
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 1

A two-individual evolutionary algorithm for
cumulative capacitated vehicle routing with single

and multiple depots
Yuji Zou, Jin-Kao Hao* , Qinghua Wu,

Abstract—The cumulative capacitated vehicle routing problem
with single (CCVRP) or multiple depots (MDCCVRP) is a variant
of the popular capacitated vehicle routing problem. Instead of
minimizing the total travel time, the objective here is to minimize
the sum of all customers’ waiting times. This problem has a vari-
ety of real-world applications, especially in post-disaster human-
itarian relief. To solve the challenging CCVRP and MDCCVRP,
we propose a unified two-individual evolutionary algorithm that
follows the memetic search framework. The algorithm integrates
several key features: a two-individual population mechanism to
accelerate convergence while maintaining population diversity,
a dedicated edge assembly crossover to generate high-quality
offspring and an adaptive feasible and infeasible local search to
achieve a balanced exploration between feasible and infeasible
solutions. The algorithm is evaluated on 39 CCVRP instances
and 78 MDCCVRP instances commonly used in the literature.
Computational results show that for the CCVRP, the algorithm
outperforms the leading algorithms by achieving improved best
results (new upper bound) for 13 instances and matching the best
results for 23 other instances. For the MDCCVRP, the algorithm
achieves 9 improved best results and matches the best results for
the remaining instances. The critical components of the algorithm
are investigated to understand their contributions.

Index Terms—Vehicle routing; Cumulative capacitated rout-
ing; Heuristics; Evolutionary algorithm; Combinatorial optimiza-
tion.

I. INTRODUCTION

IN the field of transport optimization, the classical capaci-
tated vehicle routing problem (CVRP) is one of the most

important problems. In the CVRP, each capacitated vehicle
starts from the depot to serve the customers with demands and
returns to the depot. Each customer is visited exactly once by
one vehicle, and the sum of customer demand served by a
vehicle does not exceed the vehicle’s capacity. The objective
is to minimize the total traveling time of all vehicles. The
CVRP is known to be a general model to formulate a number
of practical problems. To better accommodate more real-
world scenarios, a family of routing problems known as rich
vehicle routing problems [1] has been introduced, extending
the conventional CVRP.

This work is partially supported by the National Natural Science Foundation
Program of China (Grant No. 72122006) and the China Scholar Council (Grant
No. 202106050037). (Corresponding author: Jin-Kao Hao)

Y. Zou and J.-K Hao are with the Department of Computer Science, LERIA,
Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France (e-mails:
yujizou6@gmail.com, jin-kao.hao@univ-angers.fr).

Q. Wu is with the School of Management, Huazhong University of
Science and Technology, No. 1037, Luoyu Road, Wuhan, China (e-mail:
qinghuawu1005@gmail.com)

The cumulative capacitated vehicle routing problem
(CCVRP) is one of those problem variants. As a customer-
centric model [2], this problem aims to minimize the sum
of customers’ waiting time. The CCVRP naturally occurs in
several applications. For example, when a disaster happens, it
is important for rescue teams to reach the disaster site as soon
as possible to limit the loss of life and suffering [3]. The school
bus routing problem is another typical application, where the
goal is to minimize the total travel time of all passengers [4].

The general CCVRP can be defined on a complete undi-
rected graph G = (V,E) with V = D ∪ C and E = {(i, j) :
i, j ∈ V }, where D is the set of depots (|D| ≥ 1) and
C = {C1, C2, ...Cm} is the set of customers. Moreover, a
symmetric non-negative matrix Y = (dij) for the edges (i, j)
is associated with E, where dij represents the travel time (or
equivalently the distance) between two vertices. There is a
fleet R of K vehicles with a given capacity. Each customer
i ∈ C has a demand qi that is served when a vehicle visits
the customer. A candidate solution to the CCVRP with single
depot is a set of k (k ≤ K) disjoint Hamiltonian tours starting
and ending at the depot such that each customer is served
exactly once by a vehicle, and the sum of customer demands
served by a vehicle does not exceed its capacity.

For a given solution, let tki be the arrival time of vehicle k
at customer i (i.e., tki is the waiting time of the customer i;
tki = 0 if i is not served by k). Then the goal of the CCVRP
is to find a solution S that minimizes the sum of the waiting
times of all customers.

Minimize f(S) =
∑
k∈R

∑
i∈C

tki , S ∈ Ω (1)

where Ω is the search space including all feasible candidate
solutions for a CCVRP instance. A detailed mathematical
formulation of the CCVRP can be found in [2].

The MDCCVRP is a generalization of the CCVRP with
multiple depots (|D| > 1) [5]. In this problem, each depot in
D is supposed to supply enough goods to serve all customers.
Compared to the CCVRP, it is necessary to additionally decide
the depot at which each route starts and ends.

The CCVRP and the MDCCVRP studied in this work are
computationally challenging NP-hard problems [2, 6]. Due to
their practical relevance and computational challenge, several
methods have been proposed to tackle these problems in the
past. However, as the review in Section II shows, some of the
existing methods are designed for one problem only. When

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 2

they are designed for both problems, their performance lacks
stability and may vary considerably on different benchmark
instances. In this work, we propose a two-individual evolution-
ary algorithm (TIEA) that is able to effectively solve almost
all CCVRP and MDCCVRP instances in the literature. Our
contributions can be summarized as follows.
• The proposed TIEA algorithm incorporates several com-

plementary search components. First, TIEA maintains a
small population of only two individuals, which over-
comes the disadvantage of a large population whose
management induces computational costs. This reduced
population still preserves the key features of a typical
memetic algorithm including crossover and local opti-
mization. Second, TIEA employs a special edge assembly
crossover to generate high-quality offspring from the
two individuals of the population. Third, TIEA uses a
feasible and infeasible variable neighborhood descent to
adaptively explore both feasible and infeasible search
spaces, which helps to find high-quality solutions lying
on the feasible-infeasible boundary.

• We conduct thorough experiments on benchmarks to
evaluate the performance of TIEA. The results show that
TIEA is highly competitive against the state-of-the-art
algorithms. In particular, TIEA is able to achieve 13
record-breaking results (new upper bounds) for the 39
CCVRP instances and 9 new best results for the 78
MDCCVRP instances. In addition, TIEA can match all
but three of the best-known results. TIEA achieves these
results with a competitive computation time compared to
the state-of-the-art methods.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III presents the proposed
algorithm. Section IV shows experimental results and com-
parisons with the state-of-the-art methods. Section V provides
investigations of the main components of the algorithm to shed
light on their roles, followed by conclusions in Section VI.

II. RELATED WORKS

TABLE I
REPRESENTATIVE EXACT AND HEURISTIC ALGORITHMS FOR CCVRP AND

MDCCVRP

Literature Method Problem solved

Ngueveu et al. (2010) [2] MA CCVRP
Ribeiro and Laporte (2012) [7] Adaptive LNS CCVRP
Ke and Feng (2013) [8] Two phase ILS CCVRP
Vidal et al. (2014) [9] HGS CCVRP

Lysgaard and Wøhlk (2014) [10] BCP CCVRP
Sze et al. (2017) [11] Adaptive VNS CCVRP
Ke (2018) [12] BSO CCVRP
Nucamendi-Guillén et al. (2018) [13] MIP and ILS CCVRP
Smiti et al. (2020) [14] SVNS CCVRP
Kyriakakis et al. (2021) [15] ACS-VND and MMAS-VND CCVRP
Lalla-Ruiz and Voß (2020) [5] POPMUSIC MDCCVRP
Wang et al. (2019) [6] PLS MDCCVRP
Niu et al. (2021) [16] MMAS MDCCVRP
Nucamendi-Guillén et al. (2022) [17] MIP MDCCVRP&LLRP
Osorio-Mora et al. (2023) [18] ILS MDCCVRP&LLRP&MDk-TRP
Damião et al. (2021) [19] BCP CCVRP&MDCCVRP
Liu and Jiang (2019) [20] GA-LNS CCVRP&CCVRPTW
Kyriakakis et al. (2022) [21] TS-VND CCVRP&CCVRPTW
Kyriakakis et al. (2022) [22] GRASP-VND CCVRP&CUAVRP

A. Literature review of the CCVRP
The CCVRP was initially studied by Ngueveu et al. [2],

who proposed a memetic algorithm (MA) that encodes a

solution of multiple routes as a giant tour of all customers,
which is suitable for standard crossover operators. To split
the chromosome into separate routes during the local search
phase, they employed the technique suggested in [23]. Three
move operators were used to improve the solution during the
local search phase. In their study, a set of instances comprising
50 to 199 nodes (referred to as CMT) was used to evaluate
the performance of their algorithm. These instances were
originally proposed by [24] for the VRP. In those instances,
the fleet size of the vehicles was set to the minimum number
necessary to handle the capacity constraints, while the distance
limitation was ignored.

Ribeiro and Laporte [7] later introduced an adaptive large
neighborhood search (ALNS) that utilizes seven removal and
three insertion heuristics to solve the problem. They adapted
a set of instances (referred to as GWKC) comprising 200 to
483 nodes from [25], using the same method as in [2]. Their
experimental results showed that ALNS outperformed MA of
[2] by producing better solutions in less computational time.

Vidal et al. [9] introduced a unified hybrid genetic search
(UHGS) approach to solve a class of routing problems, collec-
tively known as multi-attribute vehicle routing problems, in-
cluding the CCVRP. UHGS integrates several critical compo-
nents, including a local search with efficient route evaluation,
a crossover based on the giant tour representation combined
with the fast split procedure of [23], and an advanced popula-
tion management method. The results obtained on CCVRP
benchmark instances demonstrate excellent performance by
achieving numerous best-known solutions.

Sze et al. [11] introduced an adaptive variable neighbor-
hood search (AVNS) to solve the cumulative vehicle routing
problem with min-sum and min-max objectives. The AVNS
algorithm was divided into two stages. In the first stage,
the best improvement method was applied, and each move
operator was evaluated based on its contribution. In the second
stage, a subset of move operators was chosen based on their
performance in the first stage, and a so-called k-improvement
acceptance criteria was used. Large neigbhorhood search
(LNS) was used along with several destroy and repair methods
to diversify the search. To evaluate the algorithm, the authors
introduced a new set of large-scale instances (referred to as
L), comprising 560 to 1040 nodes sourced from [26]. This
powerful algorithm was able to find several new best solutions
on the three instance sets.

Ke [12] proposed a brain storm optimization (BSO) ap-
proach for the CCVRP. This algorithm uses convergent and
divergent operations to allow BSO, which was initially devel-
oped for continuous problems, to handle discrete problems.
The algorithm also employs a special divide and conquer
method to decompose the problem into smaller, easier-to-solve
subproblems. The proposed method achieved some new best
solutions on the three instance sets.

Smiti et al. [14] proposed a skewed general variable neigh-
borhood search (SVNS) approach to address the CCVRP.
SVNS relies on the VNS and incorporates an acceptance
criterion based on the distance between the local optimal
solution and the global best solution to accept worse solutions.
Furthermore, SVNS employs three move operators to enhance

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 3

the solution quality, and a semi-random perturbation procedure
with three operators to find a new starting point when the
algorithm is trapped in a local optimum.

The aforementioned methods represent the current state-
of-the-art approaches for solving the CCVRP. Other methods
include the two-phase metaheuristic algorithm by [8] and the
branch-and-cut-and-price (BCP) algorithm by [10]. Some re-
cent studies also tested their methods on small-sized instances
denoted as A, B, E, M, and P, which were originally proposed
for the VRP [24]. These studies include ant colony system-
variable neighborhood descent (ACS-VND) and max-min ant
system-variable neighborhood descent (MMAS-VND) [15],
improved mixed-integer formulations and iterated local search
(ILS) [13]. Other related studies include a hybrid genetic
algorithm for the cumulative capacitated vehicle routing prob-
lem with time-window (CCVRPTW) and the CCVRP [20], a
hybrid tabu search-variable neighborhood descent (TS-VND)
algorithm for these two problems [21], and a GRASP-VND
algorithm for the cumulative unmanned aerial vehicle routing
problem (CUAVRP) and the CCVRP [22].

B. Literature review of the MDCCVRP
Lalla-Ruiz and Voß [5] proposed the first work on the MD-

CCVRP, in which they presented a mathematical formulation
and solved the problem using a metaheuristic approach called
partial optimization metaheuristic under special intensification
condition (POPMUSIC). This method reduces the original
problem to a sub-problem that can be solved by an approxi-
mate or exact approach. In addition, the authors introduced two
instance sets to evaluate their algorithm. The first set named
”lr,” was based on instances in [27]. The second set, called ”p”
and ”pr”, was originally proposed by [27] for the MDVRP. The
fleet size for these instances was set to 35.

Wang et al. [6] presented a perturb-based local search (PLS)
algorithm for the MDCCVRP. The PLS algorithm starts from
a feasible initial solution and iteratively improves the solution
using six operators under the VND framework. When a local
optimum is reached, two types of perturbations are used to
continue the search. The authors tested their algorithm on the
instance sets from [5], and showed that for most instances,
PLS achieved better results in less time.

Niu et al. [16] introduced a max-min ant system (MMAS)
based on decomposition for the MDCCVRP. The original
problem was decomposed into a series of smaller problems
that were solved using the max-min ant system. To avoid get-
ting stuck in local optima, a perturbation mechanism consisting
of increasing the probability of searching for solutions with
low pheromone and employing two random move operators
was used. The authors reported some record-breaking results
while it should be noted that some results were found to be
even better than the optimal results established in [17].

Damião et al. [19] used position indices to determine the
contribution of an edge to the arrival of the remaining cus-
tomers. They then solved the resulting model using the branch-
cut-and-price (BCP) algorithm of the VRPSolver package.
The proposed approach was evaluated on small-sized CCVRP
instances and all MDCCVRP instances, and achieved several
new best results for MDCCVRP instances.

Nucamendi-Guillén et al. [17] introduced two novel mixed-
integer formulations for the latency location routing problem
(LLRP), which were further adapted to the MDCCVRP. Their
results showed significant improvements in obtaining optimal
solutions compared with POPMUSIC.

Osorio-Mora et al. [18] proposed an iterated local search for
the MDCCVRP. ILS consists of three procedures: perturbation,
local search (LS), and simulated annealing cooperated with
variable neighborhood descent (SA-VND). The LS procedure
allows infeasible solutions to be visited using a fixed parameter
to penalize capacity violations. In the SA-VND procedure, a
VND procedure is applied after the SA search. The ILS algo-
rithm successfully found feasible solutions for nine instances
of the MDCCVRP that were previously unsolvable by the BCP
algorithm [19]. However, it is worth mentioning that the ILS
algorithm only managed to match a subset of the remaining
results achieved by the BCP algorithm, which represents the
best-known results. ILS was also tested on the related LLRP
and the multiple depots k-traveling repairman problem.

Table I shows the representative algorithms for solving the
CCVRP and MDCCVRP. See [28] for a comprehensive review
on vehicle routing with cumulative objectives.

III. TWO-INDIVIDUAL EVOLUTIONARY ALGORITHM FOR
CCVRP AND MDCCVRP

The proposed two-individual evolutionary algorithm is
based on the framework of the memetic algorithm (MA)
[29], which combines population-based genetic search with
neighborhood-based local search. The basic idea of an MA
is to take advantage of these complementary search methods.
In fact, it is generally believed that population-based search
provides more opportunities for exploration, while neighbor-
hood search provides more opportunities for exploitation.
When combined in an appropriate way the resulting hybrid
method can provide, a good balance between exploitation and
exploration, thus ensuring high search performance.

The performance of an MA depends on the design of two
key search components: crossover and local search. Their
design should incorporate useful problem-specific knowledge
of the given problem to ensure intensified search of specific
search regions and extensive exploration of promising areas.

