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Rank aggregation combines the preference rankings of multiple alternatives from different voters into a

single consensus ranking, providing a useful model for a variety of practical applications, but posing a

computationally challenging problem. In this paper, we provide an effective hybrid evolutionary ranking

algorithm to solve the rank aggregation problem with both complete and partial rankings. The algorithm

features a semantic crossover based on concordant pairs and an enhanced late acceptance local search method

reinforced by a relaxed acceptance and replacement strategy and a fast incremental evaluation mechanism.

Experiments are conducted to assess the algorithm, indicating a highly competitive performance on both

synthetic and real-world benchmark instances compared with state-of-the-art algorithms. To demonstrate

its practical usefulness, the algorithm is applied to label ranking, a well-established machine learning task.

We additionally analyze several key algorithmic components to gain insight into their operation.

Key words : Rank Aggregation, Label Ranking, Machine Learning, Evolutionary Computation,

Metaheuristics.

1. Introduction

Rank aggregation is a classical problem in voting theory, where each voter provides a

preference ranking on a set of alternatives, and the system aggregates these rankings into
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a single consensus preference order to rank the alternatives. Rank aggregation plays a

critical role in a variety of applications such as collaborative filtering (Huang and Zeng

2011, Li et al. 2021), multiagent planning (Gharaei and Jolai 2021), information retrieval

(Tamine and Goeuriot 2022), and label ranking (Zhou et al. 2014, Destercke et al. 2015,

Zhou and Qiu 2018, Alfaro et al. 2021). As a result, this problem has been widely studied,

particularly in social choice theory and artificial intelligence.

Given a set of m labels Lm = {λ1, λ2, . . . , λm}, a ranking with respect to Lm is an ordering

of all (or some) labels that represent an agent’s preference for these labels. Rankings can be

either complete or partial. A complete ranking includes all the labels and can be identified

with a permutation π of the set {1,2, . . . ,m} such that π(λi) denotes the position of λi in

the ranking π, that is, the rank of the label λi in the ranking π. For two labels λi and λj,

π(λi)<π(λj) indicates that λi is preferred to λj and this preference relation is represented

by λi ≺ λj. However, real-world problems usually include partial rankings, where only m′

(2≤m′ <m) labels are ranked. For example, when customers’ preference relations about a

set of movies, books, and laptops, are collected, the preference information on some labels

may not be available. In this case, partial rankings can be used to express these partial

preference relations.

Rankings can also be classified as with or without ties. A tie means there is no preference

relation among the ranked labels. The tied labels constitute a bucket. Therefore, an arbi-

trary ranking σ can be represented as a list of its disjointed buckets, ordered from the most

to the least preferred, and separated by vertical bars. The labels between two consecutive

vertical bars indicate a bucket. Formally, a ranking can be represented as follows:

σ= (λ1
1, λ

1
2, . . . , λ

1
w1
|λ2

1, λ
2
2, . . . , λ

2
w2
| . . . |λk1, λk2, . . . , λkwk)

where 1 ≤ wi ≤m, 1 ≤ k ≤m, 2 ≤
∑k

i=1wi ≤m, and the labels λi1, λ
i
2, . . . , λ

i
wi

are in the

i-th bucket. A pairwise preference λi � λj is also denoted by λi|λj. Let L4 = {λ1, λ2, λ3, λ4}

be the set of labels. Then σ1 = (1|4|3|2) represents a complete ranking without ties, σ2 =

(1|3,4|2) represents a complete ranking with ties, σ3 = (1|2|4) denotes a partial ranking

without ties, and σ4 = (1,2|4) denotes a partial ranking with ties.

Given a dataset composed of n rankings σ1, σ2, . . . , σn provided by a set of n agents, the

rank aggregation problem (RAP) aims to identify the consensus permutation that best

represents this dataset (Dwork et al. 2001). The consensus permutation is a permutation
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in which its difference to the rankings of the dataset is minimal. The difference between the

two rankings is usually measured by the distance. Among the distance measures available

in the literature, the Kendall tau distance (or the Kendall distance) (Kendall 1938) is the

most widely used in several real-world applications centered on the analysis of ranked data

(Aledo et al. 2013, Zhou and Qiu 2018, Alfaro et al. 2021, Rodrigo et al. 2021).

The Kendall distance between two permutations (i.e., complete rankings) counts the

total number of pairs of labels that are assigned to different relative orders in these two

rankings. Formally, given two permutations πu and πv, the Kendall distance d(πu, πv) can

be defined as follows:

d(πu, πv) = |{(i, j) : i < j, (πu(λi)>πu(λj)∧πv(λi)<πv(λj))∨(πu(λi)<πu(λj)∧πv(λi)>πv(λj))}|

(1)

This is an intuitive and easily interpretable measure. For two permutations, the time

complexity of computing d is O(m log(m)).

Rankings can be incomplete. To calculate the distance between two arbitrary rankings

(e.g., partial rankings) σu and σv, the extended Kendall distance d′(σu, σv) counts the total

number of label pairs over which the rankings disagree, ignoring the label pairs that are not

ranked in both σu and σv. The extended Kendall distance d′ is non-negative and symmetric,

but the triangle inequality does not hold. When rankings σu and σv are permutations,

d′ agrees with d. As indicated in (Aledo et al. 2016), d′ is not a pseudometric but it is

suitable to provide a similarity measure for evaluating the difference between two arbitrary

rankings. Obviously, the distance between two equal rankings is zero (i.e., d′ = 0), but d′ = 0

does not indicate that these two rankings are the same. In the four rankings mentioned

above, d′(σ3, σ4) = 0, d′(σ2, σ3) = 1, and d′(σ1, σ3) = 1.

Given a set of arbitrary rankings {σ1, σ2, . . . , σn} over m labels Lm = {λ1, λ2, . . . , λm},

RAP aims to find the permutation πo such that

πo← arg min
π∈Ω

1

n

n∑
i=1

d′(π,σi) (2)

where Ω denotes the permutation space of {1,2, . . . ,m} and d′(π,σi) denotes the extended

Kendall distance between the two rankings π and σi. πo is the consensus permutation that

minimizes the sum of the total number of pairwise disagreements with respect to the given

rankings.
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Solving RAP is computationally challenging because it is known to be NP-hard when

aggregating more than three rankings (Bartholdi et al. 1989). As the review presented in

Section 2 indicates, even if several solution methods have been proposed for the problem,

there is still room for improvement. Certainly, the best existing methods for RAP with

complete rankings are time consuming for solving large RAP instances. For RAP with

partial rankings, only local search algorithms have been proposed. To the best of our

knowledge, a powerful population-based memetic approach (Neri and Cotta 2012) has not

yet been studied for RAP with arbitrary rankings.

