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Abstract

The virtual machine placement (VMP) problem is a critical task in the
field of cloud computing. The assignment of virtual machines to physical
machines affects the quality of cloud services and running cost. Given a set
of physical machines with certain capacities and a set of virtual machines
with requirements, VMP aims to allocate each virtual machine to a capacity
constrained physical machine in such a way that the total number of the
physical machines used is minimized while their usage does not exceed
the capacity. In this study, a cardinality constrained iterated local search
algorithm is proposed to solve the VMP problem by transforming VMP into
a sequence of cardinality-constrained problems, where each problem involves
a fixed number k of physical machines. The algorithm uses the tabu search
procedure for solution improvement, which exploits two new neighborhoods
based on dedicated evaluation functions for neighboring solution selection.
In addition, it uses a simple perturbation strategy to prevent the algorithm
from search stagnation. Numerical results show that the proposed algorithm
is highly competitive in both solution quality and computational efficiency,
compared to several state-of-the-art algorithms on 18 subsets of 1800 widely
used benchmark instances. Specifically, the algorithm reports the best results
in terms of the average objective values on 17 out of 18 instance subsets with

∗Corresponding author.

Computers & Operations Research 184: 107222, 2025
            https://doi.org/10.1016/j.cor.2025.107222

hao
Texte tapé à la machine



a short run time of 5 seconds. Importantly, using the lower bounds, it proves
for the first time the optimality of solutions for 1390 instances. We study
the impact of the key components of the algorithm on its performance.

Keywords : Metaheuristics; virtual machine placement; local search;
combinatorial optimization.

1. Introduction

Cloud computing is a powerful computing paradigm in which various
services such as software and infrastructures are provided by cloud platforms
to the remote users [14]. Virtualization technology enables the creation of
virtual machines (VMs) for the user application with the required resources,
which are then assigned to physical machines (PMs) to run the application
in the data center. However, the data centers deployed in cloud platforms to
provide cloud services consume large amounts of energy. It has been shown
that data centers contribute about 1% of the world’s electricity consumption
in 2020, and the energy consumed by the world’s data centers will continue
to grow rapidly in the coming years [26]. An active but idle PM consumes
approximately 50% ∼ 70% as much energy as a fully utilized PM [21].
Therefore, consolidation of VMs on PMs is becoming increasingly important
to reduce the energy consumption [37]. This leads to the virtual machine
placement (VMP) problem, which aims to achieve an optimal allocation of
VMs to PMs. Moreover, the scale of this problem is relatively large. In 2011,
Google released a one-month trace of its cloud workload, which includes
approximately 650,000 tasks assigned to 12,000 servers within a data center
[15]. VMP is computationally challenging as it has been shown to be NP-hard
[32]. The mathematical model of VMP is presented in Section 3.1.

Due to the importance of VMP in cloud resource management, a number
of optimization algorithms have been proposed in the literature as reviewed
in Section 2. These existing VMP approaches have contributed to finding
satisfactory solutions for a number of benchmark instances of VMP. However,
their performance varies depending on the test graphs, and they face the
challenge of consistently generating high-quality solutions for various graphs,
e.g., with a percentage gap between the yielded solution and the lower bound
generally exceeding 2%. This work aims thus to advance the state-of-the-
art for effectively tackling VMP by proposing a very competitive heuristic
method, which is able to find high quality solutions in a short computing
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time on the commonly used benchmark instances. The main contributions
of this work are summarized as follows.

From an algorithmic design perspective, the proposed cardinality con-
strained iterated local search (CCILS) algorithm solves the initial VMP
problem by solving a series of cardinality constrained problems. Specifically,
CCILS seeks a solution of fixed size k by exploring a constrained space
where exactly k physical machines are used. For a given candidate solution,
CCILS uses a tabu search procedure for solution improvement by applying
two new neighborhoods induced by the constrained exchange (denoted as
Cons_Ex) and Migrate operators, based on dedicated evaluation functions
for neighboring solution selection. Particularly, the constrained exchange
operator tries to swap virtual machines between non-overloaded physical
machines. To prevent the algorithm from stagnation, a simple perturbation
strategy is used. After finding a feasible solution, i.e., obtaining a feasible
placement of all the VMs on k PMs, k is decreased by 1, and a new solution
of fixed size k is sought. This strategy differs from the conventional VMP
methods that primarily focus on directly constructing feasible solutions. By
exploring the solution space from infeasible regions, the proposed CCILS
algorithm potentially uncovers solution space that conventional approaches
may overlook. Meanwhile, compared to VMP algorithms that are mainly
based on the population optimization framework, the proposed CCILS
algorithm is based on the local search scheme that does not require the
population management component. Additional experiments have been
conducted to isolate and demonstrate the contribution of the proposed
components, including the constrained exchange operator and the dedicated
evaluation functions in Section 5, and the experimental results support their
positive impact on the overall performance of the algorithm.

From the point of view of computational results, the experimental
evaluations demonstrate the high competitiveness of the proposed algorithm
compared to several state-of-the-art algorithms on the 18 subsets of 1800
widely used benchmark instances. Specifically, CCILS gives the best results
in terms of the average objective values in 17 out of 18 subsets of instances
with a time limit of 5 seconds for each execution, while the state-of-the-art
methods produce the best result at most on 1 instance subset. Furthermore,
using the lower bounds, it identifies for the first time 1390 optimal solutions
out of the total of 1800 instances. The source code of the algorithm will
be made publicly available, which can help researchers and practitioners
to better solve various practical problems that can be formulated as VMP.
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We further consider the time dimension into VMP to broaden the practical
applicability of the proposed method.

The rest of the paper is organized as follows. Section 2 reviews
existing related works. Section 3 presents the problem and its mathematical
formulation, as well as the main components of the proposed algorithm.
Computational results and comparisons with the state-of-the-art methods are
given in Section 4. Section 5 examines the effect of important components
of CCILS. Conclusions and perspectives are discussed in the last section.

2. Literature review

There are a variety of VMP scenarios have been extensively studied,
such as energy-aware VMP, network-aware VMP and resource-aware VMP.
As the energy consumption of large data centers becomes increasingly
prominent, the energy-aware VMP problem focusing on minimizing the
energy consumption has been widely concerned [6, 23]. The network-aware
VMP problem concentrates on the overall network traffic by minimizing the
average path length between VMs [8, 18]. The resource-aware VMP problem
focuses on maximizing the utilization of server resources, including storage
resources, computing resources and memory resources, etc [34]. Besides,
multi-objective VMP problems have also been widely studied [9, 37]. Abbasi-
khazaei and Rezvani [1] presented a modified memetic algorithm to jointly
minimize energy costs and scheduling costs. Below, we review the existing
methods for solving VMP reported in the literature.

In [24], Liu et al. proposed an ant colony optimization algorithm with
order exchange and migration local search techniques, termed as OEMACS
to tackle VMP. The allocation of VMs is undertaken by artificial ants based
on global search information. OEMACS distributes pheromones between
VM pairs on the same server that represents connections between VMs,
and records accumulated historical experience with pheromones. Local
search is integrated into OEMACS to try to fix infeasible solutions. The
experimental results show that OEMACS generally outperforms the current
best performing algorithms [33, 35], especially on VMP instances with
bottleneck resources. Despite its effectiveness on small- and medium-sized
instances, OEMACS may lead to significant computational overhead when
applied to large-scale problems, owing to its experimentally observed time
complexity of approximately O(n4) [29].
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In [2], Abohamama and Hamouda presented the improved genetic
algorithm (denoted as GA1) for VMP. The proposed algorithm combines
a modified permutation based genetic algorithm and a resource-aware best-
fit strategy. GA1 uses a fitness function that prioritizes low power usage,
and the comparison experiments show that GA1 performs competitively in
terms of solution quality against several other (simple) algorithms. The
evaluation, crossover, and mutation operations in each generation of GA1 are
computationally intensive, with an approximate time complexity of O(n3).
Moreover, although GA1 emphasizes global exploration, it lacks fine-grained
local search capabilities. However, incorporating a local search procedure
could further increase the algorithm’s time efficiency, which could become an
even more serious bottleneck, particularly for large-scale problems.