MAs have been successfully used to solve many NP-hard
combinatorial optimization problems, including several routing
problems. However, maintaining a population (even with some
tens of solutions) in an MA can be time-consuming. Recently,
some algorithms based on a small population of two or three
individuals have proven to be highly successful [30, 31, 32].
Inspired by this idea, our TIEA algorithm uses a population of
only two individuals to speed up the search process. In addition
to this feature, TIEA incorporates a dedicated edge assembly
crossover (dEAX) and a powerful local optimization based on
adaptive feasible and infeasible variable neighborhood descent
(AFIVND). Other algorithmic components that contribute to
its performance include a population initialization procedure,
an ejection chain based mutation procedure, and a diversity
preserving population updating method.

As shown in Algorithm 1. The TIEA algorithm first creates
a population of two-individuals (line 3), then these individuals

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 4

undergo improvement by the AFIVND procedure (line 5). At
each generation (one while loop), a new offspring solution S
is generated by the dEAX crossover with the two individuals
(line 9). A mutation procedure is then applied with probability
mp to slightly change the offspring for diversification (line 10).
The offspring is further improved by the AFIVND procedure
(line 11), and the search information is updated according to
the obtained feasible local optimum (lines 12-16). Meanwhile,
this solution is recorded in an adaptive memory M (line 17).
Finally, the population is updated with the improved offspring
solution (line 18). If the best-found objective does not change
during Ir successive generations, the worse individual of the
population is replaced by a random solution from the adaptive
memory M (lines 19-21). The algorithm stops and returns the
best recorded solution when a given time limit (or an allowed
number of generations) is reached.

Algorithm 1: Pseudo-code of TIEA
Input: Input graph G = (V,E), time limit tmax, frequency of

updating the penalty parameter up, penalty parameter β,
frequency of renewing the population Ir

Output: The best solution Sb found.
1 I ← 0; // Iteration counter
2 In ← 0; // Counter of consecutive loops fb is not improved
3 P ← IniPool; // Initial two-individual pop, see Section III-A
4 for i← 1 to 2 do
5 Pi ← AFIV ND(Pi, up); // See Section III-D
6 if f(Pi) < f(Sb) then
7 Sb ← Pi; // Update the best solution ever found

8 while tmax is not reached do
9 S ← dEAX(P1, P2); // See Section III-B

10 S ←Mutation(S,mp); // See Section III-C
11 S′ ← AFIV ND(S, up);// Output the local optimum
12 if f(S′) < f(Sb) then
13 In ← 0;
14 Sb ← S′; // Record the best solution ever found

15 else
16 In ← In + 1;

17 Update adaptive memory M with S′;
18 UpdatingPop(P, S′); // See section III-E
19 if In ≥ Ir then
20 Replace the worse solution in P with a solution in M ; //

See section III-E
21 In ← 0;

22 I ← I + 1;

23 return Sb; // Return the best feasible solution ever found.

A. Population initialization

One notable characteristic of the CCVRP is that the weight
(travel time) of an edge in a tour impacts the waiting time
of all customers that follow the edge. Furthermore, the edge
that returns to the depot in a tour has no contribution to the
objective value of the tour. As such, given a solution, we can
reduce its objective value by moving the last customer from
any existing tours to a new tour, since this reduces the waiting
time for that customer. Thus, any solution can be improved by
this observation if the number of tours is less than K (the fleet
size) [2]. Consequently, our initialization method builds initial
solutions with K vehicles according to a greedy or random
construction method. With the random method, the unvisited
customer nodes are randomly assigned to the K tours. With

the greedy method, we try to assign the customer nodes by
minimizing the objective function, which is explained below.

For the single depot CCVRP, the greedy method first assigns
the K customer nodes closest to the depot as the first node of
each tour. Then, it extends each tour sequentially by adding to
the tour the closest unvisited customer from the last node of
the tour. This is based on the fact that minimizing the cost of
the edges preceding a node favors the objective minimization
of the resulting solution. This process continues until all
customers have been added to a tour.

For the MDCCVRP, the greedy method first selects a depot
for a new tour from the available depots. To do this, it
determines the depot and the first node of the new tour
based on the minimum distance between all depots and the
unselected customers. Specifically, it chooses a depot i and
an unvisited customer j with the smallest distance dij . This
process of depot selection and new tour creation is repeated
until the desired number of tours (K) has been reached. The
remaining procedure follows the same greedy method for the
CCVRP described above.

To obtain the two solutions of the initial population, one
solution is created randomly, while the other solution is built
using the aforementioned greedy method. Once obtained, each
of these solutions is submitted to the AFIVND procedure for
local optimization (Section III-D3). It is important to note
that AFIVND accepts infeasible solutions as input because the
capacity constraint is ignored during the greedy and random
construction methods. After the solution has been improved
by AFIVND, the first solution is always inserted into the
population, while the second solution is inserted only if the
distance between the two solutions, defined as the number of
non-common edges (as described in Section III-E), exceeds ten
percent of the total number of edges in a solution. Otherwise, a
new initial solution is generated using the random construction
method. This initial population procedure ensures a sufficient
level of population diversity.

B. Offspring generation based on dEAX
In memetic algorithms, the crossover plays a crucial role

as a key mechanism for exploring the search space. A well-
designed crossover is expected to allow offspring to inherit
valuable characteristics from the parent solutions while also
introducing diversity into the offspring [33]. The popular edge
assembly crossover operator (EAX) was originally designed
for the traveling salesman problem (TSP) [34, 35] and later
adapted to capacitated vehicle routing [36], vehicle routing
with time windows [37], and split delivery vehicle routing
[38]. EAX is based on the insight that high-quality solutions
share common edges, which are likely to be part of the optimal
solution. Additionally, in the offspring generated by EAX, the
majority of edges are inherited from the parents, with only
a few extra edges introduced to eliminate sub-tours, result-
ing in high-quality offspring with fewer long-distance edges.
This characteristic enables efficient search, saving expensive
computational effort for local search to improve the offspring
solution. In this work, we adapt the idea of EAX to the CCVRP
and MDCCVRP, and we use dEAX to denote the resulting
crossover to distinguish it from the original EAX crossover.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 5

GABGAB

1 2

3 4

AB-cycles

PA: EA PB: EB

Intermediate solutionIntermediate solution E-setE-setOffspringOffspring

Fig. 1. Illustration of the dEAX crossover for the CCVRP. The black point
is the depot.

GABGAB

PA: EAPA: EA PB: EBPB: EB
AB-sequences

E-set Offspring

1 2 3

AB-sequences

E-set Offspring

1 2 3

Fig. 2. Illustration of the dEAX crossover for the MDCCVRP. The black
points are the depots.

When the visit sequence of vertices in a CCVRP solution is
reversed, it can lead to a solution with a significantly different
objective value. Particularly, in high-quality solutions, altering
the relative visit order of vertices can substantially degrade
the solution quality. Therefore, compared to the CVRP, when
applying dEAX, the edge orientation should be taken into
accounted. Let PA and PB be the parent solutions for the
crossover. We define two graphs, GA = {V,EA} and GB =
{V,EB}, where EA is the edge set of solution PA, and EB
is the edge set of solution PB . The dEAX procedure consists
of the following steps.
• Generation of a joint graph GAB = {V, (EA ∪ EB) \

(EA ∩ EB)}.
• The edges in GAB are partitioned into several AB-cycles.

An AB-cycle is a cycle that begins with a randomly
selected node that has connected edges. Next, an adjacent
edge is chosen randomly with respect to this node, and
edges from GA and GB are alternately linked with
different directions until a cycle is formed. Once an AB-
cycle is formed, its edges are removed from GAB . This
process is repeated until there are no edges left in GAB .

• The E-set is generated using the block strategy, which
involves randomly selecting an AB-cycle, and then se-
lecting the AB-cycles that share at least one node with
the chosen cycle to form the E-set.

• The intermediate solution is generated by removing the
edges from GA that are included in the E-set (i.e., E-
set∩EA), and adding the edges from GB that are included
in the E-set (i.e., E-set∩EB). In this step, GA serves as
the base solution.

• If there are sub-tours, the sub-tours are connected to
the existing routes with the fewest number of nodes
using 2-opt*. This involves removing two edges: one
from a sub-tour and one from the existing routes. Then,
two new edges with the same directions as the deleted
edges are inserted, while keeping the directions of the
other edges unchanged. During this step, all possible
combinations are explored, and the two edges that result
in the minimum difference between the added edges and
the deleted edges are selected. This process is repeated
until all sub-tours are eliminated.

Fig. 1 provides an illustrative example. In this example,
AB-cycle 1 is selected as the central AB-cycle, which shares
a node with AB-cycle 4. The E-set is formed by these two
AB-cycles. In the intermediate solution, there exists a sub-
route that contains three arcs. This sub-tour is eliminated by
replacing two arcs with two new arcs indicated by black lines,
leading to the offspring solution.

It should be mentioned that in the original EAX crossover
[34, 35], multiple E-sets can be generated, resulting in nu-
merous intermediate solutions and offsprings. However, in
our dEAX crossover, only one E-set is randomly produced,
leading to the generation of a single offspring. Using one
offspring offers several advantages. Firstly, it helps avoid
the production of a large number of similar offspring, thus
preserving the diversity of the algorithm. Secondly, feeding
only one offspring as the input for the expensive local search
can speed up the convergence of the algorithm, especially
in large-scale instances where a number of possible E-sets
can be generated, and each local search iteration demands
considerable computation time. Finally, the dEAX crossover
ignores the capacity constraint and thus can generate infeasible
offspring. It is less expensive to repair one infeasible offspring
solution than to repair multiple infeasible solutions.

For the MDCCVRP, dEAX performs the same steps as for
the CCVRP, except the generation of ”AB-cycles”. Due to the
presence of multiple depots, the number of edges with the
same or opposite direction connected with the same depot in
GAB may be odd, making it impossible to form an AB-cycle.
To address this issue, all depots are treated as a single node in
our approach. Since it may not be a cycle any more, we use
the term AB-sequence. Specifically, when selecting an edge

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 6

R1

R2

R3

R1

R2

R3

a

b

c

c

a

b

Fig. 3. Illustration of the ejection chain for the mutation.

connected to a depot during the generation of AB-sequences,
the subsequent edge can be any unselected edge connected to
any depot, forming an AB-sequence. However, this may lead
to an invalid solution such that some routes may not form
a closed tour, as depicted in the middle sub-figure between
the ”E-set” and ”offspring” sub-figures in Fig. 2. To resolve
this problem, we begin from the edges departing from the
depot, and when we reach a node that is linked to another
depot, we delete this involved edge and connect this node
with the starting depot. As depicted in Fig. 2, we consider
all depots as one node when generating AB-sequence 2 and
AB-sequence 3. AB-sequence 1 is selected as the central AB-
sequence, then AB-sequence 1 and AB-sequence 2 constitute
the E-set. Additionally, we ensure that the route forms a
closed tour before generating a valid intermediate solution.
Since there are no sub-tours, the intermediate solution obtained
serves as the offspring through this dEAX crossover. dEAX
allows us to obtain a legal offspring without deviating from
the fundamental concept of EAX.

C. Mutation for the individual

An offspring from the crossover typically inherit many
edges from the parents. As a result, the offspring may be too
similar to the parents. To introduce diversity into the offspring,
we apply with probability mp a mutation procedure to modify
the solution. Specifically, three customers in different routes
are selected, then their positions are changed with an ejection
chain manner. As shown in Fig. 3, the nodes a, b and c from
routes R1, R2 and R3 are repositioned (a→ b→ c→ a). This
procedure is applied ml times (a parameter named mutation
length) and introduces a few edges that were not present in
the parents, creating a diversified offspring.

D. Adaptive feasible and infeasible variable neighborhood
descent

Adaptive feasible and infeasible variable neighborhood de-
scent (AFIVND) is the key local optimization component
of the proposed TIEA algorithm. AFIVND adopts variable
neighborhood descent (VND) [39] and reinforces VND with
an adaptive feasible and infeasible search strategy, with seven
neighborhoods Ni, i = 1, . . . , 7 (see Section III-D4).

Algorithm 2 summarizes the general scheme of AFIVND.
The input solution is first repaired if it is infeasible (lines
6-7). Then the improvement procedure starts with the first

Algorithm 2: Pseudo-code of AFIVND
Input: Input graph G = (V,E), input solution S, frequency of

updating the penalty parameter up
Output: The best feasible solution S′ found during the search.

1 γ ← 1;
2 β ← 1010; // Set β to be a large enough number
3 If ← 0; // Counter of consecutive iterations of feasible solutions
4 Ii ← 0; // Counter of consecutive iterations of infeasible solutions
5 ε← 10−4; // ε is a positive decimal close to 0
6 if Is infeasible(S) then
7 Repair the solution S; // See Section III-D1

8 β ← f(S)∑
i∈C

qi
; // The initial value of β

9 S′ ← S;
10 while stopping condition is not met do
11 S′′ ← S ⊕Nγ ; // Perform the first improvement with Nγ
12 if fp(S′′) < fp(S) then
13 if Is infeasible(S′′) then
14 Ii ← Ii + 1;
15 If ← 0;
16 if Ii > up then
17 if β < 0 then
18 β ← ε;

19 β ← β · (1.5 + rand(0, 1));

20 else
21 If ← If + 1;
22 Ii ← 0;
23 if If > up then
24 if β > 0 then
25 β ← β

1.5+rand(0,1)
;

26 if β < ε then
27 β ← −ε;

28 else
29 β ← β · (1.5 + rand(0, 1));

30 if f(S′′) < f(S′) then
31 S′ ← S′′; // Record the best feasible solution

32 S ← S′′; // Accept the better solution under fp
33 γ ← 1; // Move to the first neighborhood

34 γ ← γ + 1; // Move to the next neighborhood

35 return S′; // Return the best feasible solution found during AFIVND

neighborhood N1, and exploits it with the first-improvement
strategy (line 11). Each time an improved solution under
the penalty-based fitness function (see Eq. (2)) is found, the
penalty parameter β is adaptively adjusted based on the search
information (lines 12-29) (see Section III-D3). At the same
time, the best feasible solution is recorded (lines 30-31). The
solution is updated as the current solution (line 32) and the
algorithm switches to the first neighborhood N1 (line 33).
Otherwise, when the algorithm reaches a local optimum within
the current neighborhood, the algorithm switches to the next
neighborhood (line 34). AFIVND terminates when no better
solution can be found after exploring all the neighborhoods.

1) Repair procedure: Due to the relaxation of vehi-
cle capacity during the initialization procedure and the
dEAX crossover, an infeasible solution may be generated. In
AFIVND, the penalty parameter (see below) is dynamically
adjusted based on the feasibility information from the search
history. When AFIVND improves an infeasible solution that
is far from the feasible region, it may take several local
search runs to make the solution feasible by significantly

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 7

increasing the penalty parameter. In such cases, the penalty
parameter loses its ability to balance the feasible and infeasible
exploration. Therefore, we repair the infeasible input solution
before applying AFIVND to make the solution as close to
feasible as possible. Our repair procedure uses the inter-route
2-opt* operator (see Section III-D4) to reassign customers. The
evaluation of a solution is based on the modified objective
function (Eq. (2)), with the penalty parameter β set to a
sufficiently large positive value to strongly penalize capacity
violations. The 2-opt* operator is applied iteratively until
the solution becomes feasible or all neighborhood solutions
induced by the move operator have been explored, at which
point the repair procedure stops.

2) Neighborhood reduction: In our algorithm, we consider
the neighborhood of each customer with a number of nearest
vertices, called α-nearest (α < |V |). The rationale behind this
approach is that the neighborhood that includes customers
with a long distance is less likely to yield a good solution.
By focusing on the nearest vertices, the algorithm can avoid
examining unpromising solutions, thus increasing the search
efficiency. This approach has proven effective in solving other
routing problems, as shown in previous studies [40, 41].

3) Adaptive feasible and infeasible search: During its
search, AFIVND relaxes the capacity constraint and uses the
penalty-based fitness function shown in Eq. (2) to guide the
search process to visit both feasible and infeasible search
spaces. The infeasibility degree allowed is controlled by
dynamically adjusting the β parameter based on search in-
formation. This approach is consistent with the concept of
strategic oscillation [42], which allows for exploration of
infeasible search spaces to introduce more flexibility into the
algorithm. Indeed, allowing transitions between infeasible and
feasible regions can significantly improve the performance of
neighborhood-based local search methods.

