Variable Population Memetic Search: A Case Study
on the Critical Node Problem

Yangming Zhou, Jin-Kao Hao*, Zhang-Hua Fu*, Zhe Wang, and Xiangjing Lai
Accepted to IEEE Transactions on Evolutionary Computation, July 2020.

Abstract—Population-based memetic algorithms have been
successfully applied to solve many difficult combinatorial prob-
lems. Often, a population of fixed size is used in such algo-
rithms to record some best solutions sampled during the search.
However, given the particular features of the problem instance
under consideration, a population of variable size would be
more suitable to ensure the best search performance possible.
In this work, we propose variable population memetic search
(VPMS), where a strategic population sizing mechanism is used to
dynamically adjust the population size during the search process.
Our VPMS approach starts its search from a small population of
only two solutions to focus on exploitation, and then adapts the
population size according to the search status to continuously
influence the balancing between exploitation and exploration.
We illustrate an application of the VPMS approach to solve
the challenging critical node problem (CNP). We show that the
VPMS algorithm integrating a variable population, an effective
local optimization procedure and a backbone-based crossover
operator performs very well compared to state-of-the-art CNP
algorithms. The algorithm is able to discover new upper bounds
for 12 instances out of the 42 popular benchmark instances, while
matching 23 previous best-known upper bounds.

Index Terms—Memetic search, Population sizing, local search,
critical node problem.

I. INTRODUCTION

Canonical memetic algorithms (denoted by MAs hereafter)
are a hybrid metaheuristic that combines local search and
population-based search [28]. MAs aim to benefit from the
synergy between the exploitation power offered by local search
and the exploration capacity provided by population-based
search. Since their introduction, MAs have been applied with
success to numerous combinatorial search problems including

Work partially supported by the National Natural Science Foundation of
China under Grant 61903144, the Shanghai Sailing Program under Grant
19YF1412400, the Key Project of Science and Technology Innovation 2030
Supported by the Ministry of Science and Technology of China under Grant
2018AAA0101302, the Fundamental Research Funds for the Central Univer-
sities of China under Grant 222201817006, and the Shenzhen Science and
Technology Innovation Commission under Grant JCYJ20180508162601910.
(Corresponding authors: Jin-Kao Hao and Zhang-Hua Fu)

Y. Zhou and Z. Wang are with the Key Laboratory of Advanced Control
and Optimization for Chemical Processes, Ministry of Education and the
School of Information Science and Engineering, East China University of
Science and Technology, 130 Meilong Road, 200237 Shanghai, China (e-
mails: ymzhou@ecust.edu.cn, wangzhe @ecust.edu.cn).

J.-K. Hao is with the Department of Computer Science, LERIA, Université
d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France and the Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France (e-mail: jin-
hao.hao@univ-angers.fr).

Z.-H. Fu is with the Shenzhen Institute of Artificial Intelligence and
Robotics for Society and the Institute of Robotics and Intelligent Manufac-
turing, The Chinese University of Hong Kong, Shenzhen, 518172 Shenzhen,
China (e-mail: fuzhanghua@cuhk.edu.cn).

X. Lai is with the Institute of Advanced Technology, Nanjing University
of Posts and Telecommunications, 210023 Nanjing, China (e-mail: laixi-
angjing @gmail.com).

popular NP-hard problems (e.g., graph coloring [27], [34],
maximum diversity [43], graph partitioning [5]) and real ap-
plications (e.g., identification of critical nodes in graphs [45],
influence maximization in multiplex networks [41], vehicle
routing [13], [38]). Comprehensive surveys of representative
research on canonical memetic algorithms and additional ap-
plication examples can be found in, e.g., [10], [30].

From a perspective of computational models, canonical
memetic algorithms can be considered as a particular member
of the more recent memetic computation (MC) paradigm that
emphasizes simultaneous problem learning and optimization
via knowledge memes [16]. This work basically concerns
canonical MAs given that they follows simple design prin-
ciples and are known to be a quite useful framework for
combinatorial optimization.

Typically, the design of an effective MA for a given prob-
lem requires specifying a number of algorithmic components
including the local optimization procedure, the crossover op-
erator, and the pool updating strategy [17], [19], [25], [31].
Additionally, since MAs rely on a population of individuals,
the population size needs to be identified as well. We observe
that existing studies on MA applications focus mainly on
designing algorithmic components such as local optimization
and crossover, while the issue of population size is typically
neglected.

Generally, it is known that the population size of an evo-
lutionary algorithm impacts the solution quality and running
time. Indeed, there is a consensus that a small population
implies a low population diversity and may lead to premature
convergence of the algorithm, whereas a large population pro-
motes diversity, nevertheless consumes more computational re-
sources. However, the optimal population size of a population-
based algorithm is generally problem dependent [12] and can
even vary at different evolution stages of the search process
[42]. As we observe from the literature review of Section II, a
number of studies on population sizing have been dedicated to
various evolutionary methods such as genetic algorithm, dif-
ferential evolution, artificial bee colony algorithm and particle
swarm optimization, while most of them have been studied for
solving continuous optimization problems such as non-linear
and multi-modal function optimization. On the other hand,
very little effort has been made to investigate population sizing
schemes for memetic algorithms in discrete optimization.

This work aims to fill the gap by focusing on memetic
algorithms for combinatorial optimization and presenting the
variable population memetic search (VPMS) method where a
strategic population sizing mechanism is introduced in the MA
framework. We summarize our contributions as follows.

First, from an algorithmic perspective, the proposed variable

population memetic search enhances the popular MA frame-
work with a strategic population sizing scheme to dynamically
influence the balancing between exploration and exploitation.
A VPMS algorithm starts its search with a small population
of two individuals (solutions) to favor exploitation. Upon
reaching local optima solutions, the population is augmented
with new high-quality solutions to strengthen population di-
versity and enhance exploration of the search space. When
the population reaches a maximum allowable size while the
search is still stagnating, it is shrunk to two individuals while
maintaining the best solution found so far to start a new round
of exploitation and exploration. It is expected that this strategic
population sizing mechanism helps the MA algorithm to make
its search more focused and more effective.

Second, from a computational perspective, we apply the
proposed method to the challenging (NP-hard) critical node
problem (CNP). In particular, we integrate a dedicated local
improvement procedure and a structured crossover within the
variable population memetic search framework. We demon-
strate the competitiveness of the resulting VPMS algorithm on
two sets of 42 synthetic and real-world benchmark instances in
the literature and present new record results (improved upper
bounds) for 12 instances. The VPMS approach is also the first
heuristic algorithm able to steadily reach the optimal solutions
for all 9 instances with known optima in only one minute.

Third, even if the work focuses on MAs for combinatorial
optimization, the strategic population sizing mechanism of
the VPMS method is of generic nature. As such, it can be
used within other population-based algorithms to improve their
search performances — we showcase such an example in this
work for an existing MA (i.e., the MACNP algorithm of [45]).
Finally, it is expected that the VPMS method will contribute
to better solve various optimization problems.

The rest of this paper is organized as follows. Section II
presents a brief literature review of studies on population
sizing in evolutionary algorithms. Section III introduces the
proposed VPMS approach. Section IV shows the case study
of applying the general VPMS approach to the critical node
problem, including detailed computational results and compar-
isons with state-of-the-art CNP algorithms. Finally, Section V
summarizes the work and presents research perspectives.

II. RELATED WORK ON POPULATION CONTROL IN
EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are population-based com-
putation methods. One important issue concerning EAs is
population control. Indeed, this issue has been investigated
to improve genetic algorithms, differential evolution, artificial
bee colony algorithms and particle swarm optimization [15],
[33]. Existing studies on population control can be roughly
divided into three categories as follows.

Deterministic methods change the population size during
the evolution process according to some deterministic rules.
For example, Brest and Maucec [7] presented such a method
for differential evolution, which gradually decreases the pop-
ulation size by half each time a given condition is satisfied
during the evolution. Brest et al. [8] introduced another

method, which, starting from a small population, increases
with a specific size determined by a constant value and then
reduces by half the population during the evolution. Instead
of changing a specific number of individuals after a specific
number of generations during evolution, a few methods have
been proposed to automatically adjust the population size
based on predefined functions. For example, Koumousis et al.
[24] used a saw-tooth shape function to adjust the population
size of a genetic algorithm.

Adaptive methods utilize feedback information from the
search to determine the direction and magnitude of change of
population size. For example, Arabas et al. [1] presented a
genetic algorithm with variable population, which eliminates
the population size as an explicit parameter by using features
such as “age” and “maximal lifetime” of individuals. Eiben
et al. [12] introduced a population sizing technique based on
improvements of the best fitness in the population of a genetic
algorithm: increase the population on fitness improvement or
long period search stagnation, and decrease the population
on short term stagnation. Besides the fitness of individuals,
information on fitness diversity of the population was also
used to control the population size. For example, Tirronen and
Neri [39] proposed a population control method for differential
evolution based on fitness diversity measured by the distances
between pairs of individuals along with their fitness values.

Parameter-less methods try to get around the need of
setting a fixed population size. For instance, Harik and Lobo
[18] introduced the first parameter-less genetic algorithm
where an unbounded number of populations with different
sizes are dynamically created. Goldman and Funch [14]
presented a parameter-less population pyramid (P3) method
based on a pyramid-like structure of multiple-populations for
performing evolutionary optimization without requiring any
user-specified parameters. For both the linkage tree genetic
algorithm (LTGA) and the dependency structure matrix genetic
algorithm II (DSMGA-II) where the population size is the
only parameter, Bosman et al. [6] proposed the population-
sizing LTGA algorithm (psLTGA), while Komarnicki and
Przewozniczek [23] developed the population-sizing DSMGA-
IT algorithm (psDSMGA-II).

We observe that although a variety of methods have been
reported for population control in various EAs, studies on
population control in memetic algorithms for discrete opti-
mization are almost nonexistent. To our knowledge, the only
study on population sizing in MAs was presented in [22].
In their work, Karapetyan and Gutin introduced a memetic
algorithm for the multidimensional assignment problem, where
the population size is adjustable according to a function of the
running time of the whole algorithm and the average running
time of the local search for the given instance. Specifically, the
average running time of the local search procedure is obtained
during the algorithm’s run. Their technique supposes a limited
running time for the MA and varying the population size aims
to best utilize the given time budget.