In this study, we develop an effective hybrid evolutionary ranking (HER) algorithm

for solving the RAP (see Section 3). The proposed algorithm features two original and

complementary search components: a concordant pair-based semantic crossover (CPSX for

short) to construct meaningful offspring solutions, and an enhanced late acceptance hill

climbing (ELAHC) procedure to find high-quality local optima. The main contributions of

this study are summarized as follows.

From the perspective of algorithm design, the proposed CPSX operator is the first

backbone-based crossover for RAP that relies on the identification and transmission of con-

cordant pairs (building blocks) shared by the parent solutions. By inheriting meaningful

building blocks, CPSX aims to generate promising offspring solutions that serve as start-

ing points for local search optimization. Moreover, ELAHC reinforces the well-known late

acceptance hill climbing (LAHC) heuristic (Burke and Bykov 2017) by exploring different

high-quality solutions around each new offspring solution through the combined use of a

relaxed acceptance and replacement strategy and an incremental evaluation mechanism

introduced for RAP.

From the perspective of computational results, we present extensive experimental studies

to demonstrate the high competitiveness of the proposed algorithms compared to state-of-

the-art algorithms on both synthetic and real-world benchmark instances. In addition, we

show the practical usefulness of this study for an important machine learning task known

as label ranking.

The remainder of this paper is organized as follows: Section 2 provides a review of

existing rank aggregation methods. Section 3 presents the proposed algorithm, followed by

the computational results and comparisons in Section 4. The practical usefulness of the

proposed method is illustrated in label ranking in Section 5. Experimental studies on the
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key issues of the proposed algorithm are presented in Section 6. Section 7 summarizes the

study’s contributions.

2. Related Work on Rank Aggregation

Owing to the theoretical and practical significance of RAP, considerable effort has been

devoted to the design of solution methods for this problem. These methods can be classi-

fied into two categories: exact algorithms and heuristic algorithms. Ali and Meilă (2012)

performed an experimental analysis of many heuristics and exact algorithms for solving the

RAP problem using data obtained from Mallows distributions following different parame-

terizations. Because RAP is an NP-hard problem (Bartholdi et al. 1989), exact algorithms

are only practical for problem instances with a limited size. To handle large and difficult

instances, several heuristic algorithms have been proposed to find approximate solutions.

The standard Borda method (Borda 1781) is a well-established greedy heuristic for RAP,

which is intuitive and simple to compute for complete rankings. This method has the

advantage of being simple and fast, but the solutions obtained may be far from the true

optima. Aledo et al. (2013) used the genetic algorithm (GA) to solve the RAP problem

with complete rankings (i.e., Kemeny ranking problem (KRP) (Yoo and Escobedo 2021)).

Even though this algorithm only relies on standard permutation crossovers (position-based

crossover, order crossover, order-based crossover) and mutations (insertion, displacement,

and inversion), it obtained significantly better results than the most representative algo-

rithms studied in (Ali and Meilă 2012). Aledo et al. (2018) further applied (1+λ) evolution

strategies (ES) to solve the optimal bucket order problem (OBOP), whose objective is

to obtain a complete consensus ranking (where ties are allowed) from a matrix of prefer-

ences (also known as the precedence matrix). The authors experimentally evaluated several

configurations of their ES algorithm.

To address RAP in the general setting, Aledo et al. (2016) proposed an improved Borda

method for RAP containing arbitrary kinds of rankings and outperformed the standard

Borda method. In addition, Nápoles et al. (2017) applied ant colony optimization to solve

an extension of KRP, that is, the weighted KRP for partial rankings. DAmbrosio et al.

(2017) proposed a differential evolution algorithm for consensus-ranking detection within

Kemeny’s axiomatic framework. To reduce the computational cost of the evaluation in

RAP, Aledo et al. (2017b) proposed a partial evaluation method and integrated it into a
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mutation-based metaheuristic algorithm. Recently, Aledo et al. (2019) performed a com-

parative study of four local search-based algorithms: hill climbing (HC), iterated local

search (ILS), variable neighborhood search (VNS) and the greedy randomized adaptive

search procedure (GRASP). Both the interchange and insert neighborhood are used in

these local search algorithms. Empirical results show ILS achieves the best performance

when a large number of fitness evaluations is allowed, although GRASP and VNS do not

differ from ILS in terms of statistical significance.

3. Hybrid Evolutionary Ranking for Rank Aggregation Problem

In this section, we present the first hybrid evolutionary ranking (HER) algorithm for the

rank aggregation problem with complete rankings. We begin with the solution represen-

tation and evaluation function, and then introduce the main components of the proposed

algorithm. In Section 4.4, we explain how the algorithm can be easily adapted to the case

of partial rankings by simply replacing the Kendall distance with the extended Kendall

distance.

3.1. Solution Representation and Evaluation Function

Let D = {π1, π2, . . . , πn} be a given dataset. A feasible candidate solution for the problem

is a permutation π of the set {1,2, . . . ,m}. The search space Ω is composed of all possible

permutations of size n. For a given candidate solution π in Ω, the objective function value

(fitness) is calculated as follows:

f(π) =
1

n

n∑
k=1

d(π,πk) (3)

where d(π,πk) denotes the Kendall distance between π and πk. Because calculating the

Kendall distance d(π,πk) requires O(m log(m)) time, the evaluation of a candidate solution

requires O(n ·m log(m)) time. The purpose of the HER algorithm is to find a permutation

π∗ ∈Ω with the smallest objective function value f(π∗).

3.2. General Framework

The HER algorithm adopts the memetic algorithm framework in discrete optimization

(Neri and Cotta 2012, Zhou et al. 2023b,c) and combines a population-based approach with

local optimization. As shown in Algorithm 1, HER is composed of four main components: a

population initialization procedure, a concordance pairs-based semantic crossover (CPSX
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for short), an enhanced late acceptance hill climbing (ELAHC) method, and a population

updating strategy. The algorithm starts with a population of high-quality solutions. At

each subsequent generation, a promising offspring solution is first generated by CPSX

operator, then improved by ELAHC procedure, and finally considered for acceptance by

the population updating strategy. The process is repeated until a stopping condition (i.e.,

the time limit tmax or maximum idle generation count ζ̂) is satisfied. We present each key

procedure in the following sections.

