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Abstract

The knapsack problem with forfeits is a generalized knapsack problem that aims to select some items, among a
set of candidate items, to maximize a profit function without exceeding the knapsack capacity. Moreover, a forfeit
cost is incurred and deducted from the profit function when both incompatible items are placed in the knapsack.
This problem is a relevant model for a number of applications and is however computationally challenging. We
present a hybrid heuristic method for tackling this problem that combines the evolutionary search with adaptive
feasible and infeasible search to find high-quality solutions. A streamlining technique is designed to accelerate the
evaluation of candidate solutions, which increases significantly the computational efficiency of the algorithm. We
assess the algorithm on 120 test instances and demonstrate its dominance over the best performing approaches in the
literature. Particularly, we show 94 improved lower bounds. We investigate the essential algorithmic components
to understand their roles.
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1. Introduction

The popular knapsack problem (KP) (Martello and Toth, 1990) is the following subset selection problem.
Given a knapsack with a predefined capacity c, and a set of n items V = {1, 2, ..., n} where each item
i ∈ V has a profit pi > 0 and a weight wi > 0, KP involves in choosing a number of items from V to
maximize the total profit without surpassing the capacity c.

∗Author to whom all correspondence should be addressed (e-mail: zzjiang@mail.neu.edu.cn).
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The knapsack problem with forfeits (KPF) (Cerulli et al., 2020) is a generalized KP that considers
forfeits for incompatible items. In KPF, in addition to the capacity c and set V = {1, 2, ..., n} of items,
we are given a set E of l pairs of incompatible items E = {Ek ∈ V × V : k = 1, ..., l}, where
each Ek = {i, j} ∈ E indicates that a given forfeit dk > 0 is induced if items i and j are selected
simultaneously. Then KPF aims to select a number of items in V to maximize the total profit minus the
total forfeit induced, while satisfying the capacity constraint. According to (Cerulli et al., 2020), KPF
can be formally expressed by

Maximize f =
n∑
i=1

pixi −
l∑

k=1

dkvk (1)

subject to

n∑
i=1

wixi ≤ c (2)

xi + xj − vk ≤ 1, ∀Ek = {i, j}, k ∈ {1, ..., l} (3)
xi ∈ {0, 1}, ∀i ∈ {1, ..., n} (4)
vk ∈ {0, 1}, ∀k ∈ {1, ..., l} (5)

where the binary variable xi is set to 1 if item i is selected, and 0 otherwise, while the binary variable
vk is equal to 1 if the forfeit cost dk associated with Ek ∈ E is to be paid, and 0 otherwise.

The objective function (1) is to maximize the overall collected profit minus the total forfeit cost.
Constraint (2) imposes that the knapsack capacity constraint is not violated. Constraint (3) bundles each
x variable with v variables to guarantee that vk must be set to 1 if both items i and j are selected, with
Ek = {i, j}. The binary values for variables xi and vk are imposed in constraints (4) and (5).

Obviously, when E = ∅, KPF becomes KP. As a result, KPF is at least as difficult as KP, which
is known to be NP-hard (Cerulli et al., 2020). KPF can be used to formulate real-world applications
where KP is no more suitable due to the presence of incompatible items. As an example, we consider
the following decision problem to optimally load objects in a truck (Capobianco et al., 2022). In this
application, each object has an associated weight and profit, and the truck has a limited capacity.
Moreover, some pairs of objects may cause forfeit costs (i.e., decontamination costs) if both objects
of such a pair are transported together. We want to load some objects among the candidate objects in the
truck to maximize the total profit of the loaded objects minus the total forfeit induced while respecting
the capacity of the truck. KPF has other relevant applications in areas such as drugs management for
patients (Capobianco et al., 2022) and investments decisions (Cerulli et al., 2020), where simultaneous
uses of conflicting resources would cause extra costs.

Due to the relevance of KPF, several heuristic algorithms have been studied. The literature review of
Section 2 indicates that progresses have been made since the introduction of KPF in 2020 (Cerulli et al.,
2020). Nevertheless, considering that there are still large gaps between the results reported by the best
KPF methods and the lower bounds given by the commercial CPLEX solver, more powerful methods
are necessary to alleviate the limits of existing approaches. Indeed, current KPF algorithms only explore
the greedy approach and hybrid genetic-greedy paradigm.

In this work, we present a hybrid evolutionary search method (HESM) dedicated to KPF, which
combines a meaningful crossover operator and an effective local optimization. On the one hand, we



observe, through many sampled solutions, that high-quality solutions typically have a large number of
common items. Based on this observation, we adopt the uniform crossover operator (denoted by UX),
which is capable of saving common items shared by parent solutions. Thanks to UX, the algorithm
can obtain meaningful offspring solutions from high-quality solutions. On the other hand, the local
optimization procedure adopts a mixed search strategy to explore both feasible and infeasible solutions.
By dynamically controlling the oscillation between feasible and infeasible searches, the algorithm has
more chances to reach high-quality local optimal solutions that are difficult to discover when the search
is limited to feasible regions.

We assess the HESM algorithm on the three sets of 120 KPF benchmark instances in the literature
and show that our algorithm is extremely effective with respect to the best performing KPF approaches.
Specifically, HESM finds 94 new lower bounds and matches 15 other best-known bounds.

Section 2 reviews existing studies related to KPF. Section 3 describes the HESM algorithm. Section
4 provides computational assessments and comparisons with the best performing methods. Section 5
investigates the key algorithmic components, followed by conclusions and perspectives.

2. Related work

Cerulli et al. (2020) first considered KPF. As solution methods, they proposed an integer linear program
(ILP) and two greedy heuristics. The first heuristic is a conventional greedy algorithm (denoted by
Greedy) and the second heuristic uses the carousel greedy paradigm (Cerrone et al., 2017) (denoted as
CG) which is a generalized framework to improve the constructive greedy approach. The two greedy
methods obtained solutions of acceptable quality in very short runtime, and CG method dominated
Greedy on the test graphs.

Capobianco et al. (2022) developed a hybrid metaheuristic method (denoted as GA-CG) that aims to
take advantage of the genetic algorithm and carousel greedy paradigm. They showed that their method
was able to produce significantly better results than the two greedy algorithms presented in (Cerulli et al.,
2020). Capobianco et al. (2022) also used the CPLEX solver to solve the ILP formulations (Eqs. (1)-(5))
and showed that CPLEX under a cutoff time of 3 hours dominated GA-CG on almost all the test graphs.

D’Ambrosio et al. (2023) introduced a generalization of KPF (i.e., the knapsack problem with forfeit
sets, KPFS), and proposed a metaheuristic (denoted as MA) combining memetic approach with the
carousel greedy method. To generate an offspring solution, MA implemented a randomized crossover
operator working in two steps. The first step adds each item belonging to both parents to the offspring
with a probability of p1, while the second step includes each item existing in one of two parents to the
offspring with a probability of p2 complying with all the constraints of KPFS, where p1 and p2 are two
parameters of MA. The authors also included computational results on KPF and showed the superiority
of MA comparing over the best KPF methods in the literature.

KPF is related to the disjunctively constrained knapsack problem (DCKP) also known as the knapsack
problem with conflict graph (Cacchiani et al., 2022a; Yamada et al., 2002). The difference between
these two problems is that for DCKP, it is forbidden to select simultaneously two conflicting items in
a feasible solution, while for KPF, two incompatible items can be simultaneously selected, but such
a selection leads to a forfeit in the objective cost. Compared to KPF, DCKP has received much more
research effort in the last 20 years, and various algorithms have been proposed, including exact methods



(Bettinelli et al., 2017; Coniglio et al., 2021; Gurski and Rehs, 2019), approximation methods (Pferschy
and Schauer, 2017) and heuristic methods (Ben Salem et al., 2017; Wei and Hao, 2021). Several other
canonical optimization problems also have variants that consider conflict constraints such as the bin
packing problem with conflicts (Ekici, 2021; Elhedhli et al., 2011) and the minimum spanning tree
problem (Lu et al., 2022).

