 254 0.0007 257 0.0010 252 0.0023 300 104.00 1.18 -0.79
9 290 0.0007 287 0.0007 285 0.0019 313 121.21 -1.03 -1.72
10 313 0.0017 314 0.0011 313 0.0019 379 127.00 0.32 0.00
11 299 0.0008 303 0.0010 297 0.0025 334 121.00 1.34 -0.67
12 284 0.0032 282 0.0010 280 0.0027 338 124.00 -0.70 -1.41
13 268 0.0013 268 0.0012 263 0.0018 336 105.00 0.00 -1.87
14 270 0.0011 267 0.0006 267 0.0008 335 105.00 -1.11 -1.11
15 271 0.0006 271 0.0012 270 0.0015 313 111.82 0.00 -0.37
16 299 0.0013 303 0.0011 297 0.0033 371 127.00 1.34 -0.67
17 265 0.0010 270 0.0011 263 0.0027 317 112.00 1.89 -0.75
18 258 0.0008 252 0.0010 252 0.0010 286 100.15 -2.33 -2.33
19 248 0.0008 241 0.0011 239 0.0020 264 98.67 -2.82 -3.63
20 289 0.0006 283 0.0011 283 0.0012 369 120.00 -2.08 -2.08
21 285 0.0009 291 0.0010 284 0.0009 329 117.00 2.11 -0.35
22 236 0.0008 242 0.0011 236 0.0030 257 99.00 2.54 0.00
23 279 0.0007 283 0.0010 276 0.0016 313 108.00 1.43 -1.08
24 298 0.0010 295 0.0012 292 0.0021 376 121.00 -1.01 -2.01
25 240 0.0007 248 0.0009 238 0.0013 273 97.00 3.33 -0.83
26 291 0.0008 298 0.0012 291 0.0034 356 125.00 2.41 0.00
27 297 0.0018 297 0.0011 296 0.0030 403 131.00 0.00 -0.34
28 285 0.0019 283 0.0012 283 0.0012 331 117.00 -0.70 -0.70
29 299 0.0023 299 0.0009 299 0.0015 328 132.00 0.00 0.00
30 304 0.0021 300 0.0012 298 0.0025 369 125.00 -1.32 -1.97
31 261 0.0008 259 0.0012 259 0.0017 314 114.00 -0.77 -0.77
32 325 0.0010 319 0.0019 319 0.0012 362 137.26 -1.85 -1.85
33 306 0.0018 306 0.0011 306 0.0019 359 122.00 0.00 0.00
34 294 0.0015 294 0.0012 294 0.0014 337 128.00 0.00 0.00
35 283 0.0018 280 0.0019 280 0.0014 314 120.00 -1.06 -1.06
36 263 0.0016 264 0.0008 264 0.0008 299 119.00 0.38 0.38
37 279 0.0008 271 0.0010 271 0.0015 294 111.00 -2.87 -2.87
38 249 0.0006 250 0.0011 247 0.0010 295 105.00 0.40 -0.80
39 276 0.0009 279 0.0009 274 0.0007 348 126.00 1.09 -0.72
40 256 0.0012 258 0.0009 255 0.0021 293 107.00 0.78 -0.39
41 287 0.0005 291 0.0009 282 0.0013 303 121.00 1.39 -1.74
42 297 0.0012 295 0.0010 292 0.0024 328 116.26 -0.67 -1.68
43 297 0.0013 294 0.0011 294 0.0018 325 124.00 -1.01 -1.01
44 271 0.0011 267 0.0011 267 0.0014 301 109.00 -1.48 -1.48
45 325 0.0016 327 0.0009 322 0.0039 437 133.00 0.62 -0.92
46 248 0.0007 246 0.0011 242 0.0011 256 103.00 -0.81 -2.42
47 325 0.0009 319 0.0012 317 0.0013 368 133.00 -1.85 -2.46
48 300 0.0015 299 0.0011 295 0.0018 330 124.00 -0.33 -1.67
49 265 0.0011 266 0.0019 264 0.0016 337 115.99 0.38 -0.38

6¢

50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67

69
70
71
T2
73
T4
75
76
T

79
80

82
83
84
85
86
87

89
90

92
93
94
95
96
97

99
100
Avg

293
275
341
286
267
304
289
257
341
288
257
307
289
274
290
269
290
320
301
300
273
295
259
278
271
212
297
274
258
281
280
259
345
259
272
300
338
261
305
288
322
281
300
309
309
260
268
256
298
278
249
284.44

0.0020
0.0011
0.0016
0.0012
0.0007
0.0005
0.0008
0.0015
0.0013
0.0010
0.0010
0.0019
0.0016
0.0015
0.0008
0.0011
0.0019
0.0012
0.0018
0.0023
0.0012
0.0012
0.0009
0.0018
0.0009
0.0006
0.0008
0.0011
0.0010
0.0013
0.0008
0.0015
0.0019
0.0018
0.0011
0.0012
0.0006
0.0009
0.0017
0.0008
0.0011
0.0012
0.0006
0.0012
0.0011
0.0013
0.0010
0.0008
0.0007
0.0014
0.0008
0.0012

292
275
338
286
269
305
292
257
336
285
256
313
289
274
309
268
287
325
299
311
273
295
256
277
271
212
294
273
261
280
281
261
348
257
267
300
342
261
299
289
327
280
309
299
308
256
273
249
298
277
248
284.33

0.0009
0.0009
0.0010
0.0009
0.0010
0.0010
0.0007
0.0011
0.0008
0.0009
0.0009
0.0011
0.0010
0.0009
0.0010
0.0008
0.0012
0.0012
0.0013
0.0012
0.0008
0.0009
0.0009
0.0009
0.0012
0.0008
0.0009
0.0010
0.0011
0.0010
0.0009
0.0009
0.0012
0.0011
0.0006
0.0008
0.0007
0.0012
0.0010
0.0007
0.0012
0.0010
0.0007
0.0010
0.0012
0.0012
0.0012
0.0007
0.0012
0.0012
0.0012
0.0010

