
Computing maximum k-defective cliques in

massive graphs

Xiaoyu Chen a, Yi Zhou a,∗, Jin-Kao Hao b,c,Mingyu Xiao a,

aSchool of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu 611731, China
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Abstract

A k-defective clique (k is a non-negative integer) of an undirected graph G is a
subset of its vertices, which induces a nearly complete graph with a maximum of k
missing edges. The maximum k-defective clique problem (MDCP) is to determine
the k-defective clique of the maximum size in the graph. As a relaxation of the
popular maximum clique problem, the MDCP is a relevant model for a number of
practical applications such as complex network analysis. However, it is computation-
ally challenging to solve the problem. In this study, we investigate a set of general
and dedicated graph reduction and pruning techniques to improve exact search algo-
rithms based on the branch-and-bound framework. We present results of extensive
computational experiments on 141 benchmark graphs from several popular sources,
including both random graphs and massive real-world networks. Comparisons with
two state-of-the-art methods in the literature demonstrate that our approach is on
par with the reference methods and performs remarkably well on massive graphs.

Keywords: Relaxed clique; Exact search; Branch-and-bound; Massive graphs;
Graph reduction.

∗ Corresponding author.
Email addresses: zhou.yi@uestc.edu.cn (Yi Zhou),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), myxiao@gmail.com (Mingyu
Xiao).

Preprint submitted to Elsevier 5 November 2020



1 Introduction

For an undirected graph G = (V,E) with vertex set V = {1, . . . , n} and

edge set E ⊆
(
V
2

)
, a clique S of G is a subset of V such that S induces a

complete subgraph G[S] of G, i.e., ∀u, v ∈ S, {u, v} ∈ E. A clique is maxi-
mum if its cardinality is the largest among all the cliques of the graph. The
maximum clique problem (MCP) is to obtain the maximum clique of a spe-
cific graph. The MCP is a general and convenient graph model that can be
used to identify fully connected structures in numerous application settings.
However, it is restrictive for many other practical problems such as complex
network analysis, where dense (not necessarily fully connected) structures are
of particular interest [12]. Hence, several generalizations or relaxations of the
conventional clique model have been proposed, including the k-plex [3], k-club
[4], quasi-cliques [1], bicliques [26], and k-defective clique [25].

In this study, our primary interest is in the maximum k-defective clique prob-
lem. Formally, a k-defective clique (k is a non-negative integer) of a graph G
is a subset of vertices S ⊆ V , such that S induces a subgraph G[S] of G with

at least
(
|S|
2

)
− k edges. The maximum k-defective clique problem (MDCP) is

to obtain a k-defective clique with the maximum cardinality in a graph. It is
clear that the popular maximum clique problem is a special case of the MDCP
when k = 0.

To our best knowledge, the concept of k-defective clique was first introduced
by Yu et al. [25]. They used large k-defective cliques to predict missing edges
between two proteins in a biological network, where nodes represent pro-
teins and edges represent protein interactions [25]. Other applications of the
MDCP exist in transportation science, e.g., Sherali et al. used the maximum k-
defective clique model to solve an airspace planning problem [17,18]. However,
the MDCP is a computationally challenging problem as from the complexity
viewpoint, its decision version can be shown as NP-complete by the theorem
of [24].

1.1 Existing algorithms for MDCP

Unlike the conventional MCP problem for which many solutions have been
investigated [22], our literature review shows that only a few algorithms have
been proposed for solving the MDCP. Specifically, in [20], Trukhanov et al. pre-
sented the first exact algorithm for the MDCP, which was based on the Russian
doll search (RDS) [21]. In principle, the RDS algorithm operates as follows.
First, the n vertices of a graph are sorted by degeneracy order which is a se-
quence (v1, ..., vn) (n = |V |) such that every vertex vi has the smallest degree
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in the subgraph induced by {vi+1, ...., vn}. Subsequently, a series of n nested
subproblems are successively solved through n rounds of the search, whereas
the optimal objective values of the solved subproblems are recorded and used
to obtain better bounds. Specifically, at the ith round with i traversing from
n to 1, the subproblem, which requires vi in the solution and {vi, ..., vn} po-
tentially in the solution, is solved via a simple branch-and-bound algorithm.
The optimal solution to the initial graph is thus obtained at the last round
of the search. In [19] and [6], the RDS algorithm of [20] are further improved
with new pre-processing rules and a better implementation.

Integer linear programming (ILP) is another well-known approach for solving
the MCP [11,14] and MDCP [18]. For an undirected graph G = (V,E), the
MDCP can be formulated by the following ILP model.

maximize
∑

i∈V
xi (1)

s.t.
∑

{i,j}∈E

zij ≤ k

zij ≥ xi + xj − 1, zij ≥ 0 ∀{i, j} ∈ E
xj ∈ {0, 1} ∀j ∈ V,

where E is the set of edges in the complement graph of G. In the formulation,
each vertex i ∈ V is associated to a binary variable xi that indicates whether
i is part of the k-defective clique. Several classes of facet-defining inequalities
(i.e., the most tightened inequalities) of the k-defective clique polytope have
also been investigated in [17].

To summarize, research regarding solutions for the MDCP is still new. On
one hand, existing algorithms such as those in [6,18,20] only investigate par-
tial structural properties of this problem. On the other hand, the k-defective
clique model is mainly used for real-world complex network analyses (thereby
resulting in massive graphs with millions of vertices and edges). To solve real-
world problems, it is important to devise highly scalable algorithms.

1.2 Contributions

In this study, we solve the MDCP by investigating new and effective exact
algorithms. Our main contributions can be summarized as follows.

First, we present the two structural properties of MDCP; one is the well-known
heredity property, and the other is the characterization of the diameter of a
subgraph induced by a k-defective clique. We also present a branch-and-bound

3



algorithm called MADEC (MAximum k-DEfective Clique) and, for the first
time, prove its worst-case time complexity.

Next, we enhance the efficiency and scalability of MADEC by investigating
additional reduction, bounding, and pruning techniques. Before a search is
performed, the enhanced algorithm (called MADEC+) applies a fast MCP
heuristic to obtain an initial lower bound of reasonable quality and a vertex
degree-based preprocessing procedure to reduce the input graph. During the
branch-and-bound search, MADEC+ uses a two-hop reduction rule to exclude
irrelevant vertices and a fast greedy graph coloring heuristic to upper-bound
the optimal solution and hence prune the search space. To the best of our
knowledge, this is the first study that uses two-hop reduction and graph col-
oring heuristics in a branch-and-bound algorithm for the MDCP.

Finally, we present extensive experiments to evaluate the proposed algorithms
and techniques. Computational results on 141 random graphs and real-life
large graphs from the literature demonstrate the competitiveness of our al-
gorithms over existing approaches. Additional experiments were performed to
demonstrate the effectiveness of the key techniques introduced herein.

The remainder of this paper is organized as follows. In the next section, we
introduce the basic notations and two important properties of the MDCP.
Subsequently, in Section 3, we elaborate the first version of our branch-and-
bound algorithm, MADEC. In Section 4, we present our pruning techniques
and the improved algorithm, MADEC+. Section 5 provides the experimental
assessment of the proposed algorithms. Finally, conclusions and perspectives
are provided in the last section.

2 Problem statement and background

2.1 Notations

For an undirected graph G = (V,E), let S ⊆ V be a vertex subset of G, u, v ∈
V two vertices and G = (V,E) the complement graph of G (i.e., {u, v} ∈ E if
and only if {u, v} /∈ E). The following notations are used herein.

G[S] = (S,E(S)) denotes the subgraph induced by S such that for any x, y ∈
S, {x, y} ∈ S if and only if {x, y} ∈ E.

NV (v) and NV (v) denote the set of neighbor vertices of v in G and G, respec-
tively. For simplicity, we abbreviate NV (v) ∩ S to NS(v) and NV (v) ∩ S to
NS(v).
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distG(u, v) denotes the distance between u and v in G, which is the length of
a shortest path between u and v (i.e., the number of edges in such a path).

diam(G[S]) denotes the diameter of G, which is the maximum distance among
all the pairs of vertices in G.

S is an independent set of G if no edge links any two vertices of S in G.

2.2 Properties of k-defective clique

Property 1 (Heredity [13]) If S is a k-defective clique of G, then any sub-
set of S is also a k-defective clique of G.