In AFIVND, how to adjust the penalty parameter β is
especially important, because high-quality solutions may lie
on the boundary between the feasible and infeasible search
spaces. By controlling β, the algorithm is encouraged to
explore both types of search spaces and not to remain trapped
exclusively in the feasible or infeasible regions, facilitating the
discovery of potentially high-quality solutions.

fp(x) = f(x) + β

K∑
k=1

max(0,
∑
i∈rk

qi −Q) (2)

Specifically, the penalty parameter β is initially set as the
average cost per unit of demand for each route in the feasible
solution. Then, the parameter is updated adaptively based on
the search information. Two counters, If and Ii, are used to
keep track of the number of consecutively accepted feasible
and infeasible solutions in the previous iterations, respectively.
Whenever a solution is accepted, these counters are updated
accordingly. If If or Ii reaches a predetermined threshold up,
the procedure for changing the penalty parameter is triggered.
If the previous iterations have all resulted in feasible solutions,
the penalty parameter is decreased to encourage the algorithm
to move to infeasible regions. Conversely, if the algorithm is

deemed to have spent too much time in the infeasible search
space, the penalty parameter is increased to encourage explo-
ration of the feasible search space. The specific calculation
method can be observed in lines 19 and 25 of Algorithm 2.
It is worth noting that we introduce some randomness (rand
value) into the equation to add diversity and prevent possible
cycling after neighborhood reduction. When the parameter is
close to zero, we make it negative.

4) Neighborhood operators: In AFIVND, we use seven
neighborhood operators N1 to N7 to make slight changes
to the current solution. They include both intra-route and
inter-route operators, with the exception of N7, which is
specifically an inter-route operator. It is worth noting that
among the previous studies, only Sze et al. [11] applied
N7 for the CCVRP. However, N7 leads to a considerably
large neighborhood with a size of O(n

2α2

|R|2), which is quite
expensive to explore. To reduce the computational time needed
for examining N7, our algorithm uses a filter method to reduce
this neighborhood. This is the first time the N7 neighborhood
has been exploited for the MDCCVRP.
N1 (Relocate). A customer is removed from its original

position and inserted into another position in the same route
or a different route.
N2 (Swap). This operator swaps the positions of two cus-

tomers from the same or different routes. For the MDCCVRP,
the swap of two depots is also considered.
N3 (2-relocate). Two consecutive customers are removed

from their original positions and inserted into another position
in the same or different routes.
N4 (2-opt). This operator is different depending on inter-

route or intra-route. For the intra-route, two non-adjacent edges
are deleted, and two new edges are added. Meanwhile, the
edges between the two deleted edges are reversed. For the
inter-route, also called 2-opt*, two edges are deleted, and two
new edges are added.
N5 (Node-arc exchange). This operator changes the position

of a node and an arc. The node and the arc can be from the
same or different routes.
N6 (Arc-arc exchange). Two consecutive customers ex-

change their positions with two consecutive customers in the
same or different routes.
N7 (Swap*). Two customers are first selected from different

routes. These customers are then removed from their original
positions and inserted into the best positions in each other’s
route. It is crucial to emphasize that in our algorithm, this
operator is executed exclusively when the related routes of
the selected customers have overlapping segments.

It’s worth noting that the operators N3, N5, and N6 can
be considered as special cases of the general cross-exchange
operator [43], where the substring size is limited to 2.

E. Population updating

The population update strategy is a crucial procedure in
maintaining the diversity of the two-individual population.
In TIEA, the distance between two solutions Sa and Sb,
denoted as Dis(Sa, Sb), is defined as the number of non-
common edges in the two solutions, i.e., Dis(Sa, Sb) =

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 8

Algorithm 3: Pseudo-code of UpdatingPop
Input: Population P, solution to be inserted S′
Output: The updated population P.

1 if D(S′, P) > 0.1× ν then
2 if Fit(S′) > Fit(Sw) then
3 Delete Sw from P ; // Sw is the worst individual in P
4 Insert S′ into P;

5 return P

|Ea| − |Ea ∩Eb|. The distance between a solution S and the
population P , denoted as D(S, P), is defined as the minimum
distance between S and any solution in the population, as
shown in Eq. (3).

D(S, P) = min{Dis(S, Si) : Si ∈ P \ S} (3)

Let S′ represent the candidate solution for insertion into
the population P . If its distance from the population, as
defined in Eq. 3, exceeds ten percent of the total number
of edges in a solution (denoted as ν in Algorithm 3), we
consider inserting the individual S′ into the population. Sub-
sequently, we recalculate the fitness of all individuals in P .
Let P ′ = P ∪ {S′}. We define fmax = maxSi∈P ′{f(Si)},
fmin = minSi∈P ′{f(Si)}, Dmax = maxSi∈P ′{D(Si, P

′)},
and Dmin = minSi∈P ′{D(Si, P

′)}. The fitness of the indi-
viduals in P ′ is calculated using Equation (4).

Fit(S) = δ
fmax − f(S)

fmax − fmin
+ (1− δ)

(
D(S, P ′)−Dmin
Dmax −Dmin

)
(4)

This fitness function considers both the quality and diversity
of the solutions, with the parameter δ set to be 0.55. If
the inserted individual has a better fitness than the worst
individual in P , the solution S′ replaces the worst individual
(see Algorithm 3).

To enhance population diversity in case of search stagnation,
our proposed algorithm incorporates an adaptive memory
M [44], which stores the high-quality solutions encountered
during the AFIVND procedure. Each solution improved by
AFIVND is added to the adaptive memory, which has a
predefined size of 5000. Once the memory reaches its limit, the
oldest solution is removed to make space for the newest one,
and the solutions are organized based on their insertion order.
If the best solution remains unchanged for Ir consecutive
iterations, we use a random solution from the first half of
the memory (i.e., the solutions inserted earlier) to replace the
worst individual in the population.

F. Discussion

In this section, we provide a discussion about the novelties
and particular features of the proposed TIEA algorithm.

First, most existing algorithms restrict their search to the
feasible space. However, visiting intermediate infeasible so-
lutions can be beneficial for transitioning between different
feasible population, which may be difficult to achieve within

the feasible space alone. Our proposed algorithm allows for
the exploration of infeasible solutions using a dynamic penalty
approach to control capacity constraint violations. While a few
studies, such as [7, 11, 18, 21], have considered infeasible
solutions, they typically use a fixed penalty parameter. In
contrast, our TIEA algorithm dynamically adjusts the penalty
parameter to strike a balance between exploring feasible and
infeasible search spaces. This approach prevents the algorithm
from focusing excessively on either feasible or infeasible
spaces for too long, and allows the algorithm to explore the
boundary between the two types of search spaces, where
high-quality solutions may lie. The experiments presented in
Section V-C also show the merit of this approach.

Second, previous works, such as those by [2, 9, 20], have
employed an evolutionary framework. In their algorithms, a
solution is represented as a permutation of all customers
(a giant tour), and they apply the standard order crossover
(OX) operator to generate new offspring permutations. To
convert these visit sequences into a classic VRP solution, a
split procedure is used to decompose the permutation into
a set of closed tours. Unlike these approaches, our dEAX
crossover directly manipulates the multiroutes of the parent
solutions to transfer favorable features (i.e., shorter subtours)
from the parent solutions to the offspring, eliminating the need
to decode the giant tour into multiroutes. As shown in Section
V-B, our dEAX crossover outperforms the giant tour approach
using the order crossover and the split procedure both in terms
of solution quality and computational efficiency.

Third, another distinctive feature of our work is that, unlike
other population-based algorithms [2, 12, 16, 22] that typically
use several tens of individuals, our TIEA algorithm is the first
hybrid approach based on a very small population of only two
individuals for the CCVRP and the MDCCVRP. As shown in
Section V-A, the use of such a small population size proves to
be highly effective when compared to approaches that maintain
larger populations of individuals.

Finally, compared to the local search based algorithms
[6, 8, 13, 14], only our algorithm incorporates the swap* move
operator. This move operator allows the algorithm to explore
solution spaces that may be difficult for other approaches to
visit, while keeping the additional computational resources
required relatively modest.

IV. COMPUTATIONAL RESULTS

In this section, we present an extensive computational
study of the proposed TIEA algorithm applied to benchmark
instances for both the CCVRP and the MDCCVRP. The
main purpose is to provide a comprehensive evaluation of
the algorithm’s performance and to assess its effectiveness in
solving these challenging problems. The instances used in our
experiments and the solutions obtained by our algorithm are
available at https://github.com/YujiZou/CCVRP. The code of
our algorithm will be made available on this website when the
paper is published.

A. Benchmark instances
For the CCVRP, we adopt three widely used benchmark

instance sets known as CMT, GWKC, and L. To provide

https://github.com/YujiZou/CCVRP

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 9

a comprehensive assessment, we also show in the online
supplemental appendix our results on five small-sized instance
sets, named A, B, E, M, and P. For the MDCCVRP, we use
three benchmark instance sets: lr, p, and pr.

1) Benchmark instances for CCVRP:

• Set CMT: This set includes 7 instances with 50 to 199
customers. It was originally introduced in [2] and has
been extensively tested in subsequent studies.

• Set GWKC: This set consists of 20 medium-sized in-
stances with 200 to 483 customers. It was first introduced
in [7] and has been widely tested in many studies.

• Set L: This set contains 12 large-sized instances with 560
to 1200 customers. It was first presented in [11] and has
only been evaluated in the original paper and a subsequent
research conducted by [12].

2) Benchmark instances for MDCCVRP:

• Set S1: This set consists of 18 instances with 10 to 100
customers and was initially introduced by [5]. It should
be mentioned that three instances, lr10, lr11, and lr12,
were originally tested with 20 vehicles in [5], while in
[6], the number of vehicles used was 25. For our study,
we conduct tests on these three instances using both 20
and 25 vehicles. Consequently, the set actually comprises
21 instances.

• Set S2: This set, introduced in [5], contains 24 instances
with 48 to 360 customers. These instances have been
modified from the original sets p and pr, which were
introduced by [27] for the multi-depot vehicle routing
problem (MDVRP), by setting the number of vehicles in
each instance to 35.

• Set S3: This set, originally proposed for the multi-depot
vehicle routing problem in [27], comprises instance sets
p and pr with the original number of vehicles.

B. Experimental protocol and reference algorithms

TABLE II
PARAMETER TUNING RESULTS

Parameter Related section Description Considered value Final value

mp III-C mutation probability {0,0.1,0.2,0.3} 0.3
ml III-C mutation length {1,2,3,4,5} 2
α III-D2 granularity threshold {10,15,20,25,30} 20
up III-D3 frequency of updating penalty parameter {2,4,6,8,10} 3
Ir III-E frequency of replacing population {50,100,150,200,250} 150

The TIEA algorithm requires five main parameters: the mu-
tation probability (pm), the mutation length (pl), the granular-
ity threshold (α), the frequency of updating the penalty param-
eter (up), and the frequency of replacing the population (Ir).
To determine reasonable values for the parameters, we used
the automatic parameter tuning package Irace [45]. Through
this tuning process, we obtained the parameter configuration
presented in Table II. This configuration can be regarded as
the default parameter setting of TIEA, and it was consistently
used for all the experiments conducted in this study.

To evaluate our TIEA algorithm, we compare it against the
following state-of-the-art algorithms.

• For the CCVRP, we adopt five reference methods: the
adaptive large neighborhood search (ALNS) [7], the
unified hybrid genetic search (UHGS) [9], the two-stage
adaptive variable neighborhood search (AVNS) [11], the
brain storm optimization (BSO) algorithm [12], and the
skewed variable neighborhood search (SVNS) [14]. For
the CMT dataset, UHGS, AVNS and BSO were able
to achieve all the best-known results. For the GWKC
dataset, UHGS, AVNS and BSO retain the majority of
the best-known results, while ALNS retains one best-
known result. For the L dataset, only AVNS and BSO
were tested. We note that the source code for SVNS is
unavailable, so we faithfully re-implemented it (the code
will be available at https://github.com/YujiZou/CCVRP).
Furthermore, in [11], two versions of results are pre-
sented: one with five runs and the other with ten runs.
We use the version that performed the best with ten
runs as our reference. In addition to these five reference
algorithms, we also include a comparison with the best-
known solution (BKS) from all existing algorithms.

• For the MDCCVRP, we adopt three best reference al-
gorithms: the perturb-based local search (PLS) [6], the
iterated local search [18] and the branch-cut-and-price
(BCP) algorithm [19]. It should be noted that although
[16] presented some record-breaking results, some of
them were found to be even better than the proven optimal
results in [17]. Therefore, we ignore [16] in our study.

The proposed TIEA algorithm was implemented in C++ and
compiled using the g++ compiler with the -O3 optimization
option. The main experimental environments for the compared
algorithms are provided in Table III. For the three commonly
studied CCVRP instance sets (CMT, GWKC, and L), our
stopping condition was determined by the running time of
the leading algorithm for each instance given in the literature,
which are shown in the detailed results presented in Tables
A.I – A.III of the online supplemental appendix. The TIEA
algorithm was executed ten times per instance. For the small-
sized CCVRP instance sets, the stopping condition was set
to 5000 generations, and the algorithm was run 20 times per
instance. For the MDCCVRP, the stopping condition was set to
1000 generations (crossovers). In addition, to further show the
performance of our algorithm in the long run, we extended the
running generations to 5000 generations in our experiments.
The algorithm for the MDCCVRP was run 30 independent
times like [6].

TABLE III
EXPERIMENTAL ENVIRONMENTS OF THE COMPARED ALGORITHM

Algorithm Programming language Processor CPU(GHz) RAM(GB) Operation system

ALNS [7] C++ Pentium Core 2 2.0 3 Windows
UHGS [9] C++ Opteron 275 2.2 - -
AVNS [11] C++ Core i7 3.4 8 -
BSO [12] C++ Pentium 4 2.4 4 -
SVNS [14] C++ Xeon E5-2670 2.5 2 Linux
PLS [6] C++ Core i5-4210M 2.6 4 -
BCP [19] Julia/CPLEX 12.9 Core i7-3770 3.4 16 Ubuntu
ILS [18] C++ Core i7-8700K 3.7 32 Ubuntu
TIEA (this work) C++ Xeon E5-2670 2.5 2 Linux

https://github.com/YujiZou/CCVRP

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 10

C. Computational results and comparison

The TIEA algorithm is evaluated through a comparative
analysis with the reference algorithms discussed in Section
IV-A on the CCVRP instances in Section IV-A1 and on the
MDCCVRP instances in Section IV-A2.

TABLE IV
SUMMARY OF THE COMPARATIVE RESULTS OF THE BEST AND AVERAGE
OBJECTIVE VALUES BETWEEN TIEA AND REFERENCE ALGORITHMS ON

THE THREE SETS OF 39 COMMONLY USED CCVRP INSTANCES.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

CMT(7)

TIEA vs. BKS 0 7 0 - - - - -
TIEA vs. AVNS 0 7 0 - 5 0 2 0.30
TIEA vs. BSO 0 7 0 - 5 0 2 0.12
TIEA vs. UHGS 0 7 0 - 1 1 5 0.015
TIEA vs. ALNS 2 5 0 0.69 6 0 1 0.11
TIEA vs. SVNS 2 5 0 0.69 7 0 0 0.16

GWKC(20)

TIEA EX vs. BKS 5 13 2 0.97 - - - -
TIEA vs. BKS 4 9 7 0.05 - - - -
TIEA vs. AVNS 12 8 0 1.18e-3 18 0 2 1.34e-4
TIEA vs. BSO 13 5 2 1.29e-2 16 0 4 5.32e-2
TIEA vs. UHGS 7 8 5 0.50 3 0 17 3.42e-4
TIEA vs. ALNS 20 0 0 1.91e-6 19 0 1 5.72e-6
TIEA vs. SVNS 20 0 0 1.91e-6 20 0 0 1.91e-6

L(12)
TIEA EX vs. BKS 8 3 1 1.28e-2 - - - -
TIEA vs. BKS 8 3 1 1.28e-2 - - - -
TIEA vs. AVNS 9 2 1 7.65e-3 12 0 0 4.89e-4
TIEA vs. BSO 10 2 0 4.44e-3 11 0 1 1.46e-3

1) Comparative results on the CCVRP: Table IV shows
a summary of the comparative results between the TIEA
algorithm and the six references for the CCVRP instances,
while the detailed results are provided in Tables A.I–A.III
of the online supplemental appendix. In Table IV, the first
column represents the instance set. Column fbest provides
a summary of the best objective value achieved among 20
independent runs, while favg summarizes the average value.
Additionally, the column labeled ”#Wins” indicates the num-
ber of instances where our TIEA outperformed the reference
algorithm, ”#Ties” represents the number of instances with
the same results, and ”#Losses” indicates the number of
instances where our TIEA achieved worse results compared to
the reference algorithm. We also include the p-values from the
Wilcoxon signed-rank test (with a significance level of 0.05)
applied to the best and average values to verify the statistical
significance of the observe performance differences between
TIEA and each reference algorithm.