Algorithm 1 Hybrid Evolutionary Ranking for RAP

Input: Problem instance I, population size µ, length of history cost list ρ, maximum idle iteration count ζ̂,

and maximal idle generation count ξ̂

Output: The best found solution π∗

1: P←PopulationInitialization(µ); //build an initial population

2: π∗← arg minπi∈P f(πi); //record the best solution

3: Gidle← 0;

4: while Stopping condition is not met do

5: π←CPSX(P ); //construct an offspring ranking based on CPSX operator

6: π′←ELAHC(π,ρ, ζ̂); //improve it through the ELAHC procedure

7: if f(π′)< f(π∗) then

8: π∗← π′;

9: Gidle← 0;

10: else

11: Gidle←Gidle + 1;

12: end if

13: if Gidle > ξ̂ then

14: break;

15: end if

16: P ←PopulationUpdating(P,π′); //update the population

17: end while

18: return The best found solution π∗

3.3. Population Initialization

HER starts its search with a population of µ high-quality solutions, where each solution

is obtained in two steps. First, an initial solution is obtained using a traditional Borda

procedure. Then, the initial solution is further improved by ELAHC (see Section 3.5) before

being added to the population.
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The Borda procedure uses a well-established voting rule in social choice theory. We

assume that the preferences of n voters are expressed in terms of rankings π1, π2, . . . , πn

over m alternatives. For each ranking πi, the highest-ranked alternative receives m votes,

the second highest receives m− 1 votes, . . . , and the lowest-ranked alternative receives

only one vote, where m is the number of alternatives. The total score of an alternative is

the sum of the votes that it has received from all n voters. Finally, a representative ranking

is obtained based on the scores of the alternatives, where all alternatives are sorted in

decreasing order of their scores, and the ties are broken at random. The Borda method

is simple and terminates in O(n ·m) time. To introduce randomness into the approach,

which is helpful for effective exploration of the search space, we adopt a randomized Borda

method that aggregates only (1 − β) · n (β ∈ (0,0.5) is a randomized factor) rankings

randomly selected from n rankings.

3.4. Concordant Pairs-based Semantic Crossover

As a driving force of hybrid evolutionary algorithms, a meaningful crossover operator

should be able to generate promising offspring solutions that not only inherit the good

properties of the parents but also introduce new useful characteristics (Pavai and Geetha

2016). The backbone concept has been widely used to define the good properties of parents.

A variety of backbone-based crossovers have been proposed for subset selection problems,

such as the maximum diversity problem (Zhou et al. 2017), the Steiner tree problem

(Fu and Hao 2015), the critical node problem (Zhou et al. 2021, 2023c), and grouping

problems such as the graph coloring (Galinier and Hao 1999) and the generalized quadratic

multiple knapsack problem (Chen and Hao 2016). For the RAP problem whose solutions are

permutations, we propose the first backbone-based crossover, named concordant pair-based

semantic crossover (CPSX for short), which relies on the identification and transmission of

concordant pairs (building blocks) shared by the parent solutions. By inheriting meaningful

building blocks, crossover favors the generation of promising offspring solutions.

A ranking π of m labels can be equivalently transformed into a set of m(m−1)/2 pairwise

preferences. For example, from π = (4|2|1|3), we obtain a set of 4 × (4 − 1)/2 pairwise

preferences {λ4 ≺ λ2, λ4 ≺ λ1, λ4 ≺ λ3, λ2 ≺ λ1, λ2 ≺ λ3, λ1 ≺ λ3} where ≺ is the preference

relation. Therefore, for any two or more rankings, their backbone can be defined as a set

of concordant pairs (see Definition 1).
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Definition 1. (Concordant pairs). Given two rankings πu and πv of m labels, a pair

of labels (λi, λj) is a concordant pair if labels λi and λj share the same preference relation

λi ≺ λj or λj ≺ λi in the parent rankings.

Given two parent rankings πu and πv randomly selected from the population P, the

CPSX operator builds an offspring ranking πo in four steps as follows. First, it decom-

poses each parent ranking πk, k ∈ {u, v} into a set of pairwise preference relations Rk, and

|Rk|= |πk| · (|πk| − 1)/2. Second, it identifies all concordant pairs (i.e., common preference

relations between parent rankings), that is, Ro←Ru

⋂
Rv. Third, it combines the concor-

dant pairs into a partial ranking according to a voting strategy. Specifically, each label λi

receives S(λi) =
∑

λj 6=λi∇ij votes, where ∇ij = 1 if λi � λj holds, otherwise ∇ij = 0. Then,

a partial ranking is obtained by sorting all labels in descending order based on their votes.

Finally, the partial ranking is repaired to form a permutation by determining all unknown

preference relations in a random manner. The detailed pseudo code of the CPSX operator

is provided in Algorithm 2.

Algorithm 2 Pseudo Code of the CPSX Operator

Input: Two parent rankings πu and πv

Output: The offspring ranking πo

/* Step 1. decompose parent rankings into pairwise preference pairs */

1: decompose πu into a set of pairwise preference relations Ru;

2: decompose πv into a set of pairwise preference relations Rv;

/* Step 2. identify all concordant pairs */

3: Ro←Ru ∩Rv;

/* Step 3. combine concordant pairs into a partial ranking */

4: for ∀i∈ {1,2, . . . ,m} do

5: each alternative λi receives S(λi) =
∑

λj 6=λi
∇ij votes, where ∇ij = 1 if λi � λj , otherwise ∇ij = 0;

6: end for

7: obtain a partial ranking πo by ordering all alternatives in a descending order according to their votes;

/* Step 4. repair the partial ranking */

8: repair πo by randomly determining all unknown preference relations;

9: return The offspring ranking πo;

Figure 1 shows an illustrative example of the CPSX operator with two parent solutions:

π1 = (1|3|4|5|2) and π2 = (1|5|3|4|2). Step 1 decomposes the parent rankings into two sets

of pairwise preference relation pairs: R1 = {λ1 ≺ λ3, λ1 ≺ λ4, λ1 ≺ λ5, λ1 ≺ λ2, λ3 ≺ λ4, λ3 ≺
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λ5, λ3 ≺ λ2, λ4 ≺ λ5, λ4 ≺ λ2, λ5 ≺ λ2} and R2 = {λ1 ≺ λ5, λ1 ≺ λ3, λ1 ≺ λ4, λ1 ≺ λ2, λ5 ≺

λ3, λ5 ≺ λ4, λ5 ≺ λ2, λ3 ≺ λ4, λ3 ≺ λ2, λ4 ≺ λ2}. Step 2 identifies all concordant pairs Ro =