KPF is also tightly related to the classic quadratic knapsack problem (QKP) (Cacchiani et al., 2022b),
and the only difference between KPF and QKP is that if both items i and j are selected, a non-negative
quadratic profit pij is earned for QKP, while a non-positive extra profit (forfeit cost) pij is incurred for
KPF. Various QKP approaches have been developed, including exact algorithms (Caprara et al., 1999;
Pisinger et al., 2007; Rodrigues et al., 2012; Fampa et al., 2020; Fomeni et al., 2022), approximation
methods (Pferschy and Schauer, 2016; Taylor, 2016; Wu et al., 2020), and heuristics (Yang et al., 2013;
Fomeni and Letchford, 2014; Chen and Hao, 2017). Note that among the QKP heuristics, only IHEA
(Chen and Hao, 2017) is allowed to visit infeasible solutions using an enlarged swap neighborhood.
The proposed HESM algorithm uses a more elaborated mixed search strategy to dynamically control the
oscillation between feasible and infeasible solution spaces.

According to the literature, CG (Cerulli et al., 2020), GA-CG (Capobianco et al., 2022) and MA
(D’Ambrosio et al., 2023) are the best heuristic approaches for KPF, and IHEA (Chen and Hao, 2017) is
the state-of-the-art heuristic for QKP, while the general CPLEX solver is a suitable solution approach if a
large time budget and a large computer memory are available. However, there are still large gaps between
the results reported by CG (Cerulli et al., 2020), GA-CG (Capobianco et al., 2022), MA (D’Ambrosio
et al., 2023) and the lower bounds obtained by the CPLEX solver with the mathematical model (1)-(5)
(Cerulli et al., 2020). This work aims to improve our capacity in tackling KPF, and for this presents a
hybrid evolutionary search method (HESM), which is highly effective compared to the current best KPF
methods as well as a current best QKP heuristic.

3. Hybrid evolutionary search method for KPF

This section is dedicated to the presentation of the general HESM algorithm and its components.



3.1. General algorithm

Algorithm 1 Hybrid evolutionary search method for KPF
1: Hybrid evolutionary search method for KPF in: I: a KPF instance, γ: population size, tm: cutoff

time out: Best found feasible solution S∗

2: P = {S1, ..., Sγ} ← pop initial(γ) /* Section 3.3, population initialization */
3: S∗ ← best(P ) /* S∗ keeps the best encountered solution */
4: while tm is not reached do
5: Select two parent solutions Sa, Sb from P at random
6: So ← cross over(Sa, Sb) /* Section 3.4, offspring generation */
7: So ← adaptive feasible infeasible tabu search(So) /* Section 3.5, offspring improvement

*/
8: if f(So) > f(S∗) then
9: S∗ ← So /* Renew the best found solution */

10: end if
11: P ← pop update(P, So)
12: end while
13: Return S∗

HESM method (Algorithm 1) follows the memetic search framework (Moscato, 1999) and blends
population-based search with neighborhood-based search. There are a number of successful memetic
algorithms for difficult optimization problems such as knapsack problems (Lai et al., 2018; Wei and
Hao, 2021), job-shop scheduling problems (Constantino and Segura, 2022; Wang and Wang, 2022; Wu
and Che, 2019; Zhang et al., 2023), and routing problems (Bravo et al., 2019; Mara et al., 2021; Vidal
et al., 2013).

HESM starts by building an initial population P (see Section 3.3) consisting of γ individuals, where
γ is a parameter called the population size. Then HESM carries out a series of generations to improve
the solutions in the population (lines 4-12, Algorithm 1). To build an offspring solution So at each
generation, the uniform crossover operator presented in Section 3.4 is applied to two randomly chosen
parent solutions from P . The quality of the offspring So is further raised by the tabu search procedure
presented in Section 3.5. Finally, the best recorded solution and population are updated with So. For the
population, So just substitutes the lowest quality solution in P if So has a better objective value (Eq. (1))
and it does not already exist in P ; otherwise the population keeps unchanged. This algorithm ends when
a termination condition such as a cutoff time tm is satisfied.

3.2. Search space and penalty-based evaluation function

Let I = (V,E, c, p, w) be a KPF instance. The search space Ω is defined as Ω = {S : S ⊆ V }, which
includes both feasible and infeasible solutions. For a solution S in Ω, it can be conveniently represented
by a binary n-vector S = (x1, x2, . . . , xn), where xi = 1 if item i is selected, and xi = 0 otherwise.

For several grouping problems (e.g., knapsack problem (Zhou et al., 2022), coloring problem (Sun



et al., 2020)), it is observed that exploring intermediary infeasible solutions by relaxing some problem
constraints is highly beneficial for finding high-quality solutions. In the case of KPF, we relax the
knapsack constraint and employ the following extended evaluation function F to assess the quality of
any solution S in Ω.

F (S) = f(S)− β × EX(S) (6)

where f(S) is the value of the objective function (Eq. (1)), EX(S) = max{0,
∑

i∈S wi − c} is the
overall weight excess over the capacity limit c, and β is a self-adjusted parameter controlling the degree
of infeasibility (called infeasibility control parameter). In general, a larger value of β induces a stronger
penalization to infeasible solutions, which has the effect of decreasing the attractiveness of infeasible
solutions and encouraging the search to leave infeasible areas. Conversely, a smaller value of β increases
the attractiveness of infeasible solutions and encourages the search to explore more infeasible solutions.
In Section 3.5, we explain how the β parameter is adaptively adjusted to modify the search trajectory of
the algorithm.

3.3. Population initialization

The initial population P contains γ feasible solutions (individuals), where each individual is created in
two steps. The first step generates a random feasible solution from an empty solution S by executing a
number of adding operations. For each adding operation, an unallocated item is selected at random and
inserted into S, so long as its weight is not greater than the residual capacity of the knapsack. This step
is repeated until the knapsack capacity is reached. The second step invokes the tabu search procedure
(see Section 3.5) to further improve S.

The resulting solution is finally inserted into P if the population does not contain the same solution
already. This process stops when the number of solutions in P attains γ.

3.4. Uniform crossover

Usually, an effective crossover should be able to conserve good properties of parent solution (Hao, 2012;
Neri and Cotta, 2012). For KPF, our preliminary experiments (see Section 5.3) indicated that some
particular items frequently appear in high-quality solutions, which might correspond to the backbone of
an optimal solution.

Based on this observation and the general principle for applying crossovers, we adopt the canonical
uniform crossover operator (Syswerda et al., 1989) (denoted as UX) for KPF, which builds an offspring
solution So by inheriting randomly the values of two parent solutions. Let Sa = (xa1, x

a
2, . . . , x

a
n) and

Sb = (xb1, x
b
2, . . . , x

b
n) be the given parents, So = (xo1, x

o
2, . . . , x

o
n) is created as follows. Each xoi (i =

1, 2, . . . , n) takes the value of xai or xbi with equal probability. For KPF, UX is quite suitable. Indeed, if an
item i appear in both parents, then the item is always retained in the offspring. If an item i does not appear
in either parent, this item is not selected in the offspring. Finally, if an item i appears only in one parent,
this item has a chance of 50% to be selected in the offspring. As such, UX is able to transmit the common
items of the parents, which goes with our experimental observation that high-quality solutions share



common items. Meanwhile, by retaining randomly the other non-shared items, UX naturally induces a
diversification effect, which prevents the algorithm from a premature convergence.