This simple property is important for verifying the maximality of a k-defective
clique. If a k-defective clique S cannot form a larger k-defective clique with
another vertex, then S is a maximal k-defective clique owing to its hereditary
property. The validity of our proposed algorithms relies on this property.

Property 2 Let S be a k-defective clique of G, s = |S|. Subsequently, the
following statements hold.

(1) If k = 0, then diam(G[S]) = 1.
(2) If k ≥ 1, s ≥ 3

2
+
√

2k − 2 and G[S] is a connected graph, then diam(G[S]) ≤
b (2s+1)−

√
4s2−12s+17−8k

2
c.

Proof. The first statement holds because G[S] is a complete graph when
k = 0.

As for the second statement, we first abbreviate diam(G[S]) to d (d ≥ 2).
Suppose a shortest path in G[S] of maximum length is between vertices a and
b and assume that it is defined by the sequence P = (p0, p1, . . . , pd), where
p0 = a, pd = b. We can partition S into d + 1 subsets, i.e., D0, . . . , Dd. Each
Di (i = 0, . . . , d) comprises vertices whose distance to p0 is exactly i, i.e.,
Di = {u ∈ S : distG[S](u, p0) = i}. For i = 0, . . . , d, it is clear that Di is
non-empty. Moreover, the neighbors of each vertex in Di (i = 1, . . . , d−1) can
only be in Di−1, Di, Di+1. Hence, a new graph G′ = (S,E ′) can be constructed
from G[S] as follows.

(1) For i = 1, . . . , d, insert an edge {pi−1, pi} in E ′.
(2) For each i = 1, . . . , d and for each edge {pi, v} where v ∈ Di, insert an

edge {p1, v} in E ′.
(3) For each i = 1, . . . , d and for each edge {pi−1, v} where v ∈ Di, insert an

edge {p0, v} in E ′.
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(4) For each i = 2, . . . , d and for each edge {v, pi} where v ∈ Di−1, insert an
edge {v, p2} in E ′.

(5) For each edge {u,w} in G[S] such that neither u nor w is in path P ,
insert an edge {u,w} in E ′.

𝑝0

𝑝1 𝑝2

𝑣1

𝑝4

𝑣2

𝑝1

𝑝2

𝑣1
𝑝3

𝑣4

𝐷1 𝐷2 𝐷4

𝑝3

𝐷3

𝑝4

𝑣4

𝑣3

𝐷0

𝐺′ = (𝑆, 𝐸′)

𝐺[𝑆] 𝑣3

𝑝0
𝑣2

Fig. 1. Example of building G′ = (S,E′) from G[S].

Figure 1 shows an example of building graph G′ from G[S]. Each edge in G[S]
is uniquely mapped to an edge in G′. The edges marked in red form the longest
shortest path (p0, p1, . . . , p4) in G[S]. The remaining edges in G[S] are marked
in blue. One can observe that the number of edges G′[S \ {p0, p2, p3, . . . , pd}]
is bounded by

(
s−d
2

)
. Meanwhile, (p2, p3, . . . , pd) forms a path of length d− 2

in G′. Therefore, we can bound the number of edges in E ′ as follows:

(
s

2

)
− k ≤ |E ′| ≤

(
s− d

2

)
+ 2(s− d) + (d− 2).

A simple reformulation of the above inequalities yields d ≤ (2s+1)−
√
4s2−12s+17−8k

2

under the condition s ≥ 3
2

+
√

2k − 2, which completes the proof. Λ

In Section 4, we show how these bounds of diam(G[S]) can be used to accel-
erate our algorithm.
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2.3 Relationship between MCP and MDCP

The MDCP is closely related to the popular MCP, for which a considerable
number of exact algorithms have been proposed [22]. For an MDCP instance
defined by graph G = (V,E) with n = |V |, m = |E| and a non-negative
integer k, one can solve the MDCP instance by calling a MCP algorithm for
multiple rounds. In each round, one first builds a graph G′ from G by adding
k new edges, then calls the MCP algorithm to obtain the maximum clique in
G′. It is clear that a clique in G′ is also a k-defective clique in G. There are(
(n
2)−m
k

)
possibilities of building k′ new edges in G. Hence, one must perform

(
(n
2)−m
k

)
rounds of the MCP algorithm. Denoting m′ =

(
(n
2)−m
k

)
, among all the

m′ maximum cliques in these rounds, the largest one is the solution to the
MDCP instance.

In the worst case, m′ can be as large as n2k. Consequently, this method yields
the worst-case time of O(n2kMCP (n)), where MCP (n) is the run time of
the underlying MCP algorithm. In practice, this solution approach becomes
prohibitively time consuming when the input graph is large, even when state-
of-the-art MCP algorithms discussed in [22] are used.

In this study, we investigated dedicated branch-and-bound algorithms that
explore a set of problem-specific reduction, bounding, and pruning rules.

3 Basic branch-and-bound algorithm for MDCP

This section introduces a basic branch-and-bound algorithm for the MDCP,
which we call the MADEC problem. Essentially, MADEC enumerates the
candidate solutions by building a search tree in a depth-first manner. In each
branch, MADEC solves a constrained k-defective clique problem.

The constrained k-defective clique problem
Input: a graph G = (V,E), a k-defective clique P ⊆ V and a non-negative
integer k.
Objective: obtain the maximum k-defective clique S fromG such that P ⊆ S.

The maximum k-defective clique S is such that P ⊆ S is a solution to the input
instance I = (G,P, k). For the input graph G, when P = ∅, the constrained k-
defective clique problem is equivalent to the MDCP. Therefore, any algorithm
for the constrained k-defective clique problem can solve the MDCP problem
by setting P = ∅.
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Assume I = (G = (V,E), P, k) is the input instance of a branch. MADEC first
uses a set of reduction rules to simplify the instance I or terminate the search.
In articles such as [23], the reduction rule, which decides whether instance I
contains a solution of size larger than the current best-known solution, is also
known as the bounding rule.

When the instance I cannot be further reduced while the optimal constrained
k-defective clique of I is still unknown, MADEC applies a branching rule
to branch I into smaller subinstances. For example, a simple (and trivial)
branching rule is to branch I into I1 = (G−{v}, P, k) and I2 = (G,P ∪{v}, k)
(v is an arbitrary vertex in G).

3.1 Reduction and branching rules

Let I = (G = (V,E), P, k) be an instance. We establish three reduction rules
below to reduce the instance above and two branching rules to generate subin-
stances when no reduction is applicable.

3.1.1 Reduction rules

The following reduction rule can be used to terminate the search.

Reduction 1 If V is a k-defective clique, then the only solution to I is V . If
V \ P = ∅, then P is the optimal solution. Hence, in either of the two cases,
the search of I can be terminated.

Moreover, for a vertex v ∈ V \ P , the following rules can reduce the instance
I.

Reduction 2 If |NV (v)| = |V |−1, then v is in all optimal solutions of I and
can be moved to P without any missing optimal solution of I.

Reduction 3 If |NP (v)| > k− |E(P )|, then v is not in any optimal solution
of I and can be removed from G without any missing optimal solution of I.

These rules can be validated by the definition of the k-defective clique.

Next, we describe the branching rules. Assume I = (G = (V,E), P, k) is an
instance that cannot be further reduced. Next, we separate V \ P into two
sets: the set of Defective Candidates, C+ = {v ∈ V \P : |NP (v)| > 0} and the
set of Nondefective Candidates, C− = {u ∈ V \ P : |NP (u)| = 0} (see Figure
2 for an example).
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Fig. 2. Example of instance I = (G,P, k), k = 3. Note that |E(P ∪ C+)| > k.

3.1.2 Branching Rule 1 when |E(P ∪ C+)| > k

We first design a branching rule to address the case where |E(P ∪ C+)| > k.
Suppose C+ is arbitrarily ordered as v1, v2 · · · , vq, q being the size of C+. Let
p be the largest index such that P ∪ {v1, . . . , vp} is a k-defective clique but
P ∪ {v1, . . . , vp+1} is not. Because |E(P ∪C+)| > k, we cannot move all the q
vertices from C+ to P such that P is still a k-defective clique; therefore, p < q.
Meanwhile, p is at least 1; otherwise, v1 should be reduced by the Reduction
Rule 3. Hence, for the case |E(P ∪C+)| > k, we design the following branching
rule, which separates I into p+ 1 smaller instances, where 1 ≤ p < q.

Branching 1 If |E(P ∪ C+)| > k, then we can generate p + 1 instances,
Br1(I, 1), . . . , Br1(I, p + 1), such that the optimal solution to I is the best
solution of all the p+ 1 instances.