In this work, we aim to investigate the issue of population
control to reinforce the MA framework for combinatorial
optimization. Specifically, inspired by existing studies on
population management for EAs such as [7], [8], [12] and

successful memetic algorithms with small populations such
as [27], [34], [38], [45], we introduce the variable population
memetic search (VPMS) which intergrates a strategic popula-
tion sizing mechanism into memetic search. As we show in
Section IV, the VPMS approach indeed enables us to design
highly effective algorithms for hard optimization problems.

III. VARIABLE POPULATION MEMETIC SEARCH

In this section, we present the variable population memetic
search (VPMS) framework, which introduces a strategic pop-
ulation sizing mechanism into memetic algorithms.

A. General scheme

Like any population-based search algorithm, the perfor-
mance of a memetic algorithm depends critically on its ability
of maintaining a suitable balance of exploration and exploita-
tion of the search space. The proposed variable population
memetic search (VPMS) framework aims to encourage such
a search balance via a dynamic population sizing mechanism.

From a search perspective, the VPMS approach starts with
a small population of two individuals (solutions) to favor
exploitation and then strategically adjusts the populations size
to influence the population diversity and thus the balance of
exploitation and exploration.

From an algorithmic perspective, VPMS mainly consists of
five components: population building (Section III-B), offspring
solution construction (Section III-C), local improvement (Sec-
tion III-D), population updating (Section III-E) and population
sizing (Section III-F). As shown in Algorithm 1, VPMS
starts with an elite population of only two solutions that
are obtained by the PopulationBuilding() procedure (line 4).
From this small elite population, VPMS enters a “while” loop
(lines 8-26) to perform its evolutionary search until a given
stopping condition is satisfied. At each generation, two or
more parents are selected to create an offspring solution based
on the OffspringSolutionConstruction() procedure (line 10).
Afterward, the offspring solution is further improved by the
Locallmprovement() procedure (line 12). The improved off-
spring solution is then inserted into the population according
to the PopulationUpdating() procedure (line 22). In addition
to these basic components of a general memetic algorithm,
the proposed VPMS approach specifically integrates a new
component to dynamically control the population size ac-
cording to the PopulationSizing() procedure (line 24). With
the help of this strategic population sizing mechanism, the
algorithm adapts (i.e., increases or decreases) its population
size according to the current search status.

B. Population building

VPMS uses a population building strategy to build an
initial population of two solutions. Generally, these initial so-
lutions can be obtained by any means, for instance, randomly
or with a fast greedy procedure. In the spirit of MAs, it is
preferable to start the search with some high-quality local
optima. Thus, the initial solutions are typically improved by a
local improvement procedure before being added in the pop-
ulation. Our population building strategy has the particularity

Algorithm 1: Variable population memetic search

Input: Problem instance / with a minimization objective f.

Output: The best found solution S*
1 begin
//build an elite population of two solutions; Sect. III-B
pS +— 2;
P = {51, 52} < PopulationBuilding(ps);
/lrecord the best solution
S* «+ argmin;e,2) f(5i);
gens < 0, idle_gens < 0;
while a stopping condition is not reached do
/lconstruct an offspring solution; Sect. III-C
S’ « OffspringSolutionConstruction(P);
/limprove it by local optimization; Sect. III-D
S’ < Locallmprovement(S’, Maxldlelters);
/lupdate the best solution
if £(S') < f(S*) then

S* 9,
idle_gens < 0;

end
else

‘ idle_gens <— idle_gens + 1;
end
/lupdate the population; Sect. III-E
P <« PopulationUpdating(P, S");
/Icontrol population size; Sect. III-F
P « PopulationSizing(P, idle_gens);
gens <— gens + 1;

e e N A R W N

[R R R S S S e e T L o < =
R W N =S © ® kW N =S

26 end
27 end

28 return The best found solution S*

of starting with a very small population of only two solutions.
This is based on three considerations. First, since the search
space is not examined yet at the beginning of the search,
it is desirable to perform, with a reasonable computation
time, an intensified exploitation to locate as fast as possible
some first promising regions (represented by high-quality local
optima). Second, building an initial population of multiple
high-quality solutions in a MA for large problems may be
time-consuming due to the application of local optimization.
In some settings where the allowable time budget is short,
the total time can fully be consumed during the population
building phase, leaving no time for further search (see [45]
for an example). Third, many successful MAs for difficult
optimization problems including those mentioned in Section
I employ small populations of ten to a few dozen individuals
(some highly powerful MAs, such as [27], even use a fixed
population of only two solutions).

C. Offspring solution construction

Offspring solution construction is an important component
of a memetic algorithm and forms one leading force for
exploration. It aims to create new solutions (offspring) by
blending existing solutions. Crossover is a typical recom-
bination operator, which is responsible for exploring new
search areas of the solution space. Crossover operator usually
consider two or more parents to form one or more new
solutions. Within the VPMS method, the choice of the most
suitable crossover operators follows the general recommen-
dations for evolutionary and memetic algorithms. As the

first approach, various popular crossover operators can be
considered according to the adopted representations [32]. In
addition to these (general) operators, it is often advantageous
to design dedicated crossovers for the studied problem such
that offspring solutions inherit meaningful features (building
blocks) from the parent solutions, as shown in many successful
MAs (e.g., [21], [27], [34], [45])).

D. Local improvement

Local improvement (also called local optimization) plays a
critical role in a memetic algorithm and ensures essentially
the role of intensive exploitation of the search space by
focusing on a limited region. In principle, the local improve-
ment procedure of a VPMS algorithm can benefit from many
general local search methods [20] such as hill climbing, simu-
lated annealing, tabu search, threshold accepting, and variable
neighborhood search. Still, these general methods need to
be adapted to the given problem in particular by designing
suitable search components. In particular, neighborhood is one
critical ingredient that structures the way of the space being
examined and thus largely determines the performance of the
local improvement procedure. Also, specific techniques should
be sought to streamline the evaluation of neighbor solutions.
Moreover, for constrained problems, decisions should be made
concerning whether the search is restricted to feasible solutions
or allowed to explore infeasible solutions.

E. Population updating

For each offspring solution obtained by the solution con-
struction component (Section III-C) and further improved by
the local improvement component (Section III-D), a decision
is made to determine whether and how the offspring is inserted
into the population according to a pool updating strategy.
For this purpose, existing population replacement strategies
for evolutionary algorithms can be used in the VPMS ap-
proach. A simple and fitness based updating strategy replaces
the worst solution if the offspring has a better quality and
is different from any solution in the population. To better
manage the population diversity, it is often advantageous to
apply a more elaborated updating method (eg. [34], [36]) that
simultaneously considers offspring’s quality and its distance
to the individuals in the population.

F. Population sizing

As its key component, our VPMS approach integrates a
strategic population sizing (SPS) mechanism (see Algo-
rithm 2) to dynamically adjust the population size during
the evolutionary search. This mechanism is composed of a
population expanding strategy (to add new individuals) and a
population rebuilding strategy (to shrink the population to two
individuals). In general terms, we expand the population with
new elite solutions when a search stagnation is detected. If the
population becomes too large but the search still stagnates, we
reduce the population to two solutions. A search stagnation
occurs when the best recorded solution S* has not been
updated after MaxldleGens consecutive generations.

Algorithm 2: The pseudo code of the strategic popu-
lation sizing mechanism.

Input: Population P of size p, maximum allowable
population Size Pmaz, population size increment pinc
and counter of generations without improvement

idle_gens.

Output: A new population P
1 begin
2 if idle_gens > MaxldleGens then
3 /lexpand the population by adding new solutions;
4 if p < Prmas then
5 P 4 P+ Dincs
6 P « PopulationExpanding (P, p);
7 end
8 //rebuild population based on the best solution;
9 else
10 p < 2;
1 P «+ PopulationRebuilding(S™, p);
12 end
13 /lupdate the best solution;
14 S™ <= argmingepy,... o) f(Si);
15 idle_gens < 0;
16 end

17 end
18 return A new population P

1) Population expanding: When the search stagnates, we
try to break the stagnation by introducing more diversity into
the algorithm. It is a common sense that the greater the
population size, the greater the population diversity and vice
versa. Therefore, we increase the diversity by expanding the
population upon search stagnation. Specifically, our popula-
tion expanding strategy adds p;,. new high quality solutions
into the population, where each new solution is generated
according to the population building strategy of Section III-B
and added to the population only if the new solution is not
the same as any existing solution in the population. p;,. is a
adjustable parameter, which is able to influence the population
diversity. Intuitively, a large p;,. value impacts more the
diversity of the population than a small value.

2) Population rebuilding: When the population size reaches
an allowable threshold value p,,q.., but the search is still
stagnating, the population rebuilding strategy is triggered
to rebuild the population. This decision relies on two consid-
erations. First, when the above condition is met, the population
is sampling non-promising search regions where no better
solution can be expected. Second, large populations usually
consume more computation resources. To displace the search
to new regions, we shrink the population to a small population
of only two solutions. The new population retains always the
best recorded solution S* and includes another elite solution
generated in the same way as the population building strategy
of Section III-B. By mixing the historic best solution and a
new high-quality solution, the new population is expected to
benefit both from previous search outcome and fresh diversity.
One notices that a large p;,q, value leads to a less frequent
population rebuilding and vice versa. Varying p,,q, can thus
change the behavior and search trajectory of the algorithm.

Finally, we mention that like [1], [12], [22], [39], our
SPS scheme follows the general idea of adaptively varying

the population size during evolution. However, the conditions
governing population re-sizing and the way of re-sizing the
population of our method are different from the existing
studies. As showcased in Section IV, MAs equipped with our
SPS scheme are capable of reaching very high performances.

G. Discussions

From the perspective of computational models, the VPMS
approach enhances the canonical memetic framework with
the adaptive population sizing strategy. As such, VPMS can
be considered to belong to the broader memetic computation
paradigm presented in [16] where optimization and data-driven
adaption take place simultaneously and create a desirable
symbiosis for a better search performance.