An offspring solution generated by UX can be feasible or infeasible and is assessed by the extended
evaluation function F defined by Eq. (6).

The time complexity of UX is obviously bounded by O(n).
As shown in Section 2, MA (D’Ambrosio et al., 2023) which is one of the best performing methods for

KPF, adopts the randomized crossover operator RCX for solution recombination. The main difference
between RCX and UX is that RCX uses two probabilities p1 and p2 to control the transmission of
common items and non-common items from the parents to the offspring, while UX always transmits
common items to the offspring (non-common items are inherited with equal probability for both parents).

3.5. Exploring feasible and infeasible solution with tabu search

The proposed HESM method uses an adaptive feasible and infeasible tabu search (AFITS) to explore
candidate solutions which may be feasible or infeasible. We describe the neighborhood structures,
streamlining evaluation technique, and neighborhood exploration strategy of AFITS.

3.5.1. Neighborhood structures and fast neighborhood evaluation technique
AFITS relies on three neighborhoods: the add neighborhood Na, drop neighborhood Nd and swap
neighborhood Ns, which have been successfully used in a previous study (D’Ambrosio et al., 2023). To
ensure a high computation efficiency, AFITS applies an incremental streamlining evaluation technique
to assess each neighboring solution. Note that other local search methods based on these neighborhoods
can benefit from the streamlining technique.

Add operator: For a given incumbent solution S ⊂ V , theAdd operator represented byAdd(i) transits
an item i ∈ V \S to S. To quickly compute the move value of a candidate move, AFITS uses an efficient
incremental evaluation technique (such evaluation techniques have been used in local search algorithms
for the quadratic multiple knapsack problem (Zhou et al., 2022) and quadratic assignment problem (Zhou
et al., 2020)). The key idea is to hold a n-dimensional vector δ, where element δ[i] indicates the sum of
forfeit costs between item i and all other selected items in solution S, i.e., δ[i] =

∑
j∈S,j 6=i d{i,j}. The

move gain of an Add(i) operation can then be computed in constant time as:

∆f (Add(i)) = pi − δ[i] (7)

After performing an Add(i) move, δ is updated in O(n) time: δ[j] = δ[j] + d{i,j}, ∀j ∈ V, j 6= i.
The add neighborhood Na contains all the Add candidate moves, whose size is obviously bounded by

O(|V \S|).
Drop operator: The Drop operator, denoted as Drop(i), deletes an item i from the solution. The

move value of removing an item i can be expressed as:

∆f (Drop(i)) = −pi + δ[i] (8)

Once a Drop(i) move is executed, δ is updated in O(n) time: δ[j] = δ[j]− d{i,j}, ∀j ∈ V, j 6= i.



The size of this neighborhood Nd is evidently bounded by O(|S|).
Swap operator: The Swap operator, denoted by Swap(i, j), switches two items i ∈ S and j ∈ V \S.

For a given Swap(i, j) move, its move value can be efficiently calculated by:

∆f (Swap(i, j)) = pj − pi + δ[i]− δ[j] + d{i,j} (9)

Considering that a Swapmove can be treated as two sequential operations of aDropmove, then anAdd
move (or an Add move, then a Drop move), the vector δ can be successively updated in two times on
the basis of the Add move and Drop move in O(n) time.

The swap neighborhood Ns has a size bounded by O(|S| × |V \S|), and is usually much larger than
the add neighborhood Na and the drop neighborhood Nd.



3.5.2. Solution exploration with tabu search

Algorithm 2 Adaptive feasible and infeasible tabu search
1: Adaptive feasible and infeasible tabu search in: Input solution S, search depth sd out: Best

feasible solution encountered Sb

2: if S is feasible then
3: Sb ← S /* Sb records the best solution found by AFITS */
4: else
5: Sb ← ∅ /* An empty solution is obviously a feasible solution */
6: end if
7: t← 0 /* Iteration counter */
8: tl[i]← 0, for each i ∈ V /* Initialize the tabu list tl */
9: β ← 1 /* Initialize the infeasibility control parameter */

10: while t < sd do
11: Choose a best admissible neighbor solution S′ from the neighborhood union of Na, Nd and Ns

with respect to F
12: S ← S′

13: Renew the tabu list tl
14: if All previous λ solutions are feasible then
15: β ← β/τ
16: else if They are all infeasible solutions then
17: β ← β × τ
18: end if
19: if β < 1 then
20: β ← 1
21: end if
22: if f(S) > f(Sb) and EX(S) = 0 then
23: Sb ← S
24: end if
25: t← t+ 1
26: end while
27: Return Sb

As described in Algorithm 2, AFITS carries out a series of iterations from an input solution. In
each iteration, AFITS inspects the union of the three neighborhoods Na, Nd and Ns in O(n2) time,
and chooses the best admissible neighbor solution S′ on the basis of the extend evaluation function F
to substitute the incumbent solution S. To avoid short-term cycling, when an item is discarded from
(inserted into) the solution, it is flagged as tabu and cannot join (leave) the solution for the next tt
iterations (called the tabu tenure). The tabu condition of a move is ignored only if the move results in a
feasible solution whose quality is superior to any visited solution (aspiration criterion). A move is viewed
as admissible if it is not flagged as tabu or it satisfies the aspiration criterion.

At the beginning of AFITS, the infeasibility control parameter β used by the function F (see Eq.
(6)) is initialized to 1. Then AFITS adaptively adjusts β according to the feasibility of recently examined



Table 1
Reference algorithms for KPF, and scaling factors of the processors utilized by these algorithms, with respect to the processor
used in this work.

Algorithm Reference Processor type Base score Factor

HESM this work Intel Xeon Silver 4310 116 1.00
CPLEX (Cerulli et al., 2020) Intel Xeon E5-2650 v3 105 0.91
CG (Cerulli et al., 2020) Intel Xeon E5-2650 v3 105 0.91
GA-CG (Capobianco et al., 2022) Intel Xeon E5-2650 v3 105 0.91
MA (D’Ambrosio et al., 2023) Intel Xeon E5-2650 v3 105 0.91

solutions. If all previous λ solutions (λ is a parameter set to 5 by experiment) are infeasible, β is increased
by a factor τ (τ is a parameter set to 2 by experiment) to reduce the attractiveness of infeasible solutions
and to drive the search to feasible regions. If all previous λ solutions are feasible, β is decreased by
the factor τ to the search to move towards infeasible regions. During the search, if the current solution
S is feasible (i.e., EX(S) = 0) and better than the recorded best solution Sb, Sb is updated. AFITS
terminates after sd (search depth) iterations, and returns the best feasible solution Sb.

4. Computational assessment

We present a computational assessment of the HESM method by showing comparative results with the
best KPF methods on benchmark instances.

4.1. Benchmark instances

The 120 benchmark instances are grouped into three sets: O, LK and MF, each containing 40 instances.
The O set was introduced by Cerulli et al. (2020) and later used in (Capobianco et al., 2022). This set
is characterized by the number of items n ∈ {500, 700, 800, 1000}, the number of random incompatible
pairs l = 6n, and the capacity c = 3n. The item profits, item weights and forfeit costs are random values
in [5, 25], [3, 20] and [2, 15], respectively. For each value of n, 10 instances were randomly generated.
The LK and MF instances introduced in (Capobianco et al., 2022) were generated based on the O set
instances. Specifically, the LK instances use a larger capacity c = 5n, while the MF instances have more
incompatible pairs with l = 8n where the forfeit costs are random integers in [2, 15]. These benchmark
instances are available from the authors of (Capobianco et al., 2022).

