
Memetic search for composing medical crews

with equity and efficiency

Qing Zhou a, Jin-Kao Hao a,b, Zhe Sun c, Qinghua Wu c,∗

aLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, France
email: qingzhou@hust.edu.cn; jin-kao.hao@univ-angers.fr

bInstitut Universitaire de France, 1 rue Descartes, 75231 Paris, France
cSchool of Management, Huazhong University of Science and Technology, No.

1037, Luoyu Road, Wuhan, China
email: qinghuawu1005@gmail.com

Applied Soft Computing, May 2020 (In Press)

Abstract

Composing medical crews with equity and efficiency is an important practical
problem commonly arising from health care system management. This work presents
the first hybrid memetic algorithm for this problem. The proposed approach
integrates an original backbone-based crossover for generating promising offspring
solutions and a tabu search based local optimization algorithm exploring both
feasible and infeasible search regions. Computational experiments on two sets
of benchmark instances in the literature are conducted to assess the proposed
algorithm with reference to existing methods. This study advances the state-of-
the-art of solving this relevant practical problem and is expected to inspire new
solution methods to similar problems.

Keywords: Health care service management; memetic algorithm; hybrid search;
tabu search; heuristics.

1 Introduction

The quality of medical services critically depends on the delivery of health care
and is directly connected to the equity and the efficiency of the health care
system. Efficiency mainly concerns providing high quality health care services,

∗ Corresponding author.

Preprint submitted to Elsevier 30 May 2020

while equity mainly refers to the access to health care systems which should
be fairly given to all citizens regardless of age, gender, income and residence.

In general, health care is delivered by medical crews composed of practitioners
working together by sharing their skills, experience and knowledge. Among
the important issues in health care service management, the pre-hospital care
provided by the Emergency Medical Services (EMS) is primordially critical [1].
EMS is responsible for providing timely and appropriate first aid services in
case of emergency situations such as accidents. The purpose of such services
is to reduce patient death, prevent disability and increase the likelihood of
recovery [3]. In [5], Aringhieri presented the first study of the problem of
composing medical crews such that the health care service provided complies
with the equity and efficiency principles. This problem naturally arises in
health care service management, such as building crews for heart surgery or
other specific surgeries. A real case from the operation center of the Emergency
Medical Service of Milan is described in [4], where the operation center deals
with each demand (emergency call) in a timely manner and for urgent calls
the response must be fulfilled in less than 8 minutes in the urban regions
according to the Italian law. Generally, this problem can be used as a model
to formulate practical problems in other settings, such as composing suitable
teams with different skills and knowledge that are assigned to a new project.

The problem of composing medical crews with equity and efficiency (CMCEE)
studied in this work can be described as follows [5]. Given a set of n individuals
N = {1, ..., n}, for each individual p ∈ N , its efficiency is modeled with a
positive value ep ∈ R+ which represents the proficiency of individual p to do
a job. Skill difference between two individuals p and q is modeled by a value
dpq ∈ R+ (p, q ∈ N , dpq = dqp and dpp = 0) representing how much the skills
of p and q are heterogeneous. The problem is to select a subset of individuals
to compose T (T is given) distinct crews such that each crew t (t = 1, ..., T)
has exactly Mt individuals and the skill diversity of each crew is guaranteed
to attain a diversity threshold Dmin while the efficiency of the crew with the
smallest efficiency is maximized.

Formally, the CMCEE can be expressed as the following mathematical model
with each binary variable xpt = 1 (p = 1, ..., n, t = 1, ..., T) if the individual p
is allocated to crew t and xpt = 0 otherwise [5,9]:

maximize min
t=1,...,T

n∑
p=1

epxpt (1)

subject to
T∑
t=1

xpt ≤ 1, p = 1, ..., n (2)

2

n∑
p=1

xpt = Mt, t = 1, ..., T (3)

n−1∑
p=1

n∑
q=p+1

dpqxptxqt ≥ Dmin, t = 1, ..., T (4)

xpt ∈ {0, 1}, p = 1, ..., n, t = 1, ..., T (5)

where the objective (1) commits to maximize the efficiency of the crew with the
smallest efficiency. Constraint (2) guarantees that each individual is allocated
to at most one crew and constraint (3) ensures that the cardinality of crew t
is exactly Mt, while constraint (4) forces the sum of skill differences of each
crew to be at least Dmin.

As the literature review of Section 2 shows, there are a number of studies
to address the issue of tradeoff between equity and efficiency of health care
service management. In addition to its practical relevance, the CMCEE is
known to be NP-hard [5] and consequently computationally challenging. Given
that exact methods will have an exponential time complexity on the size of the
problem, this work focuses thus on developing effective heuristic methods for
the CMCEE able to find high-quality solutions with a reasonable time frame.
The main contributions of this work are summarized as follows.

- This work presents the first population-based memetic algorithm (MA)
for solving the CMCEE, which possesses two original features. First, it
integrates an original crossover operator for generating promising offspring
solutions. The crossover operator maximally preserves common individuals
(‘building blocks’) grouped in the same crew of parent solutions and favors
the inheritance of desirable ‘building blocks’ through the recombination
process. Second, the proposed algorithm uses an effective local optimization
procedure combining feasible and infeasible searches driven by the following
consideration. By relaxing the diversity threshold constraint in a controlled
manner, the algorithm is able to tunnel through feasible and infeasible
regions to locate high quality solutions which are difficult to attain
otherwise.

- Computational experiments on two sets of benchmark instances in the
literature show the competitiveness of the proposed algorithm with respect
to existing methods. This implies that our method is able to compose
medical crews with a higher equity and a better efficiency. Moreover, the
code of our algorithm will be publicly available, which can serve as an useful
tool for researchers and practitioners in health care service management.
Finally, as the underlying search strategies of the proposed method are
rather general, they can be beneficially adapted to similar settings where
equity and efficiency are to be considered.

The rest of the paper is structured as follows. Section 2 presents a detailed

3

review of related works on the studied problem. Section 3 shows the
general framework of the proposed algorithm, while its two key search
components (crossover and local optimization) are presented in Sections 4
and 5, respectively. Section 6 is dedicated to computational assessments of
the proposed algorithm and comparisons with the best performing algorithms
in the literature, followed by an experimental analysis of the key components
of the algorithm in Section 7. Conclusions are drawn in Section 8.

2 Related works

This section presents a detailed review of the related studies on the composing
medical crews with equity and efficiency problem (CMCEE), which originates
from a real application from the health care service management. Since the
80s, several studies have considered the issue of efficiency and equity or fairness
in health care services.

Mayhew and Leonardi [22] proposed a model that enables a tradeoff between
equity and efficiency with application to a regional health-care resource
allocation problem in London. Cho [8] presented an equity-efficiency tradeoff
model for the location of medical care facilities where equity is represented
by the chance to receive medical services whereas efficiency is represented by
consumer and producer welfare. Aringhieri [5] proposed both a mathematical
model and a graph model following the principles of equity and efficiency
that arises from the EMS system of Milan [4]. The author also proposed
an effective heuristic algorithm (denoted as GTS) by hybridizing a greedy
initialization procedure, a local improvement method and a tabu search
procedure. Within GTS, the local improvement method confines its search
process in feasible regions, while the tabu search method is allowed to visit
infeasible solutions by using a penalized evaluation function. Experimental
results showed that the GTS algorithm was able to achieve much better
results than the commercial solver Cplex with a shorter computation time.
Later, Smith et al. [30] introduced a series of hierarchical location models
with bi-objectives (efficiency and equity) for a public service application.
Khodaparasti et al. [18] presented an integrated location-allocation model
that considers both efficiency and equity for an EMS application. More
recently, Delgado-Osuna et al. [9] developed an artificial bee colony (ABC)
algorithm for the CMCEE, which deals with infeasible solutions by using
a destructive-constructive neighborhood operator and a specialized local
search procedure. The reported computational results showed that ABC
outperformed the reference algorithms GGA [9] and GTS [5]. Artificial bee
colony is a relative new population-based algorithm inspired by the foraging
behavior of honeybees. Although ABC has been successfully used in many
problems [17] due to its simplicity, it may suffer from the problem of premature

4

convergence and getting stuck on local optima easily in some scenarios.
Recently, Abualigah et al. [2] reviewed sentiment analysis methods and
techniques in the health care management to improve health care quality.

According to the computational studies reported in the literature on the
CMCEE, the GTS algorithm [5] and the ABC algorithm [9] represent the state
of the art of solving the CMCEE. Meanwhile, it is known that the population-
based memetic search framework is among the most powerful general methods
for grouping problems such as graph coloring [11,16,26], graph partitioning
[7,12] and bin packing [10]. Until now, this approach remains unexplored for
the CMCEE. This work aims thus to fill the gap by investigating for the first
time the potential of the memetic search framework for solving the CMCEE.
As the computational results (Section 6) demonstrate, this approach is indeed
very successful by finding many improved best solutions for a majority of the
tested CMCEE benchmark instances available in the literature.

3 Memetic algorithm for the CMCEE

3.1 General procedure

Memetic algorithms are a powerful and general framework for difficult
combinatorial optimization problems [24]. Typically, a memetic algorithm
promotes the idea of combining the diversification power of population-
based evolutionary search and the intensification strength of local search
optimization [14]. The flowchart (Fig. 1) illustrates the general procedure of
our proposed memetic algorithm (MA) for the problem of composing medical
crews with equity and efficiency. As Algorithm 1 (see Appendix) shows,
MA starts with an initial population where each solution is produced by a
greedy construction algorithm (Section 3.2). Then the algorithm enters the
‘while’ loop to perform a number of evolutionary generations until a given
cutoff time limit is reached. At each generation, MA selects two parents at
random from the population, which are recombined by the backbone-based
crossover operator (Section 4) to generate an offspring solution. Subsequently,
the generated offspring is improved by the feasible and infeasible tabu search
algorithm (Section 5). Finally, the improved offspring solution is used to
update the population (Section 3.3).

The remaining of this section is dedicated to population initialization and
its update while the crossover operator and the local optimization procedure
are presented in two other sections. As it will be evidenced, compared
to the two leading CMCEE algorithms (i.e., the tabu search algorithm
[5] and the artificial bee colony algorithm [9]), our approach relies on a

5

1. Generate an initial population Pop of size |P|; identify the

best individual S* with the largest objective value

2. Select two parent solutions from Pop at random

3. Generate an offspring solution So by using a backbone-

based crossover operator on the selected two parents

4. Improve S
o
 by a tabu search based optimization algorithm

exploring both feasible and infeasible search regions

5. Update the best solution S*; update the population Pop

using a classical population updating rule

6. Terminate
No

7. Output the best solution S*

Yes

Fig. 1. Flowchart of the proposed MA algorithm.

different search framework (i.e., memetic search) and integrates different
search components (i.e., crossover, specific local optimizer), leading to a very
competitive algorithm.

3.2 Population initialization

The |P | initial solutions of the population are generated by applying the greedy
construction algorithm (denoted as GC, see Algorithm 2 of the Appendix)
proposed in [5]. Let S denote a candidate solution which is a set of T +1 crews
S = {C0, C1, ..., CT} such that each Ct (t ∈ {1, ..., T}) is the set of individuals
allocated to crew t while C0 = {1, ..., n}\{C1 ∪ ... ∪ CT} is a dummy crew
containing the unallocated individuals. To ensure an efficient implementation
of the GC algorithm, a matrix B with its element Bpt is used to represent the
diversity contribution of each individual p to any crew t [5], where each Bpt

sums up the diversities between p and all members allocated to Ct:

Bpt =
∑
q∈Ct

dpq, q 6= p, p ∈ {1, ..., n}, t ∈ {1, ..., T} (6)

6

Initially, C0 = {1, ..., n}, Ct = ∅ (t ∈ {1, ..., T}) and Bpt = 0 (p ∈
{1, ..., n}, t ∈ {1, ..., T}). Then at each construction step, GC considers all
unallocated individuals having the largest efficiency and all incomplete crews
with minimum members. Among all these individuals and crews, GC allocates
a member p to a crew Ct (t ∈ {1, ..., T}) such that the diversity contribution
Bpt is maximized. This process is repeated until all the crews are complete.
Note that the solution constructed by GC always guarantees the feasibility
of the cardinality constraint (Constraint (3)) but it may violate the diversity
threshold constraint that the sum of skill diversity of each crew must satisfy
a certain threshold. In this case, the solution repair procedure (Section 5.4) is
applied to transform the infeasible solution S into a feasible one.