• In Br1(I, 1), v1 is deleted from G, i.e., Br1 = (G− {v1}, P, k),
• in Br1(I, i) (i = 2, . . . , p+1), {v1, . . . , vi−1} is moved to P and vi is deleted

from G, i.e., Br1(I, i) = (G− {vi}, P ∪ {v1, . . . , vi−1}, k).

For example, in Figure 2, suppose C+ = {3, 4, 5}, C− = {6}. Because P∪{3, 4}
is a 3-defective clique, which is not the case for P ∪{3, 4, 5}, we have p = 2 and
q = 3. By the branching rule 1, three instances, Br1(I, 1) = (G − {3}, P, 3),
Br1(I, 2) = (G−{4}, P ∪{3}, 3), and Br1(I, 3) = (G−{5}, P ∪{3, 4}, 3) are
generated.

3.1.3 Branching Rule 2 when |E(P ∪ C+)| ≤ k

Next, we address the case where |E(P ∪ C+)| ≤ k. Clearly, C− is not empty
in this case; otherwise, P ∪ C+ would be a k-defective clique and I can be
reduced by the Reduction Rule 1. Hence, our Branching Rule 2 can be used
to branch the instance.

9



Branching 2 If |E(P ∪ C+)| ≤ k, let u be a random vertex from C−; there-
fore, we can generate two instances Br2(I, 1) and Br2(I, 2) such that the opti-
mal solution to I is the better one of the solutions of Br2(I, 1) and Br2(I, 2).

• In Br2(I, 1), u is deleted from G, i.e., Br2(I, 1) = (G− {u}, P, k),
• in Br2(I, 2), u is moved from C− to P , i.e., Br2(I, 1) = (G,P ∪ {u}, k).

Branching Rules 1 and 2 can be applied to produce new smaller subinstances
when the current problem cannot be further reduced using the reduction rules
of Section 3.1.1.

3.2 The entire algorithm

By integrating the Reduction Rules 1–3 and Branching Rules 1 and 2 above
with the general branch-and-bound framework, we obtained the MADEC al-
gorithm, as presented in Algorithm 1. In the algorithm, lb is a lower bound
on the maximum size of the k-defective clique in G and updated when a bet-
ter lower bound is obtained. The branch-and-bound recursive search is named
BBSearch. When BBSearch finishes the tree search, lb records the optimal
value.

According to the proof provided in Appendix A, we obtained the following
theorem that identifies the worst-case run time of the MADEC algorithm.

Theorem 1 For a graph G = (V,E) where |V | = n and k is a non-negative
value, MADEC executes in O(P (n)γnk ), where P (n) is a polynomial function
related to n, and γk is the largest real root of x2k+3−2x2k+2 +1 = 0, e.g., γk =
1.9276, 1.9276, 1.9960, 1.9990, and 1.9996 for k = 1, 2, 3, 4, and 5, respectively.

4 Improving MADEC with additional strategies

Next, we investigate additional reduction and bounding rules to improve the
practical performance of MADEC, which are particularly relevant for address-
ing large real-life networks.

4.1 Using a good initial lower bound

To improve the MADEC algorithm, a straightforward strategy is to start the
search with an optimal initial lower bound. This can be realized using a MCP
heuristic to obtain the maximal clique as the size of a clique in a graph is also
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Algorithm 1: Maximum k-defective clique algorithm – MADEC

Input: A graph G = (V,E), value k
Output: Size of maximum k-defective clique in G

1 MADEC(G, k))
2 begin
3 lb← 0
4 BBSearch(G, ∅, k)
5 return lb

6 BBSearch(G = (V,E), P, k)
7 begin
8 if P is not a k-defective clique in G then
9 return

10 else if V is a k-defective clique then
11 P ← V

12 if |P | > lb then
13 lb← |P |
14 if V \ P 6= ∅ then
15 if ∃v ∈ V \ P such that v is reducible by Rule 2 then
16 BBSearch(G,P ∪ {v}, k)

17 else if ∃v ∈ V \ P such that v is reducible by Rule 3 then
18 BBSearch(G− {v}, P, k)

19 else if E(P ∪ {C+}) > k then
20 for each I ′ ∈ {Br1(I, 1), . . . , Br1(I, p+ 1)} generated by

Branching Rule 1, Call BBSearch(I ′)

21 else
22 for each I ′ ∈ {Br2(I, 1), Br2(I, 2)} generated by Branching

Rule 2, Call BBSearch(I ′)

a valid lower bound on the maximum k-defective clique. Heuristic algorithms
for the MCP are abundant [22]. In our case, we adopted the simple heuristic
algorithm in [15] (called FastLB), which is fast and particularly effective for
processing massive graphs.

4.2 Reduction by vertex degrees

Based on a nontrivial lower bound, we can prune vertices whose degrees satisfy
some specific conditions before starting an exact search.

Reduction 4 Given a graph G = (V,E) and a lower bound lb, then for any
vertex v ∈ V such that |NV (v)| ≤ lb − k − 1, v is not contained in any
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k-defective clique of size larger than lb and can be safely removed from the
graph.

This rule can be validated by the definition of the k-defective clique. Before
the start of the exact search, we recursively removed vertices from the input
graph without deleting any optimal solution via a preprocessing procedure
called Peel, as presented in Alg. 2. Peel recursively removes vertices of degree
equal to or less than lb− k − 1 and performs in O(|E|) time.

Algorithm 2: The preprocessing procedure – Peel.

Input: A graph G, a lower bound lb
Output: A smaller graph after reduction

1 Peel(G = (V,E), lb, k)
2 begin
3 Initialize a queue Q
4 for v ∈ V do
5 if |NV (v)| < lb− k − 1 then
6 Q.push back(v)
7 G← G− {v}

8 while Q 6= ∅ do
9 v ← Q.pop()

10 for u ∈ NV (v) do
11 if |NV (u)| < lb− k − 1 and u 6∈ Q then
12 Q.push back(u)
13 G← G− {u}

14 return G

Another degree-based reduction rule also holds with a lower bound lb.

Reduction 5 Given an instance I = (G = (V,E), P, k) and a lower bound
lb, then for any vertex v ∈ V \ P such that |N(v)| ≤ lb− k − 1− |E(P )|, v is
not contained in any k-defective clique of size larger than lb and can be safely
removed from the graph.

The two rules above can be regarded as extensions of Reduction Rules 2 and
3. By utilizing them, we can safely remove irrelevant vertices from V \ P and
hence reduce the search space that must be examined during the subsequent
exact search procedure. The idea of Peel was first introduced to obtain the
maximum quasi-clique in [1]. The basic ideas of the reduction rules above have
also been exploited in the RDS algorithm presented in [19].
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Fig. 3. Graphs of f(s, 1), f(s, 2), f(s, 3), and f(s, 4) with respect to different s.

4.3 Reduction by two-hop constraint

Next, we develop a two-hop reduction rule that originates from Property 2.

Let us define f(s, k) = (2s+1)−
√
4s2−12s+17−8k

2
. As shown in Figure 3, f(s, 1),

f(s, 2), f(s, 3) and f(s, 4) are monotone non-increasing as s increases in range
[3
2

+
√

2k − 2,+∞). In fact, let k be a positive integer, the derivative of f(s, k)

with respect to s, i.e., 1−
√

(2s−3)2
(2s−3)2+(8−8k) , is negative when s > 3

2
+
√

2k − 2.

Hence, for any integer k ≥ 1, f(s, k) is a monotone non-increasing function as
s increases from 3

2
+
√

2k − 2. Meanwhile, for a complete graph of n vertices,
at least n−1 edges must be removed to disconnect the vertices. By definition,
a k-defective clique S can be obtained by removing a maximum of k edges
from a complete graph G[S]. Hence, in a k-defective clique S, if k < |S| − 1,
then G[S] must be a connected graph. Because 3

2
+
√

2k − 2 < k + 2 for any
k > 1, the following reduction rule holds.

Reduction 6 Given an instance I = (G = (V,E), P, k) and a lower bound
lb ≥ k + 2, then for any vertex v ∈ V \ P such that there exists u ∈ P
satisfying distG(v, u) > bf(lb, k)c, v is not contained in any k-defective clique
of size larger than lb and can be safely removed from the graph.