{λ1 ≺ λ2, λ1 ≺ λ3, λ1 ≺ λ4, λ1 ≺ λ5, λ3 ≺ λ2, λ3 ≺ λ4, λ4 ≺ λ2, λ5 ≺ λ2} between R1 and R2,

which form the backbone of the parent rankings. Step 3 combines the concordant pairs Ro

into a partial ranking π0 = (1|3|4,5|2) according to a voting strategy. Step 4 repairs πo to

obtain a complete ranking (i.e., a permutation) π0 = (1|3|5|4|2). Specifically, we determine

the unknown preference relation between 4 and 5 in a random manner (in our example,

(5|4) is considered).

combine
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Figure 1 Schematic Illustration of the CPSX Operator

3.5. Enhanced Late Acceptance Hill Climbing

In addition to the CPSX operator, HER relies on a highly effective local optimization

procedure named the enhanced late acceptance hill climbing (ELAHC) method, as shown

in Algorithm 3. Our ELAHC procedure can be considered as an enhanced version of the

well-known late acceptance hill climbing (LAHC) method (Burke and Bykov 2008, 2017).

LAHC constitutes a hill climbing (HC) algorithm that employs a list of history costs of

previously encountered solutions to decide whether to accept a new solution. The list of

history costs is used as part of an acceptance criterion for any new solution encountered. If
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a candidate solution has a better cost value than the least recent element of the list, then

this solution is accepted. Correspondingly, the list is deterministically updated with cost

values of new solutions. Since the cost values from previous iterations can be worse than

those of the current solution, a candidate solution that is worse than the current solution

can be accepted. This idea allows LAHC to avoid, to some extent, the local optimum

problem of HC, which quickly converges to a bad locally optimal solution that is far from

the global optimum. The use of the history cost list thus encourages search diversity. The

larger the length of the history cost list ρ, the greater the diversity level. LAHC reduces to

HC when the list only contains one cost value, i.e., ρ= 1. The pseudo code for our ELAHC

procedure that replaces LAHC is as follows, with explanations of its components below.

Algorithm 3 Pseudo Code of the ELAHC Procedure

Input: Initial ranking π, length of history cost list ρ and maximal idle iteration count ζ̂
Output: The best ranking π∗ found
1: π∗← π, f(π∗)← f(π); //record the best ranking
2: ∀i∈ {0, . . . , ρ− 1}, φ[i]← f(π);
3: φmax← f(π), count← ρ;
4: initialize I← 0, Iidle← 0;
5: while Iidle < ζ̂ do
6: fprev← f(π);

/* incremental evaluation */
7: generate two different random integers i, j ∈ {1,2, . . . , n};
8: π′← π⊕SWAP(i, j); //generate a ranking based on SWAP operator
9: f(π′)← f(π) +

∑n
k=1

∆d(π,π′, πk, i, j);
/* acceptance phase */

10: if f(π′)<φmax or f(π′) = f(π) then
11: π← π′, f(π)← f(π′); // accept the new ranking
12: end if
13: if f(π)< f(π∗) then
14: π∗← π, f(π∗)← f(π); //update the best ranking
15: Iidle← 0;
16: else
17: Iidle← Iidle + 1;
18: end if

/* replacement phase */
19: v← I mod ρ; //calculate the virtual beginning
20: if f(π)<φ[v] and f(π)< fprev then
21: if φ[v] = φmax then
22: count← count− 1;
23: end if
24: φ[v]← f(π); //update the history cost list
25: if count = 0 then
26: recompute φmax,count;
27: end if
28: else
29: if f(π)>φ[v] then
30: φ[v]← f(π); //update the history cost list
31: end if
32: end if
33: I← I+ 1;
34: end while
35: return The best ranking found π∗
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Inspired by LAHC, ELAHC distinguishes itself from LAHC in two aspects: a relaxed

acceptance and replacement strategy is applied to increase the diversity of the search, and

an incremental evaluation mechanism is introduced to speed up the solution evaluation.

We describe these two key components of ELAHC as follows.

3.5.1. Relaxed Acceptance and Replacement Strategy. The study by Franzin and

Stützle (2018) shows a competitive performance of LAHC compared to eight other accep-

tance criteria, including simulated annealing, the great deluge algorithm and threshold

acceptance. In addition, Burke and Bykov (2017) suggest that alternative methods can be

used to update the history cost list of LAHC. Following this direction, we propose a relaxed

acceptance and replacement strategy to increase the overall diversity of the search, which

shares a similar idea with (Namazi et al. 2018). At the acceptance phase (lines 10-18),

the diversity of the search is increased by employing a more relaxed acceptance strategy

than LAHC. In particular, our acceptance strategy compares the cost function value f(π′)

of the candidate ranking π′ in each iteration I with the maximum cost value φmax in the

list φ instead of comparing it just with φ[v], where v= I mod ρ. Our acceptance strategy

accepts more new rankings during the search because a larger threshold is used in the

comparison, i.e., φmax ≥ φ[v]. The replacement phase (lines 19-32) increases the diversity

of cost values stored in the list by using a more relaxed replacement strategy than LAHC.

A replacement occurs in φ if f(π) is better than both φ(v) and the previous cost value

fprev, or if the cost value of the new current solution is worse than φ(v). Since ELAHC

employs a relaxed acceptance and replacement strategy, more non-improving solutions are

accepted during the search compared to LAHC, and ELAHC requires a smaller ρ value

than LAHC.

3.5.2. Incremental Evaluation Mechanism. The complete evaluation of a neighboring

ranking according to Equation (3) has a time complexity of O(n ·m log(m)), which is

extremely time-consuming. It is worth noting that existing algorithms for RAP suffer

from the high computational complexity of calculating the Kendall distance. Typically,

the objective function value of a candidate neighboring solution must be computed from

scratch, which considerably slows the search process, particularly for large instances.

To overcome this problem, we propose an incremental evaluation mechanism to speed

up the computation of the objective function for RAP (line 9). Given the Kendall distance
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d(π,πk) between a candidate ranking π and a given ranking πk, we assume π′ constitutes

a neighboring solution of π by performing a swap operation (SWAP for short) between

two different positions i and j of π, i.e., π′← π⊕ SWAP(i, j), i 6= j ∈ {1, . . . , n}. Then, the

Kendall distance d(π′, πk) between π′ and πk can be incrementally calculated as follows:

d(π′, πk) = d(π,πk) + ∆d(π,π′, πk, i, j) (4)

using the calculation of ∆d(π,π′, πk, i, j) described in Algorithm 4.