In 2022, Peake et al. [29] developed an improved algorithm for VMP,
based on parallel ant colony optimization (PACO), which significantly
improves the computational efficiency through parallelization techniques
(such as OpenMP and AVX2 instruction sets). The computational results
on three sets of 1800 benchmark instances show that PACO is several orders
of magnitude faster than the state-of-the-art methods, including OEMACS,
GA1, and an adaption of GA1 (denoted as GA2), while yielding comparable
results. The main advantage of PACO lies in its superior time efficiency
compared to the reference algorithms, as it exhibits a time complexity of
O(n2). However, the algorithm is more challenging to implement, particularly
its acceleration strategies, which rely on a specialized parallel framework and
modern processor technologies. This could pose certain difficulties for those
attempting to apply the method to other related VMP problems.

According to the numerical results reported in VMP literature, OEMACS
[24], GA1 [2], GA2 [2] and PACO [29] are the current best performing
methods for VMP. However, there is still significant room for improvement
in solution quality and computational efficiency. In fact, existing VMP
algorithms do not perform consistently well on the benchmark instances,
and no single method is able to achieve all best-known results on the
benchmark instances. In addition, some methods, such as OEMACS, GA1,
GA2 take a long time to achieve their results. Finally, one can observe
that the existing VMP algorithms are mainly based on the population
optimization framework, while the single solution based heuristics remain
relatively limited. It is known that the iterated local search, one of the
single solution based heuristic methods, is a powerful general framework for
combinatorial optimization problems [25]. Until now, this approach is still
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little studied for solving VMP. This work therefore aims to fill these gaps
by investigating, for the first time, the potential of the iterated local search
framework to address VMP. As shown by the computational results in Section
4, the proposed algorithm is indeed very effective.

Meanwhile, VMP can be considered as a variation of the one-dimensional
bin packing problem (BPP) [5, 11, 12]. Given a set of items, each having an
integer weight, and an unlimited number of identical bins of integer capacity,
BPP seeks to pack all the items into the minimum number of bins such
that the total weight packed in any bin does not exceed the capacity. The
physical machines, which correspond to bins, have limited capacity on one
or more dimensions, and the virtual machines corresponding to items are
characterized by the resources that they consume on the physical machines.
The main difference between VMP and BPP is that VMP considers multiple
resource dimensions simultaneously, such as CPU and RAM, whereas BPP
involves only a single-dimensional weight. For a comprehensive review of the
bin packing problem, we refer the reader to [12].

Most existing VMP studies focus on minimizing the number of active
servers or operational costs for a given set of VM requests. However,
a significant variation of the problem involves incorporating the time
dimension, where customers request VMs for specific durations. Only a few
studies have considered this aspect in their models or developed algorithms
specifically to address it. For example, the temporal extension of the bin
packing problem, known as the temporal bin packing (TBP) problem has
been considered (e.g., [5, 10, 11]), where the items should be packed in fixed
start and end times within a given planning horizon. Nevertheless, the time
dimension is a critical factor in practical applications. To broaden the scope
and applicability of this work, we further consider incorporating the time
dimension into VMP and extend the current solution to address this critical
aspect.

3. Cardinality constrained iterated local search for VMP

3.1. Problem statement and mathematical formulation
We consider a set of virtual machines V = {Vi, i ∈ {1, ..., NVM}} with

CPU requirements and RAM requirements RCPU
i , RRAM

i for each Vi ∈ V , and
a set of physical machines P = {Pm,m ∈ {1, ..., NPM}} with CPU capacities
and RAM capacities CCPU

m , CRAM
m for each Pm ∈ P . The main assumptions

of VMP are as follows: (i) each virtual machine should be assigned to exactly
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one of the physical machines; (ii) the CPU and RAM requirements of each
virtual machine do not exceed the capacities of a physical machine. The
VMP consists of allocating all the virtual machines to the physical machines
such that the physical machines’ capacities are not violated. The objective
of VMP is to minimize the number of used physical machines. Let ym be a
binary variable taking the value of 1 if Pm is used, and 0 otherwise. Let xim

be a binary variable such that xim = 1 if Vi is allocated to Pm, and xim = 0
otherwise. VMP can then be formally defined as follows [24].

Minimize

NPM∑
m=1

ym (1)

subject to

NPM∑
m=1

xim = 1,∀i ∈ {1, ..., NVM} (2)

NV M∑
i=1

ximR
CPU
i ≤ CCPU

m ym, ∀m ∈ {1, ..., NPM} (3)

NV M∑
i=1

ximR
RAM
i ≤ CRAM

m ym, ∀m ∈ {1, ..., NPM} (4)

xim ∈ {0, 1}, ∀i ∈ {1, ..., NVM}, ∀m ∈ {1, ..., NPM}(5)
ym ∈ {0, 1}, ∀m ∈ {1, ..., NPM} (6)

The objective function (1) is to minimize the number of physical machines
used. Constraint (2) ensures that each virtual machine is assigned to one
and only one of the physical machines. Constraints (3) and (4) ensure that
each used physical machine satisfies the resource requirements of the virtual
machines on it. Binary values for the variables xim and ym are imposed in
constraints (5) and (6), respectively.

3.2. Main scheme
Iterated local search is a metaheuristic that focuses the search on a

sequence of solutions returning by some underlying method, typically a local
search heuristic. Iterated local search is a conceptually simple metaheuristic
approach, but it has led to state-of-the-art algorithms for a variety of
computationally difficult problems, such as job shop scheduling problem
[4, 16, 28] and vehicle routing problem [7, 27, 30].
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Algorithm 1: General approach of the cardinality constrained
iterated local search for VMP

Input: I: a VMP instance, t: the cutoff time, lb: the lower bound of I
Output: The best found solution (upper bound) S∗

1 Sk, f lag ← greedy_ini(I) /* Generate greedily an initial k-machine
solution */

2 S∗ ← Sk /* Update the best found solution */
3 k ← k − 1 /* Decrease the value of k by 1 */
4 /* Solve a series of cardinality constrained problems */
5 while the cutoff time t is not reached && k >= lb do
6 Sk, f lag ← ILS(Sk+1, z) /* Invoke ILS method to solve VMPk

problem, see Algorithm 2 */
7 if the VMPk is successfully solved, i.e., flag == True then
8 S∗ ← Sk

9 k ← k − 1

10 z ← t− clock() /* Update the cutoff time z of ILS */

11 return S∗

To solve VMP problem more efficiently, we adopt a cardinality con-
strained strategy to decompose VMP into a series of problems, where each
problem VMPk with a cardinality of k physical machines focused on finding
a feasible solution using exactly k physical machines denoted as P k. Such a
feasible solution, called the k-machine solution, is obviously an upper bound
of the optimal VMP solution. To solve the VMPk problem, the algorithm
uses a penalty approach to explore the constrained search space with the
fixed k physical machines. Each time a k-machine solution is found, k is
decremented by one and a new k-machine solution is sought. The process
is repeated until no k-machine solution can be found or the lower bound of
k is reached (see Section 4.1 for calculating lower bound lb for an instance).
The last feasible k-machine solution is thus the best upper bound found by
the algorithm. Therefore, the VMP problem comes down to the problem of
finding a k-machine solution. Note that the search strategy of cardinality
constrained (also called the k-fixed penalty strategy), has been successfully
used for graph coloring [19], clique problems [36, 38], stable set problem [17],
etc.

The proposed CCILS algorithm presented in Algorithm 1 follows the idea
above. To quickly obtain the first k value and the initial k-machine solution,
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Algorithm 2: Iterated local search for VMPk

Input: Sk+1: a (k + 1)-machine solution, z: the cutoff time
Output: k-machine solution if found

1 S ← Initial_Solution(Sk+1) /* Section 3.3, generate an initial
solution using k physical machines */

2 while the cutoff time z is not reached do
3 S ← Tabu_Search(S) /* Section 3.4, repair the solution */
4 if S is a k-machine solution then
5 return S and report success

6 S ← Perturbation_Solution(S) /* Section 3.5, perturb the
current solution */

7 Report failure

a simple greedy method is used (line 1). For each Vi (i ∈ {1, ..., NVM}), it
is assigned to the first available PM that satisfies its resource requirements
by visiting PMs in alphabetical order (i.e., from 1 to NPM). Note that in
a heterogeneous environment with different PMs, the PMs with the largest
capacities are assigned the smallest numbers, in other words, they are visited
first. This process is efficient and can handle large instances without a
significant increase in processing time. The best found solution S∗ is then
updated using the initial k-machine solution (line 2) and the value of k is
decremented by 1 (line 3). After that, CCILS uses the iterated local search
method (ILS, see Algorithm 2) to a series of cardinality constrained problems
VMPk with decreasing k values. If VMPk is successfully solved, i.e., a k-
machine solution Sk is found with the current k value (lines 7), S∗ is updated
with Sk (line 8) and k is decreased by 1 (line 9). The cutoff time z for ILS is
finally updated (line 10). CCILS is repeated until the cutoff time t is reached
or the lower bound lb is arrived.