291
275
338

285

265

300

288

254
336

284
256
307
289
274

283
268

286

319

295

297
273
295
256

275
271
212

293

271

255
280

271
259

339
257

264

296

333

257

295

287

321

274

296

295

307
256

263
249

289

265
248

280.85

0.0035
0.0011
0.0022
0.0025
0.0017
0.0023
0.0008
0.0026
0.0011
0.0021
0.0029
0.0026
0.0012
0.0011
0.0039
0.0012
0.0030
0.0023
0.0037
0.0023
0.0008
0.0009
0.0008
0.0015
0.0011
0.0005
0.0010
0.0018
0.0027
0.0010
0.0024
0.0012
0.0016
0.0012
0.0020
0.0027
0.0023
0.0022
0.0028
0.0010
0.0014
0.0030
0.0025
0.0022
0.0030
0.0013
0.0043
0.0013
0.0019
0.0017
0.0009
0.0019

325
316
412
349
307
342
339
305
370
371
308
366
332
377
289
422
482
331
369
299
299
384
271
320
305
259
321
313
291
315
299
284
482
341
274
333
374
303
328
302
346
360
389
312
323
269
273
259
304
277
263

125.00
118.00
138.00
117.00
114.00
130.00
127.00
111.00
142.00
118.00
100.00
131.00
120.00
113.00
111.06
118.00
132.00
126.00
121.00
114.00
114.00
118.00
107.00
119.00
113.00

88.00
120.00
122.00
111.00
113.00
117.00
112.00
146.00
104.00
114.00
123.00
139.00
107.00
126.00
113.00
127.00
115.00
130.00
120.00
123.00
103.00
106.00

99.00
116.00
106.00

99.00

-0.34
0.00
-0.88
00

75

04
00

-1.04
-0.39
1.95
0.00
0.00
6.55
-0.37
-1.03

3.67
0.00

-1.16
-0.36
0.00
0.00
-1.01
-0.36

-0.36
0.36

0.87
-0.77
-1.84

0.00

1.18

0.00

0.35
1.55

3.00
-3.24
-0.32
-1.54

1.87
-2.73

0.00
-0.36
-0.40
-0.03

.68
.00
.88
.35
.75
.32
.35
A7
.47
.39
.39
.00
.00
.00
.41
.37
.38
.31
.99
.00
.00
.00
.16
.08
.00
.00
.35
.09

.36
.21
.00
T4
77
.94
.33
.48
.53

.35
.31
.49
.33
.53
.65
.54
.87
.73

.68
.40
.25

Table B.9: Computational results of the proposed BLS algorithm and comparison with the best
results from the four references of (Mosayebi et al., 2021) on the instances of Set III.