Moreover, our presentation was focused on the integra-
tion of the strategic population sizing mechanism within the
memetic algorithm framework for combinatorial optimization.
It should be clear that the SPS mechanism is general and could
be advantageously used by or tailored to other population-
based optimization algorithms. With the help of our SPS
mechanism, the algorithm would be able to adaptively adjust
its population size to a suitable value based on the search
situation, increasing thus the search performance while getting
rid of the difficult task of tuning this parameter by hand.

IV. VPMS APPLIED TO THE CRITICAL NODE PROBLEM

This section presents a practical application of the VPMS
approach to solve the critical node problem (CNP) and demon-
strates its competitiveness compared to the state of the art.

A. Critical node problem

Let G = (V, E) be an undirected graph with |V| = n nodes
and |E| = m edges, the critical node problem (CNP) involves
identifying a subset of nodes S C V (|S| < k) such that the
removal of the vertices in S leads to a residual graph G[V \
S] with the minimum pairwise connectivity. These removed
nodes are usually called as critical nodes. Once the critical
nodes have been removed from G, the residual graph G[V'\ S]
can be represented by a set of disjoint connected subgraphs
(i.e., components) H = {C1,Cs,...,Cr}, where a connected
component C; is a set of nodes such that there exists a path
from a node to any other node in this component, and no edge
exists between any two connected components [4].

Since any subset S C V' of k nodes is a feasible solution
for the given graph, the search space) is composed of all
possible k-node subsets of V, ie., @ ={S CV :|S]| =k}
Clearly this search space has a size of (}) = #lk),, which
increases extremely fast with n and k. Unsurprisingly, CNP is
NP-hard and thus computationally challenging.

Recall that ZZ jev Wij is a measure of the total pairwise
connectivity of a graph, where u;; = 1 if and only if node
¢ and node j are in the same component, otherwise u;; = 0.
Therefore, the objective function (to be minimized) can be

rewritten as Cl(C] — 1)
FS) =Y = (1)

C,eH

where S is a set of critical nodes, |C;| is the size of the i-th
component of the residual graph G[V \ S]. It is known that
f(S) can be easily computed by fast algorithms like breadth
or depth first search algorithms in O(|V|+|E|) time using an
adjacency list representation of the graph.

min the largest component size (MmMaxC)}

max the number of connected components (MaxNum)}

max the number of small components (MaxNumSC) }

k-node-CNDPs

min the number of large components (MinNumLC) }

critical node problem (CNP)
sum-of-squares partition problem
max partition size problem

cardinality-constrained CNP (CC-CNP) }

Critical node detection
problems (CNDPs)

ined CNP (3C—CNP)}

B-vertex-disruptors problem

Fig. 1. A taxonomy of critical node detection problems.

CNP is one of the critical node detection problems
(CNDPs). There are many interesting variants of CNP, which
optimize different objectives, such as minimizing the size of
the largest connected component and maximizing the number
of connected components. A detailed classification of the main
CNDPs is provided in Fig. 1, while more details about these
CNDPs can be found in the recent survey [26].

Given its practical and theoretical significance, CNP has
been widely studied in the literature. Compared to exact algo-
rithms, heuristic algorithms demonstrated better performances
on the CNP benchmark instances. Representative heuris-
tic algorithms include population-based incremental learn-
ing approach [40], sophisticated multi-start greedy algorithm
(CNA1) [35], fast iterated local search approach (FastCNP)
[44] and memetic search approach (MACNP) [45]. It is worth
noting that most state-of-the-art results on the CNP benchmark
instances were reported by CANI1, FastCNP and MACNP.
These algorithms will thus be used as reference algorithms
in our comparisons in Section IV-CS5.

B. Variable population memetic algorithm for CNP

Our variable population memetic search algorithm for CNP
(denoted by VPMScyp) strictly follows Algorithm 1, while
specifying the solution construction component and the local
improvement component. Additionally, the initial population
of two solutions is obtained in the same way as in MACNP
[45], and the rank-based quality-and-distance pool updating
strategy is adopted to manage the population.

1) Double backbone-based crossover: For solution con-
struction, we adopt the double backbone-based crossover
(DBC) [45], which performs structured combinations by inher-
iting common elements from two parents. Specifically, given
two parents S; and S randomly taken from the population,
DBC generates an offspring solution in three steps: a) create
a partial solution by inheriting the common elements shared
by the parents (i.e., identified by the set S; N S); b) add
the elements from the set (S; U S3) \ (S1 N S2) into the
partial solution in a probabilistic way; c) repair the solution
structurally until a feasible solution is achieved by either

adding elements from the set V' \ (S; U S3) or removing
elements from the solution. Once a feasible offspring solution
is obtained, it is further ameliorated by the diversified late
acceptance search procedure below.

2) Diversified late acceptance search: Diversified late ac-
ceptance search (DLAS) [29] is an iterative local search
algorithm that is inspired by the late acceptance hill climbing
(LAHC) algorithm [9]. Both DLAS and LAHC start their
search from an initial solution and iteratively accept or reject
candidate solutions until a given stopping condition is met. The
LAHC method uses a fitness array of size HL (i.e., history
length) to memorize the cost of the previous encountered
solutions. Initially, all elements of this array are filled with
the cost of the initial solution S. At each subsequent iteration
iters, a candidate solution S’ is generated. Then, an acceptance
decision is made according to a comparison between the cost
of S’ and the previous solution cost stored at position v (the
virtual beginning of the fitness array, v < ifers mod HL).
Specifically, the candidate solution S’ is accepted if its cost is
not worse than the cost f, at position v of the fitness array.
After the transition from the current solution to S’ (i.e., S’
becomes the new current solution), the value of position v
of the fitness array is updated by f, + f(S5’). The process
repeats until the given stopping condition is met.

DLAS (Algorithm 3) enhances LAHC by increasing the
diversity of the accepted solutions and improving the diversity
of the values stored in the fitness array. This is achieved by
adopting a new acceptance strategy and a new replacement
strategy that take into account worsening, improving, and
sideways movement scenarios [29] (lines 14-35). Specifically,
the new acceptance strategy compares at each iteration the
fitness value f(S’) of the candidate solution S’ with the
maximum fitness value f,,,, (instead of f,) in the fitness
array (lines 14-23). For the new replacement strategy, the
replacement occurs only in two cases: 1) if f(S) > f,, and
2)if f(S) < fy and f(S) < fprev (line 27). Our experiments
showed that the combination of the new acceptance and
replacement strategies in DLAS is indeed quite effective in
increasing the search diversity, and helps the algorithm to
reach high quality solutions in less time.

To generate a candidate solution, DLAS relies on the
component-based two-phase node exchange operator (denoted
by swap) introduced in [45], which swaps a node u € S and a
node v € V'\ S from a large component. Let G[V \ S| be the
residual graph G[V'\ S| induced by the current solution S and
H ={C,Cs,...,Cr} be the set of connected components of
G[V'\S]. For a swap operation, we consider as candidate nodes
a restricted set of nodes W C V'\ S such that W = Uj¢, > 1.Ci,
where L is a predefined threshold value to qualify large
components in the residual graph. Thus, a candidate neighbor
solution S’ is obtained by swap(u,v), where v € S and
v € W. For a given candidate solution, its quality can be
evaluated in O(|V| + |E|) time with a modified depth-first
search algorithm according to Eq. (1).

C. Computational studies of VPMS for CNP

This section is devoted to an experimental evaluation of the
performance of the VPMS¢ v p algorithm in comparison with

Algorithm 3: The pseudo code of the DLAS proce-
dure.
Input: Initial solution S and maximum allowable number of
idle iterations Maxldlelters.
Output: The best found solution S*
1 begin
Initialize the history length HL, S* < S,
for Vi € {0,...,HL — 1} do
\ fi < f(S);
end

fmaz < f(S), nbr_mazx < HL;
Initialize iters < 0, idle_iters < 0,
while idle_iters < Maxldlelters do
forev < f(5);
S’ « SwapOperation(S);
Calculate its cost function f(S’);
/lcalculate the virtual beginning;
v < iters mod HL;
if f(S") = f(S) or f(S) < fmax then
S+ S, f(S) + f(S);
if f(S) < f(S™) then
S* S, f(S*) «+ f(9);
idle_iters < O;

=TI B U R SOV 8

[
535 n & Ho =3

end
else

| idle_iters < idle_iters + 1;
end

=
EO\O

N
]

end
if £(S) > f, then
| fo < F(9);
end
else if f(S) < f, and f(S) < fpres then
if fu = fmaa then
| nbr_max < nbr_max — 1,
end
fo < f(S);
if nbr_max = 0 then
| compute fmaz,nbr_max;
end
end
iters < iters + 1;

W W W W W RN DN NN
E o ey REREIIH S

37 end
38 end

39 return The best found solution S™*

state-of-the-art CNP algorithms.

1) Benchmark instances: Our computational experiments
were performed on two widely-used benchmark datasets: syn-
thetic dataset! and real-world dataset?. The synthetic dataset
presented in [40] is composed of 16 graphs with various
structures. The real-world dataset introduced in [2] includes
26 instances from several practical applications. The main
features of these two datasets are provided in Table I.

2) Experimental settings: All our algorithms® were im-
plemented in the C++ programming language, and complied
using GNU gcc 4.1.2 with ‘-O3’ option on an Intel E5-2670
with 2.5GHz and 2GB RAM under Linux. With a ‘-O3’ flag,
running the DIMACS machine benchmark program dfmax*

! Available at http://individual.utoronto.ca/mventresca/cnd.html

2 Available at http://www.di.unito.it/~aringhie/cnp.html

3The best solution certificates and our programs will be made available at
http://www.info.univ-angers.fr/pub/hao/VPMS .html

4Available at dfmax: ftp:/dimacs.rutgers.edu/pub/dsj/clique

TABLE I
CHARACTERISTICS OF THE SYNTHETIC AND REAL-WORLD DATASETS
USED IN THE EXPERIMENTS.