The incremental evaluation mechanism computes the objective function value of a neigh-

boring ranking more efficiently as follows:

f(π′) = f(π) +
1

n

n∑
i=1

∆d(π,π′, πk, i, j) (5)

This reduces the complexity from O(n ·m log(m)) to O(n ·m). Our incremental evaluation

mechanism shares a similar idea with the partial evaluation proposed in (Aledo et al.

2017b). Both incremental evaluation and partial evaluation mechanisms consider the fact

that a significant part of the objective function does not change after the application of

standard mutation or neighborhood operators. Note that partial evaluation operates on

a secondary structure (i.e., the pair order matrix) computed from the dataset, while our

incremental evaluation evaluates a given ranking against the dataset directly.

3.6. Population Updating Strategy

Diversity is a property of a group of individuals that indicates the degree to which these

individuals are different from each other. A suitable population updating strategy is nec-

essary to maintain population diversity during the search, thus preventing the algorithm

from premature convergence and stagnation (Neri and Cotta 2012). Diversity is often used

to determine whether the offspring solution should be inserted into the population or dis-

carded. In this study, we adopt a simple strategy that always replaces the worst individual

if the offspring has a better solution quality and is different from any existing individual

in the population.

3.7. Computational Complexity of HER

To analyze the computational complexity of the proposed HER algorithm, we consider the

main procedures in one generation in the main loop of Algorithm 1. At each generation,

the HER executes three procedures: CPSX, ELAHC and population updating. The CPSX



Zhou et al.: Heuristic Search for Rank Aggregation with Application to Label Ranking
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 4 Pseudo Code of Incremental Evaluation for Calculating ∆d(π,π′, πk, i, j)

Input: A given ranking πk, a ranking π and its neighbor π′ obtained by performing SWAP(i, j) on π

Output: The incremental distance ∆d(π,π′, πk, i, j)

1: count← 0;

2: if πk(λi)>πk(λj) then

3: SWAP(i, j);

4: end if

5: if π(λi)>π(λj) then

6: count← count + 1;

7: else

8: count← count− 1;

9: end if

10: for ∀temp∈ (πk(λi), πk(λj)) do

11: λv← argπk(λv) = temp;

12: if (π(λi)>π(λv) and π(λj)<π(λv)) or (π(λi)<π(λv) and π(λj)>π(λv)) then

13: if π(λi)>π(λv) then

14: count← count− 1;

15: else

16: count← count + 1;

17: end if

18: if π(λv)>π(λj) then

19: count← count− 1;

20: else

21: count← count + 1;

22: end if

23: end if

24: end for

25: ∆d(π,π′, πk, i, j)← count;

26: return The incremental distance ∆d(π,π′, πk, i, j)

operator can be performed in O(m2 +m log(m) +m) time. The time complexity of the

ELAHC procedure is (ζ · (n · m + ρ)), where ζ denotes the total number of iterations

executed in ELAHC and ρ denotes the length of the history cost list. The computational

complexity for population updating is O(µ(m2 + µ)), where µ is the population size. To

summarize, the total computational complexity of the proposed HER for one generation

is O(m2 +n ·m · ζ).
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4. Computational Studies

In this section, we present a computational assessment of the HER algorithm and its

ELAHC procedure. We first describe the benchmark instances and the experimental set-

tings. Then, we present the computational results obtained on the benchmark instances

and compare them with the state-of-the-art algorithms.

4.1. Benchmark Instances

Our studies are conducted on both synthetic and real-world instances.

• Synthetic instances were sampled from the Mallows distribution. To define a stan-

dard Mallows distribution, three parameters are required: the center permutation π0, the

spread parameter θ, and the length of the permutation m. In addition, the number of

permutations to be sampled n is also needed to define a practical instance. For this cat-

egory of instances, π0 is always set to the identity permutation π0 = (1,2, . . . ,m), θ ∈

{0.001,0.01,0.1,0.2}, m∈ {50,100,150,200,250}, and n= 100. For each of the 20 combina-

tions of θ and m, 20 instances with n= 100 permutations were generated. These instances

were originally generated and used in (Aledo et al. 2013), which identifies the most complex

instances to be those with a small θ and a large permutation size m.

• Real-world instances were obtained from practical applications: Sushi consists of

5000 responses to a questionnaire in which the participants have to rank flavors of sushi

in order of preference, where m= 100 and n= 5000; F1 is the set of the orders in which

the 25 drivers finished at each one of the 20 Grand Prix celebrated at the Formula 1

driver championship during 2012, hence m = 25 and n = 20; Tour is based on the 2012

edition of the Tour of France, where each ranking contains the order in which the 153

cyclists that complete the Tour finished at each of the 20 stages. ATPMen50, ATPMen100,

and ATPMen200 are based on the ATP ranking of male tennis players along 2014, and

ATPWomen50, ATPWomen100, and ATPWomen200 are based on the ATP ranking of

female tennis players along 2014. There are n= 52 rankings corresponding to the weeks of

2014.

4.2. Experimental Settings

Our algorithms were programmed in C++ and compiled using GNU gcc 4.1.2 with the

‘-O3’ option on an Intel E5-2670 with 2.5GHz and 2GB RAM under the Linux OS. Please

refer to Zhou et al. (2023a) for the instances, codes, and results of the experiments. We ran
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each algorithm on each instance with a given time limit t̂. Following (Aledo et al. 2013), we

also set ξ̂ to 60 as one of the stopping conditions. The detailed parameter settings of our

algorithms are listed in Table 1. To determine the suitable parameter values, we employ the

well-known automatic parameter configuration tool called IRACE (Vicente-López et al.

2016).

Table 1 Parameter Settings of Our Algorithms

Parameter Description Candidate Values Final Value p-value > 0.05? Section

µ Population Size {10,15,20,25,30} 20 X Section 3.3
β Randomized factor {0.1,0.2,0.3,0.4,0.5} 0.2 X Section 3.3

ζ̂ Maximum Idle Iteration Count {1000,5000,10000,15000,20000} 5000 X Section 3.5
ρ Length of History Cost List {1,5,10,15,20} 5 X Section 3.5

For each parameter, IRACE requires some candidate values as input, as shown in the

column “Candidate Values” of Table 1. The best parameter configuration is provided in

the column of “Final Value”. During the parameter tuning, we run IRACE with the default

settings, and set the total time budget at 2000 executions. The experiments are conducted

on ten representative instances with different sizes selected from the benchmarks with a

time limit of t̂= 3600 seconds for solving each instance.