3.3 Population updating strategy

A classical population updating rule is used to decide whether the offspring
solution after the tabu search improvement should be inserted into the
population or not. If the offspring solution is different from the solutions of
the population and has a better objective value than the worst solution in the
population, then the offspring replaces the worst solution in the population.
Otherwise the offspring is discarded and the population is kept unchanged.

4 Crossover operator

The crossover operator of our MA algorithm plays a critical role of diver-
sification and aims at leading the search process to new promising search
areas. As indicated in [14], a successful crossover operator should be able to
transfer meaningful features from parent solutions to offspring solutions. To
design a semantic crossover operator for the CMCEE, the studied problem
is considered as a grouping problem whose purpose is to seek a particular
partition of n individuals into T + 1 crews (groups). For grouping problems, it
is preferable and natural for a crossover to handle groups of individuals rather
than individuals. Crossover operators based on this idea have been successfully
used to solve several grouping problems [10,11,16,26]. In case of the CMCEE, a
preliminary analysis (Section 7.2) discloses that high quality solutions always
contain crews that share the same individuals across the solutions. It thus
can be expected that these shared individuals also have a high chance to stay
together in the global optimum. Following this consideration, the main idea of
our crossover operator is to preserve the groupings of individual (backbone)
from parent solutions to offspring solutions.

The proposed backbone-based crossover operator (denoted as BCX) generates

7

an offspring solution from two parent solutions selected at random.

Definition 1 (backbone): Given two parent solutions S1 = {C1
0 , C

1
1 , ..., C

1
T}

and S2 = {C2
0 , C

2
1 , ..., C

2
T}, the backbone BB of S1 and S2 is the set of T

subsets of individuals {BB1, ..., BBT} such that each BBi, i ∈ {1, ..., T} is
the subset of individuals that are grouped together in both S1 and S2, i.e.,
∃m,n ∈ {1, ..., T}, BBi = C1

m

⋂
C2
n, while the size of BB1

⋃
...

⋃
BBT is as

large as possible.

Note that the backbone definition does not take into account the set of
unallocated individuals of the parent solutions since they are typically low-
efficiency and have a small chance to be part of high quality solutions. Based
on the notion of backbone, BCX considers, for both parent solutions, only the
T crews of allocated individuals.

Definition 2 (individual contribution): Given a solution S = {C0, C1, ..., CT},
the individual contribution of a member p (p ∈ {1, ..., n}) to a crew t
(t ∈ {1, ..., T}) of S is defined by taking into consideration both its efficiency
and its diversity contribution to crew t:

IC(S, p, t) = ep ∗
∑

q∈Ct,q 6=p
dpq (7)

Based on the backbone, the proposed BCX crossover generates an offspring
So = {Co

0 , C
o
1 , ..., C

o
T} in two steps as illustrated in Algorithm 3 of the

Appendix. The first step is to create a partial solution based on the backbone
of the two selected parent solutions while the second step is to complete the
partial solution by allocating some of the unallocated individuals.

Create a partial solution based on backbone. To create a partial
offspring solution based on the backbone, it is necessary to carry out a group
matching procedure that aims to determine a proper matching between the
crews of the two parents, such that it can preserve as many common individuals
grouping together in both parent solutions as possible. This group matching
problem can be solved by the classic Hungarian approach [19]. However, this
will be too time consuming in our case since a maximum weight matching
is needed for each crossover application. Therefore, a fast group matching
algorithm is adopted to find a near-optimal matching between the crews of
the two parent solutions which is used to create a partial solution. The group
matching algorithm builds the partial offspring solution So in T steps (lines 4-
8), and each step t (t = 1, ..., T) constructs a crew Co

t of allocated individuals
for So as follows. It first identifies a crew C1

i , i ∈ {1, ..., T} of S1 and a
crew C2

j , j ∈ {1, ..., T} of S2 (line 7) such that C1
i and C2

j have the largest
number of identical individuals across all i ∈ {1, ..., T} and j ∈ {1, ..., T}, i.e.,
maxi∈{1,...,T},j∈{1,...,T}|C1

i

⋂
C2
j |. For each identified pair of matched crews, one

8

Step 2

Represents a backbone individual

Represents an individual inserted into the offspring by selecting from the
matched crews of the two parents

Represents an individual that completes the offspring by choosing from C0
that collects the unallocated individuals

Parent 1

S
1

 (C1) S
2
(C2)

S
1
 (C3) S

2
(C1)

S
1

 (C2) S
2
(C3)

S1

4 158C0

11 1462C1

3 5127C2

1 13109C3

S2

4 1511C0

3 8110C1

2 9714C2

6 13125C3

A completed
offspring solution

So

4 11C0 15

142C1 76

1 3910C2

12 13C3 85

A partial offspring
solution

So

4 8C0 1115

142C1 76

1 3910C2

12 13C3 5

Represents a crew of S1 matches a crew of S2

Parent 2

Step 1

Fig. 2. An illustrative example of backbone crossover steps.

first preserves the backbone (i.e., all common individuals) to the corresponding
crew of the offspring solution (line 8), i.e., Co

t = C1
i

⋂
C2
j . Then, Co

t is further
extended by inserting the remaining individuals in C1

i and C2
j (lines 10-20).

Precisely, let L1 = C1
i \Co

t and L2 = C2
j \Co

t respectively denote the remaining
individuals in C1

i and C2
j (line 10), the extending procedure alternatively

chooses an individual m with the highest individual contribution from L1 in
odd steps and from L2 in even steps (lines 12-16). Once the selected individual
is inserted to Co

t (line 17), it is removed from the respective set L1 or L2 (line
18) . This process is repeated until the number of members in Co

t reaches Mt

or both sets L1 and L2 become empty. At the end of step t, all individuals in

9

Co
t are removed from all crews of both parents (line 20).

Complete the partial solution. A greedy construct algorithm is applied
to complete the partial offspring solution which performs a series of insertion
operations until the cardinality of each crew t of So reaches Mt (lines 22-
27). Let L designate the subset of all remaining unallocated individuals
after the first step. At each iteration, the greedy algorithm first selects an
individual p from L producing the largest individual contribution IC(So, p, t)
to a crew t among the ones having the minimum cardinality. Then the selected
individual p is displaced from L to crew t of the offspring So. Note that the
obtained offspring solution after these steps may be an infeasible one violating
the diversity threshold constraint. If this happens, a simple solution repair
procedure (Section 5.4) is applied to transform the resulting solution into a
feasible one (lines 28-30), which is then submitted to the tabu search method
for further improvement (Section 5).

Fig. 2 shows an example to illustrate the main steps of the backbone-based
crossover operator. There are 15 individuals which are grouped into 3 crews
with 4 individuals per crew and one crew with 3 individuals. Given two parent
solutions S1, S2, the offspring solution S0 is created from the parents in two
steps. First, the group matching algorithm is used to find the matched crews of
S1 and S2, and then each crew of the offspring solution is built by preserving
the backbone individuals (individuals colored in blue), and is extended by
inserting individuals with the highest individual contribution (individuals
colored in red) selected alternately from the matched groups of S1 and S2. For
instance, since S1(C1) matches S2(C2) with two backbone individuals 2 and 14,
these individuals are preserved in the offspring S0(C1). Then individual 6 from
S1(C1) and 7 from S2(C2) are selected to complete crew C1 of the offspring.
The other crews of S0 are created in a similar way, while noting that C3 is
completed in the second step by including the unallocated individual with the
highest contribution (8, indicated in yellow) from C0 in S0 that collects its
unallocated individuals.

5 Tabu search with feasible and infeasible exploration

5.1 Main framework

Apart from the backbone based crossover, the local optimization procedure
constitutes another critical component of our MA approach. As observed
in many studies on strongly constrained problems [23,25,27,31], considering
intermediary infeasible solutions during the search process may help to better
explore the search space, because doing this may facilitate transitions between

10

structurally different solutions. Following this idea, the proposed tabu search
algorithm (denoted as FITS) alternates between a feasible local search phase
(denoted as FLS) where only feasible solutions are examined, and an infeasible
local search phase (denoted as ILS) which permits a controlled exploration of
infeasible solutions. These two local search phases play different roles in the
FITS procedure. FLS is applied to intensify the search by focusing on the
most relevant feasible solutions, while ILS is applied to diversify the search by
introducing more search freedom through constraint relaxation.

The main framework of FITS is given in Algorithm 4 of the Appendix.
Beginning with a feasible solution, FITS first performs the feasible local
search phase ensured by the FLS procedure. The FLS procedure is based
on the general tabu search framework [13] and relies on the exchange move
operator to explore the most relevant feasible search space (Section 5.2).
It stops when the best solution cannot be improved for Ncons consecutive
iterations (Ncons is called the search depth of FLS). In this case, the search is
considered to be stagnating and switches to the infeasible local search phase
to bring more search freedom by relaxing the diversity threshold constraint
in a controlled manner. The ILS procedure, which is also based on tabu
search, relies on a penalty-based evaluation function to guide the search for
an effective examination of the infeasible search space. It stops when a fixed
number of iterations MILS is reached. The FITS procedure iterates these two
complementary phases until an allowed maximum number of iterations βmax
is reached. Computational results (see Section 7.1) indicate that the combined
use of these complementary phases constitutes a highly effective hybridization
for obtaining high quality solutions.

5.2 The feasible local search phase

The feasible local search procedure (FLS) aggressively examines the feasible
search regions to seek improved solutions. This is achieved by using the
following exchange move operator.

5.2.1 The Exchange move operator and solution evaluation

Given a feasible solution S = {C0, C1, ..., CT}, the exchange move swaps two
individuals from different crews. To make the search more focused, FLS uses a
constrained exchange move (denoted by Exchange(p, q)) [5,9] that exchanges
an individual p from the crew Cw (w > 0) having the smallest efficiency
with another individual q from a different crew Ct (t ≥ 0). Notice that C0

represents a dummy crew containing the unallocated individuals, and using
C0 in an exchange move enables the swap of an allocated individual and an

11

unallocated individual. For a fast calculation of the objective function of a
candidate solution S ′ induced by swapping p ∈ Cw and q ∈ Ct, a T -dimensional
vector E = {E1, ..., ET} is used where Ei =

∑
k∈Ci

ek denotes the efficiency of
crew Ci. Since an exchange move only involves two crews, the efficiency of Cw
(Ct) in S ′ can be easily computed as Ew−ep+eq (Et−eq+ep) with E. Similarly,
to quickly verify the feasibility of the diversity threshold constraint of the
candidate solution S ′, a T -dimensional vector D = {D1, ..., DT} is maintained
where Di = 1

2

∑
m,n∈Ci

dmn denotes the total diversity of crew Ci, and hold
a matrix B with Bpt =

∑
q∈Ct

dpq representing the diversity contribution of
individual p to a given crew t. With D and B, the diversity of Cw (Ct) in S ′

can be easily calculated as Dw −Bpw +Bqw − dpq (Dt +Bpt −Bqt − dpq), and
the verification of the feasibility of S ′ can be achieved in O(1).

After performing an exchange move involving p ∈ Cw and q ∈ Ct, the efficiency
and diversity of the two crews can be conveniently updated by the following
equations [5,9]:

Ew = Ew − ep + eq (8)

Et = Et − eq + ep (9)

Dw = Dw −Bpw +Bqw − dpq (10)

Dt = Dt +Bpt −Bqt − dpq (11)

Meanwhile, the diversity contribution of each individual with respect to crews
w and t can be updated as follows [5,9]:

Brw = Brw − dpr + dqr, r ∈ {1, ..., n} (12)

Brt = Brt − dqr + dpr, r ∈ {1, ..., n} (13)

Therefore, for each performed exchange move, the matrix B is updated in
O(n), while the vector E and D are updated in O(1).

5.2.2 Exploration with feasible local search

The tabu search based FLS procedure is summarized in Algorithm 5 of the
Appendix. Starting from an initial input solution, FLS iteratively replaces
the current solution S by a best admissible feasible neighboring solution S ′

obtained by applying the constrained exchange move operator. To avoid a
short-term search cycling, each time an individual p is removed from its
original crew t, it is forbidden to bring p back to crew t for the next tt
iterations, where tt is a parameter called tabu tenure. A move is considered
to be admissible if it is not forbidden by the tabu list or it produces a
solution better than the best solution ever found during the search (aspiration
criterion). Meanwhile, the best solution found is updated whenever an
improved solution is obtained. The search stops when the best solution cannot

12

be updated for Ncons consecutive iterations where Ncons is the search depth
of FLS. At this point, the search is deemed to be trapped into a deep local
optimum and then it switches to the ILS phase to unlock the situation.