Algorithm 2 shows the pseduo-code of the ILS algorithm. Starting from
an initial solution S (usually S is infeasible) (line 1, Section 3.3), ILS enters
the ‘while’ loop (lines 2-6) to find an improved feasible solution. At each loop,
a tabu search procedure is used to iteratively improve S (line 3, Section 3.4).
A dedicated perturbation procedure is applied when the tabu search process
gets stuck in a local optimal trap (line 6, Section 3.5). If a feasible k-machine
solution is found, ILS stops and returns the feasible solution (lines 4-5). If no
feasible k-machine solution is found within the given cutoff time, ILS stops
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and reports a failure.

3.3. Solution initialization
Each input solution S of the local search is created by the solution

initialization procedure (denoted as SIP). Given a (k + 1)-machine solution,
SIP first releases all the VMs on the physical machine Pk+1. Every Vi

located on Pk+1 is reallocated to a randomly selected physical machine Pr

(r ∈ {1, 2, ..., k}). Note that during this procedure, CPU and RAM capacity
constraints can be violated. Any constraint violation will be corrected during
the subsequent tabu search procedure.

3.4. Tabu search procedure
The tabu search (TS) procedure is used for local improvement, relying on

the general tabu search principle [20]. TS is characterized by its new move
operators, the dedicated evaluation functions and an advanced exploration
strategy.

3.4.1. Constrained move operators and dedicated evaluation functions
To improve the given solution, TS iteratively transits from the current

solution S to a neighboring solution. For this purpose, TS uses two
new move operators, i.e., the constrained exchange operator (denoted as
Cons_Ex(i, j;m,n)) and Migrate operator for a more efficient search. To
evaluate each neighboring solution, two dedicated evaluation functions are
applied.

The Cons_Ex(i, j;m,n) operator: Let Vi and Vj be two virtual machines
located on two non-overloaded physical machines Pm, Pn ∈ P k respectively.
The Cons_Ex(i, j;m,n) operator swaps Vi and Vj without violating the
capacity constraints of Pm and Pn. Note that the exchange operators utilized
by other VMP heuristics [24, 29] mainly considered to swap VMs between
an overloaded PM and a non-overloaded PM. The main reason behind our
Cons_Ex(i, j;m,n) operator that considers only the non-overloaded PMs
is to improve the search efficiency. The effect of the constrained exchange
operator is investigated in Section 5.1.

Given the current solution S, let S ⊕ Cons_Ex(i, j;m,n) be the neigh-
boring solution obtained by applying Cons_Ex(i, j;m,n) to S. Then the
constrained exchange neighborhood N1 induced by the Cons_Ex(i, j;m,n)
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is defined as follows:

N1(S) = {S
′
: S

′
= S ⊕ Cons_Ex(i, j;m,n), Vi ∈ Pm, Vj ∈ Pn, 1 ≤ m,n ≤ k,

m ̸= n, UCPU
m ≤ CCPU

m , URAM
m ≤ CRAM

m , UCPU
n ≤ CCPU

n , URAM
n ≤ CRAM

n ,

UCPU
m −RCPU

i +RCPU
j ≤ CCPU

m , URAM
m −RRAM

i +RRAM
j ≤ CRAM

m ,

UCPU
n −RCPU

j +RCPU
i ≤ CCPU

n , URAM
n −RRAM

j +RRAM
i ≤ CRAM

n }
(7)

where UCPU
m and URAM

m (UCPU
n and URAM

n ) represent the total CPU and
RAM requirements of all virtual machines on Pm (Pn).

For each neighboring solution S
′ ∈ N1(S), we apply a meticulously

designed evaluation function r to evaluate the fitness of S ′, which is defined
as follows:

r(S
′
) = (2 + oc + bc)× LCPU

m + (1 + om + bm)× LRAM
m (8)

where LCPU
m and LRAM

m are the residual CPU and RAM resources of Pm after
exchanging Vi ∈ Pm and Vj ∈ Pn, respectively. Binary variables bc and bm
are included in the function r to mark up the bottleneck resources of the
instance. If CPU (RAM) is the bottleneck resource of the instance, bc = 1
(bm = 1), and bc = 0 (bm = 0) otherwise. Note that, the bottleneck resources
of instances of Set B and Set C are CPU and RAM, respectively, while Set
A instances have no bottleneck resource (See Section 4.1). The function r
includes two other binary variables oc and om whose values are related to the
current solution S. By visiting PMs in alphabetical order (i.e., from 1 to k)
and identifying the first overloaded PM Pj ∈ P k, if its CPU (RAM) capacity
is violated, then oc = 1 (om = 1), and oc = 0 (om = 0) otherwise. In this way,
the remaining CPU and RAM resources of Pm after a Cons_Ex(i, j;m,n)
move will be more suitable for accommodating VMs with different CPU and
RAM requirements for the subsequent Migrate neighborhood search. The
natural numbers 1 and 2 in r are used to balance the differences of the CPU
and RAM requirements of VMs as well as CPU and RAM capacities of PMs
for the used instances.

The Migrate(i,m, n) operator: Let Vi be a virtual machine located
on a randomly selected overloaded physical machine Pm ∈ P k. The
Migrate(i,m, n) operator displaces Vi from Pm to a non-overloaded physical
machine Pn ∈ P k such that the capacity constraint of Pn is satisfied. The
search efficiency of TS in exploring the Migrate neighborhood is enhanced
by constraining Vi from a randomly selected overloaded PM rather than
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considering all overloaded PMs. The Migrate neighborhood N2 induced by
the Migrate(i,m, n) is defined as follows:

N2(S) = {S
′
: S

′
= S ⊕Migrate(i,m, n), Vi ∈ Pm, 1 ≤ m,n ≤ k,

m = rand(k), UCPU
m > CCPU

m ∨ URAM
m > CRAM

m ,

UCPU
n +RCPU

i ≤ CCPU
n , URAM

n +RRAM
i ≤ CRAM

n }
(9)

where the function rand(k) returns an integer between 1 and k.
To evaluate each neighboring solution S ′ ∈ N2(S), a dedicated evaluation

function d is defined by:

d(S
′
) = (1 + oc)×RCPU

i + (1 + om)×RRAM
i (10)

A larger value of d indicates that the selected virtual machine Vi of Pm has
a relatively greater demand, thus alleviating the overload degree of Pm more
efficiently.

Obviously, for an initial solution using k PMs, the Cons_Ex(i, j;m,n)
operator, which only considers non-overloaded PMs cannot find a k-machine
solution. However, we can use it to adjust the placement of VMs and free up
a PM with relatively large residual resources so that it can be used by the
Migrate operator to host VMs, especially those that require large resources.

3.4.2. Exploration with tabu search
TS employs the Cons_Ex(i, j;m,n) and Migrate(i,m, n) operators to

explore the search space. To prevent TS from short-term cycling, a tabu
list l is used to avoid revisiting candidate solutions recently encountered.
Specifically, after performing the Cons_Ex(i, j;m,n) move, the involved
virtual machine pair of Vi ∈ Pm and Vj ∈ Pn is recorded in the tabu list and
will not be allowed to be swapped again in the next tt iterations, where tt is
a parameter called the tabu tenure.

The pseudo-code of TS is given in Algorithm 3. TS first initializes each
element of the tabu list l to be 0 (line 3). Then TS conducts a series of
iterations following the best improvement principle (lines 4-24). During
each iteration, TS replaces the current solution S with the best admissible
neighboring solution S ′ (ties are broken randomly), in terms of function r
from the Cons_Ex(i, j;m,n) neighborhood (lines 5-6). Then the involved
VM pair Vi and Vj is appended to the tabu list (line 7). A move is treated
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as admissible if it is not marked as tabu. After that, TS explores the
Migrate(i,m, n) neighborhood and if the neighborhood is not empty, TS
replaces the current solution S with the best neighboring solution S ′ having
the largest d value (lines 8-10). Otherwise the algorithm examines VMs
on the overloaded PMs one by one and attempts to reallocate such a VM
to a non-overloaded PM by visiting the PMs in alphabetical order with
respect to the capacity of PMs. As soon as a feasible migration that satisfies
the capacity constraints of a non-overloaded PM is found, the migration
is performed immediately (lines 11-19). If there is no successful migration
move performed, the counter h is increased by 1 (lines 20-21). TS terminates
when any of the following two conditions is met: 1) a k-machine solution S
is found, in this case, S is returned and a success is reported; 2) the search
depth u of TS is reached, i.e., the number of iterations for which the migration
operation was not executed, in this situation, the final encountered solution
S is returned.