We apply the Friedman test (Demšar 2006) to further check whether there is a significant

difference between each pair of candidate values in terms of HER performance. To evaluate

the sensitivity of the parameters, we consider the “Candidate Values” for each parameter

from Table 1 while fixing other parameters to their “Final Value”. HER was run 30 times on

each instance recording the average objective value. All p-values are larger than 0.05, which

confirms that the parameters of HER exhibit no particular sensitivity at a significance

level of 0.05.

4.3. Results for RAP with Complete Rankings

This section compares our HER algorithm and its ELAHC procedure with the following

six state-of-the-art (SOTA) algorithms.

• Borda is a well-established greedy heuristic algorithm for RAP. Simple and fast, it

can perform rank aggregation in linear time O(nm) (Borda 1781).

• CSS is a graph-based approximate algorithm that implements a greedy version of the

method introduced by Cohen et al. (1999).
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• DK is an exact solver proposed by Davenport and Kalagnanam (2004), which the

authors have subsequently enhanced with improved heuristics.

• Branch and bound (B&B) is an approximate version of the general branch-and-

bound algorithm that makes a good tradeoff between memory requirements and solution

quality (Aledo et al. 2013).

• Genetic algorithm (GA) is a population-based algorithm for estimating the consen-

sus permutation of rank aggregation problems, which achieves SOTA results on instances

from the Mallows model (Aledo et al. 2013).

• Iterated local search (ILS) is a multi-start local search algorithm based on the HC

algorithm, which demonstrates the best performance when the algorithms are allowed to

perform a large number of fitness evaluations (Aledo et al. 2019).

Aledo et al. (2013) experimentally compared the GA with the SOTA algorithms (i.e.,

Borda, CSS, DK, B&B), to obtain the following outcomes. The GA provides excellent

performance, beating the CS and Borda algorithms in all cases. The DK and B&B methods

are competitive with the GA only on less complex instances with large θ and small n

values, being outperformed by the GA on instances with small θ values. It should be noted

that Borda, CSS, and DK are greedy algorithms. They are considerably faster than the

B&B and GA methods, but often produce poor results. The GA is far slower than the

approximate version of B&B due to the large number of fitness evaluations required during

the evolutionary search. In particular, the CPU time ratios between the GA and B&B

are 9.6, 15.6, 219.4, and 639.9 on four extreme instances with θ ∈ {0.001,0.2} and m ∈

{50,250}. With the condition that the GA stops after 60 generations without improving

the best solution, the GA achieved results matching the SOTA results on the benchmark

instances. A further comparative study was carried out by Aledo et al. (2019) among

different local search based metaheuristics (e.g., HC, ILS, VNS and GRASP) to deal with

RAP. Comparative results show ILS has the best performance when the algorithms are

allowed to perform a large number of fitness evaluations. Therefore, we use ILS as the

reference algorithm in our experiments.

Since the original source code of ILS was written in Java and is not available to us,

we have re-implemented it in the C++ programming language. The original ILS employs

HC to perform local optimization, which exhibits a poor performance compared to the

SOTA algorithms. Consequently, we implement an improved ILS using our ELAHC method
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with ρ = 1 instead of HC to perform local optimization. Our improved ILS significantly

outperforms the original ILS, as demonstrated by detailed comparative results summarized

in an online supplement (Zhou et al. 2023a).

4.3.1. Results on Synthetic Instances: In our experiments, we solve each instance once

and terminate the HER algorithm after 60 generations without improving the best solution

or when the execution time reaches the time limit t̂= 2 hours. Our stopping condition is

much stricter than that of the GA. We then recorded the best result (f̂), the average result

(f̄) and average computation time (t̄) over each group of 20 instances. We also use the

Wilcoxon signed-rank to compare two algorithms, as recommended in (Demšar 2006). The

results of our algorithms and the SOTA algorithms are summarized in Table 2.

Table 2 Comparison of Our Algorithms and SOTA Algorithms on Synthetic Instances with Complete Rankings

Instance Borda CSS DK B&B GA ILS ELAHC (this work) HER (this work)

θ m f̂ t f̂ f̂ f̂ f̂ f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

0.200 50 187.837 0.001 188.342 187.816 187.815 187.815 183.140 187.913 723.482 183.140 187.914 2.633 183.140 187.913 3.662

0.100 50 320.194 0.001 320.883 320.128 320.104 320.104 311.950 320.296 30.213 311.950 320.304 2.446 311.950 320.296 4.767

0.010 50 559.915 0.001 560.720 559.582 558.928 558.769 550.970 559.797 333.231 551.030 559.755 2.035 550.970 559.607 434.461

0.001 50 569.701 0.001 570.499 569.546 568.662 568.469 561.740 569.968 1137.292 561.760 569.906 1.973 561.480 569.718 405.243

0.200 100 412.571 0.001 413.201 412.554 412.554 412.154 405.140 411.884 389.789 405.140 411.888 18.735 405.140 411.884 31.638

0.100 100 788.279 0.001 790.126 788.058 788.102 788.026 776.020 787.745 1190.498 776.060 787.779 16.392 776.020 787.742 89.533

0.010 100 2155.301 0.001 2157.450 2154.294 2152.986 2152.247 2126.890 2153.107 3401.334 2126.610 2152.856 15.056 2126.390 2152.623 3166.568

0.001 100 2308.277 0.001 2310.266 2308.038 2304.983 2303.231 2290.990 2306.096 3662.618 2290.570 2305.656 15.254 2290.190 2305.296 4277.235

0.200 150 637.245 0.002 638.903 637.177 637.177 637.176 629.410 636.948 152.134 629.430 636.956 54.732 629.410 636.948 308.377

0.100 150 1260.964 0.002 1264.171 1260.645 1260.610 1260.583 1245.730 1260.166 2464.411 1245.810 1260.194 45.819 1245.730 1260.146 619.723

0.010 150 4595.137 0.002 4599.431 4593.498 4590.917 4589.672 4533.430 4586.122 2082.753 4533.030 4585.319 118.519 4532.710 4585.154 4610.010

0.001 150 5206.998 0.002 5210.015 5208.340 5201.233 5196.731 5144.480 5191.362 3788.802 5143.660 5189.971 116.381 5143.140 5189.620 4126.092

0.200 200 862.707 0.003 865.154 862.650 862.685 862.648 851.290 862.693 115.287 851.330 862.704 120.458 851.290 862.693 1672.241