Instance Reference algorithms BLS-1 BLS-2 gap-1 sap-2
Foks this Thest thest Foest thest
1 3235 0.71 3219 2.18 3187 2.64 -0.49 -1.48
2 3494 0.57 3452 0.91 3442 2.09 -1.2 -1.49
3 3467 3.59 3436 1.59 3426 3.36 -0.89 -1.18
4 3465 4.44 3447 0.81 3447 1.10 -0.52 -0.52
5 3673 0.66 3647 1.94 3637 3.47 -0.71 -0.98
6 3273 0.61 3233 1.12 3237 0.97 -1.22 S1.1
7 3571 0.93 3537 1.72 3521 5.09 -0.95 S1.4
8 3604 0.68 3562 2.06 3558 3.72 -1.17 -1.28
9 3335 0.76 3330 2.07 3320 2.31 -0.15 -0.45
10 3544 0.89 3514 1.60 3497 2.48 -0.85 -1.33
11 3401 0.73 3362 2.18 3363 1.38 -1.15 -1.12
12 3510 1.88 3473 1.63 3457 2.87 -1.05 -1.51
13 3523 1.14 3514 1.96 3476 4.63 -0.26 -1.33
14 3480 0.42 3456 1.09 3444 1.38 -0.69 -1.03
15 3462 2.04 3444 1.26 3444 2.03 -0.52 -0.52
16 3699 7.22 3661 1.87 3655 3.59 -1.03 -1.19
17 3571 7.89 3502 1.79 3491 4.05 -1.93 -2.24
18 3593 0.99 3572 1.20 3558 2.70 -0.58 -0.97
19 3501 3.68 3432 1.77 3438 1.30 -1.97 -1.8
20 3504 0.72 3476 0.88 3476 1.30 -0.80 -0.80
21 3589 0.50 3564 2.08 3561 2.24 -0.70 -0.78
22 3685 9.75 3654 1.58 3649 3.52 -0.84 -0.98
23 3398 2.66 3354 1.34 3349 2.29 -1.29 -1.44
24 3476 2.41 3455 2.07 3412 10.41 -0.60 -1.84
25 3671 7.15 3617 2.00 3606 6.36 -1.47 -1.77
26 3477 0.73 3433 1.90 3433 2.49 -1.27 -1.27
27 3576 0.90 3584 2.19 3554 2.66 0.22 -0.62
28 3505 0.82 3456 2.03 3467 1.83 1.4 -1.08
29 3327 0.53 3269 0.85 3269 0.90 -1.74 -1.74
30 3255 1.69 3215 0.93 3210 3.37 -1.23 -1.38
31 3324 0.37 3284 2.08 3256 1.39 -1.2 -2.05
32 3559 0.91 3563 1.62 3538 2.57 0.11 -0.59
33 3667 0.96 3615 2.05 3612 1.63 -1.42 -1.5
34 3492 5.32 3434 1.29 3424 2.90 -1.66 -1.95
35 3505 1.87 3429 1.49 3427 3.06 217 -2.23
36 3467 0.40 3433 1.54 3438 1.46 -0.98 -0.84
37 3663 4.94 3651 1.83 3651 4.36 -0.33 -0.33
38 3621 0.91 3581 1.72 3578 2.82 -1.10 -1.19
39 3432 0.53 3390 1.75 3387 2.66 -1.22 -1.31
40 3203 0.35 3250 1.11 3248 1.31 -1.31 -1.37
41 3465 0.8 3429 1.05 3419 2.66 -1.04 -1.33
42 3506 0.79 3479 2.18 3471 2.87 -0.77 -1.00
43 3406 1.68 3390 1.56 3383 1.95 -0.47 -0.68
44 3616 6.17 3550 2.02 3548 5.00 -1.83 -1.88
45 3587 2.61 3529 1.48 3526 2.52 -1.62 -1.70
46 3386 2.27 3347 1.46 3333 0.96 -1.15 -1.57
a7 3335 0.69 3306 0.97 3290 3.14 -0.87 -1.35
48 3558 0.78 3559 2.15 3559 1.98 -0.25 0.03
49 3602 0.83 3550 2.02 3562 1.73 -1.44 S1.11
50 3594 8.24 3529 1.85 3526 3.15 -1.81 -1.89
51 3373 0.52 3336 0.72 3336 1.14 -1.10 -1.10
52 3317 0.67 3299 1.45 3293 4.29 -0.54 -0.72
53 3528 0.44 3473 2.08 3480 1.14 -1.56 -1.36
54 3368 7.44 3347 1.07 3340 2.23 -0.62 -0.83
55 3739 0.57 3677 2.06 3677 1.56 -1.66 -1.66
56 3682 0.51 3648 2.16 3626 4.59 -0.92 -1.52
57 3709 8.86 3671 1.88 3665 3.73 -1.02 -1.19
58 3633 0.63 3591 1.85 3591 2.47 -1.16 -1.16
59 3302 0.4 3250 0.93 3244 1.12 -1.57 -1.76
60 3392 3.37 3364 0.85 3364 0.94 -0.83 -0.83
61 3421 3.92 3367 1.48 3365 1.60 -1.58 -1.64
62 3609 0.74 3574 1.61 3567 2.03 -0.97 -1.16
63 3558 0.51 3532 1.67 3526 3.35 -0.73 -0.90
64 3470 2.03 3452 1.16 3452 1.27 -0.52 -0.52
65 3732 1.01 3691 1.50 3687 2.11 -1.10 -1.21
66 3645 4.25 3610 1.81 3603 3.35 -0.96 -1.15
67 3427 2.38 3421 2.05 3420 2.14 -0.18 -0.20
68 3343 2.11 3303 1.61 3206 2.07 -1.20 -1.41
69 3641 0.56 3598 1.90 3568 3.61 -1.18 -2.00
70 3520 0.89 3495 1.16 3482 2.08 -0.71 -1.08
71 3599 0.76 3564 1.00 3563 2.04 -0.97 -1.00
72 3623 5.24 3576 2.12 3558 2.63 -1.30 -1.79
73 3413 4.51 3339 1.88 3335 2.25 -2.17 -2.29
74 3281 0.6 3252 1.86 3255 1.61 -0.88 -0.79
75 3390 3.65 3368 0.83 3358 2.25 -0.65 -0.94
76 3645 0.85 3601 1.70 3595 2.87 -1.21 -1.37
7 3472 0.56 3445 1.62 3445 1.91 -0.78 -0.78
78 3444 3.48 3421 0.95 3421 1.07 -0.67 -0.67
79 3676 1.07 3646 2.14 3608 3.25 -0.82 -1.85
80 3554 0.76 3535 1.87 3528 7.22 -0.53 -0.73
81 3437 3.66 3381 0.64 3381 0.80 -1.63 -1.63
82 3475 1.92 3429 1.89 3419 4.39 -1.32 -1.61
83 3428 0.73 3364 2.08 3369 1.86 -1.87 -1.72

30

84 3567 4.36 3523 1.98 3503 2.07 -1.23 -1.79
85 3508 4.96 3445 1.49 3446 1.44 -1.80 -1.77
86 3588 1.54 3535 1.39 3503 2.87 -1.48 -2.37
87 3541 0.62 3503 1.64 3494 3.01 -1.07 -1.33
88 3374 3.48 3339 1.25 3334 2.09 -1.04 -1.19
89 3442 0.65 3382 1.14 3382 1.29 -1.74 -1.74
90 3839 1.14 3813 1.92 3798 5.44 -0.68 -1.07
91 3448 2.46 3436 1.57 3431 1.91 -0.35 -0.49
92 3522 0.81 3503 1.63 3502 3.94 -0.54 -0.57
93 3315 2.13 3294 1.91 3281 3.96 -0.63 -1.03
94 3486 1.21 3431 1.80 3442 0.90 -1.58 -1.26
95 3629 0.89 3576 1.61 3576 2.12 -1.46 -1.46
96 3441 0.63 3410 1.26 3409 1.42 -0.90 -0.93
97 3637 5.41 3623 2.03 3594 3.72 -0.38 -1.18
98 3311 2.80 3275 1.63 3264 3.51 -1.09 -1.42
99 3746 1.92 3710 1.20 3709 1.74 -0.96 -0.99
100 3510 5.33 3470 1.61 3474 1.59 -1.14 -1.03
Avg 3506.92 2.19 3470.46 1.60 3463.19 2.63 -1.04 -1.25

Table B.10: Computational results of the proposed BLS algorithm and comparison with the best
results from the four references of (Mosayebi et al., 2021) on the instances of Set IV.