Based on the results, it is evident that TIEA outperforms the
reference algorithms for most instances. Compared to one of
the best reference algorithms UHGS [9], our TIEA algorithm
also achieves better solutions, although the dominance trend
is less pronounced, partly due to the longer running time of
UHGS (see the appendix). Generally, TIEA improves on the
best-known solutions for 12 instances. For the CMT instances,
TIEA achieves all of the best-known results. For the media-
sized GWKC instances, TIEA achieves 4 new best results and
matches 9 best-known results. For the large-sized L instances,
TIEA reports 8 new record-breaking results and matches 3
best-known results. Its result is slightly worse only in one
case, with a negligible gap of 0.00019% to the best-known
value.

To investigate the performance of our proposed algorithm
with extended running time, we performed another experiment
by extending the running time of TIEA to two hours for

the medium-sized GWKC instances and three hours for the
large-sized L instances. The summarized results are shown in
Table IV (TIEA EX) while the detailed results are provided
in Table A.IV of the online supplemental appendix. Compared
to the best-known results for these 32 GWKC and L instances,
TIEA EX improved the results for 13 instances and matched
the results for other 16 instances. These results demonstrate
the ability of the algorithm to find high-quality solutions.

We also evaluated the TIEA algorithm on the instance sets
A, B, E, M, and P, which have been studied in previous
CCVRP works. These instances are relatively small in size and
are considered easier. As shown in Tables A.V–A.VIII of the
online supplemental appendix, our algorithm is able to achieve
the best-known solutions for all these instances, except for one
case, surpassing all reference algorithms. These results provide
additional evidence of the effectiveness and competitiveness of
our algorithm in solving the CCVRP.

TABLE V
SUMMARY OF THE COMPARATIVE RESULTS ON THE BEST AND AVERAGE
OBJECTIVE VALUES BETWEEN TIEA AND REFERENCE ALGORITHMS ON

THE THREE MDCCVRP SETS OF 78 INSTANCES, WHERE TIEA-1000 AND
TIEA-5000 REPORT THE RESULTS WITH A STOPPING CONDITION OF 1000

GENERATIONS AND 5000 GENERATIONS RESPECTIVELY.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses #Wins #Ties #Losses

S1 (21)
TIEA-1000 vs. BKS 0 21 0 - - -
TIEA-1000 vs. PLS 8 10 0 18 0 0
TIEA-1000 vs. BCP 0 21 0 - - -
TIEA-1000 vs. ILS 3 18 0 17 4 0

S2 (24)
TIEA-1000 vs. BKS 0 20 4 - - -
TIEA-1000 vs. PLS 21 3 0 22 2 0
TIEA-1000 vs. BCP 0 20 4 - - -
TIEA-1000 vs. ILS 13 11 0 22 2 -

S3 (33)
TIEA-1000 vs. BKS 9 15 9 - - -
TIEA-1000 vs. PLS 29 4 0 33 0 0
TIEA-1000 vs. BCP 9 15 9 - - -
TIEA-1000 vs. ILS 25 8 0 31 0 2

S1 (21)
TIEA-5000 vs. BKS 0 21 0 - - -
TIEA-5000 vs. PLS 8 10 0 18 0 0
TIEA-5000 vs. BCP 0 21 0 - - -
TIEA-5000 vs. ILS 3 18 0 17 4 0

S2 (24)
TIEA-5000 vs. BKS 0 24 0 - - -
TIEA-5000 vs. PLS 21 3 0 22 2 0
TIEA-5000 vs. BCP 0 24 0 - - -
TIEA-5000 vs. ILS 14 10 0 22 2 0

S3 (33)
TIEA-5000 vs. BKS 9 24 0 - - -
TIEA-5000 vs. PLS 29 4 0 33 0 0
TIEA-5000 vs. BCP 9 24 0 - - -
TIEA-5000 vs. ILS 26 7 0 33 0 0

2) Results on the MDCCVRP: The comparative results
for the 78 MDCCVRP instances are presented in Table V,
while the detailed results are provided in Tables A.IX–A.XI
of the online supplemental appendix. TIEA-1000 and TIEA-
5000 refer to our algorithm with 1000 and 5000 generations
respectively. The results indicate that our TIEA algorithm
outperforms the reference algorithms by achieving 9 new best
results and matching the remaining 69 best-known results.

Specifically, compared to the PLS and ILS heuristic al-
gorithms, TIEA-1000 demonstrates a significant performance
advantage. It achieves better results in 58 out of 75 instances
and matches the remaining instances. Additionally, TIEA-1000
consistently outperforms PLS in terms of average results. A
similar trend is observed when comparing with ILS, as TIEA
outperforms ILS in 41 instances and matches the remaining
results. By examining Tables A.IX–A.XI of the online sup-
plemental appendix, it is evident that TIEA-1000 requires less
computing time than PLS and requires significantly less time

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 11

than ILS to find equal or better solutions.
Compared to the exact BCP algorithm, TIEA consistently

and quickly achieves all optimal solutions proven by BCP.
For all instances in S1, the best and average results of TIEA
are identical, showing the consistency of our algorithm in
achieving the optimal results over multiple runs. This trend
is also observed for most of the instances in S2. For the most
difficult instances of S3, this consistency is less obvious, but
the gap between the best and average results remains very
small.

Overall, the comparative results confirm the competitiveness
of TIEA in solving the MDCCVRP problem. TIEA outper-
forms the PLS and ILS algorithms in terms of both improved
results and computational efficiency. TIEA is able to find
all known optimal solutions proven by BCP and to discover
improved best solutions for 9 of the most difficult instances.

V. ASSESSMENT OF ALGORITHMIC COMPONENTS

In this section, we conduct additional experiments to gain
deeper insights into the individual influences of the main
components of the TIEA algorithm. We focus on three key
components: the small population, the dEAX crossover, and
the adaptive feasible and infeasible search. To assess the
impact of these components, we systematically replaced each
component with other methods to create algorithm variants.
For example, to demonstrate the superiority of the dEAX
crossover, we created two algorithm variants, one replacing
the dEAX crossover with the OX method using the giant tour
encoding, and the other using the multi-start mechanism to
replace the dEAX crossover. By comparing these modified
algorithm variants with the original TIEA, we can isolate the
effects of each component and analyze its influences on the
overall algorithm’s performance. The experiments were based
on the 32 CCVRP difficult instances of sets GWKC and L.
We set the experimental parameters of the TIEA variants to be
consistent with TIEA, as presented in Table II. The stopping
condition is also identical to that of TIEA, as detailed in Tables
A.II and A.III in the supplementary materials. All compared
variants were run on the same computer as TIEA.

A. Benefits of the small population

As outlined in Section III, our TIEA approach uses a small
population consisting of only two individuals. To investigate
the advantages of such a small population, we introduced four
variants of TIEA: HEA1 with only one individual, HEA5 with
five individuals, HEA20 with twenty individuals and HEA40

with forty individuals. In the variant HEA1, where only one
individual is present, the crossover is disabled, and a multi-
start approach, combined with a random construction method
(see Section III-A), is applied to continue the algorithm until
the time budget is reached. For HEA5, HEA20, and HEA40,
as the number of individuals increases, the frequency Ir of
renewing the population is also increased to ensure that the
population is explored fully. Specifically, 200 replacement
iterations are used for HEA5, 1000 for HEA20, and 2000
for HEA40. In addition, since there are four different patterns
(diamond, rectangle, flower and circle) in the GWKC and L

instance sets related to the distribution of customer nodes, we
have selected one representative instance from each of the four
patterns to draw the convergence charts in Fig. 4.

From Table VI, it can be concluded that the use of a
small population enhances the performance of the algorithm.
TIEA consistently achieves better results on a large majority
of the tested instances, demonstrating the effectiveness of the
small population. Although TIEA may exhibit slightly worse
performance in a few instances among the medium-sized
cases, it generally produces better solutions for most instances.
In the large-sized instances where algorithm effectiveness is
critical, the advantage of the small population becomes more
apparent, with only two instances experiencing a performance
decline. The small p-values further confirms this conclusion.
However, it should be noted that the average results obtained
by TIEA are not as good as those of the variants with more
individuals. This discrepancy may be due to the fact that a
larger population ensures more population diversity, which can
contribute to better stability of the algorithm.

The convergence charts in Fig. 4 vividly illustrate the
remarkable effectiveness of the TIEA algorithm induced by the
small population, as it quickly converges to better solutions.
We can observe that TIEA’s initial solution is much worse than
the variants with more individuals due to the small population
size. However, as time goes, TIEA converges much faster and
better than the other variants, demonstrating the benefit of the
small population. It’s worth mentioning that we observed a
similar trend on other instances during our experiments.

In summary, the computational analysis and convergence
charts confirm the valuable contribution of a small population
in enhancing the performance of TIEA.

TABLE VI
SUMMARY OF THE COMPARATIVE RESULTS ON THE BEST AND AVERAGE
OBJECTIVE VALUES BETWEEN TIEA AND FOUR VARIANT ALGORITHMS:
HEA1 WITH ONLY 1 INDIVIDUAL, HEA5 WITH 5 INDIVIDUALS, HEA20

WITH 20 INDIVIDUALS, AND HEA40 WITH 40 INDIVIDUALS

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

GWKC(20) TIEA vs. HEA1 19 1 0 1.91e-6 20 0 0 1.91e-6
TIEA vs. HEA5 6 12 2 0.18 3 0 17 1.34e-4
TIEA vs. HEA20 9 9 2 0.10 3 0 17 1.21e-2
TIEA vs. HEA40 11 8 1 1.11e-3 5 0 15 4.84e-2

L(12) TIEA vs. HEA1 12 0 0 4.88e-4 12 0 0 4.88e-4
TIEA vs. HEA5 7 3 2 0.04 5 0 7 0.42
TIEA vs. HEA20 9 2 1 2.44e-3 5 0 7 0.42
TIEA vs. HEA40 11 1 0 4.88e-4 6 0 6 0.30

B. Benefits of the dEAX crossover

The TIEA algorithm incorporates a dedicated dEAX
crossover that allows the heritage of common features from
parent solutions to offspring. We now explore the benefits of
the dEAX crossover by introducing two variant algorithms:
TIEA OX and TIEA NX. In TIEA OX, we replaced the
dEAX crossover with the order crossover (OX) that uses the
giant tour encoding combined with the fast split decoding
procedure introduced in [23]. This method has been used in [2]
for solving the CCVRP. In our implementation, we adopted an
improved version of the OX crossover, called adaptive order
crossover (AOX), which prevents the introduction of excessive

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 12

0 100 200 300 400 500 600 700 800
Time(Seconds)

12500

12600

12700

12800

12900

O
bj

ec
ti
ve

 v
al

ue
HEA1
TIEA
HEA5
HEA20
HEA40

(a) GWKC12

0 200 400 600 800 1000
Time(Seconds)

7000

7100

7200

7300

7400

7500

7600

O
bj
ec
ti
ve
 v
al
ue

HEA1
TIEA
HEA5
HEA20
HEA40

(b) GWKC15

0 100 200 300 400 500 600 700 800
Time(Seconds)

5500

5520

5540

5560

5580

5600

5620

O
bj
ec
ti
ve
 v
al
ue

HEA1
TIEA
HEA5
HEA20
HEA40

(c) GWKC19

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time(Seconds) 1e3

2.02

2.04

2.06

2.08

2.10

2.12

2.14

2.16

O
bj
ec
ti
ve
 v
al
ue

1e6

HEA1
TIEA
HEA5
HEA20
HEA40

(d) L12

Fig. 4. Convergence charts (running profiles) of TIEA and four TIEA
variants (denoted by HEA1, HEA5, HEA40, HEA20) on four representative
CCVRP instances (GWKC12, GWKC15, GWKC19 and L12) where HEAi
(i = 1, 5, 20, 40) uses a population of i individuals.

long edges in the offspring and proves to be successful in
solving the CVRP. Hence, TIEA OX uses the AOX method
together with the split decoding procedure to generate the
offspring. In TIEA NX, on the other hand, we simply removed
the dEAX crossover. To ensure that the time budget is effec-
tively used by TIEA NX, we restart the algorithm repetitively
until the time limit is reached. The TIEA NX variant allows
us to better understand the impact of the dEAX crossover
itself, with the solutions being improved solely through the
adaptive feasible and infeasible variable neighborhood descent.
We ran the compared algorithms under the same experimental
conditions as described in Section IV-B.

Table VII presents the comparative results between TIEA
and the TIEA OX and TIEA NX variants, together with the
corresponding p-values. Fig. 5 visualizes the deviation of the
two variants from the reference results obtained by TIEA, in
terms of the best and average objective values.

Table VII and Fig. 5 clearly show that the use of a crossover
can enhance the performance of the algorithm, as observed for
both TIEA and TIEA OX. In terms of the best and average
objective values, TIEA outperforms its competitors in all but
one instance when compared to TIEA NX. Furthermore, com-
pared to TIEA OX, TIEA consistently achieves better or equal
solutions for all but one instance. In addition, TIEA performs
better than TIEA OX in terms of the average objective values
in most instances. The small p-values further confirm the
statistically significant differences between the compared data.

This experiment highlights the significant role of the dEAX
crossover in the TIEA algorithm.

TABLE VII
SUMMARY OF THE COMPARISON RESULTS BETWEEN TIEA AND THE
VARIANTS TIEA OX AND TIEA NX, WHERE TIEA OX USES THE
ADAPTIVE ORDER CROSSOVER AND TIEA NX DOES NOT USE ANY

CROSSOVER.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

GWKC(20) TIEA vs. TIEA OX 12 7 1 0.01 17 0 3 1.21e-2
TIEA vs. TIEA NX 19 1 0 1.91e-6 20 0 0 1.91e-6

L(12) TIEA vs. TIEA OX 9 3 0 6.84e-3 9 0 3 6.40e-2
TIEA vs. TIEA NX 12 0 0 4.88e-4 12 0 0 4.88e-4

0 5 10 15 20 25 30
Instances

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ev

ia
ti

on
 t

o
TI

EA
 in

 f b
es

t(%
)

TIEA_OX
TIEA_NX

(a) Best objective value

0 5 10 15 20 25 30
Instances

0.0

1.0

2.0

3.0

4.0

5.0

D
ev

ia
ti

on
 t

o
TI

EA
 in

 f a
vg

(%
)

TIEA_OX
TIEA_NX

(b) Average objective value

Fig. 5. Comparative results under 10 independent runs of TIEA with two
variants on the CCVRP instance sets GWKS and L (32 instances), where
TIEA OX employs the order crossover with split procedure and TIEA NX
does not use a crossover.

C. Benefits of the adaptive feasible and infeasible search

The local optimization procedure AFIVND adaptively ex-
plores both feasible and infeasible solutions. In this section,
we examine the usefulness of this strategy by comparing
it with two algorithmic variants: TIEA FP and TIEA NP.
TIEA FP explores infeasible solutions by applying a fixed
penalty parameter, initially set as the average cost per demand
unit for each route of the VND input solution after the repair
procedure. On the other hand, TIEA NP visits only feasible
solutions. For this, we set the penalty value to an extremely
large value to avoid any violation of the capacity constraint.