4.2. Experimental settings

The HESM was programmed in C++ language (Zhou et al., 2023) and compiled using the g++ 7.3.0
compiler with the “-O3” option. HESM was run on a computer with an Intel Xeon Silver 4310 processor
(2.1 GHz) and 1 GB RAM running the Linux operating system. To assess HESM, we make comparisons



Table 2
Values of parameters tuned by the ‘irace’ software.

Parameter Section Description Value range Final value

γ 3.1, 3.3 population size {10, 30, 70, 100, 150} 30
tt 3.5.2 tabu tenure {5, 15, 30, 50, 100} 15
sd 3.5.2 search depth of tabu search {3000, 5000, 7000, 10000, 15000} 7000

with two representative KPF heuristics shown in Table 1 as well as the results obtained using the CPLEX
solver to solve the mathematical model (Eqs. (1)-(5)). The numerical results of these methods are directly
compiled from the latest references on KPF (Capobianco et al., 2022; D’Ambrosio et al., 2023). To
conduct a meaningful comparison of running time, we scale the running times reported on different
computers into equivalent runtime required on our computer using the base score as the main indicator
which is assessed by the Standard Performance Evaluation Corporation (SPEC, via www.spec.org). For
the scaling purpose, Table 1 indicates the processor type used by each algorithm, relevant base score from
SPEC, and corresponding scaling factors in relation to the processor used in this work serving as a basis.
The processor used by HESM is thus a little faster than that utilized by the reference algorithms. Note that
the time conversion is for indicative purposes only, due to the fact that the running time required by each
compared method is influenced by additional factors such as data structures, programming languages
and compiler options.

Given that HESM is a stochastic algorithm, we ran the algorithm independently 10 times per instance.
The cutoff time tm for each run was set to 1800 seconds.

4.3. Parameter tuning

We tune HESM’s three parameters (population size γ, tabu tenure tt and search depth sd for tabu
search) by an automatic tuning software named ‘irace’ (López-Ibáñez et al., 2016) designed for off-
line parameter configuration. In the tuning experiment, we selected randomly 5 instances from the three
sets of benchmarks as the training instances, and set the tuning budget to 200 runs of HESM. Table 2
shows the value range used by ‘irace’, and the best parameter values recommended by ‘irace’.

4.4. Results and comparisons

Tables 3-5 show the computational results of HESM as well as the comparisons instance-by-instance
with three reference methods including the CPLEX solver (Cerulli et al., 2020), CG (Cerulli et al., 2020)
and GA-CG (Capobianco et al., 2022) on the three sets of benchmarks. Note that MA (D’Ambrosio et al.,
2023) does not report detailed numerical results on each instance. Column ‘Ins.’ gives the instance name
and ‘fbk’ indicates the best-known solution reported in the literature. Columns ‘fbest’ and ‘AvgT (s)’
show respectively the best objective value and the average running time in seconds to find the final
solutions across several independent runs. Column ‘T (s)’ presents the running time for CG and GA-
CG for one execution. The running times of CPLEX are not provided in the corresponding literature,



Table 3
Comparison between HESM and the reference methods on the O set benchmarks (best results in bold).

CPLEX CG GA-CG HESM

Ins. fbk fbest fbest T (s) fbest T (s) fbest favg σ AvgT (s)

O500 01 2626 2626 2510 1.35 2568 165.32 2629 2627.20 0.60 127.32
O500 02 2660 2660 2556 1.31 2621 159.89 2660 2658.40 0.80 314.76
O500 03 2516 2516 2400 1.28 2478 162.82 2516 2516.00 0.00 125.14
O500 04 2556 2556 2441 1.29 2515 167.60 2556 2556.00 0.00 141.10
O500 05 2625 2625 2502 1.33 2582 166.19 2633 2633.00 0.00 526.39
O500 06 2615 2615 2500 1.26 2557 155.08 2615 2614.20 2.40 342.14
O500 07 2627 2627 2470 1.31 2602 163.76 2632 2632.00 0.00 233.44
O500 08 2556 2556 2471 1.27 2522 162.94 2556 2556.00 0.00 134.27
O500 09 2613 2613 2524 1.33 2572 169.97 2613 2613.00 0.00 273.92
O500 10 2558 2558 2439 1.28 2537 165.40 2558 2558.00 0.00 131.50
O700 01 3589 3589 3448 3.56 3511 517.19 3588 3588.00 0.00 639.18
O700 02 3422 3422 3253 3.51 3359 510.37 3424 3423.60 0.66 1149.59
O700 03 3679 3679 3449 3.47 3634 507.37 3671 3669.20 1.17 674.05
O700 04 3664 3664 3512 3.56 3605 495.49 3664 3663.10 0.54 1021.74
O700 05 3647 3647 3457 3.65 3619 494.02 3647 3644.90 2.59 962.37
O700 06 3596 3596 3447 3.53 3553 498.85 3598 3598.00 0.00 1294.95
O700 07 3542 3542 3319 3.61 3446 513.84 3541 3541.00 0.00 471.32
O700 08 3619 3619 3389 3.53 3545 501.05 3613 3607.50 3.64 1112.01
O700 09 3553 3553 3363 3.80 3487 508.08 3553 3546.30 3.23 1045.86
O700 10 3652 3652 3462 3.68 3594 515.93 3650 3648.50 0.67 812.94
O800 01 4184 4184 4024 5.53 4125 789.00 4187 4183.70 2.69 1192.04
O800 02 4065 4065 3827 5.30 4006 793.28 4067 4066.40 0.49 827.99
O800 03 4102 4102 3886 5.58 4018 796.44 4109 4106.70 2.24 1317.70
O800 04 4051 4051 3850 5.60 3960 828.26 4057 4051.40 3.90 1204.98
O800 05 4085 4085 3900 5.53 4041 803.99 4090 4088.60 1.36 1253.60
O800 06 4249 4249 4084 5.56 4184 792.54 4250 4246.40 2.50 1357.24
O800 07 4121 4121 3897 5.71 4021 803.40 4128 4121.80 5.56 1320.69
O800 08 4063 4063 3859 5.63 4019 782.48 4061 4057.60 5.12 1376.91
O800 09 4080 4080 3853 5.54 4017 792.30 4082 4079.00 3.38 1089.25
O800 10 4124 4124 4050 5.60 4074 800.30 4130 4128.90 1.81 976.61
01000 01 4927 4927 4655 12.49 4834 1597.80 4935 4930.60 2.73 1408.30
01000 02 4966 4966 4756 12.47 4893 1564.61 4982 4976.40 4.61 1211.55
01000 03 5171 5171 4897 12.60 5070 1645.26 5177 5170.60 4.92 1575.59
01000 04 5141 5141 4916 12.36 5065 1553.59 5138 5131.40 5.10 1453.31
01000 05 5134 5134 4935 12.48 5049 1526.05 5138 5136.60 0.80 1218.50
01000 06 5082 5082 4858 12.27 4951 1589.67 5079 5075.60 2.20 1559.52
01000 07 5100 5100 4876 12.40 5033 1585.42 5119 5116.10 1.92 1382.29
01000 08 5178 5178 4916 12.47 5071 1572.44 5193 5188.80 2.93 1471.44
01000 09 5108 5108 4890 12.38 5011 1640.44 5104 5099.20 2.40 1531.58
01000 10 5178 5178 4998 12.56 5080 1590.57 5184 5176.60 3.85 1409.39

#Best 19 19 0 0 31
#Improve 0 0 0 21 16
#Match 40 0 0 10 5
Average 3850.60 3850.60 3670.98 5.72 3785.73 763.73 3853.18 3850.66 1.92 941.81



Table 4
Comparison between HESM and the reference methods on the LK set benchmarks (best results in bold).