Reference algorithms BLS-1 BLS-2
Instance gap-1 gap-2
Toks thks Tbest thest Tbest thest
1 13946 8.61 13735 33.85 13735 39.17 -1.51 -1.51
2 14434 87.97 14327 32.82 14264 49.50 -0.74 -1.18
3 13313 12.45 13192 32.43 13178 30.60 -0.91 -1.01
4 13682 25.26 13480 25.01 13480 37.93 -1.48 -1.48
5 13835 16.46 13732 29.15 13708 31.91 -0.74 -0.92
6 14204 16.16 14114 30.70 14087 41.38 -0.63 -0.82
7 13745 49.29 13619 25.02 13620 28.37 -0.92 -0.91
8 13831 13.34 13714 23.37 13673 56.85 -0.85 -1.14
9 14016 226.50 13857 27.91 13857 30.40 -1.13 -1.13
10 13736 60.12 13553 27.87 13543 31.42 -1.33 -1.41
11 13192 9.78 13080 25.22 13058 25.61 -0.85 -1.02
12 13563 14.71 13461 28.37 13446 33.03 -0.75 -0.86
13 13149 11.79 13078 20.30 13067 29.83 -0.54 -0.62
14 14003 62.32 13914 33.13 13900 50.29 -0.64 -0.74
15 13619 12.19 13568 21.32 13568 25.77 -0.37 -0.37
16 13309 43.21 13154 17.71 13147 28.34 -1.16 -1.22
17 13273 12.02 13108 19.61 13092 22.71 -1.24 -1.36
18 13677 13.04 13574 25.67 13574 28.51 -0.75 -0.75
19 13978 16.26 14009 30.77 14006 57.04 0.22 0.20
20 14095 14.55 14009 32.70 13973 69.30 -0.61 -0.87
21 13535 8.21 13341 16.36 13341 26.83 -1.43 -1.43
22 13971 13.50 13967 20.51 13974 29.67 -0.03 0.02
23 13392 52.99 13224 31.24 13211 33.29 -1.25 -1.35
24 13991 16.06 13964 30.86 13964 35.25 -0.19 -0.19
25 14261 19.24 14155 25.19 14154 41.11 -0.74 -0.75
26 14023 53.14 14039 28.40 14015 35.74 0.11 -0.06
27 13240 23.55 13161 18.32 13161 19.87 -0.60 -0.60
28 13698 12.06 13611 27.69 13575 28.87 -0.64 -0.90
29 13462 27.81 13332 30.25 13345 37.92 -0.97 -0.87
30 13608 21.15 13495 26.58 13486 27.72 -0.83 -0.90
31 13771 84.10 13583 27.97 13548 28.24 -1.37 -1.62
32 13745 15.77 13634 18.20 13630 32.29 -0.81 -0.84
33 13709 13.27 14087 39.40 14068 72.28 2.76 2.62
34 14352 17.80 14244 28.83 14206 40.31 -0.75 -1.02
35 12854 9.98 12667 26.09 12616 45.64 -1.45 -1.85
36 13869 7.05 13715 24.62 13714 49.30 -1.11 -1.12
37 13729 12.83 13675 28.29 13653 38.10 -0.39 -0.55
38 13775 16.77 13632 31.54 13628 35.84 -1.04 -1.07
39 14243 9.98 14147 28.95 14128 62.30 -0.67 -0.81
40 13962 17.01 13909 29.19 13908 26.05 -0.38 -0.39
41 13463 8.67 13400 33.55 13390 29.61 -0.47 -0.54
42 13917 39.85 13843 28.37 13810 41.86 -0.53 -0.77
43 13698 91.51 13521 26.51 13526 29.75 -1.29 -1.26
44 12963 10.09 12704 30.60 12673 17.93 -2.00 -2.24
45 13222 25.29 13087 23.57 13078 29.93 -1.02 -1.09
46 13883 14.89 13761 33.94 13739 47.84 -0.88 -1.04
47 14677 9.78 14552 33.99 14545 58.54 -0.85 -0.90
48 14090 18.41 14024 31.02 14016 38.96 -0.47 -0.53
49 14340 10.19 14145 27.09 14143 35.93 -1.36 -1.37
50 13896 8.95 13819 31.18 13814 49.70 -0.55 -0.59
51 14157 83.48 13992 29.98 13975 63.56 -1.17 -1.29
52 13892 229.90 13796 32.56 13759 62.43 -0.69 -0.96
53 13917 39.03 13786 33.26 13776 36.39 -0.94 -1.01
54 13731 39.07 13630 19.10 13613 64.17 -0.74 -0.86
55 13776 8.72 13602 25.21 13602 29.26 -1.26 -1.26
56 13803 21.43 13673 31.91 13666 35.44 -0.94 -0.99
57 13881 33.41 13802 25.75 13793 30.41 -0.57 -0.63
58 14371 40.68 14187 32.08 14193 39.89 -1.28 -1.24
59 13669 6.55 13557 33.50 13509 36.85 -0.82 -1.17