Reduction Rule 6 is a direct application of Property 2. However, the compu-
tational overheads of computing distG(v, u) for any u ∈ P and v ∈ V \ P
increases the overall running time of the algorithm significantly. To reduce
the running time for calculating the distances, we used a simpler version of
Reduction Rule 6. If k ≥ 1, one can easily verify that bf(s, k)c = 2 holds for
any s ≥ k + 2. Therefore, the following reduction rule holds.
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Reduction 7 (Two-hop reduction) Given an instance I = (G = (V,E), P, k)
and a lower bound lb ≥ k + 2, for any vertex v ∈ V \ P , if there exists u ∈ P
such that v /∈ NV (u) and v /∈ ⋃w∈NV (u)NV (w), then v is not contained in any
k-defective clique of size larger than lb and can be safely removed from the
graph.

The two-hop constraint was also introduced in [19] but was mainly used for
scale-reduction prior to the start of the search algorithm.

4.4 Bounding by color-bound

A well-known property of clique models is that the chromatic number of a
graph is the upper bound of the maximum clique [22,16,15,10]. Because the
maximum k-defective clique is a generalized version of the MCP, we generalize
this property in the context of the MDCP.

Lemma 1 (color-bound) If G = (V,E) can be c-colored, i.e., V is par-
titioned into c disjoint independent sets (also known as color classes) P =

{V1, . . . , Vc}, then
∑c

i=1 min (b1+
√
8k+1
2
c, |Vi|) is the upper bound of the size

of the maximum k-defective clique in G, known as the color-bound for a k-
defective clique.

Proof. Suppose that S∗ is a maximum k-defective clique of G. According to
the partition P , S∗ is partitioned into c independent sets S1, . . . , Sc, where
Si ⊆ Vi. Clearly, Si (i = 1, . . . , c) is an independent set as well as a k-defective
clique by Property 1. Following the definition of the k-defective clique, we
have

(
|Si|
2

)
− k ≤ 0, indicating that |Si| is b1+

√
8k+1
2
c at the most. As |Vi|

can be less than b1+
√
8k+1
2
c, we have |Si| ≤ min (b1+

√
8k+1
2
c, |Vi|). Therefore,

|S∗| = ∑c
i=1 |Si| ≤

∑c
i=1 min (b1+

√
8k+1
2
c, |Vi|). Λ

When k = 0, Lemma 1 indicates that c is an upper bound of the maximum
clique size. To estimate a valid upper bound of the maximum k-defective clique
of G, we adopted the fast coloring procedure presented in [16]. This procedure,
denoted by ColorBound(G, k), is as follows:

(1) Initialize the color number c as 1.
(2) Open an empty color class (set) Vc; build Vc iteratively. For each iteration,

find a vertex in V that is not adjacent to any vertices in Vc and then move
the vertex to Vc; repeat the operations above until no such vertex exists.

(3) Remove vertices of Vc from V . If V is not empty, increase c by 1 and return

to Step 2. Otherwise, return
∑c

i=1 min (b1+
√
8k+1
2
c, |Vi|) as a color-bound

of G.
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The time complexity of ColorBound(G, k) is bounded by O(|V |3). However, it
is rapid in practice, in particular owing to the use of the bit-parallel technique
[16], which accelerates Step 2. By Lemma 1, the following reduction rule holds.

Reduction 8 Given an instance I = (G = (V,E), P, k) and a lower bound
lb, if |P | + ColorBound(G[V \ P ], k) ≤ lb, then a solution to I of size larger
than lb does not exist, and we can safely terminate the search of I.

To our knowledge, this is the first time that graph coloring is used for bounding
the maximum k-defective clique.

4.5 The enhanced algorithm–MADEC+

By integrating the reductions above and the pruning rules in MADEC, we
obtained an improved algorithm, known as MADEC+and presented in Alg.
3. MADEC+ starts from the MCP heuristic FastLB to initialize the lower
bound lb. In the subsequent branch-and-bound search, lb is updated each
time a better solution (i.e., a larger k-defective clique) is obtained. The new
BBSearch uses the same branching rules as MADEC but incorporates the new
reduction techniques introduced in this section.

Because Reduction Rules 5, 7 and 8 are based on a lower bound obtained
heuristically, in the worst case, these rules may fail to reduce any search space.
Therefore, MADEC+ can degenerate into a simple MADEC algorithm. Hence,
the worst-case run time of MADEC+ is the same as that of MADEC (see
Section 3.2).

4.6 Discussions

We now discuss the differences between our approach and the RDS approach
([20,19,6]) which is also based on the branch-and-bound framework.

The branching rules between MADEC+ and RDS are intrinsically different.
As discussed in Section 1.1, RDS successively solves a series of n nested sub-
problems with an underlying branch-and-bound algorithm, while using the op-
timal objective values of the solved subproblems to bound the current search.
In fact, the subproblem solved by RDS at the ith round can be formulated as
a constrained k-defective clique problem with V = {vi, . . . , vn} and P = {vi}.
However, unlike MADEC, RDS generates n− i+ 1 subproblems, where in the
jth subproblem (j = 1, . . . , n− i+ 1), vi+j is moved to P and vi+1, . . . , vi+j−1
are removed from G.
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Algorithm 3: The maximum k-defective clique algorithm: MADEC+

Input: A graph G = (V,E), value k
Output: The size of maximum k-defective clique in G

1 MADEC+(G, k)
2 begin
3 lb← FastLB(G, k)
4 G← Peel(G, lb, P, k)
5 BBSearch(I = (G, ∅, k))
6 return lb

7

8 BBSearch(I = (G = (V,E), P, k))
9 begin

10 if P is not a k-defective clique or |V | ≤ lb or
ColorBound(G[V \ P ], k) + |P | ≤ lb then

11 return

12 else if V is a k-defective clique then
13 P ← V

14 if |P | ≥ lb then
15 lb← |P |
16 if V \ P 6= ∅ then
17 if ∃v ∈ V \ P such that v is reducible by Rule 2 then
18 BBSearch(G,P ∪ {v}, k)

19 else if ∃v ∈ V \ P such that v is reducible by Rules 3, 4 or 7 then
20 BBSearch(G− {v}, P, k)

21 else if E(P ∪ {C+}) > k then
22 for each I ′ ∈ {Br1(I, 1), . . . , Br1(I, p+ 1)} generated by

Branching Rule 1, Call BBSearch(I ′)

23 else
24 for each I ′ ∈ {Br2(I, 1), Br2(I, 2)} generated by Branching

Rule 2, Call BBSearch(I ′)

Furthermore, another important difference between MADEC+ and RDS is the
bounding and pruning rules. Two-hop reduction is used during the search in
MADEC+; however, this property is applied only for graph preprocessing in
RDS ([19]). Moreover, the color-bound is proposed for the first time in this
study.
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5 Computational experiments

We performed computational experiments to evaluate the two proposed algo-
rithms (MADEC and MADEC+), which were written in C++ and compiled
in g++. Hence, we adopted two best-known approaches–the RDS algorithm
in [6] and the ILP solver CPLEX (based on the ILP formulation 1 in Sec-
tion 1) as our reference algorithms. Our source codes (MADEC, MADEC+

and ILP) are publicly available at https://github.com/chenxiaoyu233/

k-defective. For RDS, we used one efficient implementation in C++ avail-
able from https://github.com/zhelih/rds-serial. For the ILP approach,
we used version 12.9 of the IBM CPLEX solver. For all the algorithms, we
turned off the parallelization mode and used only one thread to solve each
input instance. Because all these algorithms are exponential time algorithms,
we set a uniform cut-off time of 18000 s (5 h). All the experiments were con-
ducted on a computer with an AMD Opteron 4184 processor (2.8 GHz and 2
GB RAM) running CentOS 6.5.

These algorithms were tested on three groups of benchmark graphs, i.e., ran-
dom graphs, DIMACS2 graphs, and massive real-life graphs.

5.1 Computational results on random graphs

We generated 18 random graphs based on the procedure described in [7].
The graphs can be categorized into two groups. In the first group, the num-
ber of vertices of a graph n is 100, whereas in the second group, n = 200.
Each group comprised nine graphs, and each graph had an edge density ρ in
{0.1, 0.2, · · · , 0.9}, where ρ is defined as 2|E|

|V |(|V |−1) . We investigated the perfor-
mance of the aforementioned algorithms on these 18 graphs with k varying in
{1, 2, · · · , 6}.