CPLEX CG GA-CG HESM

Ins. fbk fbest fbest T (s) fbest T (s) fbest favg σ AvgT (s)

LK500 01 2712 2712 2528 1.36 2649 238.95 2727 2727.00 0.00 41.48
LK500 02 2729 2729 2580 1.31 2666 222.13 2740 2740.00 0.00 144.43
LK500 03 2639 2639 2436 1.30 2587 209.55 2639 2639.00 0.00 95.05
LK500 04 2665 2665 2474 1.31 2600 222.91 2665 2665.00 0.00 165.36
LK500 05 2686 2686 2509 1.38 2615 218.82 2695 2694.90 0.30 268.79
LK500 06 2746 2746 2542 1.37 2707 224.40 2755 2754.60 0.49 157.43
LK500 07 2689 2689 2484 1.31 2659 226.16 2708 2706.40 0.80 184.50
LK500 08 2681 2681 2574 1.31 2644 219.99 2681 2680.00 1.10 229.34
LK500 09 2652 2652 2524 1.31 2615 223.69 2654 2654.00 0.00 82.65
LK500 10 2665 2665 2524 1.32 2619 227.75 2675 2675.00 0.00 174.84
LK700 01 3757 3757 3487 3.82 3678 682.19 3761 3758.10 2.21 412.18
LK700 02 3611 3611 3288 3.58 3535 695.62 3613 3610.00 4.56 590.98
LK700 03 3824 3824 3510 3.60 3799 691.79 3835 3829.20 2.40 948.28
LK700 04 3835 3835 3550 3.67 3749 688.94 3844 3840.80 1.94 842.19
LK700 05 3823 3823 3585 3.62 3750 639.98 3851 3844.40 3.10 423.23
LK700 06 3707 3707 3526 3.55 3651 673.10 3719 3714.70 3.35 713.70
LK700 07 3676 3676 3326 3.55 3624 704.14 3685 3682.00 3.55 488.41
LK700 08 3762 3762 3538 3.72 3735 667.34 3800 3797.40 2.69 810.64
LK700 09 3651 3651 3393 3.62 3603 702.65 3648 3646.70 1.35 419.62
LK700 10 3832 3832 3499 3.65 3736 697.56 3825 3819.30 3.69 618.18
LK800 01 4298 4298 4084 5.66 4213 1101.85 4314 4313.00 1.34 831.33
LK800 02 4201 4201 3875 5.54 4129 1021.15 4225 4219.90 3.11 660.07
LK800 03 4251 4251 3912 5.59 4128 1115.71 4266 4257.30 4.78 822.43
LK800 04 4209 4209 3924 5.64 4146 1116.08 4223 4221.80 2.32 852.91
LK800 05 4176 4176 3971 5.66 4145 1060.66 4239 4236.50 1.63 651.49
LK800 06 4417 4417 4137 5.57 4343 1077.12 4428 4425.70 1.19 612.14
LK800 07 4284 4284 3920 5.63 4175 1118.76 4302 4292.10 5.77 1014.68
LK800 08 4144 4144 3913 5.48 4120 1138.76 4162 4154.90 2.66 1002.61
LK800 09 4271 4271 3976 5.64 4225 1087.30 4310 4307.50 2.16 1001.06
LK800 10 4277 4277 4078 5.68 4192 1097.25 4288 4287.00 0.63 790.81
LK1000 01 5147 5147 4690 12.31 5037 2214.65 5183 5168.00 6.12 1171.42
LK1000 02 5156 5156 4841 12.59 5025 2122.69 5161 5157.20 4.53 1444.96
LK1000 03 5340 5340 4940 12.79 5281 2125.16 5377 5360.50 6.89 1275.02
LK1000 04 5421 5421 5099 12.80 5323 2087.53 5435 5429.00 3.71 1063.41
LK1000 05 5254 5254 5018 12.82 5209 2138.83 5297 5284.30 7.38 1452.03
LK1000 06 5345 5345 4964 12.79 5234 2029.42 5352 5345.90 5.97 1179.19
LK1000 07 5244 5244 4971 12.59 5139 2159.79 5276 5260.70 5.88 1380.15
LK1000 08 5323 5323 5020 12.59 5245 2005.32 5393 5388.30 3.49 1106.53
LK1000 09 5295 5295 5031 12.65 5225 2042.03 5351 5333.70 10.48 1421.95
LK1000 10 5362 5362 5119 12.72 5318 2060.29 5404 5394.50 7.68 1142.97

#Best 5 5 0 0 38
#Improve 0 0 0 35 34
#Match 40 0 0 3 2
Average 3993.93 3993.93 3734.00 5.81 3926.83 1024.95 4012.65 4007.91 2.98 717.21



Table 5
Comparison between HESM and the reference methods on the MF set benchmarks (best results in bold).

CPLEX CG GA-CG HESM

Ins. fbk fbest fbest T (s) fbest T (s) fbest favg σ AvgT (s)

MF500 01 2368 2368 2223 1.70 2305 253.76 2368 2368.00 0.00 502.39
MF500 02 2310 2310 2027 1.57 2300 256.48 2319 2318.80 0.60 1209.61
MF500 03 2284 2284 2108 1.58 2229 254.26 2284 2283.90 0.30 559.90
MF500 04 2259 2259 2098 1.61 2228 247.65 2273 2273.00 0.00 763.32
MF500 05 2321 2321 2199 1.62 2272 263.74 2327 2327.00 0.00 38.13
MF500 06 2316 2316 2230 1.64 2283 254.87 2327 2327.00 0.00 1189.01
MF500 07 2288 2288 2129 1.59 2207 250.01 2294 2294.00 0.00 54.29
MF500 08 2201 2201 2052 1.61 2161 248.32 2215 2215.00 0.00 16.19
MF500 09 2259 2259 2034 1.59 2219 256.47 2272 2272.00 0.00 33.11
MF500 10 2305 2305 2069 1.57 2285 254.06 2319 2317.20 0.60 153.08
MF700 01 3127 3127 2915 4.91 3050 752.68 3130 3127.80 3.03 1182.09
MF700 02 3038 3038 2775 4.79 2966 735.33 3059 3057.80 0.98 818.12
MF700 03 3197 3197 3000 5.01 3162 758.40 3224 3223.70 0.46 616.33
MF700 04 3233 3233 2994 4.92 3176 753.76 3247 3244.90 1.37 762.56
MF700 05 3238 3238 3035 4.78 3134 723.80 3246 3246.00 0.00 167.56
MF700 06 3129 3129 2901 4.81 3095 733.72 3133 3132.70 0.46 599.53
MF700 07 3015 3015 2668 4.70 2948 745.79 3052 3050.30 2.45 913.92
MF700 08 3166 3166 2924 4.78 3096 724.56 3177 3175.80 1.47 965.92
MF700 09 3186 3186 3017 4.96 3146 753.78 3219 3218.60 0.49 1037.33
MF700 10 3203 3203 2940 4.88 3154 726.75 3216 3213.70 2.33 724.19
MF800 01 3691 3691 3428 7.87 3639 1132.03 3702 3701.30 0.64 901.79
MF800 02 3711 3711 3489 7.73 3647 1114.68 3735 3734.20 1.17 962.19
MF800 03 3605 3605 3398 7.65 3566 1195.34 3684 3682.60 1.80 841.44
MF800 04 3490 3490 3203 7.63 3391 1097.15 3529 3526.30 1.79 1410.84
MF800 05 3741 3741 3483 7.82 3704 1097.60 3754 3754.00 0.00 396.85
MF800 06 3772 3772 3502 7.77 3697 1106.53 3782 3782.00 0.00 415.73
MF800 07 3683 3683 3442 7.93 3611 1100.25 3688 3686.70 0.90 947.20
MF800 08 3575 3575 3334 7.51 3524 1118.76 3612 3606.20 5.96 1007.44
MF800 09 3593 3593 3340 7.57 3521 1082.35 3608 3604.90 2.02 791.96
MF800 10 3633 3633 3336 7.54 3531 1114.64 3643 3641.00 2.28 741.42
MF1000 01 4450 4450 4112 15.25 4393 2200.10 4470 4466.20 2.68 816.85
MF1000 02 4408 4408 4133 15.28 4337 2053.81 4471 4464.90 3.91 1514.09
MF1000 03 4577 4577 4268 15.26 4572 2102.17 4645 4639.50 2.80 1332.18
MF1000 04 4564 4564 4122 15.60 4468 2107.51 4592 4589.20 1.89 1324.51
MF1000 05 4468 4468 4210 15.29 4399 2106.83 4531 4528.40 4.00 1329.76
MF1000 06 4569 4569 4258 15.63 4512 2073.79 4604 4603.20 1.17 1326.59
MF1000 07 4578 4578 4321 15.54 4485 2162.87 4612 4609.50 1.75 1344.36
MF1000 08 4486 4486 4167 15.63 4421 2123.27 4572 4559.60 4.50 1518.82
MF1000 09 4631 4631 4430 15.55 4570 2036.23 4643 4636.80 2.52 1005.37
MF1000 10 4660 4660 4345 15.58 4559 2096.12 4678 4674.70 2.97 1388.05