31

60 13799 7.51 13678 26.51 13669 30.32 -0.88 -0.94
61 13584 23.87 13476 30.07 13434 41.71 -0.80 -1.10
62 13641 200.77 13492 26.85 13463 32.58 -1.09 -1.30
63 13923 15.61 13809 32.68 13795 37.01 -0.82 -0.92
64 13176 26.31 13053 21.17 13053 26.19 -0.93 -0.93
65 13719 8.03 13594 33.96 13588 28.63 -0.91 -0.95
66 14478 9.74 14378 33.51 14321 57.54 -0.69 -1.08
67 13597 39.40 13520 22.60 13520 24.48 -0.57 -0.57
68 13441 61.90 13345 21.61 13333 45.08 -0.71 -0.80
69 13667 29.06 13637 32.16 13609 58.51 -0.22 -0.42
70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21
71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61
72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44
73 14165 41.19 14051 28.13 14034 62.26 -0.80 -0.92
74 14189 133.59 14076 30.08 14066 47.77 -0.80 -0.87
75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54
76 13982 15.76 13813 23.10 13813 41.84 -1.21 -1.21
7 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52
78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05
79 13644 8.09 13495 26.62 13474 28.82 -1.09 -1.25
80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.70
81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22
82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04
83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.70
84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18
85 13194 6.26 13123 26.36 13095 42.50 -0.54 -0.75
86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02
87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56
88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14
89 13460 26.10 13330 25.61 13330 23.65 -0.97 -0.97
90 14117 12.97 13984 33.43 13980 57.62 -0.94 -0.97
91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73
92 13648 15.04 13481 21.65 13472 37.91 -1.22 -1.29
93 13764 13.44 13662 28.79 13658 66.20 -0.74 -0.77
94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08
95 13888 13.40 13850 31.45 13855 27.41 -0.27 -0.24
96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54
97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63
98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89
99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.30
100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.10
Avg 13756.68 33.93 13642.04 27.75 13627.03 39.80 -0.84 -0.94
Table B.11: Results of the four re-implemented algorithms of (Mosayebi et al., 2021) on the
instances of Set II.
Pro.I Pro.IT Pro.IIT Pro.IV

Instance

fvest thest Tvest thest Foest thest fvest thest
1 319 0.0011 320 0.0006 319 0.0011 319 0.0012
2 280 0.0009 275 0.0006 280 0.0009 273 0.0012
3 296 0.0019 288 0.0012 296 0.0019 292 0.0023
4 289 0.0019 293 0.0011 289 0.0015 289 0.0018
5 282 0.0025 282 0.0012 282 0.0018 282 0.0026
6 309 0.0013 305 0.0006 309 0.0010 316 0.0013
7 288 0.0015 292 0.0008 288 0.0012 286 0.0025
8 264 0.0010 254 0.0007 264 0.0009 264 0.0016
9 293 0.0008 290 0.0007 293 0.0008 298 0.0017
10 316 0.0015 320 0.0009 316 0.0016 313 0.0017
11 305 0.0015 299 0.0008 305 0.0016 306 0.0017
12 284 0.0032 287 0.0012 284 0.0029 284 0.0026
13 276 0.0017 268 0.0013 276 0.0018 272 0.0017
14 270 0.0011 270 0.0008 270 0.0011 270 0.0011
15 277 0.0010 271 0.0006 277 0.0009 273 0.0015
16 303 0.0024 299 0.0013 303 0.0020 303 0.0019
17 271 0.0011 265 0.0010 271 0.0010 271 0.0012
18 258 0.0008 258 0.0008 258 0.0007 258 0.0010
19 251 0.0010 248 0.0008 251 0.0008 257 0.0012
20 293 0.0019 289 0.0006 293 0.0015 295 0.0022
21 291 0.0011 285 0.0009 291 0.0010 291 0.0013
22 236 0.0008 239 0.0006 236 0.0008 236 0.0008
23 288 0.0013 279 0.0007 288 0.0011 288 0.0012
24 299 0.0020 298 0.0010 299 0.0021 299 0.0021
25 256 0.0014 240 0.0007 256 0.0014 256 0.0012
26 305 0.0010 291 0.0008 305 0.0009 305 0.0008
27 297 0.0018 305 0.0012 297 0.0018 297 0.0019
28 285 0.0019 288 0.0010 285 0.0018 290 0.0014
29 299 0.0023 299 0.0011 299 0.0024 304 0.0016
30 307 0.0018 305 0.0010 307 0.0018 304 0.0021
31 268 0.0012 261 0.0008 267 0.0011 267 0.0011
32 332 0.0012 328 0.0008 332 0.0011 325 0.0010
33 312 0.0017 309 0.0015 306 0.0018 312 0.0017
34 294 0.0015 311 0.0010 294 0.00151 294 0.0016
35 283 0.0018 290 0.0012 283 0.0019 297 0.0016