0.100 200 1734.810 0.003 1739.429 1734.336 1734.395 1734.303 1711.440 1734.231 2286.683 1711.400 1734.219 103.823 1711.320 1734.181 2263.225

0.010 200 7699.995 0.004 7706.323 7697.136 7694.639 7692.271 7625.320 7698.460 3830.479 7624.120 7697.132 280.606 7624.140 7697.138 3000.011

0.001 200 9250.210 0.003 9253.655 9256.021 9241.557 9232.840 9182.900 9240.152 3768.522 9179.980 9237.531 211.585 9180.140 9237.178 4051.452

0.200 250 1087.719 0.004 1090.796 1087.623 1087.654 1087.622 1075.790 1087.684 456.757 1075.790 1087.697 205.948 1075.790 1087.684 2917.056

0.100 250 2207.223 0.004 2213.130 2206.631 2206.665 2206.564 2186.420 2206.824 3190.976 2186.480 2206.800 187.542 2186.260 2206.732 3751.534

0.010 250 11311.189 0.004 11319.547 11307.085 11303.063 11300.249 11182.830 11301.168 3641.871 11180.290 11299.402 408.436 11180.350 11299.597 4170.573

0.001 250 14448.840 0.004 14451.179 14453.746 14435.551 14422.276 14337.260 14434.251 3097.111 14333.660 14430.421 422.379 14333.840 14430.309 4253.846

#Wins|Ties|Loses 20|0|0 − 20|0|0 20|0|0 20|0|0 20|0|0 11|9|0 14|6|0 − 12|4|4 18|0|2 − − − −

p-value 8.858e-5 − 8.858e-5 8.858e-5 8.858e-5 8.858e-5 9.766e-4 1.221e-4 − 2.970e-2 1.300e-3 − − − −
Notes. The results of each combination of θ and m are averaged over 20 instances. ILS employs ELAHC with ρ= 1 as local optimization instead
of HC.

In Table 2, columns 1 and 2, describe θ and m values for each combination, respec-

tively. Columns 3-4 present the results of the Borda method, i.e., the best result (f̂) and

computation time in seconds (t), while columns 5-8 list the best results (f̂) of the four

algorithms CSS, DK, B&B, and GA. Because their source codes are not available, we only

list the results of these algorithms provided in (Aledo et al. 2013). Columns 9-11 list the

results of ILS, including the best result (f̂) over 20 instances, the average result (f̄), and



Zhou et al.: Heuristic Search for Rank Aggregation with Application to Label Ranking
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

the average time in seconds (t̄) needed to obtain the best solution for each instance. Cor-

respondingly, columns 12-14 and 15-17 list the results of ELAHC and HER, respectively.

The best values for each performance indicator are highlighted in bold. In addition, we

provide the number of combinations in which the HER method obtains better (#Wins),

equal (#Ties), and worse (#Loses) results in terms of each indicator compared to the cor-

responding algorithms. At the end of Table 2, we also show the p-values of the Wilcoxon

signed-rank test.

Table 2 indicates that our algorithms demonstrate excellent performances for all 20 com-

binations of θ and m. Note that the Borda method quickly converges to a poor solution.

At a significance level of 0.05, our HER algorithm significantly outperforms the SOTA

algorithms (Borda, CSS, DK, B&B, GA and ILS) in terms of f̂ . HER also exhibits sig-

nificantly better performance than ILS (referring here to the improved ILS method noted

above). Compared to ELAHC, the HER method performs better in terms of both f̂ and

f̄ at a significance level of 0.05. It is also to be noted that ELAHC converges to its best

local optimum in approximately 400s, whereas HER has a better long-term search ability

by improving its results until about 4000s. These observations confirm the competitiveness

of the proposed algorithms compared to the SOTA algorithms.

4.3.2. Results on Real-world Instances: Detailed results comparing our algorithms

and the SOTA algorithms on real-world instances are summarized in Table 3. These results

show that the HER method establishes the best performance in terms of both f̂ and f̄ on

all instances except ATPWomen 200, for which HER achieves the second best performance

in terms of f̂ and f̄ , only slightly behind the performance of ELAHC. HER significantly

outperforms the Borda method at a significance level of 0.05. HER also demonstrates

excellent performance compared to ILS obtaining better results in terms of f̂ than ILS on

2 out of 9 instances, and equal results on the remaining seven instances. For the indicator

f̄ , the HER method obtains 3 better results and 6 equal results. However, there is no

appreciable difference between HER and ILS at the significance level of 0.05. We also find

HER significantly outperforms ELAHC in terms of f̄ . For the indicator f̂ , HER achieves

better results than ELAHC on 2 instances and equal results on 6 remaining instances,

but there is no significant performance difference between them relative to f̂ . In sum, we

conclude that our algorithms are highly competitive compared to the SOTA algorithms on

real-world instances.



Zhou et al.: Heuristic Search for Rank Aggregation with Application to Label Ranking
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Table 3 Comparison of Our Algorithms and SOTA Algorithms on Real-world Instances with Complete Rankings

Borda ILS ELAHC (this work) HER (this work)

Instance m f̂ t f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

Sushi 10 19.662 0.001 19.181 19.181 1.003 19.181 19.181 4.821 19.181 19.181 236.419
F1 25 69.500 0.001 68.750 68.750 0.197 68.750 68.750 0.495 68.750 68.750 2.615
Tour 153 3544.350 0.001 3480.100 3480.800 2938.547 3480.400 3480.750 341.234 3480.100 3480.245 3091.072
ATPWomen 50 50 234.500 0.001 185.750 185.750 4.264 185.750 185.754 24.186 185.750 185.750 40.328
ATPWomen 100 100 821.615 0.001 715.019 715.019 954.638 715.019 715.058 266.308 715.019 715.019 631.416
ATPWomen 200 200 3032.058 0.002 2823.423 2823.596 3467.266 2823.077 2823.323 2422.625 2823.192 2823.339 3946.326
ATPMen 50 50 244.135 0.001 197.962 197.962 7.795 197.962 198.019 22.575 197.962 197.962 43.341
ATPMen 100 100 960.654 0.001 862.365 862.365 1947.933 862.365 862.477 251.569 862.365 862.365 1716.577
ATPMen 200 200 3029.654 0.002 2810.519 2810.823 3543.888 2810.096 2810.408 2483.960 2810.019 2810.352 4632.466

#Wins|Ties|Loses 9|0|0 − 2|7|0 3|6|0 − 2|6|1 6|2|1 − − − −

p-value 3.900e-3 − 5.000e-1 2.500e-1 − 7.500e-1 4.690e-2 − − − −

Note. ILS employs ELAHC with ρ= 1 as local optimization instead of HC.