3.5. Perturbation procedure
Perturbation is one of the key factors in ILS. After a round of local search,

a new solution is generated by changing the current local optimum, which is
then used as the starting solution for the next round of local search.

When designing a perturbation strategy, it is crucial to consider the
specific characteristics of the problem at hand and ensure that it aligns
effectively with the local search algorithm. If the perturbation is too strong,
it may behave like a pure random restart. On the other hand, if the
perturbation is too weak, the local search may return to the local optimum
just visited, and the diversification of the search will be very limited [25].

We design a specific and moderate perturbation strategy for VMP
problem. When TS stops, the search is regarded as being trapped in a local
optimum and the perturbation procedure is executed. The perturbation
procedure first identifies the set of virtual machines V p located on the
overloaded physical machines. Then each virtual machine Vj ∈ V p is
reallocated to a randomly selected physical machine Pj ∈ P k. In Section
5.3, we study the usefulness of this perturbation strategy.

4. Experimental results and comparisons

In this section, we report computational results of the proposed algorithm
on well-known benchmark instances and provide comparisons with several
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state-of-the-art algorithms from the literature [2, 24, 29].

4.1. Benchmark instances
We assess the performance of the proposed algorithm and the reference

algorithms on the following three sets of 1800 benchmark instances (see
[29]). These 1800 instances are divided into three types based on the
homogeneity of the physical machines and whether there is a bottleneck
resource: Set A, Set B, and Set C. The instances of Set A, Set B, and Set
C were generated in [29]. The Set A instances were created according to
the procedure introduced in [35], while the Set B and Set C instances were
produced following the method presented in [24]. For each instance type,
there are 600 instances including six subsets with different numbers of virtual
machines NVM ∈ {100, 200, 300, 400, 500, 1000} and each subset consists of
100 instances, resulting in a total of 1800 instances grouped into 18 subsets.

4.1.1. Set A instances: homogeneous environment without bottleneck
The physical machines of Set A instances are homogeneous. The CPU

and RAM capacities of the PMs are both 500 units. The requirements of the
VMs are uniformly randomly generated integers in the range [1, 128] for CPU
and [1, 100] for RAM, resulting in a slightly larger average CPU requirement
than RAM requirement (but still close to 1: 1). In other words, there is no
bottleneck resource for Set A instances. Given an instance, the lower bound
lb of the number of physical machines k for any optimal solution is calculated
as follows [29]:

lb = max{
∑NV M

i=1 RCPU
i

CCPU
A

,

∑NV M

i=1 RRAM
i

CRAM
A

} (11)

where CCPU
A and CRAM

A are the CPU and RAM capacities of the instances,
respectively.

4.1.2. Set B instances: homogeneous environment with bottleneck
The physical machines of Set B instances are homogeneous, equipped with

16 units for CPU and 32 units for RAM. The CPU (RAM) requirements of
VMs are uniformly randomly generated integers in the range [1, 4] ([1, 8]).
As the probability of generating the 4 units of CPU requirement is 0.25, but
the probability of yielding the 8 units of RAM requirement is 0.125, CPU is
the bottleneck resource. The lower bound of the Set B instances is calculated
by the Equation (11).
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4.1.3. Set C instances: heterogeneous environment with bottleneck
The instances of Set C simulate the heterogeneous environment with two

types of physical machines named as PMC1 and PMC2 . For each instance,
PMC2 accounts for only 10% of the PMs, while the remainder of the PMs
are PMC1 . A PMC1 is equipped with 16 units of CPU and 32 units of
RAM, whereas a PMC2 features 32 CPU units and 128 RAM units. The VM
requirements are from the discrete uniform distributions in the range [1, 8]
for CPU and [1, 32] for RAM, indicating that the bottleneck resource of Set
C is RAM. The lower bound of Set C instances is calculated by [29]:

lb = |PMC2|+max{
∑NV M

i=1 RCPU
i − |PMC2|CCPU

C2

CCPU
C1

,∑NV M

i=1 RRAM
i − |PMC2|CRAM

C2

CRAM
C1

}
(12)

where |PMC2 | is the number of PMs of PMC2 , and CCPU
C1

, CRAM
C1

(CCPU
C2

,
CRAM

C2
) are the CPU, RAM capacities of PMC1 (PMC2) respectively.

4.2. Experimental settings and parameter tuning
The proposed algorithm CCILS was implemented in Java language1. All

experiments were conducted on a computing platform with an Intel Xeon
E5-2695 v4 processor (2.10 GHz) and 2 GB RAM under the Linux operating
system. Following the reference algorithms [29], CCILS was executed one
time for each instance. The cutoff time for a run was set to 5 seconds.

The proposed CCILS algorithm requires only two parameters: the tabu
tenure tt and the search depth of the tabu search u. Table 1 displays the
candidate and final values of these parameters. The final parameter values
were consistently used for all the subsequent experiments. To analyze the
roles of these parameters in the algorithm and to evaluate the sensitivity of
each parameter, we conducted a one-at-a-time sensitivity analysis. For the
experiment, we randomly selected 10 instances out of each instance subset,
totaling 180 instances and ran for 10 times per instance. Each series of

1The source code of the proposed CCILS algorithm will be made avail-
able upon the publication of the paper at https://github.com/neteasefans/
virtual-machine-placement-problem.git
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testing experiments focused on one parameter at a time by varying its value
in a pre-determined range while fixing another parameter to the default value
shown in Table 1.

Table 1: Settings of the parameters.

Parameter Section Description Considered values Final
value

u 3.4 Search depth of the tabu
search

{5, 20, 30, 50,100} 20

tt 3.4 tabu tenure {5, 20, 50, 100} 20
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Figure 1: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS with different values of tt.

The results are presented in Fig. 1 and Fig. 2, where the X-axis and Y-
axis show respectively the instance subsets and the average solution quality
over the randomly selected 10 instances of each subset. For each instance, the
solution quality sq is defined as the percentage gap from the best objective
value to the lower bound lb calculated by the Equation (11) or (12):

sq = 100(
KS − lb

lb
) (13)

where KS is the number of used PMs of the obtained best solution S∗. To
determine whether different values of a given parameter show statistical
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Figure 2: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS with different values of u.

differences in the samples, the non-parametric Friedman tests [13] were
conducted. Results of the tests indicate that CCILS is sensitive to the
settings of parameters tt (p-value = 1.58e-02) and u (p-value = 4.62e-02).
The recommended parameter values from this experiment are 20 for tt and
20 for u.
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4.3. Comparison results with state-of-the-art algorithms

Table 2: Comparative results between the proposed algorithm CCILS and the reference
algorithms concerning solution quality (%) on the 18 subsets of instances.

Solution Quality (%)

Subset OEMACS[24] GA1[2] GA2[2] PACO(S)[29] PACO(P)[29] CCILS
A100 8.98 8.80 8.54 8.25 8.25 0.00
A200 4.71 5.13 4.41 4.47 4.47 0.12
A300 3.26 4.21 2.92 3.32 3.32 0.26
A400 2.78 4.78 2.46 2.78 2.78 0.00
A500 2.39 5.54 1.92 2.42 2.42 0.90
A1000 1.96 11.30 1.26 1.58 1.58 0.37
Avg 4.01 6.63 3.59 3.80 3.80 0.28
B100 8.24 6.49 7.75 6.24 6.24 0.00
B200 5.05 3.01 4.78 3.08 3.08 0.00
B300 3.72 2.05 5.36 2.11 2.11 0.00
B400 3.47 1.64 6.77 1.69 1.69 0.00
B500 2.89 1.25 6.30 1.37 1.37 0.00
B1000 2.82 0.79 11.40 0.91 0.91 0.00
Avg 4.37 2.54 7.06 2.57 2.57 0.00
C100 13.70 6.96 23.90 7.67 7.67 0.40
C200 11.90 5.03 31.40 6.10 6.10 0.46
C300 11.70 4.46 37.20 5.39 5.39 0.77
C400 12.10 4.07 41.30 4.66 4.66 1.17
C500 12.00 3.93 43.00 4.44 4.44 0.93
C1000 12.80 3.70 54.50 3.62 3.62 6.78
Avg 12.37 4.69 38.55 5.31 5.31 1.75
#Best 0 0 0 1 1 17
p-value 2.20e-5 1.62e-4 2.20e-5 1.62e-4 1.62e-4
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Table 3: Comparative results between CCILS and the reference algorithms in terms of
execution time (in seconds) on the 18 subsets of instances.