Instance 4] |E| k | Instance V| |B| k
BA500 500 499 50 | FF250 250 514 50
BA1000 1000 999 75 | FF500 500 828 110
BA2500 2500 2499 100 | FF1000 1000 1817 150
BA5000 5000 4999 150 | FF2000 2000 3413 200
ER235 235 350 50 | WS250 250 1246 70
ER466 466 700 80 | WS500 500 1496 125
ER%41 941 1400 140 | WS1000 1000 4996 200
ER2344 2344 3500 200 | WS1500 1500 4498 265
Bovine 121 190 3 | Ham3000c 3000 5996 300
Circuit 252 399 25 | Ham3000d 3000 5993 300
E.coli 328 456 15 | Ham3000e 3000 5996 300
USAir97 332 2126 33 | Ham4000 4000 7997 400
humanDisea 516 1188 52 | Ham5000 5000 9999 500
Treni_Roma 255 272 26 | powergrid 4941 6594 494
EU_flights 1191 31610 119 | Oclinks 1899 13838 190
openflights 1858 13900 186 | facebook 4039 88234 404
yeast] 2018 2705 202 | grqc 5242 14484 524
Ham1000 1000 1998 100 | hepth 9877 25973 988
Ham2000 2000 3996 200 | hepph 12008 118489 1201
Ham3000a 3000 5999 300 | astroph 18772 198050 1877
Ham3000b 3000 5997 300 | condmat 23133 93439 2313

on our machine requires 0.19, 1.17 and 4.54 seconds to solve
graphs r300.5, r400.5 and r500.5 respectively.

TABLE 11
PARAMETER SETTINGS OF THE PROPOSED VPMS - n p ALGORITHM.

Parameter Description Value
Pmax maximal population size 20
Pine increment for population expansion 2
MaxldleGens ~ maximum number of idle generations in VPMS 100
Maxldlelters maximum number of idle iterations in DLAS 1000

In the following experiments, we use the well-known two-
tailed sign test to check the statistical significance of our
comparisons between two algorithms on each comparison
indicator. This statistical test is based on the number of
instances on which an algorithm is the overall winner, and it
is highly recommended in [11]. There are N = 42 benchmark
instances in our experiments. At a significant level of 0.05,
the critical value is CV'25 = N/2 + 1.96v/N /2 ~ 27. This
means that algorithm A significantly outperforms algorithm B
if A wins at least 27 out of 42 instances.

3) Effectiveness of the strategic population sizing mecha-
nism: Compared to the conventional memetic search frame-
work, the VPMS¢c v p algorithm integrates the strategic pop-
ulation sizing mechanism to dynamically adjust the pop-
ulation size during the evolutionary search. To verify the
effectiveness of our population sizing mechanism, we compare
VPMScnp with an alternative algorithm named FPMSco v p
whose population size is fixed to the maximal population
size of VPMScnyp while keeping the other components as
the same as VPMScnyp. As such, FPMScnp is a classical
memetic algorithm which is quite similar to the powerful
state-of-the-art memetic algorithm MACNP of [45] where
a different local improvement procedure is used. We show

additional comparisons between VPMScyp and FPMSconp
with other population sizes in Table IX of the Appendix.

To make a fair comparison between VPMScnp and
FPMScnp, we ran them on the same computing platform
with the setting shown in Table II. We independently solved
each instance 30 times with different random seeds, and the
time limit of each run was limited to ¢,,,, = 3600 seconds.
Detailed comparative results for both synthetic and real-world
datasets are summarized in Table III.

In Table III, columns 1 and 2 present for each instance its
name (Instance) and the best-known value (fp,) reported in
the literature [3], [35], [45]. Columns 3-7 report the results
of the FPMS¢nyp algorithm, namely the best objective value
(fpest) found during 30 runs, the average objective value
(favg), the average running time per run to attain a best
objective value (Z4.4), the average number of generations per
run required to find the best objective value (#gens), and
the number of times to successfully find the best objective
value (#succ). Similarly, columns 8-12 give the results of
VPMScnp. The best values of the compared results in terms
of frest and fuyg are indicated in bold. For the #succ
indicator, we compare them only when the same fy.s; values
are obtained by the two algorithms.

From Table III, we observe that in terms of fp.s, the
VPMScnp algorithm (with a variable population) achieves
14 better, 20 equal and 8 worse results compared to the
fixed population algorithm FPMScp. However, there is
no significant difference between these two algorithms (i.e.,
24 < CVy'3.). For the fu,, indicator, VPMScyp attains 25
better, 10 equal and 7 worse results. At a significant level
of 0.05, VPMScnp is significantly better than FPMScnp
30 > CVO‘%?B). Although VPMS¢ np and FPMSo np achieve
the same fp.s; values for 20 out of 42 synthetic instances,
VPMScnp attains these results with a higher, an equal and
a worse success rate on 8, 10 and 2 instance, respectively.
It is worth noting that VPMScnp is the first heuristic to
steadily (100%) reach the optimal solutions for all 9 instances
with known optima (marked by “x” in Table III) in only
one minute. For the last three large instances, VPMSconp
is able to attain better results than FPMScnp even if the
results are still worse than the fpx, values. Finally, compared
to the fpxr, values of all 42 benchmark instances, these two
algorithms together improve on the best-known results (new
upper bounds) on 8 instances (marked by “x”) and match
the best-known upper bounds on 22 instances. These results
provide thus the first positive indications of our strategic
population sizing mechanism.

To further study the behavior of the VPMScoyp algo-
rithm, we report in Table IV the comparative results be-
tween VPMSconyp and FPMSonp with a longer time limit
tmaz = 7200 seconds. We observe that both VPMSconp
and FPMScyp improve their results. Importantly, the per-
formance difference between VPMScyp and FPMScopnp is
more obvious than the results shown in Table III. Specifically,
VPMScnp significantly outperforms FPMScnp in terms of
both fyest (€., 27 = CVy'3.) and fou, (e, 31.5 > CVy'2).
Moreover, these algorithms are able to find new upper bounds
on 12 instances (marked by “x”) and match the best-known

TABLE III
COMPARISON OF VPMS ¢ p (WITH A VARIABLE POPULATION) AGAINST FPMS ¢y p (WITH A FIXED POPULATION) UNDER #yq2 = 3600 SECONDS.

FPMSc N p VPMSc N p
Instance Foro Foest fave tavg #gems #suce Foest favg tavg H#Hgens #succ
BA500 195* 195 195.0 0.0 0 30 195 195.0 0.0 0 30
BA1000 558* 558 558.1 0.0 0 29 558 558.0 24 27 30
BA2500 3704 3704 3704.6 2.8 6 29 3704 3704.0 7.2 117 30
BA5000 10196 10196 10196.0 21.3 6 30 10196 10196.0 104 50 30
ER235 295* 295 295.0 13.6 3539 30 295 295.0 2.0 435 30
ER466 1524 1524 1524.0 45.0 5181 30 1524 1524.0 30.3 3111 30
ER941 5012 5012 5034.0 442.5 25209 5 5012 5026.5 459.2 22890 3
ER2344 902498 912875 931976.9 2456.7 18838 1 904113 933943.7 3012.8 15202 1
FF250 194* 194 194.0 8.9 23610 30 194 194.0 0.0 0 30
FF500 257* 257 257.3 5.0 4299 28 257 257.0 0.5 50 30
FF1000 1260* 1260 1262.3 354.1 17751 16 1260 1260.0 11.7 554 30
FF2000 4545* 4545 4547.8 20.5 402 13 4545 4545.0 439 1851 30
WS250 3083 3083 3093.3 1397.5 63236 23 3083 3083.1 1081.5 52449 29
WS500 2072 2078 2089.5 249.3 21014 1 2072 2083.1 366.7 25120 4
WS1000 109807 109677 126764.6 2629.1 17445 1 119444 134475.5 1506.9 6696 1
WS1500 13098 13146 13329.1 1873.6 85821 1 13098 13161.5 21149 31819 9
Bovine 268 268 268.0 0.0 0 30 268 268.0 0.0 0 30
Circuit 2099 2099 2099.0 1.3 313 30 2099 2099.0 1.0 229 30
Ecoli 806 806 806.0 0.0 0 30 806 806.0 0.0 8 30
USAir97 4336 4336 4897.2 1126.8 60012 12 4336 5075.6 1159.5 37122 7
humanDisea 1115 1115 1115.3 3.1 292 29 1115 1115.0 1.6 180 30
Treni_Roma 918 918 918.0 29.7 10216 30 918 918.0 1.8 765 30
EU_flights 348268 348268 351323.0 74.3 77 2 348268 349265.6 11454 2319 18
openflights 26842 26842 28845.3 1812.7 7313 1 26785* 27327.0 2391.7 9806 2
yeastl 1412 1412 1412.0 18.1 104 30 1412 1412.0 359 437 30
Ham1000 306349 308731 311422.8 2431.2 22374 1 307117 311169.4 2027.2 13862 1
Ham2000 1243859 1244335 1257388.5 2545.1 9134 1 1247652 1256573.8 3109.8 7229 1
Ham3000a 2844393 2841106* 2861888.3 2553.6 4859 1 2840941 2859284.4 3084.4 4660 1
Ham3000b 2841270 2839733 2860997.6 2542.4 4964 1 2839893* 2860810.9 3179.3 4538 1
Ham3000c 2838429 2836076* 28485459 2313.0 4411 1 2832073 2844324.3 2819.7 4080 1
Ham3000d 2831311 2830098 2854757.2 2903.8 5093 1 2830291* 2857201.4 3090.1 4608 1
Ham3000e 2847909 2846371* 2866095.2 2106.1 3943 1 2846731 2867000.6 3231.6 4816 1
Ham4000 5044357 5060754 5143157.3 2813.4 3132 1 5082521 5141804.3 3404.7 3705 1
Ham5000 7972525 7986458 8098821.1 3034.5 1943 1 8011565 8151850.1 32144 2970 1
powergrid 15862 15899 15954.5 1343.6 10222 1 15873 15909.2 2964.3 15205 1
Oclinks 611326 614467 615030.0 601.6 1276 2 611254 614296.3 1658.4 4229 1
facebook 420334 703330 798567.9 2708.3 5219 1 691232 780429.1 3397.0 3753 1
grqc 13596 13612 13647.2 802.3 2957 1 13603 13615.5 2499.9 6367 2
hepth 106397 107440 109304.9 2700.6 2459 1 107939 110158.4 3206.6 2198 1
hepph 6156536 9327422 10712034.3 3491.3 7 1 7883063 8689170.1 3423.8 565 1
astroph 53963375 61928888 63311361.7 1684.9 0 1 58322396 59563941.1 2721.5 225 1
condmat 2298596 10352129 10823216.8 1682.5 0 1 6843993 7813436.7 3388.5 414 1

* Optimal solutions obtained by a branch-and-cut algorithm [37] within 5 days.