The comparative results of the three compared algorithms
in solving the 39 CCVRP instances are shown in Table
VIII. To further evaluate the compared algorithms, we used
a benchmark tool called the Performance Profile [46], shown
in Fig. 6. Given a set of algorithms O and a set of instances
T , the performance ratio is defined as ζo,t =

fo,t
min{fo,t} , where

o ∈ O, t ∈ T . This variable represents the performance of
algorithm o on the instance t compared to the best performance
among all the algorithm on instance t. The performance
function of algorithm o is defined as TO(υ) =

|t∈T |ζo,t<υ|
|T | ,

which calculates the fraction of instances that algorithm o can
reach with at most υ many times the best algorithm.

From the information presented in Table VIII, it is evident
that our TIEA algorithm consistently obtains better solutions
than the two algorithm variants in all instances tested. In
terms of the average objective values, TIEA shows a clear
advantage over the other algorithms. Furthermore, allowing
the algorithm to explore infeasible solutions and to move back
and forth between different search regions proves beneficial

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 13

in finding high-quality solutions. Fig. 6 highlights that TIEA
achieves the highest TO(1) values for both the best and average
objective values, indicating its ability to produce the best
results. Moreover, TIEA is the first to reach TO(υ), implying
its consistent ability to solve all instances.

TABLE VIII
SUMMARY OF THE COMPARATIVE RESULTS BETWEEN TIEA AND THE

TWO VARIANTS TIEA FP AND TIEA NP, WHERE TIEA FP ALLOWS TO
VISIT INFEASIBLE SOLUTIONS WITH A FIXED PARAMETER TO PENALIZE
THE CAPACITY VIOLATION AND TIEA NP DOES NOT ALLOW TO VISIT

INFEASIBLE SOLUTIONS.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

GWKC(20) TIEA vs. TIEA FP 12 8 0 1.40e-3 16 0 4 4.00e-2
TIEA vs. TIEA NP 10 2 0 2.14e-4 18 0 2 1.02e-3

L(12) TIEA vs. TIEA FP 16 4 0 3.35e-3 11 0 1 6.84e-3
TIEA vs. TIEA NP 10 2 0 1.46e-3 8 0 4 4.25e-2

1.000 1.001 1.002 1.003 1.004 1.005
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

 o
f p

ro
bl
em

 s
ol
ve

d

TIEA
TIEA_FP
TIEA_NF

(a) Best objective value

1.000 1.001 1.002 1.003 1.004 1.005
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

ta
ge

 o
f p

ro
bl
em

 s
ol
ve

d

TIEA
TIEA_FP
TIEA_NF

(b) Average objective value

Fig. 6. The performance profiles of TIEA and the two variants TIEA FP and
TIEA NP on 32 CCVRP instances from sets GWKC and L. The left figure
corresponds to the best results, while the right figure shows the average results.

VI. CONCLUSION

The cumulative vehicle routing problem is a relevant model
for various real-world scenarios. Many efforts have been made
to develop solution methods for solving this NP-hard problem.
In this study, we proposed an effective two-individual evo-
lutionary algorithm (TIEA) to address this difficult problem,
considering both the case with a single depot (CCVRP) and the
case with multiple depots (MDCCVRP). Our TIEA algorithm
features a small population of only two individuals, which
helps to speed up the search process while preserving the
potential of a memetic algorithm. We introduced a special
crossover operator for the CCVRP and the MDCCVRP, in-
spired by the popular edge assembly crossover designed for the
TSP, to generate high-quality offspring. We also designed an
adaptive feasible and infeasible variable neighborhood descent
to improve offspring solutions by dynamically exploring both
feasible and infeasible search spaces.

To evaluate the performance of our algorithm, we conducted
extensive experiments using three sets of 39 CCVRP instances
and three sets of 78 MDCCVRP instances. The results demon-
strate that our algorithm outperforms all the reference algo-
rithms. Specifically, TIEA achieves 13 new best results and
matches 23 best-known results for the CCVRP instances, while

achieving 9 best results and matching the remaining 69 best-
known results with significantly reduced computation time for
the MDCCVRP. In addition, we conducted experiments on
85 small-sized instances, which confirmed the effectiveness
and competitiveness of our algorithm by reaching 84 best-
known results. Finally, we presented additional experiments to
understand the contributions of key algorithmic components,
including the two-individual strategy, the dEAX crossover,
and the adaptive feasible and infeasible variable neighborhood
descent.

Two directions can be considered for future work. First, the
order in which the neighborhood structures are explored may
influence the search progress, and a fixed order may not be
appropriate for all situations. Therefore, it would be interesting
to use learning techniques, such as reinforcement learning,
to determine the order of application of the neighborhoods.
Second, the modified dEAX crossover that proves to be
effective for the MDCCVRP, could be tested to solve other
routing problems involving multiple depots.

ACKNOWLEDGMENTS

We thank Prof. Salhi Said for answering our questions
related to their work reported in [11].

REFERENCES

[1] R. F. Hartl, G. Hasle, and G. K. Janssens, “Special issue on rich vehicle
routing problems,” Cent. Europ. J. Oper. Res., vol. 14, no. 2, p. 103,
2006.

[2] S. U. Ngueveu, C. Prins, and R. W. Calvo, “An effective memetic
algorithm for the cumulative capacitated vehicle routing problem,”
Comput. Oper. Res., vol. 37, no. 11, pp. 1877–1885, 2010.

[3] J. Molina, A. López-Sánchez, A. G. Hernández-Dı́az, and I. Martı́nez-
Salazar, “A multi-start algorithm with intelligent neighborhood selection
for solving multi-objective humanitarian vehicle routing problems,” J.
Heuristics, vol. 24, pp. 111–133, 2018.

[4] R. Bowerman, B. Hall, and P. Calamai, “A multi-objective optimization
approach to urban school bus routing: Formulation and solution method,”
Transp. Res. Pt. A-Policy Pract., vol. 29, no. 2, pp. 107–123, 1995.

[5] E. Lalla-Ruiz and S. Voß, “A popmusic approach for the multi-depot
cumulative capacitated vehicle routing problem,” Optim. Lett., vol. 14,
no. 3, pp. 671–691, 2020.

[6] X. Wang, T.-M. Choi, Z. Li, and S. Shao, “An effective local search
algorithm for the multidepot cumulative capacitated vehicle routing
problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 12, pp.
4948–4958, 2019.

[7] G. M. Ribeiro and G. Laporte, “An adaptive large neighborhood search
heuristic for the cumulative capacitated vehicle routing problem,” Com-
put. Oper. Res., vol. 39, no. 3, pp. 728–735, 2012.

[8] L. Ke and Z. Feng, “A two-phase metaheuristic for the cumulative
capacitated vehicle routing problem,” Comput. Oper. Res., vol. 40, no. 2,
pp. 633–638, 2013.

[9] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A unified solution
framework for multi-attribute vehicle routing problems,” Eur. J. Oper.
Res., vol. 234, no. 3, pp. 658–673, 2014.

[10] J. Lysgaard and S. Wøhlk, “A branch-and-cut-and-price algorithm for
the cumulative capacitated vehicle routing problem,” Eur. J. Oper. Res.,
vol. 236, no. 3, pp. 800–810, 2014.

[11] J. F. Sze, S. Salhi, and N. Wassan, “The cumulative capacitated vehicle
routing problem with min-sum and min-max objectives: An effective
hybridisation of adaptive variable neighbourhood search and large neigh-
bourhood search,” Transp. Res. Pt. B-Methodol., vol. 101, pp. 162–184,
2017.

[12] L. Ke, “A brain storm optimization approach for the cumulative capac-
itated vehicle routing problem,” Memet. Comput., vol. 10, pp. 411–421,
2018.

[13] S. Nucamendi-Guillén, F. Angel-Bello, I. Martı́nez-Salazar, and A. E.
Cordero-Franco, “The cumulative capacitated vehicle routing problem:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024 14

New formulations and iterated greedy algorithms,” Expert Syst. Appl.,
vol. 113, pp. 315–327, 2018.

[14] N. Smiti, M. M. Dhiaf, B. Jarboui, and S. Hanafi, “Skewed general
variable neighborhood search for the cumulative capacitated vehicle
routing problem,” Int. Trans. Oper. Res., vol. 27, no. 1, pp. 651–664,
2020.

[15] N. A. Kyriakakis, M. Marinaki, and Y. Marinakis, “A hybrid ant colony
optimization-variable neighborhood descent approach for the cumulative
capacitated vehicle routing problem,” Comput. Oper. Res., vol. 134, p.
105397, 2021.

[16] M. Niu, R. Liu, and H. Wang, “A max-min ant system based on de-
composition for the multi-depot cumulative capacitated vehicle routing
problem,” in IEEE Congr. Evol. Comput., CEC - Proc. Virtual, Krakow,
Poland: IEEE, 2021, pp. 620–627.

[17] S. Nucamendi-Guillén, I. Martı́nez-Salazar, S. Khodaparasti, and M. E.
Bruni, “New formulations and solution approaches for the latency
location routing problem,” Comput. Oper. Res., vol. 143, p. 105767,
2022.

[18] A. Osorio-Mora, J. W. Escobar, and P. Toth, “An iterated local search
algorithm for latency vehicle routing problems with multiple depots,”
Comput. Oper. Res., vol. 158, p. 106293, 2023.

[19] C. M. Damião, J. M. P. Silva, and E. Uchoa, “A branch-cut-and-price
algorithm for the cumulative capacitated vehicle routing problem,” 4OR-
Q. J. Oper. Res., vol. 21, pp. 47–71, 2023.

[20] R. Liu and Z. Jiang, “A hybrid large-neighborhood search algorithm for
the cumulative capacitated vehicle routing problem with time-window
constraints,” Appl. Soft. Comput., vol. 80, pp. 18–30, 2019.

[21] N. A. Kyriakakis, I. Sevastopoulos, M. Marinaki, and Y. Marinakis,
“A hybrid tabu search–variable neighborhood descent algorithm for the
cumulative capacitated vehicle routing problem with time windows in
humanitarian applications,” Comput. Ind. Eng., vol. 164, p. 107868,
2022.

[22] N. A. Kyriakakis, M. Marinaki, N. Matsatsinis, and Y. Marinakis,
“A cumulative unmanned aerial vehicle routing problem approach for
humanitarian coverage path planning,” Eur. J. Oper. Res., vol. 300, no. 3,
pp. 992–1004, 2022.

[23] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Comput. Oper. Res., vol. 31, no. 12, pp. 1985–2002,
2004.

[24] N. Christofides, A. Mingozzi, and P. Toth, “The vehicle routing prob-
lem,” in Combinatorial Optimization, N. Christofides, A. Mingozzi,
P. Toth, and C. Sandi, Eds. John Wiley & Sons, 1979, pp. 315–338.

[25] B. L. Golden, E. A. Wasil, J. P. Kelly, and I.-M. Chao, “The impact
of metaheuristics on solving the vehicle routing problem: algorithms,
problem sets, and computational results,” in Fleet Management and
Logistics. Boston MA: Springer US, 1998, pp. 33–56.

[26] F. Li, B. Golden, and E. Wasil, “Very large-scale vehicle routing: new
test problems, algorithms, and results,” Comput. Oper. Res., vol. 32,
no. 5, pp. 1165–1179, 2005.

[27] J.-F. Cordeau, M. Gendreau, and G. Laporte, “A tabu search heuristic for
periodic and multi-depot vehicle routing problems,” Networks, vol. 30,
no. 2, pp. 105–119, 1997.

[28] K. Corona-Gutiérrez, S. Nucamendi-Guillén, and E. Lalla-Ruiz, “Vehicle
routing with cumulative objectives: A state of the art and analysis,”
Comput. Ind. Eng., vol. 169, p. 108054, 2022.

[29] C. C. Ferrante Neri and P. Moscato, Handbook of memetic algorithms.
Heidelberg, Germany:Springer, 2011.

[30] L. Moalic and A. Gondran, “Variations on memetic algorithms for graph
coloring problems,” J. Heuristics, vol. 24, pp. 1–24, 2018.

[31] J. Ding, Z. Lü, C.-M. Li, L. Shen, L. Xu, and F. Glover, “A two-
individual based evolutionary algorithm for the flexible job shop schedul-
ing problem,” in AAAI Conf. Artif. Intell., vol. 33, no. 01, Honolulu, HI,
USA, 2019, pp. 2262–2271.

[32] Y. Zhou, G. Wang, J.-K. Hao, N. Geng, and Z. Jiang, “A fast tri-
individual memetic search approach for the distance-based critical node
problem,” Eur. J. Oper. Res., vol. 308, no. 2, pp. 540–554, 2023.

[33] J.-K. Hao, “Memetic algorithms in discrete optimization,” in Handbook
of Memetic Algorithms, F. Neri, C. Carlos, and M. Pablo, Eds. Hei-
delberg, Germany: Springer, 2012, vol. 379, ch. 6, pp. 73–94.

[34] Y. Nagata, “Edge assembly crossover: A high-power genetic algorithm
for the traveling salesman problem,” in Proceedings of the 7th Internati-
nal Conferencen on Genetic Algorithms, East Lansing, MI, USA, 1997,
pp. 450–457.

[35] Y. Nagata and S. Kobayashi, “A powerful genetic algorithm using edge
assembly crossover for the traveling salesman problem,” INFORMS J.
Comput., vol. 25, no. 2, pp. 346–363, 2013.

[36] Y. Nagata and O. Bräysy, “Edge assembly-based memetic algorithm for

the capacitated vehicle routing problem,” Networks, vol. 54, no. 4, pp.
205–215, 2009.

[37] Y. Nagata, O. Bräysy, and W. Dullaert, “A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows,”
Comput. Oper. Res., vol. 37, no. 4, pp. 724–737, 2010.

[38] P. He and J.-K. Hao, “General edge assembly crossover-driven memetic
search for split delivery vehicle routing,” Transp. Sci., vol. 57, no. 2,
pp. 482–511, 2023.

[39] N. Mladenović and P. Hansen, “Variable neighborhood search,” Comput.
Oper. Res., vol. 24, no. 11, pp. 1097–1100, 1997.

[40] K. Helsgaun, “An effective implementation of the lin–kernighan travel-
ing salesman heuristic,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 106–130,
2000.

[41] P. Toth and D. Vigo, “The granular tabu search and its application to
the vehicle-routing problem,” INFORMS J. Comput., vol. 15, no. 4, pp.
333–346, 2003.

[42] F. Glover and J.-K. Hao, “The case for strategic oscillation,” Ann. Oper.
Res., vol. 183, pp. 163–173, 2011.

[43] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin, “A
tabu search heuristic for the vehicle routing problem with soft time
windows,” Transp. Sci., vol. 31, no. 2, pp. 170–186, 1997.

[44] C. D. Tarantilis, “Solving the vehicle routing problem with adaptive
memory programming methodology,” Comput. Oper. Res., vol. 32, no. 9,
pp. 2309–2327, 2005.

[45] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43–58, 2016.

[46] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Math. Program., vol. 91, pp. 201–213, 2002.

1

Supplementary materials of paper ”A two-individual
evolutionary algorithm for cumulative capacitated
vehicle routing with single and multiple depots”

Yuji Zou, Jin-Kao Hao*, Qinghua Wu

I. DETAILED RESULTS FOR THE CCVRP

This appendix provides the computational results of our
TIEA algorithm and the reference algorithms on the CCVRP
instances.