Execution Time (s)

Subset OEMACS[24] GA1[2] GA2[2] PACO(S)[29] PACO(P)[29] CCILS
A100 0.94 9.10 15.05 0.12 0.05 0.02
A200 12.22 60.23 107.90 0.42 0.15 0.21
A300 51.81 194.40 354.30 0.89 0.27 0.37
A400 158.80 440.00 817.70 1.52 0.50 0.09
A500 369.80 832.80 1575.00 2.39 0.76 2.44
A1000 5451.00 5711.00 12120.00 10.37 2.99 2.41
Avg 1007.43 1207.92 2498.33 2.62 0.79 0.92
B100 1.08 9.04 15.32 0.12 0.05 0.02
B200 14.14 59.15 109.20 0.42 0.15 0.02
B300 58.75 189.70 358.60 0.90 0.27 0.05
B400 181.10 426.20 829.10 1.51 0.50 0.11
B500 414.80 805.40 1596.00 2.35 0.76 0.14
B1000 6080.00 5547.00 12190.00 9.59 2.90 0.75
Avg 1124.98 1172.75 2516.37 2.48 0.77 0.18
C100 1.65 9.73 16.98 0.13 0.06 0.07
C200 22.14 63.66 116.70 0.46 0.16 0.39
C300 88.56 205.00 383.70 0.98 0.27 1.20
C400 270.30 456.80 874.70 1.66 0.51 3.90
C500 633.00 858.40 1665.00 2.62 0.77 4.05
C1000 8874.00 5754.00 12490.00 10.69 2.87 5.01
Avg 1648.27 1224.60 2591.18 2.76 0.77 2.44

To evaluate the performance of the proposed CCILS algorithm, this
section provides an extensive computational comparison between CCILS and
the reference algorithms including OEMACS [24], GA1 [2], GA2 [2] and
PACO [29]. For PACO, contrasting the serial version that uses only one
thread, the parallel version calling OpenMP to allocate each construction
process (a total of 20) to a separate thread is also developed. To distinguish
between parallel and serial versions, they are denoted as PACO(P) and
PACO(S) respectively. The numerical results reported by the reference
algorithms are directly extracted from [29]. All the reference algorithms
were implemented in C++, and compiled by the GNU g++ compiler, with
the ‘-O2’ option. The reference algorithms were conducted on a computing
platform with an Intel Xeon E5-2640 v4 processor with 20 cores running at a
base frequency of 2.40 GHz and a maximum frequency of 3.40 GHz. Note that
the stopping conditions of the reference algorithms are not uniform. GA1
and GA2 are terminated after performing a fixed number of 200 generations,
while OEMACS and PACO stop after they perform 50 generations.

Due to the differences in computing platforms and termination criteria,
giving a completely fair comparison between CCILS and the reference
algorithms is a challenging task. Therefore, we mainly focus on the quality
of the obtained solutions and provide execution time for indicative purposes

19



only. We utilize CPU frequency to compare the speed of the processors
employed for testing methods. Compared to our processor (Intel Xeon E5-
2695 v4, 2.10 GHz), the processor (Intel Xeon E5-2640 v4, 2.40 GHz) used
by the reference algorithms has a scaling factor of 1.14, indicating that the
processor utilized in this study is slightly slower.

Table 2 reports the computational results of CCILS as well as the
reference algorithms in terms of the solution quality on the benchmark
instances. Column ‘Subset’ represents the subset name of instances with
different types and sizes. Row ‘Avg’ shows the average results across the
subsets of three instance sets. Row ‘#Best’ represents the number of cases for
which an algorithm yields the best result among all the compared methods.
To verify whether there are statistical differences in terms of solution quality
between CCILS and the compared algorithms, the statistical results from the
non-parametric Friedman test are provided in row ‘p-value’. The solution
quality results reported by each compared algorithm are the average results
across all the 100 instances of each subset. The best values are highlighted
in bold.

From Table 2, we can observe that the proposed algorithm CCILS
consistently demonstrates a superior performance compared to the reference
algorithms on the 18 subsets of 1800 instances. Specifically, for the 18
instance subsets, CCILS reports the best results with respect to the average
solution quality across 100 instances of each subset on 17 subsets, while
OEMACS, GA1, GA2, PACO(S) and PACO(P) obtain the best results for
0, 0, 0, 1, 1 cases, respectively. Notably, the average solution quality value
reported by CCILS is 0.00 for the 8 subsets A100, A400, B100, B200, B300,
B400, B500, B1000, indicating that the lower bound is achieved for each
instance of these subsets, in other words, the optimal solutions are found for
all the 800 instances of the 8 subsets. Indeed, we found the optimal solutions
for 1390 cases out of all the 1800 benchmark instances2. Moreover, the
average solution quality values for each of the 18 subsets are quite low, with
almost all of them falling below 1%, except for the C400 and C1000 subsets.
For the Set C instances with both heterogeneous environment and bottleneck
resources, the proposed algorithm exhibits also better performances than all
the reference algorithms on C100, C200, C300, C400 and C500 subsets, and

2The optimal solution certificates are available at https://github.com/neteasefans/
virtual-machine-placement-problem.git
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worse than GA1 and PACO only on C1000.
Table 3 shows the average execution time in seconds to reach its best

result elapsed by each algorithm across all the 100 instances of each subset.
Table 3 indicates that in terms of the average execution time, CCILS and
PACO (including PACO(S) and PACO(P)) show similar performance while
much better performance than OEMACS, GA1 and GA2 for the three sets
of instances. For the Set A and Set C instances, CCILS and PACO(S)
performs slightly worse than PACO(P), while CCILS shows a slightly better
performance than PACO(S) and PACO(P) on Set B instances.

The small p-values (< 0.05) from the non-parametric Friedman test
confirm the statistically significant difference between the results of CCILS
and those of the compared methods, including OEMACS, GA1, GA2,
PACO(S) and PACO(P). Overall, the proposed algorithm is very competitive
comparing with the existing VMP algorithms both in solution quality and
computational efficiency.

In summary, when comparing with the state-of-the-art VMP approaches,
the proposed CCILS algorithm exhibits very competitive performance in
both solution quality and computational efficiency for various test graphs.
However, the performance of the algorithm is, to some extent, dependent
on the dedicated evaluation functions for neighboring solution selection, and
designing appropriate evaluation functions for given problems is a challenging
task.

4.4. Application to the temporal extension of VMP

Table 4: Comparative results between CCILS and Cplex solver on the VMP-T instance
subsets.

CCILS Cplex

Subset sol time(s) sol time(s) Gap (%)

Rand_VMPT_10 5.90 0.005 5.60 1.585 5.36
Rand_VMPT_20 12.20 0.004 11.70 66.123 4.27
Rand_VMPT_30 17.20 0.007 15.70 131.761 9.55
Rand_VMPT_40 20.90 0.009 19.80 726.348 5.56
Rand_VMPT_50 27.40 0.007 25.20 724.128 8.73
Rand_VMPT_60 32.50 0.013 29.60 1178.432 9.80
Rand_VMPT_70 35.80 0.017 32.70 1293.783 9.48
Rand_VMPT_80 39.20 0.020 36.10 2201.686 8.59
Rand_VMPT_90 46.60 0.018 42.30 2352.999 10.17
Rand_VMPT_100 52.50 0.013 48.50 1907.893 8.25
Avg 29.02 0.012 26.72 1058.474 7.98
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To further expand the application scope of the proposed CCILS algo-
rithm, we extend CCILS to address a temporal extension of VMP [5] called
VMP-T, which plays a critical role in practical applications. VMP-T extends
VMP by requiring that each VM i ∈ {1, ..., NVM} resides in the system for
the duration within the requested time interval [si, ei], where si ∈ Z+ ∪ {0}
and ei ∈ Z+ are the start and the end times of VM i respectively, and
ei > si ≥ 0 holds. We define the index set τ to represent the start and
end times of virtual machines. Specifically, l ∈ τ indicates a time point
corresponding to either the start or the end of a VM, forming an ordered set
of times, such that tl > tl−1 for l > 1. To designate the presence of a VM
i at time tl, we introduce a binary parameter ail that is set to 1 if and only
if VM i exists at time tl ∈ {0, ..., T}, l ∈ τ where T denotes the planning
horizon. It is assumed that each VM arrives and departs at the beginning
of a time period. Therefore, we have ail = 0 for l = ei. The mathematical
formulation of VMP-T just replaces the constraints (3) and (4) of the model
(1)-(6) by the following constraints (14) and (15) to ensure that the total
load on a physical machine does not exceed its capacity.