* Improved upper bounds.

upper bounds on 23 instances. These findings indicate that the
strategic population size mechanism enables the VPMSc v p
algorithm to use its given computational budget more effi-
ciently and more effectively to find high-quality solutions.

4) Using the strategic population sizing mechanism to en-
hance a memetic algorithm: MACNP [45] is a recent state-
of-the-art memetic algorithm for both CNP and CC-CNP. We
verify now whether the strategic population sizing mechanism
can enhance the performance of this memetic algorithm. For
this purpose, we replace the fixed population of MACNP
by the SPS mechanism and use MACNPY? to denote the
resulting MACNP variant. We compare the original MACNP
algorithm (with a fixed population) and MACNPY? (with a
variable population), based on the 26 real-world benchmark
instances. We run both algorithms 30 times on each instance
with t,,4, = 3600 seconds. The comparative results in terms
of the fiest and fu,4 indicators are shown in Fig. 2. The z-
axis indicates the instances (named by integer numbers), and
the y-axis presents the gap of f (fpest OF faug) Vvalues to the
best-known values fyry, i.€., (f — fokv)/fokw. Therefore, a

negative gap value indicates an improved best upper bound.

From Fig. 2, we observe that the variable population algo-
rithm MACNPY? significantly outperforms the fixed popula-
tion algorithm MACNP in terms of fycs: and fqq4. Specifi-
cally, Fig. 2(a) indicates that MACNPVY ? achieves better Srest
values than MACNP except for the 21th instance (facebook).
A close look of these results (see Fig. 2(b)) shows that
MACNPY? achieves eight new upper bounds. Additionally,
In terms of the f,,, indicator, MACNPY achieves 15 better,
9 equal and 2 worse results compared to MACNP (see Fig.
2(c) and 2(d)). This study confirms that the state-of-the-art
MACNP algorithm can definitively benefit from the strategic
population sizing mechanism proposed in this work.

5) Comparisons with state-of-the-art algorithms: We report
now a comparative study with respect to three recent state-
of-the-art CNP algorithms: CAN1 [35], FastCNP [44] and
MACNP [45]. To our knowledge, the best-known results avail-
able in the literature were achieved by these three algorithms
except for instances facebook and condmat. To ensure the
fairness of the experiment, we ran all the algorithms (with

TABLE IV
COMPARISON OF VPMS ¢ n p AGAINST FPMS o n p UNDER tyqz = 7200 SECONDS.

FPMSc N p VPMSc N p
Instance foko foest faug tavg #gens #suce foest favg tavg #gens #succ
BA500 195 195 195.0 0.0 0 30 195 195.0 0.0 0 30
BA1000 558 558 558.1 0.2 39 29 558 558.0 0.3 4 30
BA2500 3704 3704 3704.0 33 11 30 3704 3704.0 6.7 47 30
BA5000 10196 10196 10196.0 31.4 7 30 10196 10196.0 11.8 58 30
ER235 295 295 295.0 97.1 20535 30 295 295.0 22 536 30
ER466 1524 1524 1524.0 42.1 5178 30 1524 1524.0 28.1 3180 30
ER941 5012 5012 5029.2 254.4 16860 5 5012 5017.0 17547 91144 4
ER2344 902498 902875 927689.7 4815.0 35997 1 906904 927865.4 52212 27003 1
FF250 194 194 194.0 0.0 0 30 194 194.0 0.0 0 30
FF500 257 257 257.3 243.5 29799 26 257 257.0 0.6 40 30
FF1000 1260 1260 1260.2 500.8 30782 24 1260 1260 12.2 545 30
FF2000 4545 4545 4546.5 862.9 51211 8 4545 4545.0 66.3 1549 30
WS250 3083 3083 3083.1 1483.0 70537 28 3083 3085.1 1199.2 42897 29
WS500 2072 2072 2088.3 338.7 56525 2 2072 2083.1 403.8 20944 4
WS1000 109807 109712 126642.7 4859.6 36025 1 119795 131959.1 3701.7 17107 1
WS1500 13098 13103 132879 2916.2 150386 1 13098 131532 39155 48240 11
Bovine 268 268 268.0 0.0 0 30 268 268.0 0.0 0 30
Circuit 2099 2099 2099.0 7.0 1927 30 2099 2099.0 1.1 289 30
Ecoli.txt 806 806 806.0 0.0 0 30 806 806.0 0.0 4 30
USAir97 4336 4336 4665.0 2886.5 105951 20 4336 5060.3 3626.5 109348 6
humanDisea 1115 1115 1115.0 2.9 298 30 1115 1115.0 0.5 50 30
Treni_Roma 918 918 918.0 7.8 21591 30 918 918.0 0.6 222 30
EU_flights 348268 348269 351657.1 295.7 771 1 348268 348434.3 23074 5682 28
openflights 26842 26842 28688.7 3284.2 12580 1 26783* 26919.0 4186.2 17090 1
yeastl 1412 1412 1412.4 16.9 60 26 1412 1412.0 26.5 324 30
Ham1000 306349 308198 310580.2 4275.0 39910 1 306349 309912.0 4055.1 30476 3
Ham2000 1243859 1243289 1256645.8 4692.5 20794 1 1242792* 1251189.7 5223.8 14935 1
Ham3000a 2844393 2842100 2855766.8 4163.2 9260 1 2840690 2847291.7 4776.0 7607 1
Ham3000b 2841270 2838531* 2845347.5 4466.6 9347 1 2837584* 2843768.2 4122.4 6310 1
Ham3000c 2838429 2836053* 2846084.9 3523.5 8815 1 2835860 28391923 4203.1 6978 1
Ham3000d 2831311 2827366 28475824 44133 10764 1 2829102* 2841551.0 5631.8 8778 1
Ham3000e 2847909 2844721* 28564643 4286.6 10228 1 2843000 28474424 4263.2 6381 1
Ham4000 5044357 5051404 5120450.3 4405.7 6449 1 5038611* 5091745.6 6416.5 6690 1
Ham5000 7972525 7968669 8078656.1 4840.9 4582 1 7969845 80420589 6276.3 5383 1
powergrid 15862 15908 15957.8 2148.8 16566 1 15868 15886.1 5594.1 28573 1
Oclinks 611326 613430 615029.9 896.0 2097 1 611260 6142209 2992.5 7709 1
facebook 420334 676712 7932729 5097.0 13767 1 669910 738856.5 65374 8250 1
grqe 13596 13607 13642.5 1221.9 6061 1 13592* 13602.4 47434 14404 1
hepth 106397 106814 109092.4 3665.1 4509 1 106792 108673.4 6378.2 4633 1
hepph 6156536 6709598 7541345.1 6999.4 182 1 7211646 7960148.5 6710.5 1709 1
condmat 53963375 7810704 9508083.3 6027.8 7 1 56229708 57421239.1 6364.6 592 1
astroph 2298596 62281904 63073287.1 4383.1 0 1 6057949 6593803.2 67024 1199 1
* Improved upper bounds.
a) b
15() 0.002—— (v:’”“”\““‘”
—-e-—f,__ of MACNP'P f T foeg OFMACKP Eod
= — & —f,, Of MACNP " o 0.001f — & e OFMACNP ! Lo 1
€ 10f ‘ 1 = fokw ! o Iy
e by I e | AN
S I 5 0.000 o ; 3
< 05f I < l. 7
© I © o001} |‘ f \d ,
0. vvvvvvvvv’v—vvvvvvvvd’/w\ﬁfw‘/&é 2|II
12345678 91011121314151617181920212223242526 O 4 5 6 7 8 91011121314151617181920212223242526
realworld dataset realworld dataset
c d
—————————— 0.08”“‘\‘”” @ — T
15[[=-e -1, of MACNP'] sl 1| |7 e OTMACNPTE
s — & —1,,, of MACNP ” s Pl nl—= *:avg of MACNP ‘i \ ?
s o i % o0s ; ‘\ ,/R\‘ blev | : é 1
; 1'/‘/ ; oozt | 1 Jf ‘\\\ PRGN : :'/"]
© 08 R P I © 0.00¢ | .1. 3 VB\\.(?»&:;"\:/) al‘f/
o.o:..ufuu_’é‘:_uvv_%_ﬂv_;‘/‘\ﬁtﬁ/% 002:{
12345678 91011121314151617181920212223242526 "1 2345678 91011121314151617181920212223242526
realworld dataset realworld dataset

Fig. 2. Comparison between MACNP and MACNPY ” under the time limit ¢,,,, = 3600 seconds. Sub-figures (a) and (b) present the best results
under different ranges of y-axis. Sub-figures (c) and (d) present the average results under different ranges of y-axis.

their source codes) on the same computer under the same cutoff time limits. Detailed comparative results between our

algorithms (i.e., VPMScnp and MACNPYP) and the state-
of-the-art algorithms with the time limit ¢,,,, = 3600 seconds
and a long time limit ¢,,,, = 7200 are provided in Table V
and Table VI, respectively. It is worth mentioning that some
best known results reported in the literature were achieved
with a much larger time budget of 16000 seconds.

Table V shows that under the time limit of 3600 seconds,
both VPMScyp and MACNPYY compete very favorably
with the reference algorithms, by attaining 9 new upper
bounds and matching 22 best-known bounds. At a significant
level of 0.05, VPMScnp is significantly better than CAN1
(.e., 35 > CVi'2.) and FastCNP (i.e., 29.5 > CVj'2.) in
terms of fpess. For the fu,4 indicator, both VPMScyp and
MACNP" " once again significantly outperform CANI and
FastCNP. Compared to MACNP, VPMS¢ v p reports 11 better
frest values and 23 equal fp.s; values, but the performance
difference is statistically marginal (i.e., 22.5 < CVj2.).
For the fq.4 indicator, MACNPV? g significantly better
than MACNP (i.e., 28.5 > CV{'3,) (and also better than
VPMScnp (27 = CVii2.)).