The computational results are summarized in Figure 4. Each subfigure shows
the run time of the four algorithms for a specific pair of vertex number n and
k, which are indicated on the top of the subfigures. In each subfigure, the
horizontal and vertical axes represent the density of the graph and the run
time in seconds, respectively.

For the first group of graphs where n = 100, only MADEC+ and CPLEX can
solve all the graphs for each k value. Furthermore, we observed that MADEC+

always performed faster than or at least as fast as the other algorithms for
sparse and mildly dense graphs (ρ ≤ 0.6). When the graphs became extremely
dense and k increased, i.e., ρ = 0.9 and k = 6, MADEC+ was on par with
CPLEX in terms of performance. In fact, the number of constraints in the
ILP formulation (1) decreased significantly when the density approached 1,
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rendering the problem easy to solve for CPLEX. For the second group of
graphs where n = 200, no algorithm can solve all the instances within 5 h.
When k = 1, 2, 3, MADEC+ can solve more graphs than the competitors
in 5 h. When k = 4, RDS became the most competitive approach. All the
algorithms can barely obtain an optimal solution for dense graphs within 5 h.

5.2 Computational results on DIMACS2 graphs

The 2nd DIMACS Implementation Challenge Benchmark (DIMACS2) 1 is the
de facto standard benchmark set for testing clique or clique-related algorithms.
The DIMACS2 benchmark set includes 80 graphs, whose sizes range from
small graphs of 50 vertices and 1,000 edges to large graphs of 4,000 vertices and
5,000,000 edges. These graphs are either from real-world problems (e.g., coding
theory, fault diagnosis, and the Steiner triple problem) or random graphs. We
tested all these graphs with k = 1, . . . , 4. For larger k values, most graphs
cannot be solved within the time limit of 5 h. Furthermore, in studies regarding
k-defective cliques such as [6,18,20], the experiments also involved k values
from 1 to 4.

Tables 1 and 2 show the computation times of the four competing algorithms
(MADEC, MADEC+, RDS, CPLEX) for the 80 DIMACS2 graphs. The first
column indicates the basic information of each graph (name, number of ver-
tices and edges). Column “LB” provides the lower bound from the prepro-
cessing procedure in Algorithm 2, whereas column “opt” provides the optimal
k-defective clique size obtained by the algorithm. “–” indicates that the cor-
responding algorithm fails to reach the optimal solution in 5 h. We omitted
rows where neither of the four algorithms obtained the optimal solution, and
we denoted the best run time in bold.

In Tables 1 and 2 on the DIMACS2 graphs, we observed that MADEC+ dom-
inated MADEC, indicating that the additional reduction strategies were im-
portant for solving these instances. For a better understanding of the per-
formances of MADEC+, RDS, and CPLEX, we summarize the numbers of
instances solved by these algorithms within 5 h in Table 3. Clearly, MADEC+

outperformed RDS and performed better than CPLEX when k ≤ 4 in terms of
the number of solved instances. In fact, the three algorithms competed with
each other in different families of graphs. For example, for the c-fat family
graph, MADEC+ and RDS performed 3–4 orders of magnitude faster than
CPLEX. However, for most san family graphs, only MADEC+ and CPLEX
obtained the optimal solutions. Additionally, our preprocessing procedure did
not reduce any vertex for these DIMACS2 graphs owing to their high densities.

1 http://www.cs.hbg.psu.edu/txn131/clique.html.
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Table 1
Computation time of the four algorithms for all DIAMCS2 graphs (part 1).

graph name
k LB opt

Running time in seconds
(|V |, |E|) MADEC+ MADEC RDS CPLEX

C125.9.clq
(125,6963)

1 31 35 37.41 7801.85 – 1490.21
2 31 36 378.32 – – 1546.12
3 31 37 2072.35 – – 1886.73
4 31 38 8308.56 – – 4662.59

DSJC500 5.clq
(500,62624) 1 12 14 2675.77 9585.33 1029.00 –

MANN a27.clq
(378,70551)

1 125 127 – – – 1162.95
2 125 128 – – – 110.65
3 125 129 – – – 125.94
4 125 130 – – – 133.57

MANN a45.clq
(1035,533115)

1 342 346 – – – 640.66
2 342 347 – – – 2246.70
3 342 348 – – – 2288.89
4 342 349 – – – 1073.24

MANN a9.clq
(45,918)

1 16 17 0.03 8.28 0.08 557.41
2 16 18 0.12 66.81 1.01 641.37
3 16 19 0.56 266.42 6.15 587.96
4 16 20 1.79 696.46 20.48 621.51

brock200 1.clq
(200,14834)

1 18 21 539.53 5519.06 7816.60 –
2 18 22 6910.64 – – –

brock200 2.clq
(200,9876)

1 10 12 8.86 22.79 1.33 4376.88
2 10 12 146.03 370.54 23.91 4962.37
3 10 13 1039.20 3101.30 108.74 4936.51
4 10 13 7533.36 – 830.65 –

brock200 3.clq
(200,12048)

1 12 15 33.85 137.35 26.04 6586.26
2 12 16 385.36 2100.47 429.40 10826.17
3 12 16 4055.42 – 2728.20 15911.75
4 12 17 – – 13749.00 –

brock200 4.clq
(200,13089)

1 14 17 55.22 427.69 107.35 13484.38
2 14 18 803.82 7182.26 1452.80 –
3 14 18 6603.53 – 15034.00 –

c−fat200−1.clq
(200,1534)

1 12 12 0.05 0.54 0.00 1998.17
2 12 12 0.07 2.95 0.01 2464.29
3 12 12 0.10 22.62 0.06 2390.07
4 12 12 0.14 73.71 0.09 2709.05

c−fat200−2.clq
(200,3235)

1 24 24 0.05 0.63 0.00 1395.73
2 24 24 0.07 4.39 0.00 1311.65
3 24 24 0.16 23.10 0.01 1610.97
4 24 24 0.39 92.31 0.03 1639.97

c−fat200−5.clq
(200,8473)

1 58 58 0.12 0.73 0.00 423.42
2 58 58 0.54 9.64 0.00 516.23
3 58 58 1.59 45.83 0.01 721.52
4 58 58 8.86 317.77 0.01 742.89

c−fat500−1.clq
(500,4459)

1 14 14 0.77 7.92 0.04 –
2 14 14 0.86 59.65 0.08 –
3 14 14 0.86 666.02 1.21 –
4 14 14 1.09 5082.27 1.72 –

c−fat500−10.clq
(500,46627)

1 126 126 3.23 21.31 0.01 –
2 126 126 30.17 330.07 0.02 –
3 126 126 60.29 3109.01 0.04 17852.12
4 126 126 316.12 – 0.09 –

c−fat500−2.clq
(500,9139)

1 26 26 0.86 10.68 0.02 –
2 26 26 1.04 78.16 0.05 –
3 26 26 1.43 704.55 0.26 –
4 26 26 2.46 5450.48 0.40 –

c−fat500−5.clq
(500,23191)

1 64 64 1.02 15.74 0.01 –
2 64 64 2.23 146.42 0.03 –
3 64 64 6.65 1087.42 0.06 –
4 64 64 18.56 8031.17 0.14 –

gen200 p0.9 44.clq
(200,17910)

1 35 45 696.27 – – 1818.41
2 35 46 9048.11 – – 152.48
3 35 46 – – – 278.21
4 35 47 – – – 4790.88

gen200 p0.9 55.clq
(200,17910)

1 39 56 157.80 – – 219.20
2 39 57 2526.87 – – 3015.03
3 39 57 – – – 166.55
4 39 58 – – – 173.29

hamming10−2.clq
(1024,518656)

1 512 512 5.45 – 1.61 2.89
2 512 512 28.03 – 3.83 2.87
3 512 512 108.33 – 16.60 2.73
4 512 512 506.15 – 63.51 3.58

hamming6−2.clq
(64,1824)

1 32 32 0.01 0.64 0.00 1.80
2 32 32 0.03 7.22 0.00 1.62
3 32 32 0.20 49.71 0.00 0.88
4 32 32 0.87 268.50 0.00 0.95

hamming6−4.clq
(64,704)

1 4 4 0.09 0.07 0.00 2929.78
2 4 5 0.45 0.50 0.01 2375.61
3 4 6 1.14 1.74 0.01 119.81
4 4 6 4.46 5.27 0.04 882.85

hamming8−2.clq
(256,31616)