5.3 Infeasible local search phase

The basic idea behind ILS is to allow the algorithm to visit intermediary
infeasible solutions by relaxing the diversity threshold constraint and enable
the algorithm to visit an enlarged search space including both feasible
and infeasible solutions. Following the general idea of penalty function for
constrained optimization, ILS uses an extended penalty-based evaluation
function F to evaluate the quality of both feasible and infeasible solutions.
The penalty-based evaluation function F enriches the objective function with
a penalty function DE.

Let S = {C0, C1, ..., CT} be a candidate solution in the enlarged search
space, the penalty function DE(S) is defined as the degree of infeasibility
of S measured by the total overloaded parts of all the crews to the diversity
threshold, i.e., DE(S) =

∑T
t=1 ot, where

ot =

Dmin −Dt, if Dt < Dmin

0, otherwise
(14)

Then the extended evaluation function F is composed of the basic objective
function f and penalty function DE:

F (S) = f(S)− β ∗DE(S) (15)

where f(S) = min
t={1,...,T}

∑
p∈Ct

ep gives the objective value, β ≥ 0 is a parameter

that controls the relative importance given to DE and is dynamically tuned
according to a self-adjustment technique [31].

ILS uses the same constrained exchange move defined in Section 5.2, but
without any diversity threshold restriction when choosing a candidate solution.
To efficiently assess the quality of a candidate solution evaluated by F , the
same vectors E, D, and matrix B are maintained in the same manner as FLS.
With these data structures, the extended penalty based function value of each
neighbor solution S ′ can be conveniently computed in a similar manner as in
FLS in constant time.

ILS is also based on the tabu search framework and is guided by the extended

13

penalty-based evaluation function F . Algorithm 6 of the Appendix presents
the general scheme of the ILS algorithm. At each iteration of ILS, a best
admissible candidate solution S ′ in terms of F is selected to replace the
current solution S. During the search process, the value of the self-adjustment
parameter β in F is deducted (added) by 1 if all λ consecutive solutions are
feasible (infeasible) and its initiating value is set equal to 0. In this work, the
value of λ is set to 5 empirically. In general, a small (large) value of β weakly
(strongly) penalizes infeasible solutions and leads to the search process to give
more importance to infeasible (feasible) solutions. Moreover, the current best
feasible solution Slocal best is updated by the incumbent solution S if S is a
feasible solution and it is better than Slocal best in terms of the basic objective
value f . The ILS procedure stops after MILS iterations (MILS is a parameter),
at this point, the FLS procedure is triggered to bring the search back again
to the feasible search. Finally, if the solution at the end of the ILS procedure
is an infeasible one, the solution repair procedure (Section 5.4) is applied to
convert it into a feasible one, which is served as the starting point for the next
round of FLS.

5.4 Solution repair procedure

The solution repair procedure is applied to transform an infeasible solution
violating the diversity threshold constraint into a feasible one. Specifically, at
each step of the solution repair procedure, an individual is selected from the
crew Cmin with the minimum diversity and exchanged with another individual
belonging to a different crew Cq satisfying the diversity threshold constraint,
such that the diversity of Cmin increases the most while Cq still complies
with the diversity threshold constraint. The above steps are repeated until
the solution becomes feasible.

6 Computational experiments

This section is dedicated to a computational assessment of the proposed MA
algorithm on a large number of commonly used benchmark instances and
comparisons with two heuristic algorithms in the literature: GTS [5] and ABC
[9], which are, to our knowledge, the best existing methods for the CMCEE.

14

6.1 Benchmark instances and experimental protocol

Two sets of benchmark instances were used to test the proposed method.
Proposed in [5], the first set (denoted by I1, 80 instances) is adapted from
the benchmarks originally designed for the Maximum Diversity Problem
introduced in [29] with the following characteristics.

• the number of individuals n = {100, 200, 300, 400, 500};
• the total number of selected individuals M = {10%, 20%, 30%, 40%} of n;
• the diversity matrix DM = dpq (p, q ∈ {1, ..., n}) is a real number in the

range [0,9] with uniform distribution.

The CMCEE instances of set I1 are then created as follows.

• keep the parameters n and DM unchanged;
• define the quantity of crews T in {5, 10};
• define the efficiency vector EV = ep of the individuals by using random

values from an uniform distribution [1, 100];
• define the diversity threshold Dmin for each crew;
• define Mt by Mt = {0.6∗n

T
, 0.8∗n

T
}.

The second set of benchmark instances originates from [9] and includes 240
instances. These instances are generated based on the 80 instances of set I1
by using three different diversity thresholds. The diversity thresholds for set
I2 are set to be a percentage (ρ ∈ {80%, 100%, 105%}) of the expected mean
diversity of the crews calculated by the following equation [9]:

Dmin = ρ · (Mt − 1) ·Mt ·D
2

, with D =

∑
p,q∈N dpq

n · (n− 1)
(16)

Note that a larger ρ generally makes the diversity threshold constraint more
difficult to satisfy. The instances in set I2 can be divided into three classes
according to ρ [9]: easy (ρ = 80%), challenging (ρ = 100%) and difficult
(ρ = 105%). All the input data and the detailed numerical results achieved by
the proposed algorithm are available at Mendeley’s public repository 1 .

The MA algorithm was programmed in C++ 2 and compiled by GNU g++
compiler with the “-O3” option, running on a computer with an Intel Xeon-
E5 2695 processor (2.10GHz) and 2GB RAM under Linux operating system.
Due to its stochastic nature, the proposed algorithm was ran independently

1 https://data.mendeley.com/datasets/zmbnybg9g4/1
2 The source code of our memetic algorithm will be available at: http://www.info.
univ-angers.fr/pub/pub/hao/CMCEE.html

15

Table 1
Settings of parameters.

Parameter Section Description Considered values Final
value

|P | 3.1, 3.2 size of population {5, 10, 15, 20, 30} 10

βmax 5.1 exploration strength of FITS {5, 10, 15, 20, 30} 15

Ncons 5.1, 5.2.2 search depth of each FLS phase {1000, 2000, 3000, 4000, 5000} 4000

MILS 5.1, 5.3 maximum number of iterations
of each ILS phase

{300, 500, 1000, 2000, 3000} 1000

tt 5.2.2 tabu tenure {5, 7, 10, 15, 20} 10

30 times on each instance.

6.2 Parameter setting

The MA algorithm requires 5 parameters: population size |P |, exploration
strength of the FITS algorithm βmax, search depth of the FLS phase Ncons,
maximum number of iterations of the ILS phase MILS, tabu tenure tt. To iden-
tify a proper parameter settings, the popular ‘IRACE’ package for automatic
parameter tuning [21] is used on a set of 10 randomly selected instances from
set I1 (02-P100T10M6, 04-P100T5M12, 05-P200T5M24, 10-P300T5M36, 12-
P300T10M18, 13-P400T10M24, 15-P400T10M24, 16-P400T5M48, 18-P500T10M30,
19-P500T5M80). For the experiment, the tuning budget was set to 1000 runs,
each with a time limit of n/2 seconds where n is the number of individuals of
the instance. The studied values and final values (suggested by ‘IRACE’) of
these parameters are given in Table 1. The same parameter values determined
by ‘IRACE’ were used for all experiments conducted in this work.

6.3 Comparative results on the I1 instances

This section shows a comparison between the proposed MA algorithm and
the reference algorithm GTS [5]. In fact, the source codes of the reference
algorithms are unavailable and ABC [9] did not report its results on the I1
instances. To make the comparison as fair as possible, our MA algorithm was
ran 30 times on each instance under the same time limit (stopping condition)
as in [5] (running Linux on an Intel Core 2 Duo 2.0GHz T7200 processor and
2GB RAM). Table 2 summarizes the comparative results between the two
algorithms.

In Table 2, columns 1-2 indicate the instance name (Instance) and the best
known results (fBK) [5]. Columns 3-4 present the results obtained by GTS,
including the best objective value (fbest) and the average computation time

16

Table 2
Comparative results of the proposed MA algorithm and the GTS algorithm [5] on
I1 instances (part I). The results of the ABC algorithm [9] are unavailable.

Instance fBK GTS MA

fbest tmax fbest favg tavg

01-P100T10M6 399 399 0.16 420 408.33 0.11

01-P100T10M8 458 458 0.23 501 498.47 0.15

01-P100T5M12 871 871 0.18 846 836.43 0.16

01-P100T5M16 1011 999 0.25 1016 1014.53 0.23

02-P100T10M6 415 398 0.16 429 423.67 0.12

02-P100T10M8 488 469 0.22 504 500.27 0.18

02-P100T5M12 889 889 0.19 876 870.40 0.16

02-P100T5M16 1008 1008 0.24 1016 1015.17 0.23

03-P100T10M6 397 397 0.17 421 411.50 0.12

03-P100T10M8 475 475 0.22 487 470.77 0.21

03-P100T5M12 867 867 0.18 873 862.03 0.18

03-P100T5M16 1002 1002 0.24 1010 1006.97 0.20

04-P100T10M6 409 393 0.15 435 428.20 0.12

04-P100T10M8 490 467 0.22 504 502.53 0.15

04-P100T5M12 863 863 0.17 863 851.50 0.16

04-P100T5M16 990 990 0.24 1010 1007.10 0.21

05-P200T10M12 800 781 0.61 817 812.53 0.50

05-P200T10M16 938 903 0.83 943 941.90 0.56

05-P200T5M24 1645 1645 0.69 1587 1575.63 0.68

05-P200T5M32 1872 1870 0.94 1887 1884.97 0.83

06-P200T10M12 797 781 0.62 817 811.73 0.56

06-P200T10M16 931 905 0.87 942 941.13 0.65

06-P200T5M24 1626 1626 0.67 1638 1629.73 0.58

06-P200T5M32 1876 1864 0.94 1889 1886.63 0.89

07-P200T10M12 788 749 0.61 820 816.40 0.52

07-P200T10M16 936 883 0.91 943 942.67 0.67

07-P200T5M24 1623 1623 0.70 1635 1628.67 0.70

07-P200T5M32 1884 1860 0.93 1890 1889.27 0.82

08-P200T10M16 928 887 0.88 943 940.97 0.70

08-P200T5M24 1641 1641 0.69 1642 1629.70 0.65

08-P200T5M32 1883 1871 0.94 1890 1888.93 0.89

09-P300T10M18 1245 1245 1.38 1269 1260.33 1.34

09-P300T10M24 1468 1440 2.06 1478 1477.57 1.58

09-P300T5M36 2551 2551 1.60 2465 2425.83 1.54

09-P300T5M48 2932 2932 2.12 2954 2950.57 2.08

10-P300T10M18 1233 1233 1.39 1258 1238.10 1.35

10-P300T10M24 1434 1433 2.26 1472 1466.73 1.92

10-P300T5M36 2559 2559 1.87 2486 2464.07 1.81

10-P300T5M48 2947 2938 2.63 2953 2950.70 2.59

11-P300T10M18 1265 1265 1.78 1276 1269.33 1.28

11-P300T10M24 1471 1455 2.32 1478 1476.43 1.69

17

Table 2
Comparative results of the proposed MA algorithm and the GTS algorithm [5] on
I1 instances (part II). The results of the ABC algorithm [9] are unavailable.