32

36 263 0.0016 265 0.0008 263 0.0015 263 0.0016
37 284 0.0011 279 0.0008 284 0.0014 280 0.0017
38 251 0.0011 249 0.0006 251 0.0009 251 0.0008
39 280 0.0014 276 0.0009 280 0.0012 280 0.0014
40 261 0.0029 256 0.0012 261 0.0023 261 0.0025
41 295 0.0009 287 0.0005 295 0.0009 299 0.0016
42 302 0.0010 300 0.0008 302 0.0009 297 0.0012
43 298 0.0023 297 0.0013 299 0.0018 299 0.0024
44 272 0.0014 277 0.0008 271 0.0011 271 0.0012
45 337 0.0015 325 0.0016 337 0.0015 342 0.0023
46 252 0.0009 248 0.0007 252 0.0008 252 0.0009
47 330 0.0018 325 0.0009 330 0.0011 330 0.0013
48 300 0.0015 302 0.0011 300 0.0015 307 0.0018
49 269 0.0017 265 0.0011 280 0.0016 276 0.0012
50 293 0.0020 294 0.0007 293 0.0019 293 0.0015
51 278 0.0010 282 0.0007 275 0.0011 275 0.0010
52 341 0.0016 351 0.0009 341 0.0016 341 0.0018
53 288 0.0016 286 0.0012 288 0.0017 294 0.0016
54 273 0.0008 267 0.0007 273 0.0008 273 0.0008
55 307 0.0022 304 0.0005 307 0.0019 307 0.0018
56 289 0.0008 289 0.0005 289 0.0009 311 0.0011
57 257 0.0015 260 0.0018 257 0.0015 260 0.0017
58 341 0.0013 347 0.0010 341 0.0013 341 0.0015
59 293 0.0021 288 0.0011 293 0.0019 293 0.0022
60 259 0.0011 257 0.0010 259 0.0010 261 0.0014
61 307 0.0019 309 0.0007 307 0.0018 318 0.0021
62 289 0.0016 309 0.0010 289 0.0016 289 0.0017
63 275 0.0015 286 0.0008 275 0.0017 274 0.0015
64 297 0.0018 290 0.0008 297 0.0018 311 0.0013
65 272 0.0011 275 0.0006 272 0.0009 269 0.0011
66 294 0.0016 296 0.0011 294 0.0014 290 0.0019
67 325 0.0016 320 0.0012 325 0.0013 325 0.0017
68 301 0.0018 302 0.0009 301 0.0015 302 0.0019
69 309 0.0019 307 0.0010 309 0.0016 300 0.0023
70 273 0.0012 280 0.0008 273 0.0009 291 0.0011
71 295 0.0012 298 0.0008 295 0.0011 301 0.0012
72 259 0.0009 259 0.0008 259 0.0008 259 0.0010
73 278 0.0018 281 0.0009 278 0.0015 281 0.0022
T4 271 0.0009 277 0.0010 271 0.0012 271 0.0014
75 216 0.0007 212 0.0006 212 0.0006 212 0.0009
76 300 0.0010 297 0.0008 300 0.0010 300 0.0011
77 275 0.0017 281 0.0006 275 0.0017 274 0.0011
78 272 0.0014 258 0.0010 272 0.0014 263 0.0020
79 281 0.0013 282 0.0009 281 0.0013 286 0.0023
80 283 0.0012 280 0.0008 283 0.0013 281 0.0015
81 273 0.0011 271 0.0008 273 0.0011 259 0.0015
82 361 0.0015 347 0.0010 361 0.0015 345 0.0019
83 259 0.0018 261 0.0009 259 0.0017 259 0.0017
84 274 0.0009 275 0.0007 274 0.0008 272 0.0011
85 300 0.0012 306 0.0010 300 0.0012 302 0.0013
86 341 0.0012 338 0.0006 341 0.0012 343 0.0014
87 275 0.0009 261 0.0009 275 0.0009 270 0.0012
88 312 0.0010 311 0.0010 312 0.0010 305 0.0017
89 293 0.0011 288 0.0008 293 0.0011 297 0.0012
90 329 0.0013 322 0.0011 329 0.0013 324 0.0033
91 290 0.0018 281 0.0012 290 0.0016 290 0.0013
92 323 0.0015 300 0.0006 323 0.0015 319 0.0014
93 318 0.0023 309 0.0012 318 0.0019 318 0.0016
94 311 0.0018 309 0.0011 311 0.0015 312 0.0015
95 262 0.0018 265 0.0009 260 0.0013 260 0.0013
96 280 0.0013 268 0.0009 280 0.0011 277 0.0020
97 256 0.0008 266 0.0005 256 0.0011 256 0.0013
98 320 0.0011 298 0.0007 320 0.0009 314 0.0014
99 287 0.0020 278 0.0014 287 0.0017 281 0.0021
100 258 0.0015 261 0.0007 249 0.0009 249 0.0007

Table B.12: Results of the four re-implemented algorithms of (Mosayebi et al., 2021) on the
instances of Set III.

Pro.I Pro.II Pro.IIT Pro.IV

Instance

foest thest Foest thest Foest thest Foest thest
1 3253 5.22 3235 0.71 3275 3.14 3257 2.19
2 3525 2.66 3494 0.57 3525 1.88 3525 1.69
3 3467 3.59 3477 0.80 3485 1.83 3481 2.23
4 3480 1.39 3486 0.68 3480 1.37 3465 4.44
5 3726 2.82 3673 0.66 3726 1.84 3700 3.21
6 3289 2.16 3273 0.61 3289 1.93 3284 1.59
7 3614 10.17 3571 0.93 3601 8.00 3601 6.79
8 3638 3.59 3604 0.68 3638 2.41 3635 6.16
9 3372 3.25 3335 0.76 3372 2.30 3373 1.77
10 3588 9.20 3544 0.89 3588 8.57 3551 3.98
11 3421 4.38 3401 0.73 3421 4.00 3421 3.86
12 3510 1.88 3521 0.43 3510 1.78 3555 3.23

33

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38

40
41
42
43
44
45

47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68

70
71
72
73
T4
75

7
78

80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99
100

3586
3498
3472
3699
3579
3619
3534
3510
3611
3695
3412
3476
3671
3551
3601
3562
3365
3255
3335
3605
3703
3523
3507
3523
3663
3643
3435
3297
3473
3527
3434
3616
3599
3431
3373
3620
3613
3608
3409
3346
3543
3368
3801
3709
3709
3658
3338
3392
3422
3641
3570
3470
3758
3650
3427
3343
3658
3532
3600
3627
3413
3330
3390
3662
3495
3490
3695
3609
3456
3475
3433
3567
3514
3588
3589
3374
3451
3876
3470
3559
3316
3486
3645
3458
3676
3311
3752
3510

H
GONWHAERRERNORAEWANEEORRRROORROTRANNRARNONCWARONNNANNRARANREEORNNNQRARNERONNEREEONNENONONO 00

69
21
38

45
08

16
03
47
66
41
15
30
91
59

69
82
27
15
95
96

94
05

51
13
65
97
17
76

64
01
83
39
15
53
12
44
30
68
86
T

37
27
59
53
03
82
22
38
11
09
20
06

51
14
65
63
23
22
55
34
51
92
52
36
T
54
27
48
27
57
70

90
21
54
65
34
80
11
33

3523
3480
3484
3725
3588
3593
3530
3504
3589
3714
3416
3481
3676
3477
3576
3528
3327
3276
3324
3559
3667
3502
3509
3467
3668
3621
3432
3293
3465
3506
3415
3634
3612
3388
3335
3558
3602
3601
3373
3317
3528
3382
3739
3682
3748
3633
3302
3404
3422
3609
3558
3470
3732
3661
3460
3375
3641
3520
3599
3630
3428
3281
3416
3645
3472
3480
3676
3554
3446
3482
3428
3588
3541
3595
3541
3386
3442
3839
3502
3522
3319
3495
3629
3441
3646
3325
3752
3526