1 128 128 0.17 – 0.02 1.36
2 128 128 0.74 – 0.05 1.05
3 128 128 2.03 – 0.18 0.86
4 128 128 10.97 – 0.53 0.96

hamming8−4.clq
(256,20864)

1 16 16 40.60 1080.91 0.12 3475.41
2 16 16 1236.09 – 2.01 2662.11
3 16 16 16520.67 – 63.07 3192.75
4 16 17 – – 528.46 2918.38
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Table 2
Computation time of the four algorithms for all DIAMCS2 graphs (part 2).

graph name
k LB opt

Running time in seconds
(|V |, |E|) MADEC+ MADEC RDS CPLEX

johnson16−2−4.clq
(120,5460)

1 8 8 1159.73 969.41 20.13 107.89
2 8 9 15176.22 12705.94 243.20 1715.38
3 8 9 – – 4068.50 288.32
4 8 10 – – 1800.00 344.08

johnson32−2−4.clq
(496,107880) 1 16 16 – – – 1813.32

johnson8−2−4.clq
(28,210)

1 4 4 0.02 0.01 0.00 38.45
2 4 5 0.06 0.05 0.00 48.23
3 4 5 0.20 0.16 0.00 74.83
4 4 6 0.35 0.28 0.00 40.89

johnson8−4−4.clq
(70,1855)

1 14 14 0.17 1.93 0.00 53.07
2 14 14 2.03 26.71 0.01 96.95
3 14 14 21.20 210.12 0.12 1177.80
4 14 15 54.44 804.41 0.61 152.86

keller4.clq
(171,9435)

1 11 12 14.26 139.52 2.73 6092.35
2 11 13 198.53 2725.41 46.65 580.62
3 11 14 1191.99 – 438.38 3065.87
4 11 15 7080.61 – 778.83 636.33

p hat1000−1.clq
(1000,122253)

1 10 11 1693.89 3193.77 127.20 –
2 10 12 – – 2007.70 –

p hat1500−1.clq
(1500,284923) 1 11 12 – – 2034.50 –

p hat300−1.clq
(300,10933)

1 8 9 7.97 8.69 0.25 10052.29
2 8 9 98.53 140.32 3.78 10691.14
3 8 10 759.02 1204.25 20.62 –
4 8 10 3633.09 6786.02 135.64 –

p hat300−2.clq
(300,21928)

1 24 26 17.28 285.69 268.74 –
2 24 27 323.60 6194.20 4587.90 –
3 24 28 3764.77 – – –

p hat300−3.clq
(300,33390) 1 32 37 1798.92 – – –

p hat500−1.clq
(500,31569)

1 9 10 63.88 83.54 3.35 –
2 9 11 1091.01 1889.86 45.08 –
3 9 11 11031.05 – 494.89 –
4 9 12 – – 2737.30 –

p hat500−2.clq
(500,62946)

1 34 37 456.76 – – –
2 34 38 10171.30 – – –

p hat700−1.clq
(700,60999)

1 9 12 251.14 490.74 9.46 –
2 9 12 5175.18 11067.12 188.59 –
3 9 13 – – 1320.50 –
4 9 13 – – 12478.00 –

p hat700−2.clq
(700,121728) 1 41 45 4723.56 – – –
san1000.clq

(1000,250500) 1 9 15 1900.63 – – –

san200 0.7 1.clq
(200,13930)

1 16 30 4.02 – – 3619.30
2 16 30 70.71 – – 3545.48
3 16 30 728.64 – – 3443.48
4 16 30 5226.59 – – 7059.52

san200 0.7 2.clq
(200,13930)

1 13 19 4.88 – – 16314.63
2 13 19 98.28 – – –
3 13 20 1001.86 – – –
4 13 20 8620.52 – – –

san200 0.9 1.clq
(200,17910)

1 46 70 11.65 – – 1840.70
2 46 70 155.32 – – 72.42
3 46 71 1498.42 – – 1295.63
4 46 71 10264.93 – – 2453.86

san200 0.9 2.clq
(200,17910)

1 40 60 95.12 – – 2299.30
2 40 61 1344.95 – – 2993.94
3 40 61 10050.17 – – 2295.25
4 40 61 – – – 1692.01

san200 0.9 3.clq
(200,17910)

1 34 44 1935.90 – – 191.16
2 34 45 – – – 379.45
3 34 45 – – – 4826.02
4 34 46 – – – 2891.77

san400 0.5 1.clq
(400,39900)

1 8 13 28.83 – – –
2 8 13 1114.88 – – –
3 8 13 13965.69 – – –

san400 0.7 1.clq
(400,55860)

1 22 40 395.05 – – –
2 22 40 11189.74 – – –

san400 0.7 2.clq
(400,55860) 1 18 30 553.66 – – –

san400 0.7 3.clq
(400,55860) 1 15 22 2889.04 – – –

san400 0.9 1.clq
(400,71820)

1 54 100 – – – 3181.29
2 54 100 – – – 2625.88
3 54 100 – – – 5321.40
4 54 100 – – – 3644.30

sanr200 0.7.clq
(200,13868)

1 16 19 151.67 1086.99 444.60 16260.89
2 16 19 2328.21 – 11195.00 –

sanr200 0.9.clq
(200,17863)

1 37 43 13402.63 – – 5045.97
2 37 44 – – – 6682.93
3 37 45 – – – 12501.08

sanr400 0.5.clq
(400,39984)

1 12 14 576.75 1793.34 144.60 –
2 12 14 9700.05 – 3394.20 –
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Fig. 4. Computational results of random graphs

5.3 Computational results on massive real-life graphs

We used two sets of well-known real-life benchmarks: the Stanford large net-
work dataset collection (SNAP) and the 10th DIMACS implementation chal-
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Table 3
Number of DIMACS2 graphs solved by MADEC+, RDS, and CPLEX in 5 h.

Alg. k = 1 k = 2 k = 3 k = 4
MADEC+ 46 37 28 21

RDS 30 27 23 21
CPLEX 31 27 27 23

lenge benchmark (DIMACS10). SNAP is a comprehensive collection of large
real-world networks [9], including graphs retrieved from social networks, com-
munication networks, citation networks, etc. DIMACS10 contains artificial and
real-world graphs from various applications [2]. Among the 300 graphs in the
two sets, we adopted the 43 graphs tested in [6]. It is noteworthy that these 43
graphs included all the graphs tested in [20]. Nonetheless, we tested all these
graphs with k = 1, . . . , 4. For a fair comparison of the competing algorithms,
we first applied the preprocessing procedure of Section 4.2 (Algorithm 2) to
reduce each of these 43 massive graphs and then performed each algorithm to
solve the reduced graph.

Tables 4 and 5 show the computational results for these massive real-life
graphs. The same information as in Tables 1 and 2 was provided. Instances not
solvable by any algorithm were omitted. The results indicated that MADEC+

outperformed the other algorithms. For instances such as web-Google with
k=4, a speedup of five orders of magnitude was observed. However, for a few
instances such as caidaRouterLevel with k = 1 and wiki-Vote with k = 1, 2,
RDS was the only algorithm that obtained an optimal solution. For almost
all the instances, MADEC+ dominated MADEC, indicating the effectiveness
of the proposed reduction rules. In Section 5.4.2, we compare the different
reduction strategies. CPLEX did not exhibit any advantage over the other
algorithms under the current setting.

5.4 Additional studies on preprocessing and pruning rules

We investigated the effect of the key strategies used exclusively in MADEC+:
the preprocessing procedure and the pruning rules.