#Best 2 2 0 0 40
#Improve 0 0 0 38 38
#Match 40 0 0 2 1
Average 3408.20 3408.20 3166.48 7.41 3349.08 1054.26 3431.40 3429.46 1.48 840.60



Table 6
Summarized results between HESM and four reference algorithms on the O, LK and MF sets of instances. The best results are
marked in bold.

Inst.group CPLEX CG GA-CG MA HESM

Type n sol sol time(s) sol time(s) sol time(s) sol time(s)
O 500 2595.20 2481.30 1.30 2555.40 163.90 2579.10 14.38 2596.80 235.00

700 3596.30 3409.90 3.59 3535.30 506.22 3563.80 56.05 3594.90 918.40
800 4112.40 3923.00 5.56 4046.50 798.20 4075.10 111.30 4116.10 1191.70

1000 5098.50 4869.70 12.45 5005.70 1586.59 5057.30 312.24 5104.90 1422.15
LK 500 2686.40 2517.50 1.33 2636.10 223.44 2676.40 33.64 2693.90 154.39

700 3747.80 3470.20 3.64 3686.00 684.33 3731.50 139.39 3758.10 626.74
800 4252.80 3979.00 5.61 4181.60 1093.46 4241.30 318.64 4275.70 823.95

1000 5288.70 4969.30 12.67 5203.60 2098.57 5279.40 719.10 5322.90 1263.76
MF 500 2291.10 2116.90 1.61 2248.90 253.96 2279.40 40.20 2299.80 451.90

700 3153.20 2916.90 4.85 3092.70 740.86 3142.40 171.98 3170.30 778.76
800 3649.40 3395.50 7.70 3583.10 1115.93 3638.80 236.00 3673.70 841.69

1000 4539.10 4236.60 15.46 4471.60 2106.27 4547.50 551.51 4581.80 1290.06

Table 7
Results of the Wilcoxon signed-rank test for HESM and the reference methods on the three set of instances, with a significance
level of 0.05.

Instance set Comparison R+
best R−

best p-value

O Set (40 instances)
HESM vs. CPLEX 21 9 6.52e-3
HESM vs. CG 40 0 3.56e-8
HESM vs. GA-CG 40 0 3.56e-8

LK Set (40 instances)
HESM vs. CPLEX 35 2 2.45e-7
HESM vs. CG 40 0 3.57e-8
HESM vs. GA-CG 40 0 3.56e-8

MF Set (40 instances)
HESM vs. CPLEX 38 0 7.67e-8
HESM vs. CG 40 0 3.57e-8
HESM vs. GA-CG 40 0 3.56e-8

while the CPLEX solver was run under the time limit of 3 hours for each execution. Note that for each
instance, the reference algorithms CPLEX, CG, GA-CG and MA were performed only once, while we
ran HESM 10 independent times given its stochastic nature. Therefore, in addition to the best objective
value and the running time, we also report the average objective value (‘favg’) and the standard deviation
(‘σ’). Row ‘#Best’ records the number of cases for which a corresponding method yields the best results
among all the compared approaches. Row ‘#Improve’ (‘#Match’) summarizes the number of instances
that an approach improves (matches) the best-known solution from the literature. Row ‘Average’ gives
the average values of each indicator across each set of test graphs.

Table 6 shows the average results of each instance group. For each algorithm, we report the average



objective values (‘sol’) and the average running time in seconds (‘time(s)’) across each instance group.
One can observe from Tables 3-5 that with respect to the best objective value, HESM produces the

best result for 31 (38, 40) cases out of the 40 O instances (LK instances, MF instances), while CPLEX,
CG and GA-CG obtain the best result for 19 (5, 2), 0 (0, 0) and 0 (0, 0) cases, respectively. In particular,
HESM is able to find 94 (21, 35 and 38 cases for the O set, LK set and MF set respectively) improved
best-known solutions out of the 120 benchmark instances, while missing the best-known solution for
only 11 instances (9 O cases and 2 LK cases). One also notices that the average objective values obtained
by HESM are better than the best objective values of CPLEX, CG and GA-CG on most instances,
especially better than CG and GA-CG on all the instances and better than CPLEX on 88 instances over
all the 120 benchmarks. Moreover, HESM yields small standard deviations on all test graphs, which
discloses its robustness.

Concerning the runtime required by each compared algorithm to reach its best result, the greedy
method CG is by far the fastest, but its solutions are much worse compared to those of HESM and GA-
CG. For HESM and GA-CG, HESM typically needs comparable or less time to find solutions of better
quality. We can also observe from Table 6 that HESM reports the best results on the average solution
values for all the instance groups except the case O700 group.

To verify whether there are statistical differences between HESM and each compared algorithm, Table
7 presents the results of the popular Wilcoxon signed-rank test with a significance level of 0.05. Column
R+

best indicates the sum of ranks for the cases where HESM outperforms the compared algorithm with
respect to the best objective value, while R−best records the sum of ranks for the opposite cases. Table 7
shows that HESM performs statistically significant better than the compared methods including CPLEX,
CG and GA-CG on the three sets of benchmarks with p-values < 0.05. These observations reveal the
advantages of HESM in solution quality and computational efficiency, compared with the current best-
performing KPF approaches.