A. Results on the commonly used CMT, GWKC, and L sets

Tables A.I–A.III present detailed comparative results on
these most commonly used instance sets under the experimen-
tal protocol given in Section IV-B in the main text. In these
tables, the first column displays the name of the instance,
while the second and third columns indicate the number
of customers and the size of the vehicle fleet, respectively.
The remaining columns provide computational information
for each algorithm, including our TIEA and the reference
algorithms. Columns fbest and favg present the best objective
value and the average objective value over ten runs, respec-
tively. Column Tavg displays the average running time for
each reference algorithm and we use the shortest time as the
cut-off time of our TIEA algorithm. The reported running
times have been adjusted to account for differences in CPU
frequency with respect to the 2.0GHz processor used to run
the ALNS algorithm [8] (see Table III in Section IV-B of
the main text for CPU information). Specifically, the reported
times are multiplied by 1.25 for SVNS (2.5GHz CPU) [9],
1.1 for UHGS (2.2GHz CPU) [11], 1.7 for AVNS (3.4GHz
CPU) [10], 1.2 for BSO (2.4GHz CPU) [2], and 1.25 for
TIEA (2.5GHz CPU) (This work). Since the run time of
an algorithm also depends on other factors (programming
language, data structures, compiler...), the timing information
is provided for indicative purposes only. The best results
among the algorithms are highlighted in bold. The results show
that our TIEA algorithm competes very favorably with the
reference algorithms.

Table A.IV presents a comparative assessment on the
GWKC and L sets between the best-known solutions (BKS)
and our TIEA algorithm with longer running times (TIEA EX)
(two hours for the medium GWKC instances and three hours
for the large L instances) under 20 independent runs. The
dominant results are highlighted in bold.

B. Results on the small CCVRP instances

Table A.V presents detailed results on the 85 small-size
instances from 5 instance sets, which were tested in several
recent studies. As most reference algorithms, we run TIEA 20

times per instance with a stopping condition of 5000 genera-
tions per run. As our references, we use the following state-
of-the-art algorithms: BCP (branch-and-cut-and-price) [5], IG-
PRB (iterated greedy algorithm) [6], ACS-VND (hybrid ant
colony system-variable neighborhood descent) [3], and HTS-
VND (hybrid tabu search-variable neighborhood descent) [4].

In Table A.V. The first column indicates the name of the
instance set, while the remaining columns provide the number
of instances for which an algorithm reports the best result and
the average running time for all instances in the set. The last
row of the table displays the total result information for all
five instance sets combined. The computational time has been
adjusted based on the main frequency of the CPU. Specifically,
to maintain consistency with the previously mentioned running
times, we have used a base CPU frequency of 2.0GHz as well.
Therefore, the reported running times have been multiplied
by the following factors: 1.265 for BCP (2.53GHz CPU)
[5], 1.7 for ACS-VND (3.4GHz CPU) [3], 1.2 for IG-PRB
(2.4GHz CPU) [6], 1.75 for HTS-VND (3.5GHz CPU) [4],
1.25 for TIEA (2.5GHz CPU) (this work). Tables A.VI–A.VIII
provide detailed result for each individual instance. These
tables include the lower bound and upper bound obtained by
BCP, as well as the best objective value and average value
achieved by the heuristic algorithms. The best results among
the algorithms are highlighted in bold in these tables.

These tables show that TIEA outperforms the reference
algorithms. TIEA achieves the highest number of best-known
results. There is only one instance where the best-known result
is not obtained by TIEA, but the difference is extremely small
(0.15%), and only one algorithm can achieve the best result
for this instance. Furthermore, our TIEA algorithm shows
better average results compared to the reference algorithms for
most instances. Additionally, the total average running time of
our algorithm is the shortest. These observations confirm the
effectiveness and competitiveness of our TIEA algorithm for
solving these five sets of CCVRP instances.

II. DETAILED RESULTS FOR THE MDCCVRP

This appendix shows detailed comparative results of our
proposed TIEA algorithm and the reference algorithms on the
three MDCCVRP instance sets: lr, p, and pr with different
vehicles (see Section IV-A of the main document). The results
are presented in Tables A.IX–A.XI. In these tables, the first
column displays the name of the instance, while the next
three columns indicate the number of depots, the number of

2

TABLE A.I
COMPARATIVE RESULTS OF PROPOSED TIEA FOR CCVRP WITH THE REFERENCE ALGORITHMS ON THE 7 INSTANCES OF SET CMT.

Instances SVNS [9] ALNS [8] UHGS [11] AVNS [10] BSO [2] TIEA (this work)

Name n R fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg fbest favg Tavg

CMT1 50 5 2230.35 2260.03 16.17 2230.35 2235.27 30.29 2230.35 2230.35 29.04 2230.35 2242.47 20.21 2230.35 2242.09 17.64 2230.35 2247.12 17.63
CMT2 75 10 2391.63 2431.97 54.43 2391.63 2401.72 60.77 2391.63 2394.00 46.20 2391.63 2392.54 25.57 2391.63 2410.55 22.48 2391.63 2397.57 22.48
CMT3 100 8 4045.42 4103.36 192.50 4045.42 4063.98 172.45 4045.42 4045.42 61.38 4045.42 4068.71 69.75 4045.42 4061.90 60.96 4045.42 4046.81 60.94
CMT4 150 12 4987.52 5098.42 416.86 4987.52 4994.93 235.12 4987.52 4987.52 121.44 4987.52 4991.65 102.92 4987.52 5048.46 92.68 4987.52 4987.52 92.64
CMT5 199 17 5824.28 5920.87 416.86 5838.32 5857.76 277.37 5806.02 5809.94 265.32 5806.02 5828.57 152.57 5806.02 5816.06 135.36 5806.02 5816.45 135.32
CMT11 120 7 7317.22 7454.17 116.46 7315.87 7341.28 202.07 7314.55 7314.55 89.10 7314.55 7330.97 82.14 7314.55 7339.83 71.64 7314.55 7314.89 71.62
CMT12 100 10 3558.92 3581.48 65.78 3558.92 3566.06 152.74 3558.92 3558.93 42.24 3558.92 3560.18 58.16 3558.92 3558.92 53.72 3558.92 3558.92 55.70

TABLE A.II
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE CCVRP WITH THE REFERENCE ALGORITHMS ON THE 20 INSTANCES OF SET

GWKCT

Instances SVNS [9] ALNS [8] UHGS [11] AVNS [10] BSO [2] TIEA (this work)

Name n R fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg fbest favg Tavg fbest favg Tavg

GWKC1 240 9 54862.24 55173.79 1165.32 54786.92 54853.76 1038.27 54739.85 54742.20 488.40 54739.80 54778.90 422.18 54675.49 54748.80 347.63 54739.85 54768.54 347.63
GWKC2 320 10 100998.87 101669.09 1524.52 100662.53 100934.34 1484.74 100560.16 100562.52 726.00 100560.00 100626.45 1202.94 100560.16 100619.90 848.55 100560.16 100609.76 848.55
GWKC3 400 10 171407.54 173032.55 2120.37 171613.59 172231.14 2061.75 170923.53 170964.42 1580.70 170924.00 171067.61 2103.21 170923.55 171093.44 1466.81 170923.54 171057.08 1466.81
GWKC4 480 10 263976.25 266339.67 2683.55 263433.03 265207.46 2626.89 261993.33 262044.19 1725.24 261993.00 262166.98 2517.67 262005.00 262126.13 1946.57 261993.34 262174.97 1946.57
GWKC5 200 5 114282.93 115552.48 1087.27 114494.66 114846.27 1200.67 114163.63 114163.63 458.70 114163.64 114264.27 428.30 114163.64 114163.64 349.82 114163.63 114169.26 349.82
GWKC6 280 7 140680.42 142416.93 769.674 140804.64 140929.10 1547.43 140430.08 140430.08 834.9 140430.09 140568.73 798.67 140430.09 140442.17 548.18 140430.09 140501.83 548.18
GWKC7 360 8 179739.77 182064.3 1574.42 180481.56 181610.82 1926.19 178880.44 178976.20 1759.56 179378.00 180124.94 1113.16 179479.34 180706.15 429.32 179129.79 179516.10 1113.16
GWKC8 440 10 195174.60 196216.38 2147.27 194988.74 195174.85 2330.34 193659.14 193683.21 1720.62 193689.00 193954.60 1814.34 193699.70 193815.40 1493.28 193686.84 193786.75 1493.28
GWKC9 255 14 4726.80 4745.07 438.00 4725.59 4728.05 864.89 4722.06 4724.01 460.02 4723.95 4730.46 356.01 4721.39 4724.14 310.34 4721.39 4723.97 310.34
GWKC10 323 16 6720.00 6744.71 985.01 6713.92 6717.76 1092.34 6713.26 6720.04 679.80 6712.53 6724.12 744.02 6706.25 6716.38 484.25 6712.53 6715.63 484.25
GWKC11 399 18 9229.99 9288.06 934.35 9214.07 9216.60 1356.99 9219.42 9222.92 964.26 9210.45 9230.59 992.44 9216.37 9225.26 709.16 9210.32 9216.97 932.37
GWKC12 483 19 12601.40 12754.60 1581.14 12526.17 12543.04 1540.32 12500.52 12516.98 1891.56 12506.40 12550.20 1044.77 12495.60 12554.02 829.51 12490.93 12530.45 829.51
GWKC13 252 26 3637.84 3662.73 653.12 3628.30 3638.50 632.72 3627.45 3632.63 472.56 3632.61 3654.13 210.63 3630.43 3637.91 195.68 3627.45 3633.75 328.08
GWKC14 320 29 5338.46 5450.88 446.47 5216.80 5257.95 682.19 5187.56 5206.53 1072.5 5205.75 5216.86 267.61 5209.86 5234.65 158.83 5196.47 5232.46 267.61
GWKC15 396 33 7055.50 7138.33 703.61 7010.41 7023.12 855.25 7005.47 7015.51 1234.20 7010.13 7031.42 1036.73 7014.92 7048.05 798.44 7001.42 7022.78 1036.73
GWKC16 480 37 9319.29 9395.76 802.94 9250.98 9268.30 1104.53 9239.10 9247.68 1800.48 9243.35 9269.51 1639.80 9244.53 9262.97 1218.37 9238.74 9250.90 1218.37
GWKC17 240 22 3077.59 3103.50 464.94 3065.46 3068.29 618.70 3060.14 3061.28 399.96 3063.02 3066.02 398.14 3060.50 3063.80 345.22 3059.42 3061.65 345.22
GWKC18 300 27 4410.46 4487.47 492.62 4221.14 4244.60 630.47 4199.43 4211.80 768.24 4216.01 4237.85 617.78 4223.73 4267.94 405.28 4206.01 4218.96 586.04
GWKC19 360 33 5571.80 5607.91 534.78 5523.38 5531.78 853.43 5496.39 5502.59 1125.96 5501.21 5534.90 767.94 5507.47 5513.75 630.62 5496.66 5507.88 767.94
GWKC20 420 38 7354.04 7479.58 552.33 7223.08 7240.86 881.92 7184.19 7188.59 1440.12 7207.88 7228.96 885.67 7203.81 7229.66 725.80 7189.15 7198.76 725.80

TABLE A.III
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE
CCVRP WITH THE REFERENCE ALGORITHMS ON THE 12 INSTANCES OF

SET L

Instances AVNS [10] BSO [2] TIEA (this work)

Name n R fbest favg Tavg fbest favg Tavg fbest favg Tavg

L1 560 10 374285.00 374865.40 2157.64 373769.56 374362.57 2055.30 373769.53 374116.30 2055.30
L2 600 14 218263.00 219265.10 2427.43 218313.77 218627.05 2535.72 218255.11 218348.33 2535.72
L3 640 10 506252.00 507468.06 2547.14 506252.20 506738.03 2390.88 506252.21 506794.72 2390.88
L4 720 10 659440.00 661788.10 2653.79 659441.23 660679.69 2718.30 659441.23 660134.29 2718.30
L5 760 17 251711.00 252270.80 3679.14 251646.09 252019.03 3600.00 251582.73 521733.64 3625.08
L6 800 10 834861.00 836689.50 3312.77 833388.51 834397.35 3285.42 833336.74 834073.14 3285.42
L7 840 19 263299.00 264877.60 3824.32 262890.15 263078.99 3600.00 262881.75 263026.39 3600.00
L8 880 10 1029060.00 1031879.01 4033.42 1028056.25 1031588.88 3600.00 1027938.60 1028366.48 3600.00
L9 960 10 1243250.00 1250196.50 4402.32 1243344.55 1244334.51 3600.00 1243246.88 1244002.57 4410.48
L10 1040 10 1479270.00 1481956.70 4568.07 1479775.49 1482572.72 3600.00 1479261.66 1480999.07 4658.34
L11 1120 10 1735980.00 1738516.50 5081.81 1736114.60 1739102.72 3600.00 1735980.00 1736531.14 5080.56
L12 1200 10 2013640.00 2016821.40 6008.65 2013640.86 2016745.78 3600.00 2013447.82 2015251.92 3600.00

customers, and the size of the vehicle fleet. The remaining
columns provide computational information for each algo-
rithm. Columns fbest and favg indicate the best objective
value and the average objective value, respectively. Column
Tavg shows the average running time for each algorithm.
The reported running times have been adjusted to account for
differences in CPU frequency. To maintain consistency with
the running times in previous sections, a base CPU frequency
of 2.0GHz was also used. The reported times are adjusted
accordingly: multiplied by 1.3 for PLS (2.6GHz CPU) [12],
1.7 for BCP (3.4GHz CPU) [1], 1.25 for TIEA (2.5GHz CPU)
(this work). Additionally, ILS [7] reported the total running
time of the 30 independent runs in the original paper. We have
transformed it into the average time per run and multiplied by
1.85 (3.7GHz). The CPU information can be seen in Table III

TABLE A.IV
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM WITH

LONGER RUNNING TIMES FOR CCVRP WITH THE BEST-KNOWN RESULT
ON THE 32 INSTANCES OF SETS GWKC AND L

Instances BKS TIEA EX

Name n R fbest fbest

GWKC1 240 9 54675.49 54739.85
GWKC2 320 10 10560.16 100560.16
GWKC3 400 10 170923.55 170923.53
GWKC4 180 10 261993.00 261993.33
GWKC5 200 5 114163.64 114163.63
GWKC6 280 7 140430.09 140430.09
GWKC7 360 8 178880.44 178880.42
GWKC8 440 10 193659.14 193659.18
GWKC9 255 14 4721.39 4721.39
GWKC10 323 16 6706.25 6712.53
GWKC11 399 18 9210.45 9210.32
GWKC12 483 19 12495.60 12487.40
GWKC13 252 26 3627.45 3627.39
GWKC14 320 29 5187.56 5187.56
GWKC15 396 33 7005.47 6999.60
GWKC16 480 37 9239.10 9233.95
GWKC17 240 22 3060.14 3059.42
GWKC18 300 27 4199.43 4199.42
GWKC19 360 33 5496.39 5496.39
GWKC20 420 38 7184.19 7183.12
L1 560 10 373769.56 373769.51
L2 600 14 218263.00 218209.79
L3 640 10 506252.00 506252.150
L4 720 10 659440.00 659441.19
L5 760 17 251646.09 251460.65
L6 800 10 8333388.51 833336.66
L7 840 19 262890.15 262794.11
L8 880 10 1028056.25 1027938.58
L9 960 10 1243250.00 1243246.88
L10 1040 10 1479270.00 1479261.66
L11 1120 10 1735980.00 1735980.00
L12 1200 10 2013640.00 2013433.78

of the main document. The BCP algorithm only reported the
upper bound, the running time, and the number of used nodes.
The best results for each instance among the algorithms are
highlighted in bold.

3

TABLE A.V
SUMMARY OF THE RESULTS FOR THE CCVRP ON THE SMALL INSTANCES

OF SETS A, B, E, M AND P, OBTAINED BY TIEA AND THE REFERENCE
ALGORITHMS, INCLUDING THE NUMBER OF INSTANCES WHOSE

BEST-KNOWN SOLUTIONS CAN BE REACHED BY AN ALGORITHM AND THE
AVERAGE RUNNING TIME REQUIRED TO ATTAIN ITS BEST RESULTS.