COOHOOOOOOFRO000000000OHO00000HO00000HOOOO0O0OOHOD00000000000000000000000000000000FE00000ROOR

14
42
85

76
929

T2
50
15
38
99
99

90
73

67
37
91
96
48
48

98
91
53
35
80
79
71
82
80

69
78

54
52
67
44
75
57
51
08
63

42
47
T4
51
48
01
78
65
80
56
89
76

40
60
69
85
56
51
o7
76
32
7
73
47
7
36
62
66
65
14
60

58
62
89
63
04
70
87
97

3586
3494
3462
3699
3579
3619
3534
3510
3590
3695
3398
3476
3671
3551
3601
3562
3365
3255
3335
3605
3703
3492
3507
3523
3663
3643
3435
3309
3473
3527
3434
3616
3599
3431
3373
3617
3613
3608
3409
3346
3543
3368
3801
3709
3709
3650
3330
3392
3421
3630
3570
3470
3758
3645
3427
3350
3658
3532
3600
3627
3413
3330
3390
3662
3495
3490
3695
3609
3456
3475
3433
3567
3514
3588
3589
3374
3451
3876
3470
3559
3315
3486
3645
3458
3676
3311
3752
3510

TONWHRONNNONWRONWNHEONOWNNWRAORRMWRENPROROOWNNONINNOWNNRAWRHONORNNNOGOARRORNRENERREOORNOORENERONDDW®

18
04
04
72
62
91
48
51
93
96
66
53
97

95
52
74
60
02
51
24
32
36
39
61
84
58
02
o7
39
95
87
26
93
11
78

25
05
20
79
64
39
50
97
36

53
92
70
27
93
26
25
38
37
65
94
75

16
79
66
57
04
12
78
13
48
87
36
18
71
97
08
45

70
22
68
13
78
22
55
20
61
32
12

3550
3494
3493
3723
3571
3658
3501
3524
3628
3685
3401
3491
3671
3551
3606
3505
3376
3256
3346
3608
3681
3492
3505
3532
3679
3660
3435
3352
3486
3516
3406
3648
3587
3386
3342
3605
3613
3594
3409
3328
3538
3375
3801
3749
3709
3661
3338
3405
3435
3625
3583
3472
3758
3660
3427
3350
3658
3532
3633
3623
3413
3330
3424
3657
3478
3444
3680
3561
3437
3475
3443
3570
3508
3611
3554
3396
3459
3895
3448
3531
3315
3493
3645
3458
3637
3354
3746
3523

BRENORARONANN S, AOWRA NV, WONWNAROWRAWREFNWNN IO AN WOROWNANNAREINNWORWRARNNRSRNOUNRAR,R,ORANW®RNON =N

.86
.79

.89
.64
68
.37
10
.75
.35
.95
.75

.00
.82
.66
.48
.98
91
.51
.05
.87

.39
.25
.24
.41
.50
.20
.68
77
61
.27
.50
.07

.24
.72
.94
.55
.09
.69

.71
.94
.96
13
.66

.63
.92
.95
.30
18
14
.01
.38
.53

.35
.34
.88
.65
.98
.48

18
.66

.66
.63
.96
14
.34
.76

.34
.46
.55
.53
.34
34
.39
.41
.25
.92
.01

34

Table B.13: The results of the four re-implemented algorithms of (Mosayebi et al., 2021) on the
instances of Set IV.