Instance fBK GTS MA

fbest tmax fbest favg tavg

11-P300T5M36 2556 2556 1.93 2570 2559.33 1.86

11-P300T5M48 2957 2937 2.67 2959 2959.00 0.84

12-P300T10M18 1242 1242 1.68 1273 1265.57 1.36

12-P300T10M24 1469 1438 2.32 1478 1477.17 1.55

12-P300T5M36 2542 2542 1.90 2505 2479.17 1.84

12-P300T5M48 2955 2921 2.62 2959 2957.50 2.39

13-P400T10M24 1707 1707 3.09 1707 1626.33 2.69

13-P400T10M32 1998 1979 5.02 2011 2009.07 3.10

13-P400T5M48 3471 3471 3.28 3414 3399.43 3.08

13-P400T5M64 4004 4000 4.81 4023 4019.90 4.73

14-P400T10M24 1697 1697 2.93 1723 1712.70 2.77

14-P400T10M32 2000 1961 4.40 2012 2009.30 3.49

14-P400T5M48 3466 3466 3.52 3329 3278.60 3.38

14-P400T5M64 4008 3998 4.81 4025 4022.13 4.49

15-P400T10M24 1702 1702 3.02 1709 1703.70 2.39

15-P400T10M32 1999 1974 4.24 2011 2009.67 3.83

15-P400T5M48 3473 3473 3.48 3414 3387.80 3.25

15-P400T5M64 4018 4001 4.71 4026 4025.23 4.66

16-P400T10M24 1685 1685 2.94 1713 1697.33 2.30

16-P400T10M32 1989 1952 4.36 2010 2007.47 3.84

16-P400T5M48 3470 3470 3.66 3428 3400.10 3.57

16-P400T5M64 4024 3993 4.62 4026 4025.33 3.93

17-P500T10M30 2145 2145 5.39 2145 2070.30 4.00

17-P500T10M40 2483 2483 6.67 2501 2496.27 5.95

17-P500T5M60 4332 4332 5.64 4082 4023.37 5.58

17-P500T5M80 4989 4989 7.58 4992 4975.80 7.24

18-P500T10M30 2132 2132 5.03 2135 2082.10 4.20

18-P500T10M40 2486 2461 6.75 2505 2502.10 6.17

18-P500T5M60 4354 4354 5.64 4109 4045.40 5.51

18-P500T5M80 5000 5000 7.54 5008 5001.57 7.47

19-P500T10M30 2133 2133 5.44 2141 2072.17 4.03

19-P500T10M40 2470 2470 6.95 2497 2489.43 6.54

19-P500T5M60 4335 4335 5.58 4199 4165.47 5.55

19-P500T5M80 4987 4987 7.58 5006 4992.57 7.38

20-P500T10M30 2131 2114 4.96 2179 2165.73 4.49

20-P500T10M40 2504 2446 6.56 2509 2508.23 4.17

20-P500T5M60 4346 4346 5.51 4217 4179.47 5.33

20-P500T5M80 4995 4995 7.40 5009 5002.37 7.29

#Improve 0 63

#Match 17 3

#Total 80 80

p-value 1.59e-3

18

(tmax) in seconds to complete its execution. The results of GTS are directly
taken from [5]. The last three columns report the results produced by our
MA algorithm, including the best objective value (fbest), the average objective
value (favg) and average run time (tavg) in seconds to reach the best objective
value. Rows ‘#Improve’ and ‘#Match’ report respectively the number of cases
for which each algorithm improves or matches the best-known results from the
literature. Row ‘#Total’ denotes the total number of instances. Row p-value
indicates the results from the Wilcoxon signed-rank test with a confidence
level of 95% between the compared algorithms. The results in bold are the
best results among fBK and fbest of the compared algorithms.

The comparison mainly focuses on solution quality in terms of the objective
values, while the timing information is provided only for indicative purposes.
Since the two compared algorithms were run on different computing platforms,
the Standard Performance Evaluation Cooperation tool (www.spec.org) is
used to obtain the scale ratio (2.10/2.00 = 1.05) of the CPU frequencies,
which indicates that our computer is slightly (1.05 time) faster.

Table 2 indicates that MA performs better than GTS by finding 63 improved
lower bounds and matching the best known results on 3 cases while MA is
outperformed by GTS for the remaining 14 instances. The Wilcoxon signed-
rank test (p-value< 0.05) also confirms the dominance of MA over GTS. This
experiment shows that MA is highly efficient for the I1 instances compared
to the GTS algorithm.

6.4 Comparative results on the I2 instances

To further assess the performance of our MA algorithm, this section compares
MA with the two reference algorithms GTS [5] and ABC [9] on the I2
instances. A summary of the comparative results is shown in Table 3.
Row ‘#Best’ denotes the number of instances for which the corresponding
algorithm produces the best result among all the compared algorithms.
The last row gives the p-values from the Wilcoxon signed-rank test with
a confidence level of 95%. The symbol ‘-’ indicates that the corresponding
algorithm cannot obtain a feasible solution on the instance within the time
limit with n/2 seconds and other symbols have the same meanings as those
in Table 2. The results for GTS and ABC are directly compiled from [9] and
were obtained on a platform equipped with an Intel i5 quad-core processor
(2.90GHz) and 8 GB RAM running on MAC OS X operating system. Note
that the results on the I2 instances reported for GTS were based on the
implementation by the authors of [9]. The scale ratio (2.10/2.90 ≈ 0.72) of
the CPU frequencies from SPEC (www.spec.org) indicates that our computer
is slower than the computer used in [9].

19

T
a
b

le
3
.

C
o
m

p
a
ra

ti
ve

re
su

lt
s

of
th

e
p

ro
p

o
se

d
M

A
al

go
ri

th
m

an
d

th
e

re
fe

re
n

ce
al

go
ri

th
m

s
(A

B
C

[9
]