Instances set BCP [5] IG-PRB [6] ACS-VND [3] HTS-VND [4] TIEA (this work)

#BKS Tavg #BKS Tavg #BKS Tavg #BKS Tavg #BKS Tavg

A(27) 26 507.97 27 16.27 27 5.59 27 9.33 27 8.25
B(22) 15 1797.29 19 17.06 21 6.10 22 17.17 22 7.76
E&M(14) 3 3257.38 12 111.06 12 24.94 9 27.81 13 10.04
P(22) 16 960.83 21 40.09 22 24.95 21 14.39 22 8.02
Total 60 6523.47 79 184.49 82 60.67 79 62.51 84 34.07

TABLE A.VI
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE

CCVRP WITH THE REFERENCE ALGORITHMS ON THE 27 SMALL
INSTANCES OF SET A.

Instances BCP [5] IG-PRB [6] ACS-VND [3] HTS-VND [4] TIEA (this work)

Name n K BKS LB UB fbest favg fbest favg fbest favg fbest favg

A-n32-k5 32 5 2192 2192 2192 2192 2192.00 2192 2192.00 2192 2192.00 2192 2192.00
A-n33-k5 33 5 1725 1725 1725 1725 1725.00 1725 1725.00 1725 1725.00 1725 1725.00
A-n33-k6 33 6 1612 1612 1612 1612 1612.00 1612 1612.00 1612 1612.00 1612 1612.00
A-n34-k5 34 5 2104 2104 2104 2104 2104.95 2104 2104.00 2104 2104.00 2104 2104.00
A-n36-k5 36 5 2279 2279 2279 2279 2279.00 2279 2279.36 2279 2279.00 2279 2279.00
A-n37-k5 37 5 1970 1970 1970 1970 1970.00 1970 1970.00 1970 1970.00 1970 1970.00
A-n37-k6 37 6 2241 2241 2241 2241 2241.00 2241 2243.20 2241 2241.40 2241 2241.00
A-n38-k5 38 5 2084 2084 2084 2084 2084.00 2084 2096.36 2084 2084.00 2084 2084.00
A-n39-k5 39 5 2312 2312 2312 2312 2312.00 2312 2321.96 2312 2312.00 2312 2312.00
A-n39-k6 39 6 2216 2216 2216 2216 2216.00 2216 2216.00 2216 2216.00 2216 2216.00
A-n44-k6 44 6 2563 2563 2563 2563 2563.00 2563 2563.00 2563 2563.00 2563 2563.00
A-n45-k6 45 6 2848 2848 2848 2848 2883.05 2848 2913.30 2848 2866.90 2848 2848.00
A-n45-k7 45 7 2831 2831 2831 2831 2831.00 2831 2831.00 2831 2837.00 2831 2831.00
A-n46-k7 46 7 2373 2373 2373 2373 2373.00 2373 2373.00 2373 2373.00 2373 2373.00
A-n48-k7 48 7 3101 3101 3101 3101 3101.00 3101 3101.00 3101 3101.00 3101 3101.00
A-n53-k7 53 7 3115 3115 3115 3115 3118.40 3115 3125.63 3115 3148.40 3115 3115.00
A-n54-k7 54 7 3357 3357 3357 3357 3364.45 3357 3384.73 3357 3377.30 3357 3357.00
A-n55-k9 55 9 2588 2588 2588 2588 2606.32 2588 2590.83 2588 2595.70 2588 2588.00
A-n60-k9 60 9 3446 3446 3446 3446 3447.00 3446 3448.36 3446 3452.30 3446 3446.00
A-n61-k9* 61 9 2868 2847 3652 2868 2905.15 2868 2837.80 2868 2898.90 2868 2869.16
A-n62-k8 62 8 3925 3925 3925 3925 3926.90 3925 3927.40 3925 3932.20 3925 3925.00
A-n63-k9 63 9 4630 4630 4630 4630 4633.8 0 4630 4642.76 4630 4645.20 4630 4630.00
A-n63-k10 63 10 3256 3256 3256 3256 3260.45 3256 3274.10 3256 3280.20 3256 3256.00
A-n64-k9 64 9 4135 4135 4135 4135 4138.00 4135 4145.86 4135 4148.80 4135 4135.00
A-n65-k9 65 9 3487 3487 3487 3487 3488.25 3487 3502.50 3487 3496.60 3487 3487.00
A-n69-k9 69 9 3528 3528 3528 3528 3538.55 3528 3531.56 3528 3534.20 3528 3528.00
A-n80-k10* 80 10 5929 5922 7174 5929 5936.80 5929 5946.26 5929 5943.80 5929 5930.42

REFERENCES

[1] C. M. Damião, J. M. P. Silva, and E. Uchoa. A branch-cut-and-price
algorithm for the cumulative capacitated vehicle routing problem. 4OR-
Q. J. Oper. Res., 21:47–71, 2023.

[2] L. Ke. A brain storm optimization approach for the cumulative
capacitated vehicle routing problem. Memet. Comput., 10:411–421,
2018.

[3] N. A. Kyriakakis, M. Marinaki, and Y. Marinakis. A hybrid ant colony
optimization-variable neighborhood descent approach for the cumulative
capacitated vehicle routing problem. Comput. Oper. Res., 134:105397,
2021.

[4] N. A. Kyriakakis, I. Sevastopoulos, M. Marinaki, and Y. Marinakis.
A hybrid tabu search–variable neighborhood descent algorithm for the
cumulative capacitated vehicle routing problem with time windows in
humanitarian applications. Comput. Ind. Eng., 164:107868, 2022.

[5] J. Lysgaard and S. Wøhlk. A branch-and-cut-and-price algorithm for
the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res.,
236(3):800–810, 2014.

[6] S. Nucamendi-Guillén, F. Angel-Bello, I. Martı́nez-Salazar, and A. E.
Cordero-Franco. The cumulative capacitated vehicle routing problem:
New formulations and iterated greedy algorithms. Expert Syst. Appl.,
113:315–327, 2018.

[7] A. Osorio-Mora, J. W. Escobar, and P. Toth. An iterated local search
algorithm for latency vehicle routing problems with multiple depots.
Comput. Oper. Res., 158:106293, 2023.

[8] G. M. Ribeiro and G. Laporte. An adaptive large neighborhood
search heuristic for the cumulative capacitated vehicle routing problem.
Comput. Oper. Res., 39(3):728–735, 2012.

[9] N. Smiti, M. M. Dhiaf, B. Jarboui, and S. Hanafi. Skewed general
variable neighborhood search for the cumulative capacitated vehicle
routing problem. Int. Trans. Oper. Res., 27(1):651–664, 2020.

TABLE A.VII
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE

CCVRP WITH THE REFERENCE ALGORITHMS ON THE 36 SMALL
INSTANCES OF SET B, E AND M.

Instances BCP [5] IG-PRB [6] ACS-VND [3] HTS-VND [4] TIEA (this work)

Name n K BKS LB UB fbest favg fbest favg fbest favg fbest favg

B-n31-k5 31 5 1830 1830 1830 1830 1830.00 1830 1832.13 1830 1830.20 1830 1830.00
B-n34-k5 34 5 2271 2271 2271 2271 2271.00 2271 2271.00 2271 2271.00 2271 2271.00
B-n35-k5 35 5 2846 2846 2846 2846 2846.00 2846 2846.00 2846 2846.00 2846 2846.00
B-n38-k6 38 6 2103 2103 2103 2164 2164.00 2103 2103.00 2103 2103.00 2103 2103.00
B-n39-k5* 39 5 1960 1949 1968 1960 1960.00 1960 1960.00 1960 1960.10 1960 1960.00
B-n41-k6 41 6 2329 2329 2329 2329 2329.00 2329 2329.00 2329 2329.00 2329 2329.00
B-n43-k6 43 6 2123 2123 2123 2123 2123.00 2123 2123.66 2123 2123.40 2123 2123.00
B-n44-k7 44 7 2295 2295 2295 2295 2296.60 2295 2295.16 2295 2295.50 2295 2295.00
B-n45-k5 45 5 2386 2386 2386 2386 2386.00 2386 2387.80 2386 2386.00 2386 2386.00
B-n45-k6* 45 6 2057 2017 - 2057 2067.70 2057 2072.76 2057 2062.30 2057 2057.00
B-n50-k7* 50 7 2261 2257 2293 2261 2261.00 2261 2261.00 2261 2261.00 2261 2261.00
B-n50-k8 50 8 2953 2953 2953 2953 2953.00 2953 2953.63 2953 2954.60 2953 2953.00
B-n51-k7 51 7 3133 3133 3133 3133 3140.90 3133 3137.96 3133 3134.30 3133 3133.00
B-n52-k7 52 7 2573 2573 2573 2573 2573.00 2573 2573.00 2573 2573.00 2573 2573.00
B-n56-k7 56 7 2358 2358 2358 2358 2358.00 2358 2358.60 2358 2358.00 2358 2358.00
B-n57-k7* 57 7 3883 3863 - 3885 3910.40 3883 3917.10 3883 3893.80 3883 3885.89
B-n57-k9 57 9 4500 4500 4500 4500 4500.00 4500 4500.02 4500 4502.30 4500 4500.00
B-n63-k10 63 10 4379 4379 4379 4379 4380.00 4379 4385.93 4379 4382.80 4379 4379.00
B-n64-k9* 64 9 2608 2597 3222 2608 2618.40 2608 2632.83 2608 2611.90 2608 2316.53
B-n66-k9* 66 9 4120 4109 4872 4132 4142.90 4132 4145.10 4120 4138.40 4120 4126.95
B-n67-k10* 67 10 2868 2860 2871 2868 2868.00 2868 2868.13 2868 2869.00 2868 2868.00
B-n68-k9 68 9 4058 4058 4058 4058 4058.00 4058 4058.07 4058 4058.00 4058 4058.00
E-n22-k4 22 4 845 845 845 845 845.00 845 845.00 845 845.00 845 845.00
E-n23-k3 23 3 1908 1908 1908 1908 1908.00 1908 1908.00 1908 1908.00 1908 1908.00
E-n30-k3* 30 3 1984 1984 1987 1984 1984.00 1987 1987.00 1987 1987.00 1987 1987.00
E-n33-k4 33 4 2852 2852 2852 2852 2852.00 2852 2852.00 2852 2852.00 2852 2852.00
E-n51-k5 51 5 2213 2213 2213 2213 2243.90 2213 2243.26 2213 2231.30 2213 2213.00
E-n76-k7* 76 7 2920 2905 3503 2920 2928.25 2920 2923.83 2926 2943.30 2920 2920.00
E-n76-k8* 76 8 2686 2672 3674 2686 2691.00 2686 2691.60 2687 2690.00 2686 2687.80
E-n76-k10* 76 10 2366 2357 3364 2366 2403.55 2366 2416.26 2366 2407.67 2366 2372.40
E-n76-k14* 76 14 2080 2075 - 2093 2105.55 2080 2096.26 2080 2093.90 2080 2080.00
E-n101-k8* 101 8 3954 3951 5166 3954 3984.55 3954 3975.06 3954 4019.80 3954 3954.00
E-n101-k14* 101 14 2955 2941 4022 2955 2963.25 2955 2972.26 2958 2972.40 2955 2955.40
M-n101-k10* 101 10 3565 3556 3566 3565 3570.85 3565 3565.03 3565 3569.30 3565 3565.00
M-n121-k7* 121 7 7223 7089 8539 7230 7273.85 7230 7318.70 7223 7257.80 7223 7238.68
M-n151-k12* 151 12 4917 4912 6314 4917 4991.50 4917 4941.16 4917 5010.10 4917 4922.11

TABLE A.VIII
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE

CCVRP WITH THE REFERENCE ALGORITHMS ON THE 22 SMALL
INSTANCES OF SET P

Instances BCP [5] IG-PRB [6] ACS-VND [3] HTS-VND [4] TIEA (this work)

Name n K BKS LB UB fbest favg fbest favg fbest favg fbest favg

P-n16-k8 16 8 396 396 396 396 396.00 396 396.00 396 396.00 396 396.00
P-n19-k2 19 2 849 849 849 849 849.00 849 849.00 849 849.60 849 849.00
P-n20-k2 20 2 924 924 924 924 924.00 924 924.00 924 925.30 924 924.00
P-n21-k2 21 2 928 928 928 928 928.00 928 928.00 928 929.50 928 928.00
P-n22-k8 22 8 681 681 681 681 681.00 681 681.00 681 681.00 991 991.00
P-n23-k8 23 8 616 616 616 616 616.00 616 626.40 616 619.50 616 616.00
P-n40-k5 40 5 1541 1541 1541 1541 1542.60 1541 1541.76 1541 1541.80 1541 1541.00
P-n45-k5 45 5 1894 1894 1894 1894 1910.95 1894 1894.00 1894 1899.00 1894 1984.00
P-n50-k7 50 7 1554 1554 1554 1554 1554.00 1554 1554.00 1554 1563.30 1554 1554.00
P-n50-k8* 50 8 1533 1528 - 1533 1552.95 1533 1541.30 1533 1548.50 1533 1534.63
P-n50-k10 50 10 1347 1347 1347 1347 1347.15 1347 1350.16 1347 1351.70 1347 1347.00
P-n51-k10 51 10 1487 1487 1487 1489 1496.25 1487 1495.90 1487 1495.90 1487 1488.58
P-n55-k7 55 7 1764 1764 1764 1764 1764.00 1764 1764.00 1764 1765.20 1764 1764.00
P-n55-k8* 55 8 1620 1768 1768 1620 1620.00 1620 1620.00 1620 1620.00 1620 1620.00
P-n55-k10 55 10 1463 1463 1463 1463 1463.00 1463 1463.00 1463 1470.70 1463 1463.00
P-n60-k10 60 10 1704 1704 1704 1704 1704.00 1704 1708.86 1704 1714.60 1704 1704.00
P-n60-k15 60 15 1509 1509 1509 1509 1510.10 1509 1513.30 1509 1513.40 1509 1509.32
P-n65-k10 65 10 1948 1948 1948 1948 1956.30 1948 1957.76 1948 1961.60 1948 1948.95
P-n70-k10 70 10 2121 2121 2121 2121 2147.80 2121 2165.56 2121 2137.20 2121 2121.00
P-n76-k4* 76 4 4610 4553 6191 4610 4645.85 4610 4658.26 4610 4644.30 4610 4635.42
P-n76-k5* 76 5 3795 3775 5463 3795 3643.15 3795 38589.66 3795 3849.50 3795 3801.63
P-n101-k4* 101 4 6943 6807 8707 6943 7010.55 6943 6974.06 6946 7031.70 6943 6961.89

[10] J. F. Sze, S. Salhi, and N. Wassan. The cumulative capacitated
vehicle routing problem with min-sum and min-max objectives: An
effective hybridisation of adaptive variable neighbourhood search and
large neighbourhood search. Transp. Res. Pt. B-Methodol., 101:162–
184, 2017.

[11] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A unified solution
framework for multi-attribute vehicle routing problems. Eur. J. Oper.
Res., 234(3):658–673, 2014.

[12] X. Wang, T.-M. Choi, Z. Li, and S. Shao. An effective local search
algorithm for the multidepot cumulative capacitated vehicle routing
problem. 50(12):4948–4958, 2019.

4

TABLE A.IX
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE MDCCVRP WITH THE REFERENCE ALGORITHMS ON THE 21 INSTANCES OF SET

LR (I.E., S1).