NV M∑
i=1

ailximR
CPU
i ≤ CCPU

m ym,m ∈ {1, ..., NPM}, l ∈ τA (14)

NV M∑
i=1

ailximR
RAM
i ≤ CRAM

m ym,m ∈ {1, ..., NPM}, l ∈ τA (15)

where τA ⊆ τ denotes the index set of VM start times.
To handle the VMP-T problem, we slightly adapted CCILS by only

adding the procedure that calculates the total CPU and RAM requirements
of the VMs for each start time l ∈ τA.

To evaluate the performance of the proposed CCILS on the VMP-T
problem, we made a comparative experiment between CCILS and the IBM
ILOG Cplex 12.8.0 solver on 100 randomly generated instances following the
work [10]. The 100 instances are grouped to 10 subsets with the number
of VMs NVM ∈ {10, 20, ..., 90, 100} and each subset consists of 10 graphs.
Specifically, the CPU and RAM capacities of the PMs are both set to 30
units. The requests of the VMs are uniformly randomly distributed between
the integer intervals [1,30] for both CPU and RAM. The time duration of the
VMs are uniformly randomly generated integers between 10 and 100. Both
CCILS and the Cplex solver were executed once for each instance under the
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same computing platform as described in Section 4.2, and the time limit for
one run is set to 10 seconds for CCILS and 3600 seconds for Cplex.

The computational results of CCILS and the Cplex solver on the ten
subsets of VMP-T benchmarks are shown in Table 4. Columns ‘sol’, and
‘time(s)’ give the average objective value and average runtime in seconds to
reach the final solution across all the instance of each subset, respectively.
Column ‘Gap(%)’ gives the percentage gap between the objective value
obtained by CCILS and Cplex. We can observe that CCILS is able to obtain
an acceptable solution within a very short computing time for the instances
of 10 subsets, being beneficial for practical applications. If a specialized
evaluation function for VMP-T is designed, the efficiency of CCILS to address
VMP-T could be further improved. Moreover, from the detailed results
shown in Table 9 and 10 of the Appendix, one can see that although the
performance of CCILS on VMP-T is a little worse than the Cplex solver on
most test graphs, CCILS can still obtain the optimal solutions on 18 instances
in a short time.

5. Analysis

In this section, we perform an analysis of three key ingredients of the
proposed algorithm to get useful insights of their impacts on CCILS’s
performance, including the constrained exchange operator, the dedicated
evaluation functions and the perturbation procedure. The experiments were
conducted on the 180 instances used in Section 4.2, with 10 randomly selected
instances from each of the 18 instance subsets.

5.1. Effect of the constrained exchange operator
We observe that the exchange operators adopted by other local searches

for VMP mainly aim to exchange VMs between an overloaded PM and a non-
overloaded PM. In this work, a novel constrained exchange operator (denoted
as Cons_Ex(i, j;m,n)) swapping VMs only between non-overloaded PMs is
specifically designed. To examine the efficiency of the Cons_Ex(i, j;m,n)
operator used by the proposed algorithm, we made a comparison between
CCILS and its two variants CCILSRE and CCILSOE which use the exchange
operators implemented by PACO [29] and OEMACS [24], respectively. The
other ingredients are kept unchanged for CCILSRE and CCILSOE. Note that
the perturbation procedure is disabled for the underlying local search, i.e.,
ILS of CCILS, CCILSRE and CCILSOE. For the experiments, the three
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methods were independently run 10 times for each instance with a cutoff
time of 5 seconds per execution.

Table 5: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS and its two variants using different exchange operators.

Solution Quality (%)

Subset CCILS CCILSRE CCILSOE
A100 0.00 2.85 2.77
A200 1.54 1.92 1.92
A300 0.47 0.52 0.52
A400 0.19 0.19 0.19
A500 0.93 0.95 0.95
A1000 0.48 0.54 0.54
Avg 0.60 1.16 1.15
B100 0.00 1.25 1.25
B200 0.03 2.45 2.54
B300 0.79 3.13 3.18
B400 0.48 3.22 3.22
B500 0.29 2.95 2.95
B1000 0.05 3.03 3.03
Avg 0.27 2.67 2.70
C100 8.50 23.23 23.32
C200 9.31 24.23 24.21
C300 9.93 23.47 23.63
C400 14.23 25.28 25.25
C500 13.57 25.00 25.03
C1000 13.47 20.95 20.92
Avg 11.50 23.69 23.73
#Best 18 0 0
p-value 3.70e-5 3.70e-5
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Figure 3: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS and its two variants using different exchange operators.
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Table 5 reports the average solution quality obtained by CCILS as
well as CCILSRE and CCILSOE on the selected instances. The symbols
have the same meanings as before. Table 5 shows that CCILS is clearly
superior to CCILSRE and CCILSOE by yielding the best results on all the
18 subsets concerning the average solution quality, while CCILSRE and
CCILSOE produce the best result on 0, 0 cases. One can observe that
for the Set A instances having homogeneous physical machines without
bottleneck, CCILS shows a slightly better performance than CCILSRE and
CCILSOE by improving the average solution quality by approximately 0.5%.
As the difficulty of the problem increases, such as with Set B instances
which are homogeneous but have bottleneck resources, the improvement
ratio is increased to be approximately 2.4%. For the most challenging
Set C instances in a heterogeneous environment with bottleneck resources,
the improvement ratio is even more pronounced, approaching 12%. The
advantages of CCILS are more clearly illustrated in Fig. 3. The X-axis and Y-
axis of Fig. 3 have the same meanings as in Fig. 1. The p-value from the non-
parametric Friedman test in terms of the average solution quality between
CCILS and its two variants, further demonstrates the effectiveness of the
proposed Cons_Ex(i, j;m,n) operator in enhancing the overall performance
of CCILS.

To further evaluate the impact of the constrained exchange operator
exchanging VMs between non-overloaded PMs on computing time, we made
a time-to-target experiment between CCILS and its variant CCILSOL. The
latter exchanges VMs between an overloaded PM and a non-overloaded PM,
while all other components remain unchanged. Both CCILS and CCILSOL

terminate upon reaching a predefined target solution quality: for Set A and
Set B instances, the target is their lower bound while for Set C instances,
it is 1.05 times the lower bound. Additionally, if the target is not achieved
within 10 seconds, the algorithm stops.
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Table 6: Average execution time in seconds on the 10 randomly selected instances for each
subset obtained by CCILS and its variant CCILSOL.

Execution Time (s)

Subset CCILS CCILSOL ro
A100 0.01 0.01 1.00
A200 0.25 5.00 20.00
A300 1.31 2.01 1.53
A400 0.23 1.01 4.39
A500 6.00 6.00 1.00
A1000 6.02 7.01 1.16
Avg 2.30 3.51 1.53
B100 0.01 0.01 1.00
B200 0.02 0.02 1.00
B300 0.08 4.15 51.88
B400 0.10 5.02 50.20
B500 0.12 6.07 50.58
B1000 0.59 9.19 15.58
Avg 0.15 4.08 27.20
C100 0.03 2.02 67.33
C200 0.06 3.41 56.83
C300 0.15 3.16 21.07
C400 0.53 7.70 14.53
C500 0.82 8.01 9.77
C1000 4.49 10.00 2.23
Avg 1.01 5.72 5.66

Table 6 reports the average execution time in seconds to reach the target
solution quality for 10 randomly selected instances from each subset. Column
‘ro’ represents the ratio of the computing times required by CCILS and
CCILSOL. If the target is not reached within 10 seconds, the reported time
is marked with a deletion line. The experimental results demonstrate that
CCILS consistently achieves the target quality with less or equal computation
time across 15 benchmark subsets. Notably, its performance advantage
is more pronounced in Set B and Set C than in Set A. This observation
suggests that exchanging VMs between non-overloaded PMs is particularly
effective for addressing VMP problems involving bottleneck resources and
heterogeneous infrastructures.