From Table VI which reports the results under the longer
time limit of 7200 seconds, we first observe that all the
algorithms improve their results with the extended time limit
and this is especially true for our VPMS¢y p and MACNPY ¥
algorithms. Indeed, for the 42 instances, VPMScnp and
MACNP" " find 12 new upper bounds and reach 23 best-
known results. At a significant level of 0.05, both VPMScn p
and MACNPY? perform significantly better than CNA1 (i.e.,
34 > CVi'2, and 35 > CV;'2;) and FastCNP (i.e., 28.5 >
CVy3. and 29.5 > CV'2.) in terms of the fyes; indicator.
Similar observations hold for the f,,, indicator. We also find
that MACNPY” performs significantly better than MACNP
(e, 31.5 > CVi2.) in terms of the average results. For
the fies: indicator, MACNPY P performs marginally better
than MACNP (i.e., 24 < CV{'2;) with 13 better, 22 equal
and 7 worse results, respectively. Remarkably, VPMSc v p
significantly outperforms MACNP both in terms of fyes: (i.€.,
27.5 > CVy'3.) and fuu, (€., 29.5 > CVi2.).

Finally, even if we do not show timing information of the
compared algorithms, we mention that the reference algo-
rithms typically attain their reported best solutions long before
the limit of 7200 seconds and as a result, it is unlikely that
additional time budget will benefit them. Therefore, they are
not tested with still longer time limits.

V. CONCLUSION AND FUTURE WORK

The proposed variable population memetic search (VPMS)
framework uses a strategic population sizing mechanism to
dynamically adjust the population size of a memetic algorithm
during the evolutionary search. By strategically varying the
population size, the memetic algorithm is able to adapt the
population diversity during the search and thus favors a
continuing balancing between exploitation and exploration.
We showcased the effectiveness of the VPMS approach by
applying it to solve the challenging critical node problem. Our
experiments indicated that the memetic algorithms with the
strategic population sizing mechanism compete very favorably

with the state-of-the-art algorithms, and remarkably discover
new upper bounds for 12 instances out of the 42 benchmark
instances in the literature.

There are several perspectives for future research. First,
to further improve the proposed VPMS approach, alternative
population sizing schemes can be explored. For this purpose,
population control techniques developed for various evolution-
ary algorithms in the literature including those reviewed in
Section II could serve as a natural basis and provide useful
ideas. Second, this work focuses on enhancing the canonical
memetic search framework for combinatorial optimization. It
is worth investigating the proposed strategic population sizing
mechanism and alternative schemes within other population-
based algorithms, including the broader memetic computation
paradigm [16]. Moreover, the key idea of simultaneous prob-
lem learning and optimization via knowledge memes promoted
by the memetic computation paradigm could be useful to
design more powerful memetic algorithms with self-learned
components and parameters. Third, the proposed VPMS ap-
proach is a general framework. Consequently, it would be
interesting to check its effectiveness for solving additional
large combinatorial problems.

ACKNOWLEDGMENT

We would like to thank the referees for their useful
comments and suggestions, which helped us to significantly
improve the paper.

REFERENCES

[1] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS-a genetic algo-
rithm with varying population size,” in Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE, 1994, pp. 73-78.

[2] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “A general
evolutionary framework for different classes of critical node problems,”
Engineering Applications of Artificial Intelligence, vol. 55, pp. 128-145,
2016.

[3] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “Local search
metaheuristics for the critical node problem,” Networks, vol. 67, no. 3,
pp. 209-221, 2016.

[4] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos,
“Detecting critical nodes in sparse graphs,” Computers & Operations
Research, vol. 36, no. 7, pp. 2193-2200, 2009.

[5] U. Benlic and J. K. Hao, “A multilevel memetic approach for improving
graph k-partitions,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 5, pp. 624-472, 2011.

[6] P. A. N. Bosman, N. H. Luong and D. Thierens, “Expanding from
discrete Cartesian to permutation gene-pool optimal mixing evolutionary
algorithms,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2016, pp. 637-644.

[7] J. Brest, M. S. Maucec, “Population size reduction for the differential
evolution algorithm,” Applied Intelligence, vol. 29, no. 3, pp. 228-247,
2008.

[8] J. Brest, A. Zamuda, I. Fister, M. S. Maucec et al., “Self-adaptive
differential evolution algorithm with a small and varying population size,”
in 2012 IEEE Congress on Evolutionary Computation. IEEE, 2012, pp.
1-8.

[9] E. K. Burke and Y. Bykov, “The late acceptance hill-climbing heuristic,”
European Journal of Operational Research, vol. 258, no. 1, pp. 70-78,
2017.

[10] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey on
memetic computation,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 5, pp. 591-607, 2011.

[11] J. DemsSar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.

TABLE V
COMPARISONS OF OUR PROPOSED ALGORITHMS WITH STATE-OF-THE-ART ALGORITHMS UNDER ty,q2 = 3600 SECONDS.

CANI1 [35] FastCNP [44] MACNP [45] MACNPY ¥ VPMSc N p
Instance fokwv frest faug frest faug frest favg frest favg frest favg
BAS500 195 195 195.0 195 195.0 195 195.0 195 195.0 195 195.0
BA1000 558 558 558.7 558 558.0 558 558.0 558 558.0 558 558.0
BA2500 3704 3704 3704.0 3704 3710.6 3704 3704.0 3704 3704.0 3704 3704.0
BAS5000 10196 10196 10196.0 10196 10201.4 10196 10196.0 10196 10196.0 10196 10196.0
ER235 295 295 295.0 295 295.0 295 295.0 295 295.0 295 295.0
ER466 1524 1524 1524.0 1524 1524.0 1524 1524.0 1524 1524.0 1524 1524.0
ER%41 5012 5114 5177.4 5012 5013.3 5012 5014.1 5012 5015.9 5012 5026.5
ER2344 902498 996411 1008876.4 953437 979729.2 902498 922339.5 912205 929024.1 904113 933943.7
FF250 194 194 194.0 194 194.0 194 194.0 194 194.0 194 194.0
FF500 257 263 265.0 257 258.4 257 257.0 257 257.0 257 257.0
FF1000 1260 1262 1264.2 1260 1260.8 1260 1260.0 1260 1260.0 1260 1260.0
FF2000 4545 4548 4549.4 4546 4558.3 4545 4545.7 4545 4545.0 4545 4545.0
WS250 3083 3415 3702.8 3085 3196.4 3083 3089.4 3083 3087.5 3083 3083.1
WS500 2072 2085 2098.7 2072 2083.3 2072 2082.6 2072 2082.1 2072 2083.1
WS1000 109807 141759 161488.0 123602 127493.4 109807 123682.6 123253 135187.8 119444 134475.5
WS1500 13098 13498 13902.5 13158 13255.7 13098 13255.1 13098 13175.7 13098 13161.5
Bovine 268 268 268.0 268 268.0 268 268.0 268 268.0 268 268.0
Circuit 2099 2099 2099.0 2099 2099.0 2099 2099.0 2099 2099.0 2099 2099.0
E.coli 806 806 806.0 806 806.0 806 806.0 806 806.0 806 806.0
USAIr97 4336 4336 4336.0 4336 4336.0 4336 4336.0 4336 5275.0 4336 5075.6
HumanDisea 1115 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0
Treni_Roma 918 918 918.0 918 918.0 918 918.0 918 918.0 918 918.0
EU_flights 348268 348268 348347.0 348268 348697.7 348268 351657.0 348268 349265.6 348268 349265.6
openflights 26842 29300 29815.3 28834 29014.4 26842 28704.3 26842 27792.3 26785* 27327.0
yeast 1412 1413 1416.3 1412 1412.0 1412 1412.0 1412 1412.0 1412 1412.0
H1000 306349 314152 317805.7 314964 316814.8 306349 310626.5 306353 310081.3 307117 311169.4
H2000 1243859 1275968 1292400.4 1275204 1285629.1 1243859 1263495.6 1242999 1251826.9 1247652 1256573.8
H3000a 2844393 2911369 2927312.0 2885588 2906965.5 2844393 2884781.7 2842072* 2855005.3 2840941 2859284.4
H3000b 2841270 2907643 2927330.5 2876585 2902893.9 2841270 2885087.0 2839018 2847010.7 2839893* 2860810.9
H3000c 2838429 2885836 2917685.8 2876026 2898879.3 2838429 2869348.5 2834802* 2843661.7 2832073* 28443243
H3000d 2831311 2906121 2929569.2 2894492 2907485.4 2831311 2892562.7 2827859* 2846261.0 2830291* 2857201.4
H3000e 2847909 2903845 2931806.8 2890861 2911409.3 2847909 2887525.7 2846412 2855333.6 2846731* 2867000.6
H4000 5044357 5194592 5233954.5 5167043 5190883.7 5044357 5137528.3 5077298 5125589.3 5082521 5141804.3
H5000 7972525 8142430 8212165.9 8080473 8132896.2 7972525 8094812.6 8012229 8120955.9 8011565 8151850.1
powergr 15862 16158 16222.1 15982 16033.5 15862 15901.5 15870 15897.1 15873 15909.2
Oclinks 611326 611326 614858.5 611344 616783.0 612303 614544.0 611280* 614364.0 611254* 614296.3
faceboo 420334 701073 742688.0 692799 765609.8 643162 739436.6 687604 760335.1 691232 780429.1
grqe 13596 15522 15715.7 13616 13634.8 13596 13629.2 13592* 13611.4 13603 13615.5
hepth 106397 130256 188753.7 108217 109889.5 106397 109655.6 106778 108961.1 107939 110158.4
hepph 6156536 9771610 10377853.2 6392653 7055773.8 8628687 9370215.3 7465746 8128758.7 7883063 8689170.1
astroph 53963375 59029312 60313225.8 55424575 57231348.7 62068966 62547898.1 57411990 59897908.4 58322396 59563941.1
condmat 2298596 13420836 14823254.9 4086629 5806623.8 9454361 10061807.8 6438018 7407961.4 6843993 7813436.7

* Improved upper bounds.

[12] A. E. Eiben, E. Marchiori, and V. Valko, “Evolutionary algorithms
with on-the-fly population size adjustment,” in International Conference
on Parallel Problem Solving from Nature, Lecture Notes in Computer
Science, vol. 3242. Springer, 2004, pp. 41-50.