Pro.l Pro.II Pro.III Pro.IV

Instance

Thest thest Thest thest Tvest thest Tvest thest
1 13980 112.97 13946 8.61 13982 119.20 13982 110.52
2 14542 186.77 14467 18.05 14434 87.97 14434 78.37
3 13441 61.15 13313 12.45 13450 68.74 13366 46.72
4 13696 61.44 13690 13.80 13690 80.70 13682 115.70
5 13901 109.25 13835 16.46 13901 111.60 13937 168.09
6 14286 142.60 14204 16.16 14286 88.96 14250 29.02
7 13745 49.29 13753 13.17 13745 35.94 13745 30.62
8 13855 180.92 13831 13.34 13855 137.84 13858 130.55
9 14134 143.34 14097 15.98 14016 226.50 14117 161.14
10 13736 60.12 13754 12.06 13736 43.62 13762 117.78
11 13282 42.88 13192 9.78 13282 40.61 13296 18.58
12 13610 177.31 13563 14.71 13698 115.34 13647 91.19
13 13257 69.66 13149 11.79 13257 62.79 13193 84.14
14 14003 62.32 14034 15.42 14003 72.62 14013 143.03
15 13730 50.69 13619 12.19 13730 46.23 13709 55.82
16 13309 43.21 13356 10.43 13309 38.51 13372 38.96
17 13310 26.48 13273 12.02 13323 20.85 13296 54.96
18 13761 55.35 13677 13.04 13761 49.35 13857 116.39
19 14143 145.96 13978 16.26 14108 53.59 14123 126.20
20 14134 88.64 14095 14.55 14134 86.17 14152 69.08
21 13566 48.70 13535 8.21 13566 47.47 13569 184.87
22 14141 61.07 13971 13.50 14141 60.34 14137 118.61
23 13392 52.99 13393 12.50 13392 49.91 13468 55.71
24 14161 136.83 13991 16.06 14142 119.77 14108 155.87
25 14381 74.53 14261 19.24 14379 71.52 14360 51.34
26 14206 67.36 14068 8.44 14206 66.57 14023 350.21
27 13245 58.94 13296 9.47 13245 54.93 13240 60.40
28 13757 57.58 13698 12.06 13707 43.05 13709 47.04
29 13528 86.76 13535 12.45 13528 85.30 13462 100.85
30 13759 93.67 13656 12.01 13759 90.48 13608 67.34
31 13771 84.10 13799 6.32 13771 81.20 13792 122.84
32 13889 157.23 13745 15.77 13873 150.20 13859 137.10
33 13843 103.04 13709 13.27 13843 98.40 13843 86.08
34 14404 36.25 14352 17.80 14404 35.48 14403 186.12
35 12885 146.16 12854 9.98 12885 146.65 12912 124.49
36 13940 32.36 13869 7.05 13940 30.06 13906 169.63
37 13862 64.51 13729 12.83 13862 63.53 13895 67.03
38 13850 82.97 13775 16.77 13850 80.65 13837 124.29
39 14324 199.25 14243 9.98 14324 191.65 14324 160.37
40 14038 45.76 13962 17.01 14038 43.80 13979 75.72
41 13629 144.78 13463 8.67 13629 135.82 13628 122.49
42 13974 63.52 13947 14.55 13974 61.07 13917 207.20
43 13698 91.51 13724 12.66 13698 87.37 13768 35.62
44 12991 103.86 12963 10.09 12987 97.94 13076 22.98
45 13253 123.30 13302 10.49 13253 115.81 13222 95.02
46 13950 99.24 13883 14.89 13950 94.75 13950 84.63
47 14748 43.61 14677 9.78 14748 44.40 14709 69.29
48 14142 66.63 14090 18.41 14142 66.19 14162 95.22
49 14341 75.18 14340 10.19 14341 71.03 14418 62.71
50 13987 89.82 13896 8.95 13987 84.89 13945 47.70
51 14157 83.48 14158 16.57 14157 81.57 14198 63.87
52 13892 229.90 13956 16.96 13892 217.55 14004 235.72
53 13925 243.13 13992 16.42 13925 216.86 13917 88.71
54 13753 193.36 13879 12.80 13753 178.52 13731 151.36
55 13840 59.93 13776 8.72 13840 55.43 13842 54.29
56 13846 129.60 13840 6.61 13846 95.87 13803 160.76
57 14015 35.61 13952 15.15 14015 32.60 13881 124.94
58 14550 128.35 14441 15.89 14550 116.80 14371 128.47
59 13742 54.31 13669 6.55 13742 50.29 13825 73.69
60 13835 88.57 13799 7.51 13809 134.73 13893 109.28
61 13680 55.56 13584 11.78 13680 57.03 13613 29.10
62 13641 200.77 13656 12.02 13707 127.78 13678 122.81
63 13948 47.70 13923 15.61 13948 45.79 14025 132.62
64 13299 81.65 13190 11.63 13299 60.08 13176 89.47
65 13773 56.59 13719 8.03 13773 54.44 13824 134.28
66 14553 326.79 14478 9.74 14553 313.50 14553 277.38
67 13617 37.20 13642 7.58 13597 39.40 13639 123.22
68 13530 32.35 13468 5.89 13441 61.90 13494 80.73
69 13702 70.72 13792 13.92 13702 67.02 13667 41.69
70 13826 88.44 13769 16.39 13826 81.64 13800 84.63
71 13565 197.43 13506 11.19 13565 190.37 13579 180.11
72 13888 80.25 13859 7.99 13873 78.43 13896 86.59
73 14343 98.04 14200 13.56 14343 91.99 14165 79.80
74 14202 182.64 14235 14.40 14189 133.59 14259 121.24
75 13792 46.84 13610 14.23 13792 44.38 13792 95.29
76 14063 149.41 13982 15.76 14063 138.40 14063 121.26
77 13386 29.01 13331 5.86 13386 26.89 13467 59.70
78 14263 120.30 14184 9.02 14157 100.31 14160 92.35
79 13779 104.36 13644 8.09 13779 132.84 13712 23.01
80 13614 184.91 13717 13.65 13606 164.04 13606 150.70

35

81
82
83

85
86

88
89
90
91
92
93

95
96

98
99
100

13155
13986
13263
13754
13301
14483
13122
13658
13460
14156
14126
13747
13823
13927
13927
13540
13247
13663
15056
13236

74.37
35.53
122.13
33.23
48.17
110.51

47.88
26.10
52.33
140.15
70.04
28.77
81.01
119.82
81.05
29.07
91.97
226.23
161.45

13109
13979
13243
13710
13194
14443
13150
13559
13497
14117
14101
13648
13764
13889
13888
13575
13196
13618
14919
13242

11.
15.

71
17
.88

.26
.14
.74
.87
.40
.97
.48
.04
.44
.85
.40
.30

.00
.12
.13

13155
13986
13263
13754
13301
14483
13116
13658
13460
14232
14126
13705
13823
13927
13927
13540
13180
13606
15014
13236

55

32

25

101

.86
24.
114.

29
18

.88

43.
103.
.45
44.
.84

25.
144.

66.

27.

79.
113.
104.
128.
.99
179.
148.

81
65

86

71
31
87
64
25
75
72
84

76
62

13195
13986
13240
13715
13273
14544
13115
13584
13595
14214
14093
13686
13768
13916
14017
13540
13182
13606
14960
13330

65.91
27.46
67.73
138.62
138.34
152.88

127.06
112.50

23.33
170.07

142.08
66.63
180.84
94.26
93.69
91.88
282.83
134.05

36