an
d

G
T

S
[5

])
on

I
2

in
st

an
ce

s
(p

ar
t

I)
. In
st
a
n
ce

ρ
=

8
0
%

ρ
=

1
0
0
%

ρ
=

1
0
5
%

A
B
C

G
T
S

M
A

A
B
C

G
T
S

M
A

A
B
C

G
T
S

M
A

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

0
1
-P

1
0
0
T
1
0
M
6

3
0
1

2
4
3

4
4
9

4
4
9
.0
0

0
.0
4

-
2
4
3

4
4
9

4
4
9
.0
0

0
.0
6

-
-

4
4
9

4
4
9
.0
0

0
.0
4

0
1
-P

1
0
0
T
1
0
M
8

4
0
1

4
0
6

5
0
8

5
0
8
.0
0

0
.0
1

-
4
2
1

5
0
8

5
0
8
.0
0

0
.0
3

-
-

5
0
8

5
0
8
.0
0

0
.0
6

0
1
-P

1
0
0
T
5
M
1
2

7
0
4

6
5
4

8
9
9

8
9
9
.0
0

0
.0
3

6
9
0

5
3
8

8
9
9

8
9
9
.0
0

0
.0
5

-
-

8
9
9

8
9
9
.0
0

0
.0
6

0
1
-P

1
0
0
T
5
M
1
6

8
9
6

8
0
2

1
0
1
6

1
0
1
6
.0
0

0
.0
9

9
0
3

8
3
7

1
0
1
6

1
0
1
6
.0
0

0
.1
3

9
2
6

-
1
0
1
6

1
0
1
6
.0
0

0
.1
5

0
2
-P

1
0
0
T
1
0
M
6

3
1
9

2
9
2

4
4
9

4
4
9
.0
0

0
.0
5

3
2
3

3
4
7

4
4
9

4
4
9
.0
0

0
.0
7

-
-

4
4
9

4
4
9
.0
0

0
.0
8

0
2
-P

1
0
0
T
1
0
M
8

4
1
8

4
1
2

5
0
8

5
0
8
.0
0

0
.0
4

4
0
6

4
3
0

5
0
8

5
0
8
.0
0

0
.0
5

-
-

5
0
8

5
0
8
.0
0

0
.0
6

0
2
-P

1
0
0
T
5
M
1
2

7
3
3

6
6
5

8
9
9

8
9
9
.0
0

0
.0
3

7
3
7

6
8
0

8
9
9

8
9
9
.0
0

0
.0
3

7
0
4

-
8
9
9

8
9
9
.0
0

0
.0
4

0
2
-P

1
0
0
T
5
M
1
6

9
3
2

8
8
1

1
0
1
6

1
0
1
6
.0
0

0
.0
2

9
1
5

8
5
6

1
0
1
6

1
0
1
6
.0
0

0
.0
3

9
0
2

-
1
0
1
6

1
0
1
6
.0
0

0
.0
3

0
3
-P

1
0
0
T
1
0
M
6

3
0
8

3
3
3

4
4
9

4
4
9
.0
0

0
.0
6

-
1
6
0

4
4
9

4
4
9
.0
0

0
.0
5

-
-

4
4
9

4
4
9
.0
0

0
.0
6

0
3
-P

1
0
0
T
1
0
M
8

4
1
6

4
3
8

5
0
8

5
0
8
.0
0

0
.0
7

3
9
7

2
4
6

5
0
8

5
0
8
.0
0

0
.0
7

-
-

5
0
8

5
0
8
.0
0

0
.0
9

0
3
-P

1
0
0
T
5
M
1
2

7
3
6

7
1
9

8
9
9

8
9
9
.0
0

0
.3
0

7
3
2

6
8
2

8
9
9

8
9
9
.0
0

0
.4
7

-
-

8
9
9

8
9
9
.0
0

0
.5
1

0
3
-P

1
0
0
T
5
M
1
6

9
1
9

8
6
1

1
0
1
6

1
0
1
6
.0
0

0
.0
6

9
4
7

8
3
5

1
0
1
6

1
0
1
6
.0
0

0
.0
6

-
-

1
0
1
6

1
0
1
6
.0
0

0
.0
8

0
4
-P

1
0
0
T
1
0
M
6

3
1
6

3
1
4

4
4
9

4
4
9
.0
0

0
.0
4

-
-

4
4
9

4
4
9
.0
0

0
.0
7

-
-

4
4
9

4
4
9
.0
0

0
.1
0

0
4
-P

1
0
0
T
1
0
M
8

4
1
7

3
8
7

5
0
8

5
0
8
.0
0

0
.0
5

4
1
6

-
5
0
8

5
0
8
.0
0

0
.1
2

4
0
1

-
5
0
8

5
0
8
.0
0

0
.1
5

0
4
-P

1
0
0
T
5
M
1
2

7
1
8

6
4
8

8
9
9

8
9
9
.0
0

0
.1
5

7
3
1

6
7
4

8
9
9

8
9
9
.0
0

0
.1
0

-
-

8
9
9

8
9
9
.0
0

0
.1
8

0
4
-P

1
0
0
T
5
M
1
6

9
1
5

8
7
9

1
0
1
6

1
0
1
6
.0
0

0
.0
2

9
1
5

8
7
1

1
0
1
6

1
0
1
6
.0
0

0
.0
4

-
-

1
0
1
6

1
0
1
6
.0
0

0
.0
2

0
5
-P

2
0
0
T
1
0
M
1
2

5
8
4

5
5
0

8
3
3

8
3
3
.0
0

0
.3
0

5
8
9

5
9
4

8
3
3

8
3
3
.0
0

0
.3
6

-
-

8
3
3

8
3
3
.0
0

0
.5
0

0
5
-P

2
0
0
T
1
0
M
1
6

7
6
8

7
4
2

9
4
5

9
4
5
.0
0

0
.2
8

7
6
7

7
0
5

9
4
5

9
4
5
.0
0

0
.2
9

-
-

9
4
5

9
4
5
.0
0

0
.3
4

0
5
-P

2
0
0
T
5
M
2
4

1
2
9
4

1
1
7
1

1
6
6
7

1
6
6
7
.0
0

0
.1
8

1
2
7
9

1
1
9
0

1
6
6
7

1
6
6
7
.0
0

0
.3
3

-
-

1
6
6
7

1
6
6
7
.0
0

0
.7
3

0
5
-P

2
0
0
T
5
M
3
2

1
6
5
1

1
5
5
3

1
8
9
0

1
8
9
0
.0
0

0
.2
0

1
6
6
1

1
4
9
9

1
8
9
0

1
8
9
0
.0
0

0
.2
0

-
-

1
8
9
0

1
8
9
0
.0
0

0
.2
6

0
6
-P

2
0
0
T
1
0
M
1
2

6
0
0

5
8
5

8
3
3

8
3
3
.0
0

0
.2
2

5
8
6

5
9
7

8
3
3

8
3
3
.0
0

0
.2
3

-
-

8
3
3

8
3
3
.0
0

0
.3
3

0
6
-P

2
0
0
T
1
0
M
1
6

7
7
4

7
8
1

9
4
5

9
4
5
.0
0

0
.3
1

7
6
0

7
7
7

9
4
5

9
4
5
.0
0

0
.3
4

-
-

9
4
5

9
4
5
.0
0

0
.4
7

0
6
-P

2
0
0
T
5
M
2
4

1
3
1
6

1
1
8
7

1
6
6
7

1
6
6
7
.0
0

0
.6
4

1
3
2
3

1
2
0
4

1
6
6
7

1
6
6
7
.0
0

0
.8
9

-
-

1
6
6
7

1
6
6
7
.0
0

1
.0
4

0
6
-P

2
0
0
T
5
M
3
2

1
6
6
9

1
6
1
5

1
8
9
0

1
8
9
0
.0
0

2
.6
7

1
6
7
7

1
6
2
6

1
8
9
0

1
8
9
0
.0
0

3
.1
3

-
-

1
8
9
0

1
8
9
0
.0
0

3
.5
1

0
7
-P

2
0
0
T
1
0
M
1
2

5
6
8

5
2
5

8
3
3

8
3
3
.0
0

0
.2
0

5
7
4

5
5
0

8
3
3

8
3
3
.0
0

0
.2
5

-
-

8
3
3

8
3
3
.0
0

0
.2
9

0
7
-P

2
0
0
T
1
0
M
1
6

7
5
3

7
2
4

9
4
5

9
4
5
.0
0

0
.2
1

7
6
0

7
9
9

9
4
5

9
4
5
.0
0

0
.3
2

-
-

9
4
5

9
4
5
.0
0

0
.4
3

0
7
-P

2
0
0
T
5
M
2
4

1
2
9
9

1
2
4
9

1
6
6
7

1
6
6
7
.0
0

0
.7
0

1
3
4
4

1
3
1
5

1
6
6
7

1
6
6
7
.0
0

1
.3
5

-
-

1
6
6
7

1
6
6
7
.0
0

1
.7
3

0
7
-P

2
0
0
T
5
M
3
2

1
6
8
4

1
6
2
4

1
8
9
0

1
8
9
0
.0
0

0
.3
4

1
6
8
8

-
1
8
9
0

1
8
9
0
.0
0

0
.7
5

-
-

1
8
9
0

1
8
9
0
.0
0

0
.7
8

0
8
-P

2
0
0
T
1
0
M
1
2

5
9
3

4
7
7

8
3
3

8
3
3
.0
0

0
.2
1

-
5
5
8

8
3
3

8
3
3
.0
0

0
.2
4

-
-

8
3
3

8
3
3
.0
0

0
.3
6

0
8
-P

2
0
0
T
1
0
M
1
6

7
9
1

7
0
4

9
4
5

9
4
5
.0
0

0
.3
4

7
8
4

7
1
4

9
4
5

9
4
5
.0
0

0
.3
2

-
-

9
4
5

9
4
5
.0
0

0
.3
8

0
8
-P

2
0
0
T
5
M
2
4

1
3
2
0

1
1
6
6

1
6
6
7

1
6
6
7
.0
0

1
.2
6

1
3
1
0

1
2
2
1

1
6
6
7

1
6
6
7
.0
0

1
.9
6

-
-

1
6
6
7

1
6
6
7
.0
0

2
.3
0

0
8
-P

2
0
0
T
5
M
3
2

1
6
8
7

1
6
1
3

1
8
9
0

1
8
9
0
.0
0

0
.1
8

1
6
6
5

1
5
7
1

1
8
9
0

1
8
9
0
.0
0

0
.2
0

-
-

1
8
9
0

1
8
9
0
.0
0

0
.3
4

0
9
-P

3
0
0
T
1
0
M
1
8

9
1
4

8
2
0

1
2
9
4

1
2
9
4
.0
0

0
.4
1

9
0
0

8
5
7

1
2
9
4

1
2
9
4
.0
0

0
.5
5

-
-

1
2
9
4

1
2
9
4
.0
0

0
.8
4

0
9
-P

3
0
0
T
1
0
M
2
4

1
1
9
2

1
1
4
7

1
4
7
9

1
4
7
9
.0
0

0
.7
7

1
1
9
4

1
0
8
3

1
4
7
9

1
4
7
9
.0
0

0
.7
9

-
-

1
4
7
9

1
4
7
9
.0
0

0
.8
2

0
9
-P

3
0
0
T
5
M
3
6

2
0
0
5

1
8
9
0

2
5
8
9

2
5
8
9
.0
0

1
.3
7

2
0
1
1

1
9
5
8

2
5
8
9

2
5
8
9
.0
0

1
.8
9

-
-

2
5
8
9

2
5
8
9
.0
0

2
.9
6

0
9
-P

3
0
0
T
5
M
4
8

2
5
8
0

2
4
7
9

2
9
5
9

2
9
5
9
.0
0

0
.4
5

2
5
2
9

2
5
6
3

2
9
5
9

2
9
5
9
.0
0

0
.4
2

-
-

2
9
5
9

2
9
5
9
.0
0

1
.1
3

1
0
-P

3
0
0
T
1
0
M
1
8

8
8
2

8
7
5

1
2
9
4

1
2
9
4
.0
0

0
.6
7

8
6
5

-
1
2
9
4

1
2
9
4
.0
0

0
.4
7

-
-

1
2
9
4

1
2
9
4
.0
0

0
.7
7

1
0
-P

3
0
0
T
1
0
M
2
4

1
1
6
4

1
1
7
1

1
4
7
9

1
4
7
9
.0
0

0
.7
4

1
2
0
4

-
1
4
7
9

1
4
7
9
.0
0

0
.8
2

-
-

1
4
7
9

1
4
7
9
.0
0

0
.6
1

1
0
-P

3
0
0
T
5
M
3
6

1
9
5
8

1
8
2
0

2
5
8
9

2
5
8
9
.0
0

0
.4
2

1
9
5
5

1
8
0
8

2
5
8
9

2
5
8
9
.0
0

0
.4
6

-
-

2
5
8
9

2
5
8
9
.0
0

0
.4
7

1
0
-P

3
0
0
T
5
M
4
8

2
5
8
3

2
4
1
2

2
9
5
9

2
9
5
9
.0
0

0
.4
4

2
5
8
5

2
4
3
0

2
9
5
9

2
9
5
9
.0
0

0
.4
8

-
-

2
9
5
9

2
9
5
9
.0
0

0
.3
9

1
1
-P

3
0
0
T
1
0
M
1
8

9
1
4

9
3
9

1
2
9
4

1
2
9
4
.0
0

0
.5
7

8
9
9

8
9
6

1
2
9
4

1
2
9
4
.0
0

0
.6
2

-
-

1
2
9
4

1
2
9
4
.0
0

1
.1
4

1
1
-P

3
0
0
T
1
0
M
2
4

1
2
0
9

1
2
1
3

1
4
7
9

1
4
7
9
.0
0

0
.7
2

1
1
9
5

-
1
4
7
9

1
4
7
9
.0
0

0
.7
1

-
-

1
4
7
9

1
4
7
9
.0
0

0
.6
6

20

T
a
b

le
3
.

C
o
m

p
a
ra

ti
ve

re
su

lt
s

of
th

e
p

ro
p

o
se

d
M

A
al

go
ri

th
m

an
d

th
e

re
fe

re
n

ce
al

go
ri

th
m

s
(A

B
C

[9
]