Instances PLS [12] BCP [1] ILS [7] TIEA-1000 (this work) TIEA-5000 (this work)

Name |D| |C| K fbest favg Tavg UB Time #Nodes fbest favg Tavg fbest favg Tavg fbest favg Tavg

lr01 4 10 5 545.69 554.97 0.20 545.69 0.05 1 545.69 546.13 0.80 545.69 545.69 0.09 545.69 545.69 0.45
lr02 4 10 5 832.69 847.80 0.18 832.69 0.05 1 832.69 832.69 2.34 832.69 832.69 0.09 832.69 832.69 0.42
lr03 4 10 5 832.78 841.47 0.18 832.78 0.10 1 832.78 832.78 1.30 832.78 832.78 0.09 832.78 832.78 0.45
lr04 4 25 10 2082.28 2099.58 0.82 2082.28 1.73 1 2082.28 2082.57 23.25 2082.28 2082.28 0.37 2082.28 2082.28 1.78
lr05 4 25 10 1827.41 1870.90 0.85 1827.41 1.72 1 1827.41 1837.30 20.66 1827.41 1827.41 0.41 1827.41 1827.41 1.91
lr06 4 25 10 1786.95 1808.86 0.85 1786.95 1.65 1 1786.95 1786.95 14.12 1786.95 1786.95 0.42 1786.95 1786.95 2.01
lr07 4 50 20 5424.57 5440.37 3.54 5424.57 32.13 1 5424.57 5424.57 85.22 5424.57 5424.57 0.94 5424.57 5424.57 4.29
lr08 4 50 20 3737.38 3759.67 3.24 3737.38 28.22 1 3737.38 3743.96 43.97 3737.38 3737.38 1.00 3737.38 3737.38 4.34
lr09 4 50 20 3802.88 3811.65 3.49 3802.88 25.50 1 3802.88 3808.52 51.68 3802.88 3802.90 1.02 3802.88 3802.88 4.88
lr10 6 50 20 - - - 2969.83 21.76 1 2969.83 2992.04 61.67 2969.84 2969.84 1.02 2969.84 2969.84 4.96
lr11 6 50 20 - - - 3095.22 33.83 1 3095.22 3120.25 33.61 3095.22 3095.49 1.02 3095.22 3095.22 5.01
lr12 6 50 20 - - - 3171.75 24.99 1 3174.98 3192.62 50.20 3171.75 3171.75 1.03 3171.75 3171.75 5.01
lr10 6 50 25 2868.39 2883.50 7.93 2866.73 20.23 1 2867.28 2874.88 62.22 2866.73 2866.73 1.12 2866.73 2866.73 5.14
lr11 6 50 25 2987.75 3008.88 8.28 2978.78 33.83 1 2979.46 2992.10 49.52 2978.78 2978.78 1.13 2978.78 2978.78 5.21
lr12 6 50 25 3095.52 3112.60 8.00 3090.38 24.99 1 3090.38 3095.64 55.25 3090.38 3090.38 1.13 3090.38 3090.38 5.23
lr13 4 100 25 8293.42 8331.27 7.94 8288.43 351.90 1 8288.43 8324.16 116.67 8288.43 8288.43 3.03 8288.43 8288.43 14.67
lr14 4 100 25 7273.03 7353.68 7.15 7257.31 358.70 1 7257.31 7272.96 118.71 7257.31 7257.31 3.04 7257.31 7257.31 14.25
lr15 4 100 25 8626.13 8644.64 9.45 8626.13 462.70 1 8626.13 8643.77 159.35 8626.13 8626.13 3.15 8626.13 8626.13 15.49
lr16 6 100 25 5306.50 5483.36 9.15 5265.30 261.80 1 5265.3 5281.53 86.77 5265.31 5265.31 3.34 5265.31 5265.31 18.45
lr17 6 100 25 6141.07 6265.57 9.82 6107.32 299.20 1 6107.32 6112.13 101.01 6107.32 6107.32 3.03 6107.32 6107.32 15.04
lr18 6 100 25 5804.19 5905.71 10.18 5788.73 317.90 1 5788.73 5811.51 96.32 5788.73 5788.73 3.17 5788.73 5788.73 15.03
Avg - - - 3959.37 4001.36 5.07 3827.55 109.67 - 3827.76 3838.53 58.77 3827.55 3827.56 1.41 3827.55 3827.55 6.86

TABLE A.X
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE MDCCVRP WITH THE REFERENCE ALGORITHMS ON THE 24 INSTANCES OF SET

P AND SET PR WITH |K|=35 (I,E., S2).

Instances PLS [12] BCP [1] ILS [7] TIEA-1000 (this work) TIEA-5000 (this work)

Name |D| |C| K fbest favg Tavg UB Time #Nodes fbest favg Tavg fbest favg Tavg fbest favg Tavg

p01 4 50 35 713.18 717.44 2.91 712.49 4.40 1 712.50 714.18 119.03 712.50 712.58 0.94 712.50 712.50 4.75
p02 4 50 35 713.59 716.78 2.89 712.49 8.50 1 712.50 713.65 115.66 712.50 712.57 0.94 712.50 712.50 4.68
p03 5 75 35 952.17 959.03 4.38 950.25 26.35 1 950.25 953.90 114.66 950.25 950.46 1.77 950.25 950.25 8.51
p04 2 100 35 1955.82 1959.14 6.79 1955.31 86.19 1 1955.31 1955.97 224.87 1955.31 1955.42 2.84 1955.31 1955.31 14.51
p05 2 100 35 1985.03 1988.46 6.66 1982.33 132.60 1 1982.35 1984.17 195.947 1982.33 1982.68 2.87 1982.33 1982.40 13.91
p06 3 100 35 1553.88 1563.22 5.94 1552.13 63.41 1 1552.13 1553.88 195.16 1552.13 1552.17 2.97 1552.13 1552.85 14.11
p07 4 100 35 1522.68 1528.43 6.89 1520.46 60.18 1 1520.97 1524.03 194.95 1520.46 1520.74 2.92 1520.46 1520.51 14.26
p08 2 249 35 15410.92 15458.51 26.60 15372.60 2125.00 1 15372.60 15400.51 490.62 15372.60 15386.35 16.04 15372.60 15374.68 70.85
p09 3 249 35 13136.24 13335.06 24.18 13070.74 1841.10 1 13071.60 13105.79 463.84 13070.74 13080.71 19.16 13070.74 13074.71 76.65
p10 4 249 35 12096.90 12432.72 24.23 12052.56 1666.00 1 12070.50 12155.06 467.28 12052.56 12092.55 26.33 12052.56 12086.63 119.70
p11 5 249 35 12033.48 12228.64 22.54 11955.58 2119.90 1 11995.9 12051.88 449.98 11955.58 11993.88 17.55 11955.58 11970.96 69.30
p12 2 80 35 2897.06 2897.06 2.63 2897.06 39.10 1 2897.06 2897.06 87.95 2897.06 2897.06 1.79 2897.06 2897.06 8.64
p15 4 160 35 5794.11 5794.11 6.76 5794.11 389.30 1 5794.11 5794.11 184.22 5794.11 5794.11 5.08 5794.11 5794.11 24.15
p18 6 240 35 11469.49 11546.91 16.03 11433.91 2029.80 1 11453.50 11476.90 309.81 11436.96 11451.50 13.15 11433.91 11441.38 56.67
pr01 4 48 35 1261.81 1264.74 2.67 1261.53 6.92 1 1262.43 1266.58 81.15 1261.53 1261.56 0.88 1261.53 1261.53 4.22
pr02 4 96 35 2572.84 2580.94 6.27 2572.84 85.51 1 2572.84 2574.88 168.93 2572.84 2572.92 2.61 2572.84 2572.84 12.53
pr03 4 144 35 4466.10 4511.37 9.78 4462.50 277.10 1 4464.91 4475.65 283.45 4462.50 4466.06 5.58 4462.50 4463.71 25.54
pr04 4 192 35 5813.87 5863.56 16.60 5804.15 919.70 1 5813.33 5825.20 475.25 5804.15 5812.07 9.59 5804.15 5807.01 46.20
pr05 4 240 35 7157.06 7225.66 26.43 7120.22 2145.40 1 7122.06 7146.94 707.98 7121.36 7130.92 15.75 7120.22 7123.25 71.40
pr06 4 288 35 8685.68 8874.53 35.48 8603.85 3927.00 1 8607.46 657.63 814.71 8604.68 8619.09 22.69 8603.85 8608.32 97.65
pr07 6 72 35 1727.25 1736.14 4.63 1723.63 29.75 1 1725.55 1727.74 133.35 1723.63 1724.08 1.69 1723.63 1723.68 1.96
pr08 6 144 35 4023.21 4046.68 10.66 4004.11 568.60 1 4004.11 4015.78 272.03 4004.11 4005.32 5.76 4004.11 4004.11 27.03
pr09 6 216 35 5937.19 6043.29 19.08 5889.02 1161.10 1 5899.64 5932.25 501.62 5889.02 5889.33 12.53 5889.02 5892.12 59.68
pr10 6 288 35 9166.57 9336.73 37.18 9113.49 3525.80 1 9135.86 9177.17 734.67 9120.00 9140.06 22.20 9113.49 9124.42 89.25
Avg - - - 5543.59 5608.71 13.68 5521.56 968.28 - 5527.06 5545.04 324.46 5522.04 5529.34 8.90 5521.56 5525.29 39.01

5

TABLE A.XI
COMPARATIVE RESULTS OF THE PROPOSED TIEA ALGORITHM FOR THE MDCCVRP WITH THE REFERENCE ALGORITHMS ON THE 33 INSTANCES OF SET

P AND PR WITH THE ORIGINAL NUMBER OF VEHICLES (I.E., S3).

Instances PLS [12] BCP [1] ILS [7] TIEA-1000 (this work) TIEA-5000 (this work)

Name |D| |C| K fbest favg Tavg UB Time #Nodes fbest favg Tavg fbest favg Tavg fbest favg Tavg

p01 4 50 11 1055.35 1095.44 1.90 1055.35 4.79 1 1055.35 1071.27 27.84 1055.35 1058.59 1.56 1055.35 1057.30 8.25
p02 4 50 4 2055.40 2149.54 4.12 2016.18 101.66 1 2016.18 2047.63 37.76 2016.18 2023.17 2.71 2016.18 2019.85 10.52
p03 5 75 11 1758.70 1809.51 4.24 1749.29 58.48 1 1762.49 1799.85 64.52 1749.29 1755.04 3.07 1749.29 1752.62 14.84
p04 2 100 15 2618.88 2703.37 10.89 2537.59 1696.60 15 2552.67 2635.03 154.41 2538.54 2564.27 6.43 2537.59 2550.86 22.20
p05 2 100 8 3766.20 3824.49 12.92 3749.92 2128.40 3 3754.39 3790.63 118.91 3749.92 3760.48 5.60 3749.92 3755.14 26.89
p06 3 100 16 2160.93 2188.17 6.73 2131.61 181.90 1 2132.97 2164.93 148.14 2131.62 2140.54 5.26 2131.62 2135.02 23.19
p07 4 100 16 2142.11 2181.17 7.77 2108.89 268.60 3 2140.15 2183.26 141.14 2108.89 2127.95 5.16 2108.89 2123.30 22.89
p08 2 249 25 17393.46 17862.13 45.76 - - - 17272.00 17516.46 435.43 17075.28 17179.30 36.93 17060.64 17156.00 164.05
p09 3 249 26 15041.69 15448.98 35.01 - - - 14918.00 15021.94 414.34 14774.18 14846.98 30.82 14774.18 14828.52 146.22
p10 4 249 26 14265.77 14619.35 37.12 14024.58 31478.90 35 14089.20 14322.70 418.58 14037.15 14145.40 31.12 14024.58 14103.66 138.10
p11 5 249 26 14381.43 14552.90 36.86 - - - 14161.20 14404.70 402.28 14007.82 14123.58 32.11 14005.41 14085.59 142.33
p12 2 80 8 5494.36 5536.40 5.07 5494.36 142.97 1 5494.36 5495.85 69.67 5494.36 5495.96 3.33 5494.36 5494.36 17.65
p13 4 160 9 4914.66 4926.54 5.27 4914.66 108.80 1 4914.66 4914.83 59.82 4914.66 4914.66 2.91 4914.66 4914.66 14.13
p14 4 160 10 4510.12 4512.28 5.04 4491.64 101.15 1 4491.64 4492.13 55.15 4491.64 4493.63 2.62 4491.64 4491.64 13.08
p15 4 160 16 10662.27 10747.26 16.37 10590.41 1210.40 3 10629.80 10676.81 163.60 10629.82 10651.73 9.86 10590.41 10638.21 47.88
p16 4 160 17 10086.50 10122.13 13.92 10008.28 1416.10 17 10016.10 10070.56 157.15 10014.34 10047.28 9.21 10008.28 10051.90 42.40
p17 4 160 18 9538.69 9573.86 13.78 9493.84 710.60 1 9495.91 9518.63 152.05 9493.84 9511.04 8.29 9493.84 9507.26 40.57
p18 6 240 24 15912.27 16072.75 26.73 15720.73 21319.70 49 15847.80 15948.26 307.01 15741.73 15812.29 20.52 15720.73 15764.39 99.82
p19 4 160 25 15255.02 15370.98 24.64 15105.26 3622.70 7 15224.80 15301.79 292.88 15166.34 15201.09 16.45 15105.26 15169.30 79.02
p20 4 160 26 14709.23 14786.87 23.71 14592.52 3587.00 5 14635.70 14708.73 292.07 14619.53 14702.56 17.21 14592.52 14640.45 82.25
p21 4 160 34 25770.35 26102.29 51.51 - - - 25500.80 25892.53 677.23 24949.01 25188.11 70.50 24941.00 25165.28 310.23
p22 4 160 35 24451.01 24816.85 47.92 - - - 24330.70 24608.60 637.76 24138.89 24279.95 53.38 24010.85 24209.32 238.35
p23 4 160 36 23656.13 23925.16 42.48 - - - 23622.80 23784.41 594.36 23399.18 23539.45 42.34 23372.41 23492.21 197.22
pr01 4 48 4 3748.11 3773.27 4.38 3748.11 88.04 1 3768.69 3768.69 27.41 3748.11 3748.24 1.88 3748.11 3748.11 9.09
pr02 4 96 8 4973.36 5000.74 12.06 4834.46 720.80 1 4834.46 4854.38 60.64 4834.46 4849.04 4.35 4834.46 4844.04 21.30
pr03 4 144 11 8357.54 8470.56 24.38 8353.05 3177.30 1 8357.54 8424.14 120.60 8353.05 8378.36 9.19 8353.05 8370.30 43.26
pr04 4 192 14 9273.89 9585.47 51.73 9071.44 93632.60 121 9156.38 9324.65 273.28 9082.78 9219.44 19.43 9071.45 9181.97 90.36
pr05 4 240 19 10075.01 10283.54 68.72 - - - 9805.38 10025.37 462.67 9575.39 9779.45 42.01 9469.51 9707.03 179.11
pr06 4 288 23 11053.59 11234.57 74.10 - - - 10873.00 10996.31 550.99 10832.07 10900.33 35.00 10799.16 10864.82 166.76
pr07 6 72 6 4877.86 4906.62 24.38 4760.65 469.20 1 4760.65 4787.68 45.13 4760.65 4777.34 3.23 4760.65 4768.90 16.84
pr08 6 144 12 7141.88 7265.17 48.01 6997.11 3162.00 1 7049.50 7131.65 182.60 6997.11 7040.43 10.55 6997.11 7016.28 48.01
pr09 6 216 17 9235.29 9350.34 70.27 9027.82 48681.20 45 9147.07 9327.58 345.23 9069.84 9173.76 21.57 9027.82 9134.50 106.34
pr10 6 288 24 11643.69 11811.29 30.85 - - - 11335.10 11493.69 557.38 11207.50 11347.24 39.79 11188.54 11266.93 182.07
Avg - - - 9757.00 9897.27 26.93 - 9086.25 - 9671.13 9772.90 256.00 9598.74 9991.90 18.31 9584.01 9636.66 83.79

	CCVRP_02Nov2023_Final
	Introduction
	Related works
	Literature review of the CCVRP
	Literature review of the MDCCVRP

	Two-individual evolutionary algorithm for CCVRP and MDCCVRP
	Population initialization
	Offspring generation based on dEAX
	Mutation for the individual
	Adaptive feasible and infeasible variable neighborhood descent
	Repair procedure
	Neighborhood reduction
	Adaptive feasible and infeasible search
	Neighborhood operators

	Population updating
	Discussion

	Computational results
	Benchmark instances
	Benchmark instances for CCVRP
	Benchmark instances for MDCCVRP

	Experimental protocol and reference algorithms
	Computational results and comparison
	Comparative results on the CCVRP
	Results on the MDCCVRP

	Assessment of algorithmic components
	Benefits of the small population
	Benefits of the dEAX crossover
	Benefits of the adaptive feasible and infeasible search

	Conclusion

	CCVRP_Appendix_16Oct2023_R1_Submitted