5.2. Impact of the dedicated evaluation functions
To examine the efficiency of the dedicated evaluation functions of the

proposed algorithm, we compared CCILS with three variants CCILSRS,
CCILSGS and CCILSRM. Given the current solution S, CCILSRS randomly
selects a neighboring solution from N1(S) rather than using the r function,
while CCILSGS uses the evaluation function r

′ to evaluate a candidate
solution S ′ from N1(S).

r
′
(S

′
) = LCPU

m + LRAM
m (16)
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Both CCILSRS and CCILSGS use the same Migrate operator as CCILS. As
for CCILSRM, it randomly selects a neighboring solution from N2(S) rather
than using the d function. CCILSRM uses the same Cons_Ex(i, j;m,n)
operator as CCILS. For the experiments, CCILS and the variants were
independently run 10 times for each instance with a cutoff time of 5 seconds
per execution.

Table 7: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS and its three variants with different evaluation functions.

Solution Quality (%)

Subset CCILS CCILSRS CCILSGS CCILSRM
A100 0.00 0.00 0.00 0.00
A200 0.10 1.81 1.15 0.04
A300 0.44 0.52 0.52 0.49
A400 0.02 0.19 0.15 0.02
A500 0.95 0.95 0.95 0.93
A1000 0.47 0.54 0.48 0.47
Avg 0.33 0.67 0.54 0.33
B100 0.00 0.00 0.00 0.00
B200 0.00 0.00 0.00 0.00
B300 0.00 0.00 0.02 0.00
B400 0.00 0.00 0.49 0.00
B500 0.00 0.00 0.41 0.00
B1000 0.00 0.00 1.52 0.00
Avg 0.00 0.00 0.41 0.00
C100 0.08 3.01 0.04 0.20
C200 0.51 3.01 0.41 0.73
C300 0.34 3.51 0.56 0.52
C400 0.70 4.47 1.89 1.76
C500 1.20 4.58 1.87 1.65
C1000 8.58 4.60 11.34 9.11
Avg 1.90 3.86 2.69 2.33
#Best 13 8 5 11
p-value 0.01 0.01 0.10

Table 7 and Fig. 4 present the computational results of CCILS and its
variants. One can observe from Table 7 that CCILS, CCILSRS, CCILSGS

and CCILSRM report the best results in terms of the average solution quality
on 13, 8, 5, and 11 subsets, respectively. By comparing the average solution
quality reported by CCILS, CCILSRS and CCILSGS across each instance
set given in row ‘Avg’, CCILS shows a better performance than CCILSRS

and CCILSGS (0.33% vs. 0.67% vs. 0.54% for Set A, 0.00% vs. 0.00%
vs. 0.41% for Set B, 1.90% vs. 3.86% vs. 2.69% for Set C), reflecting
the important role of evaluation function r in CCILS. Although CCILSRM

using a different evaluation function to evaluate candidate solutions from the
Migrate neighborhood which displays a similar performance with CCILS for
the Set A, Set B instances, CCILS consistently reports better solution quality
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Figure 4: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS and its three variants with different evaluation functions.

than CCILSRM in all the 6 subsets of Set C, disclosing the effectiveness of
function d to solve difficult VMP instances. The p-values (< 0.05) from
the non-parametric Friedman test in terms of the solution quality reveal
a statistically significant difference between CCILS and its two variants
CCILSRS and CCILSGS.

5.3. Usefulness of the perturbation procedure
To evaluate the effectiveness of the perturbation procedure of the

proposed algorithm, an experiment was conduced to compare the proposed
CCILS against two variants: CCILSB using a different perturbation strat-
egy and CCILSNP disabling the perturbation process while keeping other
ingredients unchanged. During the perturbation process, CCILSB reallocates
each virtual machine to a randomly selected physical machine while CCILS
reallocates the virtual machines on overloaded physical machines only. For
the experiments, CCILS and its two variants were run 10 times for each
instance with a cutoff time of 5 seconds.

Fig. 5 provides the comparative results of CCILS, CCILSB and CCILSNP.
It can be seen that CCILS obtains better or same solutions for all the
instance subsets. The effect of the perturbation procedure is particularly
significant in Set C instances, which have both bottleneck resources and
heterogeneous physical machines. This indicates that the perturbation
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Figure 5: Average solution quality on the randomly selected 10 instances for each subset
obtained by CCILS and its two variants.

procedure is suitable for solving VMP problems in complex situations. The
superiority of the perturbation procedure was further confirmed by the non-
parametric Friedman test with p-values < 0.05.

5.4. Average infeasibility induced by the solution initialization procedure

Table 8: Average infeasibility, expressed as a percentage, on 10 randomly selected instances
from each subset.

Subset Average infeasibility (%)
A100 7.69
A200 3.85
A300 2.60
A400 1.89
A500 3.15
A1000 2.12
B100 18.75
B200 16.24
B300 10.01
B400 5.10
B500 6.55
B1000 3.73
C100 5.03
C200 2.18
C300 1.76
C400 1.37
C500 1.03
C1000 0.50
Avg 5.20
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Recall that given a (k + 1)-machine solution, the solution initialization
procedure (SIP) of Section 3.3 generates an input solution with k physical
machines by reallocating randomly each virtual machine located on the
physical machine Pk+1 to a physical machine Pr (r ∈ {1, 2, ..., k}). This
reallocation procedure may lead to an infeasible solution violating CPU or
RAM capacity constraint of a physical machine. To assess the infeasibility
of a solution induced by SIP, we define the infeasibility as the ratio of the
number of physical machines violating either the CPU or RAM capacity to
the total number of physical machines k. We performed an experiment to
record the average infeasibility of an instance observed during the iterative
decomposition of VMP into a sequence of subproblems, in which k is
decreased by 1 each time a feasible solution is found. The computational
results are presented in Table 8. As shown in Table 8, each subset from the
three benchmark sets exhibits a relative low average infeasibility.

6. Conclusions

The virtual machine placement (VMP) problem is an NP-hard problem of
great theoretical and practical importance. This work proposes a cardinality
constrained iterated local search (CCILS) for VMP by transforming VMP
into a series of problems, each focusing on a fixed number k of physical
machines. CCILS features a tabu search procedure to efficiently explore
the search space by using two new neighborhoods based on the dedicated
evaluation functions for neighborhood solution selection, and a specific
perturbation procedure to prevent the algorithm from stagnation.

The computational experiments show that the proposed algorithm con-
sistently performs better than the state-of-the-art algorithms on the 18
subsets of 1800 instances. In particular, CCILS produces the best results
(upper bounds) on 17 subsets in terms of the average solution quality, while
OEMACS, GA1, GA2, PACO produce the best results only on 0, 0, 0, 1
subsets. More importantly, by matching the lower bounds for 1390 out of
1800 instances whose optimality was previously unknown, CCILS proves
optimal solutions for these 1390 instances for the first time. Additional
experiments investigate the effect of the constrained exchange operator, the
special evaluation functions, and the perturbation procedure.