an
d

G
T

S
[5

])
on

I
2

in
st

an
ce

s
(p

ar
t

II
). In
st
a
n
ce

ρ
=

8
0
%

ρ
=

1
0
0
%

ρ
=

1
0
5
%

A
B
C

G
T
S

M
A

A
B
C

G
T
S

M
A

A
B
C

G
T
S

M
A

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
b
e
s
t

f
b
e
s
t

f
a
v
g

t a
v
g

1
1
-P

3
0
0
T
5
M
3
6

2
0
4
6

1
8
5
6

2
5
8
9

2
5
8
9
.0
0

2
.8
5

2
0
0
6

1
7
1
2

2
5
8
9

2
5
8
9
.0
0

3
.0
9

-
-

2
5
8
9

2
5
8
9
.0
0

3
.5
0

1
1
-P

3
0
0
T
5
M
4
8

2
6
4
4

2
3
5
1

2
9
5
9

2
9
5
9
.0
0

2
.0
9

2
5
2
2

2
4
1
2

2
9
5
9

2
9
5
9
.0
0

2
.3
1

-
-

2
9
5
9

2
9
5
9
.0
0

3
.4
7

1
2
-P

3
0
0
T
1
0
M
1
8

9
4
8

7
8
3

1
2
9
4

1
2
9
4
.0
0

0
.5
0

8
9
9

7
9
1

1
2
9
4

1
2
9
4
.0
0

0
.5
8

-
-

1
2
9
4

1
2
9
4
.0
0

0
.4
6

1
2
-P

3
0
0
T
1
0
M
2
4

1
2
0
0

1
1
2
6

1
4
7
9

1
4
7
9
.0
0

0
.7
9

1
1
9
7

1
1
6
5

1
4
7
9

1
4
7
9
.0
0

0
.9
2

-
-

1
4
7
9

1
4
7
9
.0
0

0
.6
1

1
2
-P

3
0
0
T
5
M
3
6

1
9
5
1

1
9
3
7

2
5
8
9

2
5
8
9
.0
0

1
.8
9

2
0
1
0

1
7
7
8

2
5
8
9

2
5
8
9
.0
0

1
.9
3

-
-

2
5
8
9

2
5
8
9
.0
0

2
.7
1

1
2
-P

3
0
0
T
5
M
4
8

2
6
2
1

2
3
9
8

2
9
5
9

2
9
5
9
.0
0

1
.4
7

2
5
7
2

2
5
2
5

2
9
5
9

2
9
5
9
.0
0

1
.8
7

-
-

2
9
5
9

2
9
5
9
.0
0

3
.2
8

1
3
-P

4
0
0
T
1
0
M
2
4

1
2
3
3

1
1
7
4

1
7
5
4

1
7
5
4
.0
0

1
.0
9

-
-

1
7
5
4

1
7
5
4
.0
0

1
.1
8

-
-

1
7
5
4

1
7
5
4
.0
0

1
.2
4

1
3
-P

4
0
0
T
1
0
M
3
2

1
6
4
5

1
6
0
2

2
0
1
3

2
0
1
3
.0
0

1
.9
9

-
1
6
9
4

2
0
1
3

2
0
1
3
.0
0

2
.2
0

-
-

2
0
1
3

2
0
1
3
.0
0

2
.5
2

1
3
-P

4
0
0
T
5
M
4
8

2
7
1
5

2
3
2
4

3
5
0
9

3
5
0
9
.0
0

2
.6
5

2
7
0
2

2
5
2
6

3
5
0
9

3
5
0
9
.0
0

4
.0
8

-
-

3
5
0
9

3
5
0
9
.0
0

4
.6
7

1
3
-P

4
0
0
T
5
M
6
4

3
5
2
1

3
3
1
4

4
0
2
6

4
0
2
6
.0
0

1
.6
0

3
5
5
0

3
3
3
9

4
0
2
6

4
0
2
6
.0
0

1
.8
7

-
-

4
0
2
6

4
0
2
6
.0
0

2
.3
0

1
4
-P

4
0
0
T
1
0
M
2
4

1
2
2
8

1
1
1
8

1
7
5
4

1
7
5
4
.0
0

1
.0
4

1
2
2
9

1
1
6
8

1
7
5
4

1
7
5
4
.0
0

1
.1
1

-
-

1
7
5
4

1
7
5
4
.0
0

1
.0
4

1
4
-P

4
0
0
T
1
0
M
3
2

1
6
3
4

1
5
8
1

2
0
1
3

2
0
1
3
.0
0

1
.8
4

1
6
5
8

1
4
6
6

2
0
1
3

2
0
1
3
.0
0

2
.2
4

-
-

2
0
1
3

2
0
1
3
.0
0

2
.4
5

1
4
-P

4
0
0
T
5
M
4
8

2
6
6
6

2
4
2
0

3
5
0
9

3
5
0
9
.0
0

5
.9
2

2
6
6
6

2
4
3
7

3
5
0
9

3
5
0
9
.0
0

7
.6
6

-
-

3
5
0
9

3
5
0
9
.0
0

9
.0
4

1
4
-P

4
0
0
T
5
M
6
4

3
5
0
6

3
2
6
8

4
0
2
6

4
0
2
6
.0
0

1
.3
3

3
5
2
3

3
1
4
3

4
0
2
6

4
0
2
6
.0
0

0
.9
6

-
-

4
0
2
6

4
0
2
6
.0
0

1
.6
4

1
5
-P

4
0
0
T
1
0
M
2
4

1
2
7
1

1
2
3
8

1
7
5
4

1
7
5
4
.0
0

1
.0
7

1
2
4
1

1
3
2
2

1
7
5
4

1
7
5
4
.0
0

1
.2
1

-
-

1
7
5
4

1
7
5
4
.0
0

1
.6
9

1
5
-P

4
0
0
T
1
0
M
3
2

1
6
5
1

1
6
3
2

2
0
1
3

2
0
1
3
.0
0

1
.7
8

1
6
5
7

1
6
6
2

2
0
1
3

2
0
1
3
.0
0

2
.5
3

-
-

2
0
1
3

2
0
1
3
.0
0

2
.8
9

1
5
-P

4
0
0
T
5
M
4
8

2
7
2
0

2
4
8
2

3
5
0
9

3
5
0
9
.0
0

2
.8
2

2
6
6
8

2
5
3
5

3
5
0
9

3
5
0
9
.0
0

4
.2
8

-
-

3
5
0
9

3
5
0
9
.0
0

4
.8
3

1
5
-P

4
0
0
T
5
M
6
4

3
5
6
3

3
3
0
7

4
0
2
6

4
0
2
6
.0
0

1
.5
7

3
5
6
2

3
2
3
8

4
0
2
6

4
0
2
6
.0
0

2
.2
5

-
-

4
0
2
6

4
0
2
6
.0
0

3
.1
3

1
6
-P

4
0
0
T
1
0
M
2
4

1
2
6
5

1
1
5
6

1
7
5
4

1
7
5
4
.0
0

1
.0
3

-
-

1
7
5
4

1
7
5
4
.0
0

1
.4
3

-
-

1
7
5
4

1
7
5
4
.0
0

1
.9
6

1
6
-P

4
0
0
T
1
0
M
3
2

1
6
3
7

1
5
9
7

2
0
1
3

2
0
1
3
.0
0

1
.8
6

-
-

2
0
1
3

2
0
1
3
.0
0

2
.3
0

-
-

2
0
1
3

2
0
1
3
.0
0

2
.7
0

1
6
-P

4
0
0
T
5
M
4
8

2
7
0
8

2
5
3
8

3
5
0
9

3
5
0
9
.0
0

1
.7
8

2
7
8
4

2
5
5
7

3
5
0
9

3
5
0
9
.0
0

1
.9
6

-
-

3
5
0
9

3
5
0
9
.0
0

2
.6
3

1
6
-P

4
0
0
T
5
M
6
4

3
4
7
2

3
2
7
8

4
0
2
6

4
0
2
6
.0
0

0
.8
6

3
4
5
9

3
4
2
7

4
0
2
6

4
0
2
6
.0
0

1
.1
3

-
-

4
0
2
6

4
0
2
6
.0
0

3
.7
2

1
7
-P

5
0
0
T
1
0
M
3
0

1
5
3
0

1
5
3
7

2
1
8
9

2
1
8
9
.0
0

1
.7
3

1
5
0
7

1
5
5
4

2
1
8
9

2
1
8
9
.0
0

2
.0
2

-
-

2
1
8
9

2
1
8
9
.0
0

2
.9
7

1
7
-P

5
0
0
T
1
0
M
4
0

2
0
3
7

1
9
7
2

2
5
0
9

2
5
0
8
.2
0

2
.1
0

-
2
0
6
5

2
5
0
9

2
5
0
9
.0
0

2
.7
6

-
-

2
5
0
9

2
5
0
9
.0
0

3
.8
9

1
7
-P

5
0
0
T
5
M
6
0

3
2
3
3

3
2
0
0

4
3
7
8

4
3
7
8
.0
0

4
.1
3

3
2
8
9

-
4
3
7
8

4
3
7
8
.0
0

5
.7
1

-
-

4
3
7
8

4
3
7
8
.0
0

6
.4
3

1
7
-P

5
0
0
T
5
M
8
0

4
2
8
9

4
2
5
0

5
0
1
9

5
0
1
9
.0
0

1
.9
7

4
2
6
6

-
5
0
1
9

5
0
1
9
.0
0

2
.4
1

-
-

5
0
1
9

5
0
1
9
.0
0

3
.6
3

1
8
-P

5
0
0
T
1
0
M
3
0

1
5
7
4

1
5
2
6

2
1
8
9

2
1
8
9
.0
0

2
.1
7

-
1
6
6
3

2
1
8
9

2
1
8
9
.0
0

3
.0
8

-
-

2
1
8
9

2
1
8
9
.0
0

3
.7
7

1
8
-P

5
0
0
T
1
0
M
4
0

2
0
6
7

1
9
8
2

2
5
0
9

2
5
0
6
.7
0

2
.7
8

-
2
1
0
7

2
5
0
9

2
5
0
9
.0
0

4
.2
4

-
-

2
5
0
9

2
5
0
9
.0
0

5
.1
4

1
8
-P

5
0
0
T
5
M
6
0

3
3
9
2

2
8
3
6

4
3
7
8

4
3
7
8
.0
0

1
.7
9

3
3
2
6

3
0
8
1

4
3
7
8

4
3
7
8
.0
0

1
.8
1

-
-

4
3
7
8

4
3
7
8
.0
0

3
.0
6

1
8
-P

5
0
0
T
5
M
8
0

4
3
4
9

3
9
6
0

5
0
1
9

5
0
1
9
.0
0

0
.9
0

4
3
5
5

4
0
7
2

5
0
1
9

5
0
1
9
.0
0

2
.1
2

-
-

5
0
1
9

5
0
1
9
.0
0

4
.2
0

1
9
-P

5
0
0
T
1
0
M
3
0

1
5
3
5

1
4
5
5

2
1
8
9

2
1
8
9
.0
0

2
.8
7

1
5
2
8

1
4
4
6

2
1
8
9

2
1
8
9
.0
0

5
.0
8

-
-

2
1
8
9

2
1
8
9
.0
0

5
.3
7

1
9
-P

5
0
0
T
1
0
M
4
0

2
0
3
1

1
9
0
6

2
5
0
9

2
5
0
8
.2
7

4
.4
9

-
2
0
1
1

2
5
0
9

2
5
0
9
.0
0

6
.6
2

-
-

2
5
0
9

2
5
0
9
.0
0

8
.8
3

1
9
-P

5
0
0
T
5
M
6
0

3
2
8
8

3
1
0
7

4
3
7
8

4
3
7
8
.0
0

4
.6
8

3
3
0
4

3
2
4
7

4
3
7
8

4
3
7
8
.0
0

5
.2
6

-
-

4
3
7
8

4
3
7
8
.0
0

5
.4
1

1
9
-P

5
0
0
T
5
M
8
0

4
3
2
5

4
1
4
4

5
0
1
9

5
0
1
9
.0
0

0
.5
0

4
3
9
1

4
2
4
3

5
0
1
9

5
0
1
9
.0
0

1
.8
8

-
-

5
0
1
9

5
0
1
9
.0
0

5
.5
6

2
0
-P

5
0
0
T
1
0
M
3
0

1
5
5
1

1
4
8
1

2
1
8
9

2
1
8
9
.0
0

2
.7
8

1
5
4
3

1
5
3
5

2
1
8
9

2
1
8
9
.0
0

4
.3
5

-
-

2
1
8
9

2
1
8
9
.0
0

5
.2
0

2
0
-P

5
0
0
T
1
0
M
4
0

2
0
2
3

2
0
0
2

2
5
0
9

2
5
0
7
.1
7

2
.1
8

2
0
2
6

2
0
6
9

2
5
0
9

2
5
0
9
.0
0

6
.8
7

-
-

2
5
0
9

2
5
0
9
.0
0

8
.2
8

2
0
-P

5
0
0
T
5
M
6
0

3
3
3
9

3
2
8
9

4
3
7
8

4
3
7
8
.0
0

0
.8
8

3
4
0
8

3
2
3
6

4
3
7
8

4
3
7
8
.0
0

1
.2
0

-
-

4
3
7
8

4
3
7
8
.0
0

2
.6
3

2
0
-P

5
0
0
T
5
M
8
0

4
3
0
5

4
2
1
6

5
0
1
9

5
0
1
9
.0
0

0
.5
9

4
3
5
8

4
3
6
3

5
0
1
9

5
0
1
9
.0
0

2
.0
0

-
-

5
0
1
9

5
0
1
9
.0
0

6
.6
1

#
B
es
t

0
0

8
0

0
0

8
0

0
0

8
0

p
-v
a
lu
e

7
.8
5
e-
1
5

7
.8
4
e-
1
5

7
.8
4
e-
1
5

7
.8
5
e-
1
5

7
.7
3
e-
1
5

7
.7
1
e-
1
5

21

Table 4
Comparison results between FITS, FLS and ILS on the 10 randomly selected
instances of I1 set.

Instance FITS FLS ILS

fbest favg tavg fbest favg tavg fbest favg tavg

02-P100T10M6 435 424.27 0.12 431 405.23 0.03 420 362.77 0.12

04-P100T5M12 863 849.40 0.16 857 839.97 0.12 859 794.07 0.13

05-P200T5M24 1591 1575.50 0.68 1586 1572.43 0.63 1563 1372.83 0.62

10-P300T5M36 2492 2470.83 1.75 2488 2467.80 1.52 2425 2275.53 1.27

12-P300T10M18 1279 1273.50 1.44 1276 1171.50 0.75 1246 1138.47 1.27

13-P400T10M24 1707 1640.40 2.73 1677 1442.20 1.10 1456 1325.40 1.91

15-P400T10M24 1726 1708.77 2.82 1717 1663.80 1.65 1622 1475.27 1.87

16-P400T5M48 3439 3413.33 3.52 3435 3404.10 3.38 3348 3050.07 3.37

18-P500T10M30 2135 2096.73 4.69 2120 1997.20 2.79 1975 1752.27 3.54

19-P500T5M80 5011 4998.87 7.33 5008 4996.10 6.96 4949 4762.20 4.82

#Best 10 10 0 0 0 0

Avgt(s) 2.52 1.89 1.89

One observes from Table 3 that our MA algorithm outperforms these two
reference algorithms on the I2 set by producing the best result for all 240
instances in terms of the best objective value. One also notices that, for all 240
instances, even our average results (favg) across the 30 independent runs are
better than the best results of the two reference algorithms. Furthermore, the
superiority of MA over each reference algorithm is confirmed by the Wilcoxon
signed-rank test with p-values less than 0.05. This experiment demonstrates
that MA competes very favorably with the reference algorithms on this set of
instances.

7 Analysis

This section is dedicated to an analysis of several key ingredients of the
proposed algorithm to illustrate their influences on the performance of the
algorithm, which includes the combined use of feasible and infeasible local
searches, the motivation behind the backbone-based crossover and the effect
of the memetic framework. The experiments were conducted on 10 randomly
selected instances from the I1 set and 30 instances from the I2 set, covering
three different diversity thresholds ρ = 80%, ρ = 100% and ρ = 105%.

22

Table 5
Comparison results between FITS, FLS and ILS on 30 instances of I2 set with
different thresholds ρ = 80%, ρ = 100% and ρ = 105%.

ρ Instance FITS FLS ILS

fbest favg tavg fbest favg tavg fbest favg tavg

80%

02-P100T10M6 449 449.00 0.03 449 449.00 0.01 449 449.00 0.01

04-P100T5M12 899 898.93 0.28 899 898.87 0.06 899 898.70 0.01

05-P200T5M24 1667 1666.97 0.13 1667 1666.97 0.05 1667 1666.93 0.04

10-P300T5M36 2589 2589.00 0.30 2589 2588.97 0.25 2589 2588.93 0.26

12-P300T10M18 1294 1293.97 0.29 1294 1293.97 0.13 1294 1293.97 0.11

13-P400T10M24 1754 1754.00 0.87 1754 1754.00 0.68 1754 1754.00 0.65

15-P400T10M24 1754 1753.97 0.93 1754 1753.97 1.04 1754 1753.93 0.74

16-P400T5M48 3509 3508.43 0.89 3509 3508.23 0.68 3509 3508.33 0.67

18-P500T10M30 2189 2188.80 1.20 2189 2188.80 2.15 2189 2188.33 0.36

19-P500T5M80 5019 5018.70 0.33 5019 5018.67 0.75 5019 5018.07 0.25

100%

02-P100T10M6 449 449.00 0.06 449 449.00 0.03 449 449.00 0.02

04-P100T5M12 899 899.00 0.05 899 899.00 0.03 899 899.00 0.02

05-P200T5M24 1667 1666.93 0.12 1667 1666.90 0.12 1667 1666.87 0.10

10-P300T5M36 2589 2589.00 0.35 2589 2589.00 0.32 2589 2589.00 0.33

12-P300T10M18 1294 1293.93 0.38 1294 1293.90 0.29 1294 1293.17 0.25

13-P400T10M24 1754 1754.00 0.98 1754 1754.00 0.76 1754 1754.00 0.69

15-P400T10M24 1754 1753.97 1.03 1754 1753.97 0.93 1754 1753.97 0.76

16-P400T5M48 3509 3508.60 1.21 3509 3508.33 0.76 3509 3508.53 0.74

18-P500T10M30 2189 2189.00 2.11 2189 2189.00 2.15 2189 2189.00 0.69

19-P500T5M80 5019 5018.70 1.02 5019 5018.67 0.93 5019 5018.67 0.47

105%

02-P100T10M6 449 449.00 0.06 449 449.00 0.04 449 449.00 0.02

04-P100T5M12 899 899.00 0.16 899 899.00 0.06 899 899.00 0.07

05-P200T5M24 1667 1667.00 0.58 1667 1666.83 0.24 1667 1666.47 0.16

10-P300T5M36 2589 2589.00 0.43 2589 2588.97 0.36 2589 2589.00 0.38

12-P300T10M18 1294 1294.00 0.39 1294 1294.00 0.31 1294 1293.93 0.28

13-P400T10M24 1754 1754.00 1.02 1754 1754.00 0.84 1754 1754.00 0.81

15-P400T10M24 1754 1753.93 1.28 1754 1753.83 1.03 1754 1753.67 0.87

16-P400T5M48 3509 3508.70 2.12 3509 3508.67 0.89 3509 3508.60 1.04

18-P500T10M30 2189 2188.97 2.78 2189 2188.90 2.34 2189 2188.83 1.46

19-P500T5M80 5019 5017.33 3.56 5019 5017.23 3.38 5019 5017.13 1.26

#Best 30 30 30 17 30 14

Avgt(s) 0.83 0.72 0.45

7.1 Effect of the combined use of feasible and infeasible local searches

A key feature of FITS is the hybrid scheme integrating both feasible and
infeasible local search methods. To examine the merit of the hybrid scheme,
an experiment was conducted to compare FITS and its two underlying local
search (FLS and ILS) procedures.