[13] L. Feng, Y.-S. Ong, M.-H. Lim, and I. W. Tsang, “Memetic search with
interdomain learning: A realization between CVRP and CARP,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 644—658,
2014.

[14] B. W. Goldman and W. E. Funch, “Fast and efficient black box
optimization using the parameter-less population pyramid,” Evolutionary
Computation, vol. 23, no. 3, pp. 451-479, 2015.

[15] Y. Guan, L. Yang, and W. Sheng, “Population control in evolutionary
algorithms: review and comparison,” Bio-inspired Computing: Theories
and Applications, pp. 161-174, 2017.

[16] A. Gupta and Y. S. Ong, Memetic computation: the mainspring of knowl-
edge transfer in a data-driven optimization era. Springer International
Publishing, 2019.

[17] J. K. Hao, “Memetic algorithms in discrete optimization,” In F. Neri,
C. Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithms. Studies
in Computational Intelligence, vol. 379, Chapter 6, pp 73-94, Springer,
2012.

[18] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” In
Proceedings of the Genetic and Evolutionary Computation Conference,
1999, pp. 258-265.

[19] W. E. Hart, N. Krasnogor, and J. E. Smith, “Recent advances in memetic
algorithms,” Studies in Fuzziness and Soft Computing, vol. 166, Springer,
2005.

[20] H. H. Hoos and T. Stiitzle, Stochastic Local Search: Foundations and
Applications. Elsevier, 2004.

[21] Y. Jin, and J. K. Hao, “Solving the latin square completion problem by
memetic graph coloring,” IEEE Transactions on Evolutionary Computa-
tion, vol. 33, no. 6, pp. 1015-1028, 2019.

[22] D. Karapetyan and G. Gutin, “A new approach to population sizing for
memetic algorithms: a case study for the multidimensional assignment
problem,” Evolutionary Computation, vol. 19, no. 3, pp. 345-371, 2011.

[23] M. M. Komarnicki and M. W. Przewozniczek, “Parameter-less,
population-sizing DSMGA-II” In Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, 2019, pp. 289-290.

[24] V. K. Koumousis and C. P. Katsaras, “A saw-tooth genetic algorithm
combining the effects of variable population size and reinitialization to
enhance performance,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 1, pp. 19-28, 2006.

[25] N. Krasnogor and J. Smith, “A tutorial for competent memetic al-
gorithms: model, taxonomy, and design issues,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 5, pp. 474-488, 2005.

[26] M. Lalou, M. A. Tahraoui, and H. Kheddouci, “The critical node
detection problem in networks: A survey,” Computer Science Review,
vol. 28, pp. 92-117, 2018.

[27] L. Moalic and A. Gondran, “The sum coloring problem: A memetic
algorithm based on two individuals,” in 2019 IEEE Congress on Evolu-
tionary Computation, IEEE, 2019, pp. 1798-1805.

[28] P. Moscato and C. Cotta, “A gentle introduction to memetic algorithms,”
In Handbook of Metaheuristics, Kluwer, Norwell, Massachusetts, USA,
pp. 105-144, 2003.

TABLE VI
COMPARISONS OF OUR PROPOSED ALGORITHMS WITH STATE-OF-THE-ART ALGORITHMS UNDER ty,q2 = 7200 SECONDS.

CNA1° FastCNP® MACNP® MACNP" ¥ VPMSc N p
Instance fokwv frest faug frest faug frest faug frest favg frest favg
BA500 195 195 195.0 195 195.0 195 195.0 195 195.0 195 195.0
BA1000 558 558 558.0 558 558.0 558 558.1 558 558.0 558 558.0
BA2500 3704 3704 3704.0 3704 37142 3704 3704.0 3704 3704.0 3704 3704.0
BAS5000 10196 10196 10196.0 10196 10202.9 10196 10196.0 10196 10196.0 10196 10196.0
ER235 295 295 295.0 295 295.0 295 295.0 295 295.0 295 295.0
ER466 1524 1524 1524.0 1524 1524.0 1524 1524.0 1524 1524.0 1524 1524.0
ER941 5012 5066 51327 5012 5014.2 5012 5016.1 5012 5015.9 5012 5026.5
ER2344 902498 984677 1002569.7 963785 979021.9 911274 929358.3 912205 929024.1 904113 9339437
FF250 194 194 194.0 194 194.0 194 194.0 194 194.0 194 194.0
FF500 257 262 265.4 257 2583 257 2573 257 257.0 257 257.0
FF1000 1260 1261 1262.2 1260 1261.3 1260 1262.6 1260 1260.0 1260 1260.0
FF2000 4545 4548 4548.0 4545 4557.0 4545 4547.6 4545 4545.0 4545 4545.0
WS250 3083 3361 3678.8 3094 31989 3083 3083.2 3083 3087.5 3083 3083.1
WS500 2072 2085 2092.3 2078 2085.8 2072 2086.1 2072 2082.1 2072 2083.1
WS1000 109807 138343 156129.6 113656 121002.5 110342 125548.4 123253 135187.8 119444 1344755
WS1500 13098 13557 13802.2 13143 132475 13150 13339.1 13098 13175.7 13098 13161.5
Bovine 268 268 268.0 268 268.0 268 268.0 268 268.0 268 268.0
Circuit 2099 2099 2099.0 2099 2099.0 2099 2099.0 2099 2099.0 2099 2099.0
Ecoli.txt 806 806 806.0 806 806.0 806 806.0 806 806.0 806 806.0
USAir97 4336 4336 4336.0 4336 4336.0 4336 4343.1 4336 5151.5 4336 5060.3
humanDisea 1115 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0 1115 1115.0
Treni_Roma 918 918 918.0 918 918.0 918 918.0 918 918.0 918 918.0
EU_flights 348268 348268 348419.6 348268 350051.2 348268 351573.9 348268 349016.2 348268 3484343
opentflights 26842 29266 29679.2 26896 28820.1 26842 28724.9 26842 27821.1 26783* 26919.0*
yeast1 1412 1414 1415.1 1412 1412.0 1412 1412.6 1412 1412.0 1412 1412.0
Ham1000 306349 315267 317389.6 313967 318063.3 306353 310254.2 306349 310348.5 306349 309912.0
Ham?2000 1243859 1280776 1291835.7 1272769 1284846.2 1243810* 12555259 1242739* 1249217.5 1242792* 1251189.7
Ham3000a 2844393 2889116 29224759 2889026 29074543 2841893* 28510702 2841487 28452358 2840690* 28472917
Ham3000b 2841270 2900645 2920695.8 2888279 29017450 2839435* 28452804 2839098* 28418225 2837584* 2843768.2
Ham3000c 2838429 2885201 2917668.6 2881202 2898648.5 2836103* 2841923.0 2835369* 2837858 2835860* 2839192.3
Ham3000d 2831311 2894637 2924121.0 2879509 2903890.5 2829328* 2839602.4 2828492* 2834729.6 2829102* 2841551.0
Ham3000e 2847909 2905662 2929507.7 2890137 2910922.6 2844979* 2858484.1 2845437* 2850598.1 2843000* 28474424
Ham4000 5044357 5169509 5226214.6 5144613 5186840.6 5042395* 51053512 5045783 50895969 5038611* 5091745.6
Ham5000 7972525 8158935 82123474 8080428 8117117.3 7964765* 8060826.0 7969299* 8039418.4 7969845* 8042058.9
powergrid 15862 16103 16166.0 15985 16024.3 15897 15943.7 15865 15882.7 15868 15886.1
Oclinks 611326 611285 615343.2 614469 616631.3 612328 614732.8 611253* 6138615 611260* 614220.9
facebook 420334 662680 746744.5 676009 766879.0 680936 783374.6 630564 732633.6 669910 738856.5
grqe 13596 15488 15630.5 13614 13634.0 13601 13644.0 13591* 13598.4 13592* 13602.4
hepth 106397 134863 1644745 106362* 108138.5 106926 108238.5 106276* 108079.9 106792 108673.4
hepph 6156536 9657653 100514327 6299554 7108586.7 6155877* 6991782.6 7087968 7724431.6 7211646 7960148.5
astroph 53963375 57054795 58119058.3 56625063 57713404.8 58941340 60665177.4 55800209 56920216.6 56229708 57421239.1
condmat 2298596 12862556 13834807.8 3754050 4225322.2 5205685 6580912.8 5393192 64032046 6057949 6593803.2

© The results were obtained by re-running CAN1 [35], FastCNP [44] and MACNP [45] with ¢4, = 7200 seconds.

* Improved upper bounds.

[29] M. Namazi, C. Sanderson, M. A. H. Newton, M. M. A. Polash, and
A. Sattar, “Diversified late acceptance search,” in Proceedings of the 31st
Australasian Joint Conference on Artificial Intelligence, Wellington, New
Zealand, 2018, pp. 299-311.

[30] F. Neri and C. Cotta, “Memetic algorithms and memetic computing
optimization: A literature review,” Swarm and Evolutionary Computation,
vol. 2, pp. 1-14, 2012.

[31] E. Neri, C. Cotta, and P. Moscato (Eds.), “Handbook of Memetic
Algorithms,” Studies in Computational Intelligence, vol. 379, Springer,
2012.

[32] G. Pavai and T. V. Geetha, “A survey on crossover operators,” ACM
Computing Surveys, vol. 49, no. 4, pp. 72:1-72:43, 2016.

[33] A. P. Piotrowski, “Review of differential evolution population size,”
Swarm and Evolutionary Computation, vol. 32, pp. 1-24, 2017.

[34] D. C. Porumbel, J. K. Hao, and P. Kuntz, “An evolutionary approach
with diversity guarantee and well-informed grouping recombination for
graph coloring,” Computers & Operations Research, vol. 37, no. 10, pp.
1822-1832, 2010.

[35] W. Pullan, “Heuristic identification of critical nodes in sparse real-world
graphs,” Journal of Heuristics, vol. 21, no. 5, pp. 577-598, 2015.

[36] K. Sorensen and M. Sevaux, “MA | PM: memetic algorithms with
population management,” Computers & Operations Research, vol. 33,
no. 5, pp. 1214-1225, 2006.