5.4.1 Effectiveness of preprocessing procedure

The aforementioned experimental results indicate that for several large in-
stances, the algorithms stopped within 0.0 s. We observed that for these in-
stances, the preprocessing process procedure Peel (Section 4.2, Algorithm 2)
removed all or nearly all the vertices for these tested instances. As the pre-
processing procedure Peel is independent of the exact search process, we can
study the variation of the sizes of each graph before and after the preprocessing
in this section.
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Table 4
Computation time of the four algorithms on SNAP and DIMACS10 graphs (part
1).

graph name
k LB opt

Running time in seconds
(|V |, |E|) MADEC+ MADEC RDS CPLEX

adjnoun.graph
(112,425)

1 5 6 0.03 0.04 0.07 66.58
2 5 6 0.08 0.32 0.08 119.36
3 5 7 0.75 2.18 10.38 1737.46
4 5 7 1.01 5.68 9.44 631.74

as−22july06.graph
(22963,48436)

1 17 18 0.37 0.27 75.86 1970.51
2 17 18 1.09 4.34 121.05 197.78
3 17 19 35.33 31.85 – 342.86
4 17 19 75.80 178.82 – 527.92

astro−ph.graph
(16706,121251)

1 57 57 0.00 0.00 14.88 0.01
2 57 57 0.00 0.47 149.68 2.83
3 57 57 0.01 1.09 – 2.76
4 57 57 0.32 32.65 – 304.65

caidaRouterLevel.graph
(192244,609066) 1 17 18 – 3313.56 – –

celegans metabolic.graph
(453,2025)

1 9 10 0.01 0.01 0.08 1011.00
2 9 10 0.17 0.34 0.42 37.53
3 9 11 7.90 6.76 291.50 1694.49
4 9 11 55.63 158.58 2691.50 4879.75

celegansneural.graph
(297,2148)

1 8 8 0.77 0.87 24.96 5568.69
2 8 9 1.37 7.97 30.08 4947.01
3 8 10 38.45 69.00 10643.00 5965.59
4 8 10 39.85 330.40 10581.00 6428.07

chesapeake.graph
(39,170)

1 5 6 0.00 0.01 0.01 645.90
2 5 6 0.01 0.03 0.01 1145.84
3 5 7 0.07 0.09 0.23 709.18
4 5 7 0.09 0.12 0.26 1308.45

cnr−2000.graph
(325557,2738969)

1 84 85 0.00 0.00 199.40 0.01
2 84 85 0.00 0.00 215.65 0.02
3 84 86 0.00 0.00 – 0.91
4 84 86 0.02 49.28 – 2.57

coAuthorsCiteseer.graph
(227320,769418)

1 87 87 0.00 0.00 284.70 0.01
2 87 87 0.00 0.00 283.39 0.01
3 87 87 0.00 0.00 – 0.01
4 87 87 0.00 0.00 – 0.01

coAuthorsDBLP.graph
(299067,917405)

1 115 115 0.00 0.00 316.83 0.01
2 115 115 0.00 0.00 1529.50 0.01
3 115 115 0.00 0.00 – 0.01
4 115 115 0.00 0.00 – 0.01

cond−mat−2003.graph
(31163,120029)

1 25 25 0.00 0.00 0.03 0.01
2 25 25 0.00 0.00 0.05 0.18
3 25 26 0.00 0.04 45.70 1.30
4 25 26 0.00 1.10 264.44 748.12

cond−mat−2005.graph
(40421,175691)

1 30 30 0.00 0.00 0.12 0.01
2 30 30 0.00 0.00 0.12 0.01
3 30 30 0.00 0.00 11.22 0.00
4 30 30 0.00 0.33 193.88 1.22

cond−mat.graph
(16726,47594)

1 18 18 0.00 0.00 0.01 0.01
2 18 18 0.00 0.00 0.01 0.01
3 18 18 0.00 0.09 9.74 466.41
4 18 18 0.01 2.55 104.20 356.19

dolphins.graph
(62,159)

1 5 6 0.00 0.01 0.00 81.16
2 5 6 0.00 0.03 0.00 1842.66
3 5 6 0.01 0.21 0.14 1596.54
4 5 7 0.03 0.38 0.20 113.67

email−EuAll.txt
(265214,364481)

1 16 17 – 442.34 – –
2 16 17 – 12316.13 – –

email.graph
(1133,5451)

1 12 12 0.00 0.00 0.00 0.01
2 12 12 0.03 0.55 1.13 1279.51
3 12 12 0.55 42.61 4192.50 3934.93
4 12 13 6.43 931.71 – 16928.75

football.graph
(115,613)

1 9 9 0.02 0.11 0.32 1380.87
2 9 9 0.04 0.46 0.34 1283.88
3 9 9 0.29 3.00 42.88 1430.37
4 9 9 0.48 5.83 48.06 1384.03

hep−th.graph
(8361,15751)

1 24 24 0.00 0.00 0.03 0.01
2 24 24 0.00 0.00 0.03 0.02
3 24 24 0.00 0.00 1.52 0.01
4 24 24 0.00 0.00 1.74 0.01

jazz.graph
(198,2742)

1 30 30 0.00 0.00 0.10 0.01
2 30 30 0.00 0.00 0.10 0.01
3 30 30 0.00 0.00 9.80 0.01
4 30 30 0.00 0.00 11.40 0.01

karate.graph
(34,78)

1 5 6 0.00 0.00 0.00 0.28
2 5 6 0.00 0.00 0.00 421.82
3 5 6 0.01 0.04 0.01 684.04
4 5 6 0.01 0.04 0.01 1153.63

lesmis.graph
(77,254)

1 10 10 0.00 0.00 0.00 0.23
2 10 11 0.00 0.00 0.00 1.53
3 10 11 0.00 0.02 0.18 402.35
4 10 12 0.02 0.07 0.35 569.02
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Table 5
Computation time of the four algorithms on SNAP and DIMACS10 graphs (part
2).

graph name
k LB opt

Running time in seconds
(|V |, |E|) MADEC+ MADEC RDS CPLEX

memplus.graph
(17758,46894)

1 97 97 0.00 0.00 220.77 0.01
2 97 97 0.00 0.00 541.71 0.01
3 97 97 0.00 0.00 – 0.01
4 97 97 0.00 0.00 – 0.01

netscience.graph
(1589,2742)

1 20 20 0.00 0.00 0.01 0.01
2 20 20 0.00 0.00 0.01 0.01
3 20 20 0.00 0.00 0.41 0.01
4 20 20 0.00 0.00 0.41 0.01

p2p−Gnutella04.txt
(10876,39994) 1 4 4 – 15230.06 – –

PGPgiantcompo.graph
(10680,24316)

1 25 26 0.01 0.14 42.66 988.39
2 25 27 0.07 1.29 42.13 811.92
3 25 28 0.79 6.85 – 1003.85
4 25 28 4.28 52.65 – 1252.95

polblogs.graph
(1490,16715)

1 20 21 6.34 7.99 3382.30 –
2 20 22 15.75 127.94 3491.00 –
3 20 22 531.68 1147.03 – –
4 20 23 3006.17 9290.49 – –

polbooks.graph
(105,441)

1 6 7 0.01 0.03 0.03 1856.00
2 6 7 0.05 0.31 0.10 1642.40
3 6 8 0.24 2.21 10.61 1398.93
4 6 8 0.41 4.03 11.43 1049.76

power.graph
(4941,6594)

1 6 6 0.00 0.00 0.00 0.47
2 6 6 0.00 0.01 0.00 86.63
3 6 7 0.10 37.28 15.71 4768.15

rgg n 2 17 s0.graph
(131072,728472)

1 15 15 0.00 0.00 0.02 104.33
2 15 16 0.01 0.49 2.11 465.80
3 15 16 1.20 1689.45 – –

rgg n 2 19 s0.graph
(524288,3269202)

1 18 19 0.00 0.00 0.01 0.01
2 18 19 0.00 0.05 0.17 301.08
3 18 19 0.03 24.27 4149.00 1506.07
4 18 20 0.68 6968.47 – –

rgg n 2 20 s0.graph
(1048576,6890893)

1 17 18 0.00 0.35 8.41 1495.40
2 17 18 0.50 41.12 129.92 –

Slashdot0811.txt
(77360,469180) 1 26 27 – 15694.18 – –
Slashdot0902.txt
(82168,504230) 1 27 28 – 15943.48 – –

soc−Epinions1.txt
(75879,405740) 1 23 24 – 16029.11 – –

web−BerkStan.txt
(685230,6649470)

1 201 202 0.09 3.51 – 17.87
2 201 202 1.27 49.85 – 129.43
3 201 202 6.28 288.53 – 132.42
4 201 202 32.44 2399.58 – 147.32

web−Google.txt
(875713,4322051)

1 44 45 0.00 0.04 48.22 12.25
2 44 46 0.04 5.34 1009.80 1269.64
3 44 46 0.05 36.10 – 1479.04
4 44 47 0.05 155.23 – 1741.27

web−NotreDame.txt
(325729,1090108)

1 155 155 586.52 518.28 – –
2 155 155 1359.30 3135.32 – –

web−Stanford.txt
(281903,1992636)

1 61 62 48.14 254.98 – –
2 61 63 211.48 5545.57 – –
3 61 64 8283.56 – – –

wiki−Vote.txt
(7115,100762) 1 17 18 – 1351.37 – –

For simplicity, we show the numbers of vertices (in log scale) of these graphs
before and after the preprocessing for k = 1 and 4 in Figures 5 and 6, respec-
tively. For each k, we arbitrarily selected 15 graphs from the group of real-life
graphs. As shown, for many large graphs, the number of vertices reduced sig-
nificantly after the preprocessing. The reduction effect was less significant only
for several smaller graphs, such as football.graph and dolphins.graph.