The comparative results are summarized in Tables 4 and 5. The average run
time in seconds to reach the best objective value for all the test instances is
given in the last row (‘Avgt’). Tables 4 and 5 show that FITS produced the
best result on all 40 instances in terms of the best objective value whereas FLS

23

Table 6
Percentage of individuals in the same crews in local optima of different qualities on
a random selection of 10 instances from I1 set.
Instance Shq Sall Slo Instance Shq Sall Slo

02-P100T10M6 0.84 0.71 0.55 13-P400T10M24 0.92 0.64 0.29

04-P100T5M12 0.86 0.69 0.57 15-P400T10M24 0.85 0.63 0.35

05-P200T5M24 0.81 0.64 0.35 16-P400T5M48 0.87 0.68 0.43

10-P300T5M36 0.79 0.58 0.41 18-P500T10M30 0.82 0.59 0.25

12-P300T10M18 0.76 0.57 0.38 19-P500T5M80 0.83 0.63 0.40

Table 7
Percentage of individuals in the same crews in local optima of different qualities on
30 instances from I2 set with different diversity thresholds ρ.

Instance ρ = 80% ρ = 100% ρ = 105%

Shq Sall Slo Shq Sall Slo Shq Sall Slo

02-P100T10M6 0.84 0.70 0.46 0.72 0.50 0.35 0.78 0.59 0.46

04-P100T5M12 0.64 0.46 0.35 0.81 0.58 0.44 0.89 0.62 0.50

05-P200T5M24 0.87 0.68 0.48 0.76 0.61 0.48 0.94 0.70 0.49

10-P300T5M36 0.85 0.57 0.36 0.74 0.50 0.35 0.95 0.76 0.53

12-P300T10M18 0.64 0.49 0.31 0.81 0.66 0.46 0.94 0.69 0.51

13-P400T10M24 0.89 0.69 0.45 0.90 0.65 0.42 0.77 0.65 0.40

15-P400T10M24 0.87 0.66 0.43 0.89 0.58 0.36 0.85 0.58 0.42

16-P400T5M48 0.67 0.49 0.32 0.84 0.63 0.45 0.91 0.67 0.41

18-P500T10M30 0.80 0.60 0.38 0.87 0.67 0.52 0.88 0.64 0.37

19-P500T5M80 0.69 0.47 0.29 0.89 0.62 0.51 0.81 0.58 0.34

and ILS yielded the best result on 30, 30 cases respectively. When comparing
the average objective value over 30 independent runs, FITS obtained the best
result on all the instances, while FLS and ILS produced the best result on
17, 14 out of the 40 instances respectively. The Wilcoxon signed-rank test
leads to small p-values in terms of the best solution values (average solution
values): 4.92e-3 (1.81e-5) for FITS v.s. FLS, and 5.06e-3 (5.60e-6) for FITS
v.s. ILS. This experiment demonstrates the effectiveness of the hybrid scheme
integrating both the feasible and infeasible local searches.

7.2 Motivation behind the backbone-based crossover

To explain the use of the proposed backbone-based crossover, this section
investigates the structural similarity between local optima having different
qualities. Given two local optima S1 and S2, the similarity between them is
defined as the percentage of individuals grouped together in both S1 and S2:
sim(S1, S2) = |J |

n
where J denotes the set of individuals grouped together in

S1 and S2. J is identified by using the group matching algorithm proposed in
Section 4.

24

Table 8
Comparison results between FITS and MA on the 10 randomly selected instances
of I1 set.

Instance FITS MA

fbest favg tavg fbest favg tavg

02-P100T10M6 435 428.83 0.88 435 429.17 1.17

04-P100T5M12 863 858.13 1.02 863 858.97 1.42

05-P200T5M24 1591 1585.97 5.24 1591 1586.63 6.61

10-P300T5M36 2499 2491.93 15.34 2505 2493.77 17.08

12-P300T10M18 1281 1278.70 8.73 1283 1279.90 12.09

13-P400T10M24 1707 1661.97 17.52 1707 1678.13 18.57

15-P400T10M24 1729 1722.93 19.32 1729 1724.20 19.45

16-P400T5M48 3445 3433.93 31.16 3446 3437.83 30.39

18-P500T10M30 2147 2118.33 29.13 2151 2129.17 30.01

19-P500T5M80 5011 5009.53 71.33 5013 5009.97 73.90

#Best 5 0 10 10

Avgt(s) 19.97 21.07

For this analysis, the same 40 instances (10 I1 instances and 30 I2 instances)
as before were used. For each instance, 1000 local optima of different qualities
were produced by using FITS and MA. Then the top 10% (100) local optima
having the largest objective values are selected to form the set of ‘high-quality
solutions’, and the bottom 10% (100) solutions with the smallest objective
values are used to build the set of ‘low-quality solutions’.

Tables 6 and 7 show the experimental results. Columns Shq, Sall and Slo
represent respectively the percentage of common individuals grouped across
the set of 100 high-quality solutions, the set of 1000 sampled local optima
and the set of 100 low-quality solutions. It is observed that the percentage of
individuals grouped together across the solutions from the set of high-quality
solutions is large, ranging from 0.64 to 0.95. This observation provides the basis
for the proposed backbone crossover operator, which preserves the common
individuals grouped together between two parent solutions.

7.3 Usefulness of the memetic framework

To analyze the effect of the memetic framework, the MA algorithm was com-
pared with a multi-start version of the FITS algorithm. For this experiment,
both FITS and MA were executed independently 30 times on each instance
with a time limit of n/2 seconds per run. Notice that the FITS algorithm
was run in a multi-start way by generating a random initial solution for each
restart until the cutoff time was reached.

25

Table 9
Comparisons between FITS and MA on 30 instances of I2 set with different
thresholds ρ = 80%, ρ = 100% and ρ = 105%.

ρ Instance FITS MA

fbest favg tavg fbest favg tavg

80%

02-P100T10M6 449 449.00 0.03 449 449.00 0.05

04-P100T5M12 899 898.83 0.13 899 899.00 0.15

05-P200T5M24 1667 1666.87 0.11 1667 1667.00 0.18

10-P300T5M36 2589 2589.00 0.32 2589 2589.00 0.42

12-P300T10M18 1294 1293.67 0.26 1294 1294.00 0.50

13-P400T10M24 1754 1754.00 0.82 1754 1754.00 1.09

15-P400T10M24 1754 1753.87 0.83 1754 1754.00 1.07

16-P400T5M48 3509 3508.63 0.98 3509 3509.00 1.78

18-P500T10M30 2189 2188.87 1.40 2189 2189.00 2.87

19-P500T5M80 5019 5018.73 0.36 5019 5019.00 0.50

100%

02-P100T10M6 449 449.00 0.05 449 449.00 0.07

04-P100T5M12 899 899.00 0.06 899 899.00 0.10

05-P200T5M24 1667 1666.97 0.18 1667 1667.00 0.33

10-P300T5M36 2589 2589.00 0.41 2589 2589.00 0.46

12-P300T10M18 1294 1293.83 0.31 1294 1294.00 0.58

13-P400T10M24 1754 1754.00 0.93 1754 1754.00 1.18

15-P400T10M24 1754 1753.97 1.07 1754 1754.00 1.21

16-P400T5M48 3509 3508.33 1.06 3509 3509.00 1.96

18-P500T10M30 2189 2189.00 1.97 2189 2189.00 3.08

19-P500T5M80 5019 5018.87 1.31 5019 5019.00 1.88

105%

02-P100T10M6 449 449.00 0.06 449 449.00 0.08

04-P100T5M12 899 899.00 0.14 899 899.00 0.18

05-P200T5M24 1667 1667.00 0.63 1667 1667.00 0.73

10-P300T5M36 2589 2589.00 0.44 2589 2589.00 0.47

12-P300T10M18 1294 1294.00 0.41 1294 1294.00 0.46

13-P400T10M24 1754 1754.00 1.12 1754 1754.00 1.24

15-P400T10M24 1754 1753.97 1.38 1754 1754.00 1.69

16-P400T5M48 3509 3508.87 2.34 3509 3509.00 2.63

18-P500T10M30 2189 2189 3.18 2189 2189.00 3.77

19-P500T5M80 5019 5018.83 4.56 5019 5019.00 5.56

#Best 30 15 30 30

Avgt(s) 0.89 1.21

Tables 8 and 9 summarize the computational results of the compared
algorithms. One observes that MA performs better than FITS in terms of
both the best and the average objective values. Specifically, MA obtained the
best result on all 40 instances considering the best objective value, whereas

26

FITS yielded the best result on 35 out of 40 instances. In terms of the average
objective value, MA produced the best result on all the 40 instances, while
FITS only obtained the best result on 15 instances. The average computation
time to reach the best objective value for all 40 instances indicates that MA is
a little slower than FITS. The Wilcoxon signed-rank test (p-value of 4.22e− 2
and 1.20e − 5 in terms of best and average results) supports the superiority
of MA over FITS.

8 Conclusions

This work introduced the first population-based memetic algorithm for solving
the problem of composing medical crews with equity and efficiency. The
proposed algorithm combines a backbone-based crossover for generating new
promising solutions and a powerful local optimization procedure mixing
feasible search and infeasible search to ensure an effective examination
of the search space. The computational experiments demonstrated that
our algorithm dominates the best performing approaches in the literature.
Specifically, it discovers improved best solutions (new lower bounds) for 303
out of the 320 test instances (≈ 95%). This work thus advances the state of
the art for solving the benchmark instances of the problem. More importantly,
the publicly available code of our algorithm can be freely used by researchers
and practitioners in health care service management (e.g., to compose medical
crews with a high equity and efficiency) and could incite more research on this
important application as well.

Meanwhile, given that the proposed algorithm is a heuristic method, one
does not know how far the reported solutions are from the optimal solutions.
As a result, more research is needed to investigate exact and approximation
approaches with quality guarantee. Moreover, to further improve the search
capacity of the proposed algorithm, it would be interesting to investigate
machine learning techniques [6,20,28,32] to make the search process more effec-
tive. In addition, the studied problem requires the simultaneous consideration
of two conflicting criteria (equity and efficiency). It is thus a special case of
the general multi-objective optimization. Consequently, it would be interesting
to investigate popular evolutionary multi-objective optimization approach,
in particular scalable algorithms [15] to deal with large-scale problems in
modern medical service systems. Finally, the search strategies of the proposed
algorithm follow general principles and could be applied to design algorithms
for other problems with equity and efficiency requirements.

27

Acknowledgment

We are grateful to the reviewers for their useful comments and suggestions
which helped us to significantly improve the paper.

References

[1] Aboueljinane, L., Sahin, E., & Jemai, Z. (2013). A review on simulation models
applied to emergency medical service operations. Computers & Industrial
Engineering, 66(4), 734-750.

[2] Abualigah, L., Alfar, H. E., Shehab, M., & Hussein, A. M. A. (2020). Sentiment
Analysis in Healthcare: A Brief Review. In: Abd Elaziz M., Al-qaness M., Ewees
A., & Dahou A. (Eds.), Recent Advances in NLP: The Case of Arabic Language,
Studies in Computational Intelligence, Vol 874 (pp. 129-141). Cham: Springer.