Considering that KPF is a special case of KPFS, recently introduced in (D’Ambrosio et al., 2023), we
slightly adapted the proposed HESM algorithm for tackling KPFS by only modifying the incremental
streamlining evaluation method described in Section 3.5.1, and kept other HESM ingredients unchanged.
Specifically, for each neighborhood, once a neighboring solution satisfying that the number of items
allowed for a forfeit set si (si = {0, 1, ..., |ni|}) is violated where |ni| is the number of forfeit sets
of item i belonging to, a forfeit cost fci is added to (or removed from) the objective value of the
neighboring solution if an item i is added to (or removed from) the knapsack. We report the comparative
results between HESM and the compared methods including the CPLEX solver and MA (D’Ambrosio
et al., 2023) in Table 10 of the Appendix. We observe from Table 10 that HESM shows competitive
performance compared to the reference algorithms.

The studied KPF problem is also related to the classic quadratic knapsack problem (QKP). Indeed, if
two items i and j are chosen simultaneously, an extra non-negative profit pij is earned for QKP, while a
non-positive profit (forfeit cost) pij is incurred for KPF. We ran a state-of-the-art QKP heuristic method,
i.e., IHEA (Chen and Hao, 2017) with the source code shared by the authors under the experimental
environment shown in Section 4.2, to evaluate its performance on the KPF benchmarks. In addition, we
ran the IBM ILOG CPLEX 12.8.0 solver to solve the mathematical model (1)-(5) under a long cutoff
time of 8 hours and 16 GB RAM, to get some insights about the difficulty for solving the KPF instances.
Tables 11-13 of the Appendix present the comparative results between HESM and the compared methods
including CPLEX and IHEA (Chen and Hao, 2017) by mainly providing the objective values and
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Fig. 1. Convergence curves of AFITS and its variant FLS on two graphs MF800 05 and O800 07.

percentage gaps from the obtained objective value to the upper bound obtained by CPLEX. We can
observe that the O set benchmarks seem easier to solve than LK and MF benchmarks by providing much
smaller percentage gap from the solution to the upper bound. In addition, CPLEX finds the optimal
solutions for 4 instances of the O set, while there is no optimal solution found for the LK and MF
instances. The relatively high average percentage gaps (approximately 10% for LK and MF benchmarks,
and 2.5% for O set instances) from the solution obtained by the compared methods to the upper bound,
also show to some extent that the instances are not easy to solve, especially for LK and MF instances.
The proposed HESM algorithm and IHEA (Chen and Hao, 2017) show competitive performance if we
compare the best objective value and the solution value returned by CPLEX. When comparing HESM
and IHEA, we can find that HESM outperforms IHEA for most instances of the three benchmark sets in
terms of the best and average performance, although HESM uses a little more running time to reach the
final solution.

5. Discussions

This section presents additional experiments to understand some key important components of the
HESM algorithm: joint exploration of feasible and infeasible solutions and population-based framework.
These experiments were carried out on 20 randomly selected instances from the three benchmark sets.

5.1. Advantage of exploring both feasible and infeasible regions

As depicted in Section 3.5, HESM employs the AFITS procedure for local optimization, which examines
both feasible and infeasible regions. To assess the effect of this mixed search strategy, we conducted an
experiment to compare AFITS with a variant (denoted as FLS) that visits only feasible solutions. To



Table 8
Comparison between AFITS and its a variant FLS that limits to explore feasible regions on the 20 randomly chosen instances.
The best results are indicated in bold.

FLS AFITS

Ins. fbest favg Avg T (s) fbest favg Avg T (s)

O500 02 2658 2656.50 600.78 2658 2657.30 265.41
O500 04 2534 2529.60 928.65 2556 2555.10 736.89
O500 07 2626 2617.70 963.25 2627 2625.50 925.21
O700 04 3646 3638.70 822.20 3657 3654.80 1153.80
O700 10 3632 3625.30 903.80 3645 3643.00 999.16
O800 07 4097 4091.30 758.21 4112 4104.90 844.90
O800 08 4044 4040.20 846.49 4050 4047.90 679.46
O1000 03 5131 5115.20 1281.20 5152 5138.40 1402.51
O1000 05 5092 5085.30 784.75 5116 5112.30 960.05
LK500 01 2727 2727.00 56.30 2727 2727.00 286.15
LK500 04 2663 2663.00 76.60 2663 2663.00 419.40
LK700 01 3756 3751.80 695.89 3757 3751.30 1160.21
LK800 07 4284 4275.90 858.79 4285 4277.20 1057.23
LK1000 05 5265 5258.90 789.35 5264 5255.20 984.57
MF500 01 2367 2367.00 368.35 2367 2367.00 178.68
MF500 05 2327 2327.00 23.44 2327 2327.00 69.71
MF700 06 3132 3132.00 484.51 3132 3132.00 577.08
MF800 02 3730 3725.00 808.57 3731 3728.00 965.66
MF800 05 3754 3751.90 649.52 3753 3752.10 719.01
MF1000 08 4547 4537.80 1085.95 4539 4532.60 1020.63

#Best 9 8 17 17
p-value 0.02 0.01
Average 3600.60 3595.86 689.33 3605.9 3602.58 770.29

escape from local optima, FLS and AFITS were performed in a multi-restart manner until the cutoff
time was reached. Both AFITS and FLS were performed under the experimental conditions given in
Section 4.2.

Table 8 shows the experimental results. One observes from Table 8 that AFITS outperforms FLS
both in terms of the best and average results (17 and 17 cases for AFITS against 9 and 8 cases for FLS).
Moreover, AFITS and FLS exhibit similar average running times to find their best solutions across the 20
test instances. The statistically significant differences between FLS and AFITS for the best and average
performances are confirmed by the small p-values (< 0.05).

To show the evolution of the best solution found along the time, we provide the convergence curves of
AFITS and FLS on two randomly selected instances MF800 05 and O800 07 in Fig. 1, where the X-axis
records the running time in seconds and the Y-axis represents the best objective value. We can observe
from Fig. 1 that AFITS finds always better solutions than FLS while requiring less time. Similar results
are observed in other instances. This experiment clearly shows the advantage of mixing feasible and the
infeasible searches.



5.2. Effect of population framework
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Fig. 2. Comparison between HESM and its underlying local search algorithm AFITS on 20 randomly selected instances.

To assess the effect of the population framework, we compared HESM with its underlying local
search method without the crossover operator, i.e., the AFITS method. Both HESM and AFITS were
run independently 10 times on each of the 20 randomly selected instances as shown in Table 8. To be
fair, AFITS was executed in a multi-restart manner until it reached the cutoff time.

We plotted the average objective values of the two compared methods in Fig. 2, where the Y-axis
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Fig. 3. Convergence curves of HESM and AFITS on the graphs MF800 05 and O800 07.



Table 9
Similarity between 100 high quality solutions.

Ins. n selmax selavg selmin simmax simavg simmin

O500 02 500 154 149.50 146 150 130.86 101
O500 04 500 151 146.23 140 145 125.38 89
O500 07 500 156 150.92 146 150 117.93 87
O700 04 700 211 207.18 202 205 173.96 137
O700 10 700 209 203.75 200 201 177.20 144
O800 07 800 246 237.17 230 231 182.26 137
O800 08 800 246 240.20 234 236 195.30 153
O1000 03 1000 308 300.14 290 297 239.69 184
O1000 05 1000 302 297.48 294 289 246.08 199
LK500 01 500 171 166.33 160 167 145.88 118
LK500 04 500 174 167.43 162 167 135.82 90
LK700 01 700 243 237.08 230 237 197.55 143
LK800 07 800 278 271.32 264 266 212.68 163
LK1000 05 1000 352 339.70 331 333 273.48 223
MF500 01 500 143 138.58 134 139 108.30 72
MF500 05 500 142 138.46 135 137 111.06 79
MF700 06 700 197 191.96 187 192 170.37 131
MF800 02 800 221 214.82 208 210 159.39 120
MF800 05 800 227 220.63 216 221 191.38 151
MF1000 08 1000 276 268.63 261 265 203.03 139

represents the percentage gap between the average results acquired by each approach and the best-known
solutions in the literature. These results disclose the importance of the population-based framework to
HESM’s overall performance. The convergence curves from Fig. 3 further suggest that HESM consumes
less running time to obtain better solutions than AFITS for both instances.