5.4.2 Effectiveness of novel pruning strategies

In Section 4, we introduced novel strategies (degree-based pruning, two-hop
constraint, and color-bound) to reduce the search space in large graphs. In
Section 5.4.1, we verified that with a high-quality lower bound, degree-based
pruning can substantially reduce the graph during preprocessing. To assess the
effectiveness of the two-hop constraint and color-bound strategies, we com-
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Fig. 5. Number of vertices (in log scale) before and after preprocessing when k = 1.
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Fig. 6. Number of vertices (in log scale) before and after preprocessing when k = 4.

pared MADEC and MADEC+ with two MADEC variants (which can also be
considered as two weakened versions of MADEC+).

• MADEC+diam, MADEC with degree-based reduction rule (Reduction
Rule 5) and two-hop constrained reduction rule (Reduction Rule 7).
• MADEC+color, MADEC with degree-based reduction and color-bound

(Reduction Rule 8).
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As the pruning rules are mainly used for large and massive graphs, we selected
four such graphs with various sizes from SNAP and DIMACS10 for this study
(see Table 6).

Table 6
General information of selected real-life graphs.

Graph (|V |, |E|) Source Description
web-Google.txt (875713, 5105039) SNAP The data was released by Google as a part of the

Google Programming Contest.
rgg n 2 19 s0.graph (524288, 3269202) DIMACS10 The data are a random geometric graph with 219

vertices [8].
astro-ph.graph (16706, 121251) DIMACS10 The data is a collaboration network of preprints in

astrophysics archive
email.graph (1133, 5451) DIMACS10 The data are a network of e-mail interchanges be-

tween members of the University Rovira i Virgili

In Figures 7 and 8, we demonstrate the time consumption and the number
of nodes in the search tree for each algorithm. For each of these graphs and
each k, MADEC+ reached the optimal solution with the minimum computa-
tional time and the minimum number of tree nodes. As shown in Figure 8,
both the two-hop constraint and color-bound pruning techniques effectively
reduced the number of search nodes. However, in some cases, these techniques
might increase the search time of the branch-and-bound process. For exam-
ple, MADEC+color generated fewer tree nodes for email.graph for k = 4,
but the run time was longer than that of MADEC, as shown in Figure 7.
This experiment indicates that the use of a single pruning rule may worsen
the performance of the pure branch-and-bound algorithm, whereas using both
two-hop constraint and color-bound pruning rules jointly can improve the
search performance.

Fig. 7. Computation times in seconds (in log scale) for four real-life instances.
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Fig. 8. Number of tree nodes (in log scale) for four large instances.

6 Conclusion

We studied the problem of obtaining the maximum k-defective clique in a
graph. We presented MADEC, a branch-and-bound algorithm with a prov-
able worst-case run time. To handle massive real-life graphs, we introduced
novel reduction and branching rules, including graph preprocessing, two-hop
reduction, and color-bound, and integrated them with an enhanced algorithm
MADEC+. This is the first time that such problem-specific rules are applied
within a branch-and-bound algorithm for the MDCP.

We proposed two algorithms and assessed their performances on various graphs;
furthermore, we compared them with two state-of-the-art methods. Our com-
putational results demonstrated the superiority of MADEC+ over the reference
methods on most of the test graphs.

For future studies, several directions can be considered. First, the reduction
rules (e.g., two-hop reduction) and bounding strategies (e.g., color-bound)
introduced herein can be used to enhance other MDCP approaches, including
RDS algorithms. Next, from the algorithmic perspective, similar ideas can be
investigate to design effective algorithms for other relaxed clique problems.
Finally, from the practical perspective, the proposed algorithms can be used
to solve related applications in social networks, bio-informatics, etc.
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[21] Gérard Verfaillie, Michel Lemâıtre, and Thomas Schiex. Russian doll search for
solving constraint optimization problems. In Proceedings of AAAI/IAAI, pages
181–187, 1996.

[22] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique
problems. European Journal of Operational Research, 242(3):693–709, 2015.

[23] Qinghua Wu and Jin-Kao Hao. A clique-based exact method for optimal winner
determination in combinatorial auctions. Information Sciences, 334:103–121,
2016.

29



[24] Mihalis Yannakakis. Node-and edge-deletion NP-complete problems. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
pages 253–264. ACM, 1978.

[25] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein.
Predicting interactions in protein networks by completing defective cliques.
Bioinformatics, 22(7):823–829, 2006.
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A Proof of Theorem 1

Proof. The general idea of the worst-case run time analysis of the proposed
algorithms is based on upper bounding the size of the search tree generated by
an algorithm. Assume that the size of instance I is measured by the parameter
n. We use T (n) to denote the maximum number of leaves in the search tree
generated on the instance with the maximum size of n. To bound T (n), for
a branching rule that decomposes I into l subinstances such that the size of
I decreases by ai at the least in the ith subinstance, we obtain the following
recurrence relation:

T (n) ≤ T (n− a1) + . . .+ T (n− al)

The largest real root of function f(x) = 1−∑l
i=1 x

−ai is called the branching
factor of the recurrence. Let γ be the maximum branching factor among all
branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to the instance with size n is
O∗(γn). For more details on this issue, we refer the reader to [5].

Specifically, for MADEC, let I = (G = (V,E), P, k) be an input instance,
n = |V \ P |. We first analyze the branching factor, σ1, when only Branching
Rule 1 is employed to generate the search tree. For i ∈ {1, . . . , p + 1}, the
size of the ith subinstance, Br1(I, i), is decreased by i. Hence, we obtain the
following recurrence for this branching operation:

T (n) ≤ T (n− 1) + . . .+ T (n− (p+ 1)), (A.1)

where p ≤ k. In the worst case, p = k, the branching factor of this recur-
rence relation reaches the maximum, which is the largest root of the following
function:

xk+2 − 2xk+1 + 1 = 0.
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Fig. A.1. Search tree for applying Branching Rule 2 in the worst case

Meanwhile, when only Branching Rule 2 is applied in the algorithm, we obtain
the following recurrence relation.

T (n) ≤ T (n− 1) + T (n− 1).

The branching factor of this recurrence relation is 2, which results in the trivial
time bound O∗(2n). However, this bound can be tightened by expanding the
recurrence relation.

Assume an instance I = (G = (V,E), P, k); and C+ and C− are defective and
nondefective candidates of I, respectively. Suppose I satisfies |E(P ∪ C+)| ≤
k. Let us simulate the procedure of generating the search tree by applying
Branching Rule 2 whenever possible.

In the first step, Branching Rule 2 is first applied, resulting in two instances
Br2(I, 1) and Br2(I, 2). Next, we denote Br2(I, 2) as (G′ = (V ′, E ′), P ′, k);
C ′+ and C ′− as the defective and nondefective candidate sets of Br2(I, 2),
respectively. By the definitions of C− and Branching Rule 2, P ′ includes a
new vertex u, which is adjacent to all vertices in P but not all vertices in
V \ P . Consequently, C+ ⊂ C ′+ and we have |E ′(P ′ ∪ C ′+)| > |E(P ∪ C+)|.

Suppose we recursively use Branching Rule 2 to decompose I. As |E(P ∪C+)|
is bounded by k, based on the observation above, we obtain

Iq2 = Br2(...Br2(Br2︸ ︷︷ ︸
q times

(I, 2), 2) . . . , 2),

where q ≤ k + 1 does not satisfy the condition of applying Branching Rule
2. In the worst case, q can be as large as k + 1, and Branching Rule 1 must
be used to branch Ik+1

2 if Ik+1
2 is not reduced. Figure A.1 shows the entire

procedure.

According to the abovementioned procedure for expanding the search tree, it
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is safe to rewrite the recurrence relation of Branching Rule 2 as follows:

T (n) ≤ T (n− 1) + . . .+ T (n− (k + 1))+

. . .+ T (n− (k + 1)− (p+ 1)),

where p ≤ k. When p = k, the branching factor reaches the maximum, which
is the largest root of the function

x2k+3 − 2x2k+2 + 1 = 0. (A.2)

Λ
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