In addition to the reported computational results being useful for future
studies of VMP, the publicly available source code of CCILS can be useful
to researchers and practitioners for solving practical problems that can be
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formulated as a VMP model. We further incorporate the time dimension
into the VMP problem to enhance the practical applicability of the proposed
method. The design ideas adopted in the proposed algorithm are versatile
and can be applied to solve other related problems. To further improve
the effectiveness of the perturbation strategy, designing a learning-based
perturbation mechanism can be considered. Besides, other aspects of the
VMP problem, such as energy consumption and load balancing as well as
time dimension are also worth studying.
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Appendix

This appendix provides the detailed comparison results between CCILS
and the Cplex solver on the virtual machine placement problem with time
dimension (VMP-T) benchmark instances which are generated following the
work [10]. Both CCILS and Cplex are executed once for each instance
on the same computing platform as described in Section 4.2. The cutoff
time for a run for CCILS and Cplex is 10 seconds and 3600 seconds,
respectively. Column ‘Ins.’ denotes the instance name. Columns ‘sol’, and
‘time(s)’ represent the objective value and runtime in seconds to reach the
final solution for each instance, respectively. Column ‘Gap(%)’ gives the
percentage gap between the objective value returned by CCILS and Cplex.
For each instance, if the time limit is reached and the optimal solution is
not found by the Cplex, we mark the solution with a symbol “TL". Optimal
solutions are marked by the symbol “*".
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Algorithm 3: Tabu search algorithm
Input: S: an input solution, tt: tabu tenure, u: the search depth of

the tabu search
Output: The repaired solution S

1 c← 0 /* Iteration counter */
2 h← 0
3 l[i][j]← 0, i, j ∈ {1, ..., NVM} /*Initialize each element of the tabu list

to 0*/
4 while h ≤ u do
5 Select the best admissible neighboring solution S′ from the

Cons_Ex(i, j;m,n) neighborhood having the largest r value
6 S ← S′

7 l[i][j] = l[j][i] = c+ tt /* Update the tabu list l */
8 if Migrate(i,m, n) neighborhood is not empty then
9 Select the best neighboring solution S′ from Migrate(i,m, n)

neighborhood with the largest d value
10 S ← S′

11 else
12 for i = {1, ..., NVM} do
13 if i is loaded on an overloaded PM then
14 for m = {1, ..., NPM} do
15 if m is non-overloaded and i can be reallocated to m

without violating the capacity then
16 Migrate i to m
17 break

18 if A migration move is successfully performed then
19 break

20 if There is no successful migration move performed then
21 h← h+ 1

22 if S is a k-machine solution then
23 return S and report success

24 c← c+ 1

25 return S
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Table 9: Detailed results of VMP-T instances from the CCILS algorithm and Cplex solver
(part 1).

CCILS Cplex

Ins. sol time(s) sol time(s) Gap (%)

Random_10_1 6 0.004 5∗ 1.121 20.00
Random_10_2 6 0.008 6∗ 1.718 0.00
Random_10_3 7 0.004 7∗ 1.307 0.00
Random_10_4 6 0.011 6∗ 1.341 0.00
Random_10_5 5 0.010 5∗ 1.700 0.00
Random_10_6 6 0.003 5∗ 1.718 20.00
Random_10_7 6 0.004 5∗ 1.382 20.00
Random_10_8 6 0.003 6∗ 1.406 0.00
Random_10_9 5 0.005 5∗ 1.420 0.00
Random_10_10 6 0.003 6∗ 2.739 0.00
Random_20_1 14 0.004 13∗ 1.958 7.69
Random_20_2 14 0.004 14∗ 0.961 0.00
Random_20_3 13 0.004 13∗ 329.284 0.00
Random_20_4 10 0.004 10∗ 323.323 0.00
Random_20_5 13 0.004 12∗ 0.887 8.33
Random_20_6 11 0.004 9∗ 0.945 22.22
Random_20_7 12 0.005 11∗ 0.841 9.09
Random_20_8 13 0.004 13∗ 1.206 0.00
Random_20_9 11 0.008 11∗ 1.088 0.00
Random_20_10 11 0.004 11∗ 0.734 0.00
Random_30_1 18 0.015 16∗ 117.703 12.50
Random_30_2 17 0.006 15∗ 587.152 13.33
Random_30_3 18 0.006 16∗ 108.493 12.50
Random_30_4 15 0.006 14∗ 3.143 7.14
Random_30_5 18 0.005 15∗ 2.243 20.00
Random_30_6 20 0.005 20∗ 5.455 0.00
Random_30_7 17 0.010 15∗ 2.732 13.33
Random_30_8 14 0.010 13∗ 376.162 7.69
Random_30_9 17 0.006 17∗ 1.754 0.00
Random_30_10 18 0.005 16∗ 112.771 12.50
Random_40_1 19 0.015 18∗ 888.425 5.56
Random_40_2 21 0.011 20∗ 1508.933 5.00
Random_40_3 19 0.007 17∗ 527.715 11.76
Random_40_4 25 0.010 25∗ 174.904 0.00
Random_40_5 20 0.006 20∗ 212.165 0.00
Random_40_6 22 0.006 20∗ 119.402 10.00
Random_40_7 19 0.006 19∗ 814.063 0.00
Random_40_8 20 0.019 18∗ 2269.995 11.11
Random_40_9 24 0.007 23∗ 641.707 4.35
Random_40_10 20 0.007 18∗ 106.168 11.11
Random_50_1 27 0.006 25∗ 1383.902 8.00
Random_50_2 27 0.007 23∗ 1050.548 17.39
Random_50_3 25 0.006 22∗ 3.079 13.64
Random_50_4 27 0.008 26∗ 508.381 3.85
Random_50_5 31 0.008 28∗ 1647.418 10.71
Random_50_6 26 0.007 24∗ 213.451 8.33
Random_50_7 27 0.007 24∗ 217.668 8.33
Random_50_8 33 0.007 32∗ 420.652 3.13
Random_50_9 25 0.007 24∗ 1163.428 4.17
Random_50_10 26 0.007 24∗ 632.756 8.33
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Table 10: Detailed results of VMP-T instances from the CCILS algorithm and Cplex solver
(part 2).

CCILS Cplex

Ins. sol time(s) sol time(s) Gap (%)

Random_60_1 33 0.010 31∗ 981.145 6.45
Random_60_2 33 0.010 30∗ 354.121 10.00
Random_60_3 30 0.009 27∗ 933.424 11.11
Random_60_4 34 0.009 31∗ 603.154 9.68
Random_60_5 32 0.014 30∗ 552.331 6.67
Random_60_6 35 0.040 32∗ 1004.103 9.38
Random_60_7 30 0.009 27∗ 214.168 11.11
Random_60_8 30 0.008 26∗ 2960.645 15.38
Random_60_9 37 0.009 35∗ 1060.863 5.71
Random_60_10 31 0.013 27∗ 3120.364 11.11
Random_70_1 36 0.011 33∗ 458.996 9.09
Random_70_2 35 0.054 32∗ 743.992 9.38
Random_70_3 30 0.019 26∗ 1061.875 15.38
Random_70_4 37 0.018 35∗ 413.088 5.71
Random_70_5 37 0.013 34∗ 404.819 8.82
Random_70_6 36 0.016 33∗ 1598.851 9.09
Random_70_7 38 0.012 34∗ 2082.889 11.76
Random_70_8 41 0.012 39∗ 1347.559 5.13
Random_70_9 34 0.012 31(TL) 3623.407 9.68
Random_70_10 34 0.011 30∗ 1202.349 16.67
Random_80_1 40 0.030 39∗ 1360.297 2.56
Random_80_2 39 0.033 37∗ 1258.880 5.41
Random_80_3 41 0.019 38∗ 438.903 7.89
Random_80_4 34 0.012 31∗ 1063.888 9.68
Random_80_5 38 0.012 32(TL) 3635.459 18.75
Random_80_6 39 0.037 37(TL) 3664.330 5.41
Random_80_7 41 0.014 37∗ 1903.617 10.81
Random_80_8 40 0.020 37∗ 1418.908 8.11
Random_80_9 40 0.012 38(TL) 3669.510 5.26
Random_80_10 40 0.017 35(TL) 3603.070 14.29
Random_90_1 42 0.015 37∗ 484.009 13.51
Random_90_2 54 0.022 51∗ 1821.162 5.88
Random_90_3 40 0.019 37(TL) 3724.944 8.11
Random_90_4 46 0.018 39(TL) 3603.999 12.82
Random_90_5 47 0.022 43(TL) 3604.437 9.30
Random_90_6 49 0.021 43(TL) 3602.191 13.95
Random_90_7 50 0.014 48∗ 3449.187 4.17
Random_90_8 52 0.016 49∗ 909.105 6.12
Random_90_9 44 0.021 39∗ 573.412 12.82
Random_90_10 42 0.013 37∗ 1757.541 13.51
Random_100_1 54 0.014 50∗ 175.929 8.00
Random_100_2 58 0.014 55(TL) 3697.406 5.45
Random_100_3 46 0.014 42(TL) 3601.969 9.52
Random_100_4 55 0.014 49(TL) 3602.632 12.24
Random_100_5 47 0.014 43∗ 343.548 9.30
Random_100_6 55 0.013 52∗ 1153.631 5.77
Random_100_7 55 0.013 50∗ 236.343 10.00
Random_100_8 57 0.015 53(TL) 3601.910 7.55
Random_100_9 46 0.012 43∗ 1217.633 6.98
Random_100_10 52 0.014 48∗ 1447.932 6.25
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