[37] M. D. Summa, A. Grosso, and M. Locatelli, “Branch and cut algo-
rithms for detecting critical nodes in undirected graphs,” Computational
Optimization and Applications, vol. 53, no. 3, pp. 649-680, 2012.

[38] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neigh-
borhood search for capacitated arc routing problems,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 1151-1166, 2009.

[39] V. Tirronen and F. Neri, “Differential evolution with fitness diversity self-
adaptation,” in Nature-Inspired Algorithms for Optimisation. Springer,
2009, pp. 199-234.

[40] M. Ventresca, “Global search algorithms using a combinatorial
unranking-based problem representation for the critical node detection
problem,” Computers & Operations Research, vol. 39, no. 11, pp. 2763—
27175, 2012.

[41] S. Wang, J. Liu, and Y. Jin, “Finding influential nodes in multiplex
networks using a memetic algorithm,” IEEE Transactions on Cybernetics,
DOI: 10.1109/TCYB.2019.2917059, 2019.

[42] T. Weise, Y. Wu, R. Chiong, K. Tang, and J. Léssig, “Global versus
local search: the impact of population sizes on evolutionary algorithm
performance,” Journal of Global Optimization, vol. 66, no. 3, pp. 511—
534, 2016.

[43] Y. Zhou, J. K. Hao, and B. Duval, “Opposition-based memetic search
for the maximum diversity problem,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 5, pp. 731-745, 2017.

[44] Y. Zhou and J. K. Hao, “A fast heuristic algorithm for the critical node
problem,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, ACM, 2017, pp. 121-122.

[45] Y. Zhou, J. K. Hao, and F. Glover, “Memetic search for identifying
critical nodes in sparse graphs,” IEEE Transactions on Cybernetics,
vol. 49, no. 10, pp. 3699-3712, Oct 2019.

APPENDIX

This appendix reports three additional experiments. To
ensure the fairness of the experiments, we ran the compared
algorithms on our computer with the same cutoff time limits.

a) Results under an extended time limit of 10800 sec-
onds: We verify whether VPMScoyp has a lasting search
capacity with a still larger time limit of ¢,,,, = 10800
seconds. Since this experiment is very time consuming, we
run VPMScnp to solve each of the 42 benchmark instance
15 times (instead of 30 runs as before) and report the results in
Table VII. We observe that the algorithm attains new improved
upper bounds on 11 instances and matches the best-known
bounds on 24 instances. Importantly, it achieves more than
18 best-known bounds with a success rate of 100% and im-
proves its results on the largest instances. Also, the algorithm
improves the fq,4 values on almost all instances. Finally, we
observe some variations of the best results compared to those
of 7200 seconds. This can be explained by the fact that only
15 runs (instead of 30 runs) were performed. We observe that
CNAL1, FastCNP and MACNP typically converged to their best
possible solutions before reaching 7200 seconds, and did not
run them with a longer cutoff time.

b) VPMScnp against FPMScnp with different popula-
tion sizes: In Section IV-C3, we compared VPMSc yp with
the fixed population variant FPMSc np where the population
size is fixed to ppqar = 20. We now extend the comparison
by testing two other sizes: namely 0.8 * py,q, (smaller than
DPmaz) and 1.2 % pp,q. (larger than p,,,,). For space reasons,
we show the results of this experiment on 10 representative
instances in Table VIII where the results of VPMScnp and
FPMScnp (denoted by FPMS%";\?‘IB) are also included. The
results clearly show a clear dominance of VPMS¢ v p over all
the FPMS variants with different fixed populations in terms of
the best and average values, demonstrating the effectiveness
of the strategic population sizing mechanism.

c) Other variable population sizing methods: : To further
show the interest of our strategic population sizing (SPS)
mechanism, we compare it with two alternative variable pop-
ulation size methods, namely population size reduction (PSR)
and population size expansion (PSE). The PSR method was
initially proposed for the differential evolution algorithm [7],
which gradually decreases the greatest size (in our case 20) at
the beginning of the evolutionary process to the smallest size
(in our case 2) at the end of the evolution. On the contrary,
PSE starts from a small population of only two individuals
and then continuously enlarges the population size during the
evolutionary search. For this experiment, we create two VPMS
variants by replacing our SPS method with PSE and PSR
(i.e., VPMSPSE and VPMS?TS®). The comparative results on
the 10 selected instances above are summarized in Table IX.
From the table, we observe that the VPMS algorithm with our
strategic population sizing mechanism performs the best in
terms of the fyest and fq.4 indicators, confirming the benefit
of the proposed SPS mechanism.

TABLE VII
COMPUTATIONAL RESULTS OF VPMS ¢ p UNDER A LONG TIME LIMIT
tmaz = 10800 SECONDS.

VPMSc NP
Instance foko foest favg tavg #gens #succ
BA500 195* 195 195.0 0.0 0 15
BA1000 558 558 558.0 35 0 15
BA2500 3704* 3704 3704.0 4.4 113 15
BA5000 10196 10196 10196.0 8.8 61 15
ER235 295* 295 295.0 24 667 15
ER466 1524 1524 1524.0 21.1 3380 15
ER941 5012 5012 5015.3 2791.9 197790 2
ER2344 902498 908061 934925.3 7698.1 33644 1
FF250 194* 194 194.0 0.0 1 15
FF500 257* 257 257.0 0.5 52 15
FF1000 1260* 1260 1260.0 2.4 164 15
FF2000 4545* 4545 4545.0 60.4 1912 15
WS250 3083 3083 3083.0 965.8 60783 15
WS500 2072 2072 2083.0 681.5 55420 2
WS1000 109807 113131 131288.9 4642.6 17811 1
WS1500 13098 13098 13154.7 4700.2 96293 7
Bovine 268 268 268.0 0.0 0 15
Circuit 2099 2099 2099.0 0.6 144 15
Ecoli.txt 806 806 806.0 0.0 0 15
USAIr97 4336 4336 4586.5 5106.0 239133 10
humanDisea 1115 1115 1115.0 0.1 0 15
Treni_Roma 918 918 918.0 1.8 768 15
EU_flights 348268 348268 348268.0 3251.1 7564 15
openflights 26842 26785* 26814.2 6468.7 32415 9
yeastl 1412 1412 1412.0 25.4 537 15
Ham1000 306349 306349 309925.4 5054.1 40359 1
Ham2000 1243859 1243316* 1247510.0 6504.7 19250 1
Ham3000a 2844393 2842197 2845559.9 6792.2 7443 1
Ham3000b 2841270 2839360* 2843720.8 6996.2 7821 1
Ham3000c¢ 2838429 2835969* 2838649.3 5179.0 8345 1
Ham3000d 2831311 2829536* 2833408.6 6719.1 10779 1
Ham3000e 2847909 2843777 2848707.0 5924.0 8641 1
Ham4000 5044357 5045719 5094052.9 9242.3 6573 1
Ham5000 7972525 7970553* 8029114.2 9405.9 6196 1
powergrid 15862 15862 15878.2 8413.7 45019 1
Oclinks 611326 611264* 613968.2 6749.6 9246 1
facebook 420334 642625 731533.0 10097.1 10476 1
grqe 13596 13591* 13598.9 7080.5 27692 1
hepth 106397 106362* 108017.3 9933.1 6312 1
hepph 6156536 7189023 7444555.0 10675.8 2030 1
astroph 53963375 55280459 55916119.2 10758.9 978 1
condmat 2298596 5521284 5900013.2 10273.1 1949 1

* Optimal solutions obtained by a branch-and-cut algorithm [37] within 5 days.
* Improved best upper bounds.

COMPARISON OF VPMScnp (WITH A VARIABLE POPULATION) AGAINST FPMS v p (WITH A FIXED POPULATION SIZE OF 0.8 * pmagz, 1.0 * prmax,

TABLE VIII

AND 1.2 * Pinaq) UNDER typqe = 3600 SECONDS.

VPMScn p FPMSY S Bmaw FPMSERae FPMS ;3 hmaw
Instance fokw frest favg frest favg frest favg foest favg
BA5000 10196 10196 10196.0 10196 10196.0 10196 10196.0 10196 10196.0
ER235 295 295 295.0 295 295.0 295 295.0 295 295.1
FF1000 1260 1260 1260.0 1260 1263.4 1260 1262.3 1260 1261.4
WS1500 13098 13098 13161.5 13145 13421.6 13146 13329.1 13098 13320.7
EU_flights 348268 348268 349265.6 349100 352467.3 348268 351323.0 348268 350848.6
openflights 26842 26785 27327.0 26874 28794.9 26842 28845.3 26785* 28577.3
Ham3000a 2844393 2840941* 2859284.4 2843215 2866172.0 2841106 2861888.3 2843025* 2859236.9
Ham3000c 2838429 2832073 2844324.3 2831739 2853766.5 2836076* 2848545.9 2836163* 2845344.7
powergrid 15862 15873 15909.2 15922 15977.6 15899 15954.5 15895 15952.9
grqe 13596 13603 13615.5 13615 13656.7 13612 13647.2 13608 13636.4
* Improved upper bounds.
TABLE IX

COMPARISON OF VPMScn p AGAINST VPMS o p VARIANTS INTEGRATING OTHER VARIABLE POPULATION SIZE METHODS (I.E., PSE AND PSR)
UNDER tmaz = 3600 SECONDS.

VPMScn p VPMSERE, VPMSERE (7]
Instance fokwv frest faug frest favg frest fa'ug
BA5000 10196 10196 10196.0 10196 10196.0 10196 10196.0
ER235 295 295 295.0 295 295.0 295 295.0
FF1000 1260 1260 1260.0 1260 1260.1 1260 1261.5
WS1500 13098 13098 13161.5 13201 13436.6 13163 133415
EU_flights 348268 348268 349265.6 350762 3525228 349100 3522719
openflights 26842 26785* 27327.0 26875 28829.4 26874 28607.5
Ham3000a 2844393 2840941* 2859284.4 2847053 2887510.2 2843404 2876168.9
Ham3000c 2838429 2832073* 2844324.3 2834326 2871369.3 2835775 2862621.5
powergrid 15862 15873 15909.2 15917 15999.6 15934 15974.0
grqe 13596 13603 13161.5 13616 13664.2 13607 13650.1

* Improved upper bounds.