5.3. Motivation behind the adopted crossover

To further understand why the adopted uniform crossover operator is useful for the algorithm, we analyze
the structural similarity of high quality solutions. For this, we select 20 instances and run HESM to
find (and record) 100 different high quality solutions for each instance. Then we calculate the pairwise
similarity of the 100 solutions as follows. Given two solutions Sa and Sb, their similarity is measured as
the number of commonly shared items: sim(Sa, Sb) = |Sa ∩ Sb|.

Table 9 shows the structural information found among the 100 solutions for each instance, where
selmax, selmin and selavg indicate the maximal, average, and minimal number of selected items among
100 solutions, and simmax, simmin and simavg are the maximal, average, and minimal similarity
between those solutions. We observe that, the average similarity between these high quality solutions
is very high, which suggests that a large number of shared items might form the kernel of an optimal
solution. By inheriting the shared items of parent solution to offspring, the adopted uniform crossover
naturally conserves the kernel information of high quality, favoring the discovery of still better or even



optimal solutions.

6. Conclusions

The knapsack problem with forfeits is a suitable model for a number of real-world applications that
cannot be formulated by the conventional knapsack problem due to the presence of incompatible items.
In this work, we presented the hybrid evolutionary search method HESM for KPF that integrates the
uniform crossover and a tabu search procedure exploring both feasible and infeasible regions. In addition,
a fast evaluation technique is proposed to accelerate the examination of three neighborhoods.

Experimental results on three sets of 120 KPF test graphs in the literature revealed the dominance of
the algorithm over the existing state-of-the-art methods. In particular, HESM discovered 94 new lower
bounds and matched 15 other best-known results. The effects of the main algorithmic components were
also assessed.

Since the algorithm presented in this work is a heuristic approach, the gaps of its solutions to the
optimal solutions remain unknown for difficult instances. Therefore, it is worth investigating exact
algorithms in future studies to obtain optimal solutions or tight bounds. Moreover, the basic ideas of
the proposed algorithm would be useful for developing effective algorithms for other related problems
with incompatibility constraints.
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Appendix

This appendix provides 1) the comparative results between HESM and the reference algorithms
including the CPLEX solver and MA (D’Ambrosio et al., 2023) on the KPFS instances, and 2)
comparative results between HESM and the compared algorithms, i.e., the CPLEX solver under a time
limit of 8 hours, and a state-of-the-art QKP heuristic IHEA (Chen and Hao, 2017) on the KPF instance. In
Table 10, the results reported by CPLEX and MA are directly compiled from (D’Ambrosio et al., 2023).
Column ‘Ins. group’ shows the instance scenario and type, and column ‘n’ gives the number of items for
each type of instance. For each scenario, instance type and value of n, 10 different instances were used.
Column ‘Avg sol’ indicates the average solution value reported by CPLEX across 10 instances within
the time limit of 3 hours. Column ‘time(s)’ shows the running time elapsed by CPLEX, and the symbol
‘-’ given in this column demonstrates that there is 0 instance belonging to a group is solved to optimality.
Column ‘Avg gap(%)’ and ‘AvgT (s)’ denote the average percentage gap of the best objective value to
the solution reported by CPLEX and the average running time in seconds to find the final objective
value for the compared algorithms. The percentage gaps of the best objective values are calculated as
(fsol − f)/fsol, where fsol is the solution reported by CPLEX and f is the best objective value obtained
by the compared algorithms. Row ‘Average’ shows the average values of each indicator across each set
of instances. For Tables 11-13, column ‘sol’ and ‘ub’ show respectively the solution value and upper
bound reported by CPLEX by solving the models (1)-(5) with a cutoff time of 8h and maximal allowed



Table 10
Comparative results between HESM and the reference algorithms on the KPFS benchmarks. The best results are indicated in
bold.

CPLEX MA HESM

Ins. group n Avg sol time(s) Avg gap(%) AvgT (s) Avg gap(%) AvgT (s)

scenario1 nc 300 684.00 3325.66 0.38 3.86 -0.31 1.31
scenario1 nc 500 561.70 - 0.14 11.95 -2.85 4.26
scenario1 c 300 769.50 - 0.10 2.59 0.56 2.86
scenario1 c 500 834.10 - -0.99 18.96 -5.13 4.33
scenario1 fc 300 751.30 - -0.09 3.03 0.36 1.92
scenario1 fc 500 802.60 - -2.08 17.38 -3.02 3.98
scenario2 nc 300 299.60 357.50 0.17 1.37 0.00 0.72
scenario2 nc 500 227.60 2642.25 0.41 2.45 0.00 1.45
scenario2 nc 700 186.90 5133.72 0.31 3.24 0.05 3.13
scenario2 nc 800 174.30 5837.46 0.00 3.80 1.78 4.10
scenario2 nc 1000 145.90 5869.85 1.29 4.31 1.58 5.23
scenario2 c 300 443.90 3158.58 0.00 1.89 -0.52 0.54
scenario2 c 500 343.20 - -0.96 3.16 -1.43 1.98
scenario2 fc 300 464.40 5003.56 -0.22 2.21 -1.96 0.64
scenario2 fc 500 403.40 - -0.79 4.61 -11.80 1.13
scenario3 nc 300 1033.30 3.04 0.55 1.23 0.02 2.68
scenario3 nc 500 1404.50 2086.83 1.25 8.03 0.16 10.02
scenario3 c 300 968.30 369.69 0.84 1.23 4.13 6.97
scenario3 c 500 1453.80 - 0.99 5.16 1.16 27.00
scenario3 fc 300 955.00 675.73 0.32 1.54 2.83 5.20
scenario3 fc 500 1435.60 - 0.81 6.12 1.01 22.45
scenario4 nc 300 908.70 4.85 0.63 1.32 0.10 1.84
scenario4 nc 500 1178.70 119.36 0.89 13.01 -0.06 8.00
scenario4 nc 700 1428.30 4134.69 1.86 36.40 0.15 31.27
scenario4 nc 800 1475.40 3538.67 1.74 55.01 0.16 31.43
scenario4 nc 1000 1544.40 7089.20 2.02 89.64 0.19 59.01
scenario4 c 300 906.20 165.61 1.08 1.16 1.30 5.04
scenario4 c 500 1321.50 8882.10 1.01 5.91 1.14 17.07
scenario4 fc 300 895.80 224.82 0.68 1.23 1.08 6.01
scenario4 fc 500 1323.40 - 0.74 4.80 0.67 15.50
Average 844.18 - 0.44 10.55 -0.29 9.57

memory of 16 GB. For each instance, if the time limit (or allocated memory) is reached and the optimal
solution is not obtained, we mark the solution with a symbol ‘TL’ (or ‘OM’). Optimal solutions are
marked by the symbol ‘*’. Column ‘gap(%)’ presents the percentage gap of the solution reported by
CPLEX or the best objective value obtained by IHEA (Chen and Hao, 2017) and HESM to the upper
bound value. Columns ‘fbest’ and favg give the best objective value and average objective value for the
compared methods across 10 independent runs.
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