[3] Aringhieri, R., Carello, G., & Morale, D. (2007). Ambulance location through
optimization and simulation: the case of Milano urban area. XXXVIII Annual
Conference of the Italian Operations Research Society Optimization and
Decision Sciences, pp. 1-29.

[4] Aringhieri, R. (2008). Models for the efficient team planning at emergency
medical service of Milano. In: Xie, X., Lorca, F., & Marcon, E. (Eds.),
Operations Research for Health Care Delivery Engineering, Proceeding of
the 33rd international conference on Operational Research Applied to Health
Service (ORAHS 2007), pp. 281-288.

[5] Aringhieri, R. (2009). Composing medical crews with equity and efficiency.
Central European Journal of Operations Research, 17(3), 343-357.

[6] Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. (2016). Neural
Combinatorial Optimization with Reinforcement Learning. arXiv preprint
arXiv:1611.09940.

[7] Benlic, U., & Hao, J. K. (2011). A Multilevel Memetic Approach for Improving
Graph K-Partitions. IEEE Transactions on Evolutionary Computation, 15(5),
624-642.

[8] Cho, C. J. (1998). An equity-efficiency trade-off model for the optimum location
of medical care facilities. Socio-Economic Planning Sciences, 32(2), 99-112.

[9] Delgado-Osuna, J. A., Lozano, M., & Garćıa-Mart́ınez, C. (2016). An
alternative artificial bee colony algorithm with destructive-constructive
neighbourhood operator for the problem of composing medical crews.
Information Sciences, 326, 215-226.

[10] Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing.
Journal of Heuristics, 2(1), 5-30.

28

[11] Galinier, P., & Hao, J. K. (1999). Hybrid Evolutionary Algorithms for Graph
Coloring. Journal of Combinatorial Optimization, 3(4), 379-397.

[12] Galinier, P., Boujbel, Z., & Fernandes, M. C. (2011). An efficient memetic
algorithm for the graph partitioning problem. Annals of Operations Research,
191(1), 1-22.

[13] Glover, F., & Laguna, M. (1998). Tabu Search. In: Du, DZ., & Pardalos, P.
M. (Eds.), Handbook of Combinatorial Optimization, pp. 2093-2229. Boston:
Springer.

[14] Hao, J. K. (2012). Memetic Algorithms in Discrete Optimization. In: Neri, F.,
Cotta, C., & Moscato, P. (Eds.), Handbook of Memetic Algorithms, Studies in
Computational Intelligence, Vol 379 (pp. 73-94). Berlin: Springer.

[15] Hong, W., Tang, K., Zhou, A., Ishibuchi, H., & Yao, X. (2018). A
scalable indicator-based evolutionary algorithm for large-scale multiobjective
optimization. IEEE Transactions on Evolutionary Computation, 23(3), 525-537.

[16] Jin, Y., & Hao, J. K. (2016). Hybrid evolutionary search for the minimum sum
coloring problem of graphs. Information Sciences, 352-353, 15-34.

[17] Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A
comprehensive survey: artificial bee colony (ABC) algorithm and applications.
Artificial Intelligence Review, 42(1), 21-57.

[18] Khodaparasti, S., Maleki, H. R., Bruni, M. E., Jahedi, S., Beraldi, P., &
Conforti, D. (2016). Balancing efficiency and equity in location-allocation
models with an application to strategic EMS design. Optimization Letters,
10(5), 1053-1070.

[19] Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2), 83-97.

[20] Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial Optimization with
Graph Convolutional Networks and Guided Tree Search. In Advances in Neural
Information Processing Systems, pp. 539-548.

[21] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., &
Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3, 43-58.

[22] Mayhew, L. D., & Leonardi, G. (1982). Equity, Efficiency, and Accessibility
in Urban and Regional Health-Care Systems. Environment and Planning A:
Economy and Space, 14(11), 1479-1507.

[23] Moeini, R., Soltani-nezhad, M., & Daei, M. (2017). Constrained gravitational
search algorithm for large scale reservoir operation optimization problem.
Engineering Applications of Artificial Intelligence, 62, 222-233.

[24] Moscato, P., & Cotta, C. (2003). A Gentle Introduction to Memetic Algorithms.
In: Glover, F., & Kochenberger, G. A. (Eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science, Vol 57
(pp. 105-144). Boston: Springer.

29

[25] Paraskevopoulos, D. C., Laporte, G., Repoussis, P. P., & Tarantilis, C. D.
(2017). Resource constrained routing and scheduling: Review and research
prospects. European Journal of Operational Research, 263(3), 737-754.

[26] Porumbel, D. C., Hao, J. K. & Kuntz, P. (2010). An evolutionary approach
with diversity guarantee and well-informed grouping recombination for graph
coloring. Computers & Operations Research, 37(10), 1822-1832.

[27] Qin, J., Xu, X., Wu, Q., & Cheng, T. C. E. (2016). Hybridization of tabu search
with feasible and infeasible local searches for the quadratic multiple knapsack
problem. Computers & Operations Research, 66, 199-214.

[28] Rennie, S. J. , Marcheret, E., Mroueh, Y., Ross, J. & Goel, V. (2017). Self-
Critical Sequence Training for Image Captioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7008-7024.

[29] Silva, G. C., Ochi, L. S., & Martins, S. L. (2004). Experimental Comparison of
Greedy Randomized Adaptive Search Procedures for the Maximum Diversity
Problem. In: Ribeiro, C. C., & Martins S. L. (Eds.), Experimental and Efficient
Algorithms, Lecture Notes in Computer Science, Vol 3059 (pp. 498-512). Berlin:
Springer.

[30] Smith, H. K., Harper, P. R., & Potts, C. N. (2013). Bicriteria efficiency/equity
hierarchical location models for public service application. Journal of the
Operational Research Society, 64(4), 500-512.

[31] Sun, W., Hao, J. K., Lai, X., & Wu, Q. (2018). Adaptive feasible and infeasible
tabu search for weighted vertex coloring. Information Sciences, 466, 203-219.

[32] Tian, C., Xu, Y., Fei, L., Wang, J., Wen, J., & Luo, N. (2019). Enhanced CNN
for image denoising. CAAI Transactions on Intelligence Technology, 4(1), 17-23.

Appendix

This appendix shows the pseudo codes of the proposed memetic algorithm
(Algorithm 1) and its composing procedures, including the greedy construction
procedure (Algorithm 2), the backbone-based crossover operator procedure
(Algorithm 3), the tabu search procedure with feasible and infeasible explo-
ration (Algorithms 4-6).

30

Algorithm 1 Main scheme of MA

1: Input: An instance I, time limit tmax, population size |P |
2: Output: Best solution S∗ found
3: Initialize population Pop = {S1, S2, ..., S|P |}
4: S∗ ← Best(Pop)
5: while Time does not exceed tmax do
6: Select two parents Si ∈ Pop and Sj ∈ Pop at random
7: So ← Crossover(Si, Sj) /* Crossover to generate an offspring solution,

Section 4 */
8: So ← FITS (So) /* Improve the offspring solution by the tabu search

procedure, Section 5 */
9: if f(So) > f(S∗) then

10: S∗ ← So /* Update the recorded best solution */
11: end if
12: Pop← Pool Updating(So, Pop) /* Update the population, Section 3.3

*/
13: end while

Algorithm 2 The greedy construction algorithm
1: Input: Instance I
2: Output: A feasible initial solution denoted by S = {C0, C1, ..., CT}
3: Initializing C0 = {1, ..., n}, Ct = ∅ (t ∈ {1, ..., T}), Bpt = 0 (t ∈ {1, ..., T},
p ∈ {1, ..., n})

4: repeat
5: Emax ← {p ∈ C0 : ep = maxv∈C0{ev}} /* Emax represents the set of

unallocated individuals with the largest efficiency */
6: Smin ← {t = 1, ..., T : |Ct| = min{|Cm|,m = 1, ..., T}} /* Smin denotes

the set of crews with the smallest cardinality */
7: select p ∈ Emax, t ∈ Smin such that Bpt is maximized
8: C0 ← C0 \ {p}
9: Ct ← Ct ∪ {p}

10: for each q ∈ {1, ..., n} do
11: Bpt = Bpt + dpq
12: end for
13: until Each crew Ct (t ∈ {1, ..., T}) has exactly Mt individuals
14: if S is an infeasible solution then
15: repair solution(S) /* Solution repair procedure, Section 5.4 */
16: end if
17: return S = {C0, C1, ..., CT}

31

Algorithm 3 The backbone-based crossover

1: Input: Two parent solutions S1 = {C1
0 , C

1
1 , ..., C

1
T} and S2 =

{C2
0 , C

2
1 , ..., C

2
T}

2: Output: A feasible offspring solution So = {Co
0 , C

o
1 , ..., C

o
T}

3: /* Step 1: Create a partial solution based on backbone */
4: /* Group matching procedure */
5: Initializing Co

0 = {1, ..., n}, Co
t = ∅ (t ∈ {1, ..., T})

6: for t := 1 to T do
7: Identify a crew C1

i of S1 and a crew C2
j of S2 (i, j ∈ {1, ..., T}) such

that C1
i and C2

j have the maximum number of identical individuals
8: Co

t ← C1
i ∩ C2

j

9: /* Extending procedure */
10: coin← 1; L1 ← C1

i \Co
t ; L2 ← C2

j \Co
t

11: while |Co
t | < Mt && (L1 6= ∅ or L2 6= ∅) do

12: if coin is odd then
13: Choose an individual p from L1 with the highest individual

contribution
14: else
15: Choose an individual p from L2 with the highest individual

contribution
16: end if
17: Co

i ← Co
i ∪ {p}

18: L1 ← L1\{p}; L2 ← L2\{p}; coin← coin+ 1
19: end while
20: Remove all individuals in Co

t from all crews of S1 and S2

21: end for
22: /* Step 2: complete the partial offspring solution */
23: L← {1, ..., n}\{Co

1 ∪ ... ∪ Co
T}

24: repeat
25: Identify an individual p from L and a crew t among the ones having the

smallest cardinality such that the individual contribution IC(So, p, t) is
maximized

26: Co
t ← Co

t ∪ {p}; L← L\{p}
27: until Each crew Co

T (t ∈ {1, ..., T}) has exactly Mt individuals
28: if So is an infeasible solution then
29: repair solution(So) /* Repair the infeasible solution, Section 5.4 */
30: end if
31: return So

32

Algorithm 4 Main scheme of FITS
1: Input: An instance I, solution S
2: Output: Best found feasible solution S∗

3: Begin
4: S∗ ← S /* S∗ records the best feasible solution found so far */
5: β ← 0
6: while β < βmax do
7: /* feasible local search phase */
8: (S1, Slocal best)← feasible local search(S) /* Section 5.2 */
9: if f(Slocal best) > f(S∗) then

10: S∗ ← Slocal best /* Update the best recorded solution */
11: end if
12: /* infeasible local search phase */
13: (S, Slocal best)← infeasible local search(S1) /* Section 5.3 */
14: if f(Slocal best) > f(S∗) then
15: S∗ ← Slocal best

16: end if
17: β ← β + 1
18: end while
19: return S∗

Algorithm 5 Feasible Local Search

1: Input: Solution S
2: Output: Final solution S, best solution Slocal best found
3: Slocal best ← S /* Slocal best records the best solution found so far */
4: NI ← 0 /* number of consecutive iterations without improvement of
Slocal best */

5: Initialize tabu list
6: while NI < Ncons do
7: Choose a best admissible neighboring solution S

′

8: S ← S
′

9: Update tabu list
10: if f(S) > f(Slocal best) then
11: Slocal best ← S
12: NI ← 0
13: else
14: NI ← NI + 1
15: end if
16: end while
17: return (S, Slocal best)

33

Algorithm 6 Infeasible Local Search

1: Input: Feasible solution S returned by the feasible local search phase
2: Output: Final resulting solution S, best feasible solution found during

this phase Slocal best

3: Slocal best ← S
4: MI ← 0
5: β ← 0
6: Initialize tabu list
7: while MI ≤MILS do
8: Select a best admissible neighboring solution S ′ in terms of the extended

penalty-based evaluation function F
9: S ← S ′

10: Update tabu list
11: if S is a feasible solution then
12: if f(S) > f(Slocal best) then
13: Slocal best ← S
14: end if
15: end if
16: MI ←MI + 1
17: if All previous λ solutions are feasible then
18: β ← β − 1
19: else if They are all infeasible solutions then
20: β ← β + 1
21: end if
22: if β < 0 then β ← 0 end if
23: end while
24: if S is not a feasible solution then
25: repair solution(S) /* Solution repair procedure, Section 5.4 */
26: end if
27: return (S, Slocal best)

34