4.4. Results for RAP with Partial Rankings

To extend the HER algorithm to solve the RAP problem with partial rankings, the objec-

tive function must be modified. Given a dataset with partial rankings D= {σ1, σ2, . . . , σn},
the objective function value of a candidate solution π is calculated as follows.

f(π) =
1

n

n∑
k=1

d′(π,σk) (6)

where d′(π,σk) represents the extended Kendall distance between π and σk.

To demonstrate the effectiveness of our HER and ELAHC methods for solving RAP with

partial rankings, we experimentally analyze them on benchmark instances and compare

them with the extended Borda method, which operates as follows. Given a set of rankings

σ1, . . . , σn, for each label λi in a partial ranking of only m′ <m labels, if the label is missing,

then the label receives a Borda score of sij = (m+1)/2 votes, while if the label is an existing

label with rank r ∈ {1,2, . . . ,m′}, then its Borda score is sij = (m′+ 1− r)(m+ 1)(m′+ 1).

The average Borda score si is defined as 1
n

∑n
j=1 sij. The labels are then sorted in the

decreasing order of their average Borda scores. There are 20 instances for each combination

of θ and m as well as the complete ranking data.

To transform a complete ranking into a partial ranking, we resorted to a simple trans-

formation procedure. Given a complete ranking of n items, the transformation proceeds

from the most to the least preferred item. When an item is visited it is discarded with a

probability pd. If the item is retained, then it stays in the current bucket with probability

pk; otherwise, it is randomly assigned to a new bucket. In our experiment, we select pd = 2
3

and pk = 5
6
. Note that our transformation procedure follows the general practice for mod-

eling partial ranking (Aledo et al. 2016, 2019). Detailed comparative results between our

algorithms and the SOTA algorithms on synthetic and real-world instances are presented

in Tables 4 and 5, respectively.
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Table 4 Comparison of Our Algorithms and SOTA Algorithms on Synthetic Instances with Partial Rankings

Instance Borda ILS ELAHC (this work) HER (this work)

θ m f̂ t f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

0.200 50 110.146 0.001 159.160 169.834 3209.041 104.200 108.439 201.001 104.010 108.253 1474.880
0.100 50 161.129 0.001 190.280 198.107 4275.339 146.350 155.746 259.866 145.710 155.283 2006.546
0.010 50 260.357 0.001 240.060 252.980 3511.680 215.040 227.334 357.546 216.440 225.363 1477.692
0.001 50 271.714 0.001 246.350 254.774 4350.480 219.400 229.024 380.800 216.920 227.225 1598.063
0.200 100 322.204 0.001 760.380 783.084 2969.186 300.060 318.294 2072.679 299.780 318.143 1920.937
0.100 100 456.761 0.001 778.030 808.775 4166.726 423.830 444.452 2818.127 424.530 444.579 2064.247
0.010 100 993.393 0.001 1005.660 1028.769 3200.744 865.670 891.501 3517.686 875.050 897.143 1928.427
0.001 100 1087.184 0.001 1029.150 1049.141 4060.137 901.220 918.750 3504.064 899.790 923.105 1902.893
0.200 150 633.113 0.002 1784.320 1886.182 4632.456 606.310 629.422 3562.714 603.630 626.871 2143.940
0.100 150 847.017 0.002 1842.060 1916.826 3945.828 805.570 833.089 3561.592 802.890 829.185 2367.000
0.010 150 2119.302 0.002 2257.840 2310.586 4306.733 1950.840 1993.287 3561.519 1924.550 1964.673 2533.523
0.001 150 2439.313 0.002 2313.820 2391.442 2877.894 2089.050 2152.863 3552.684 2051.680 2099.691 2911.502
0.200 200 1038.027 0.002 3344.060 3512.498 4203.844 996.220 1051.096 3569.241 973.340 1030.689 2505.553
0.100 200 1322.746 0.003 3463.820 3536.286 4525.436 1273.340 1323.132 3572.179 1251.500 1300.955 2784.889
0.010 200 3573.712 0.003 4000.580 4100.070 4838.988 3381.430 3463.497 3568.342 3298.180 3366.975 3503.892
0.001 200 4330.083 0.002 4218.550 4287.149 4063.925 3877.530 3940.761 3559.041 3704.640 3765.796 3365.421
0.200 250 1512.232 0.003 5500.320 5616.749 3901.263 1524.780 1574.204 3576.292 1459.210 1504.668 3600.000
0.100 250 1887.351 0.003 5514.590 5668.163 3828.247 1855.640 1922.433 3575.967 1796.670 1862.538 3600.000
0.010 250 5281.381 0.003 6219.300 6371.876 4570.296 5074.930 5209.651 3534.476 4924.100 5044.982 3600.000
0.001 250 6735.437 0.004 6592.310 6723.613 3766.999 6157.210 6261.303 3519.012 5870.410 5963.002 3600.000

#Wins|Ties|Loses 20|0|0 − 20|0|0 20|0|0 − 17|0|3 17|0|3 − − − −

p-value 8.858e-5 − 8.858e-5 8.858e-5 − 1.300e-3 1.500e-3 − − − −

Notes. The results of each combination of θ and m are averaged over 20 instances. ILS employs ELAHC with ρ= 1 as local optimization instead
of HC.

4.4.1. Results on Synthetic Instances: Table 4 describes the comparative results

between our algorithms and the SOTA algorithms on synthetic instances. From this table,

we observe that the Borda method quickly converges to a bad solution, and our algorithms

(i.e., ELAHC and HER) exhibit excellent performances on instances with partial rankings,

significantly outperforming the Borda method for all 20 combinations in terms of both f̂

and f̄ . The average results of the ELAHC and HER methods are also better than those

achieved by the Borda method. At a significance level of 0.05, we obtain the same conclu-

sion that our algorithms significantly outperform ILS in terms of both f̂ and f̄ . The worse

performance of ILS compared to ELAHC and HER may be explained by the fact that ILS

starts from a random solution and uses a weak local search procedure to perform local

optimization during the search. Regarding a comparison between the HER and ELAHC

methods, it is not surprising to observe that HER outperforms ELAHC in terms of f̂ and

f̄ . This experiment demonstrates the effectiveness of both HER and ELAHC for solving

the RAP problem with partial rankings.

4.4.2. Results on Real-world Instances: We further compare our algorithms with the

SOTA algorithms on real-world instances with partial rankings. For each real-world prob-

lem, we generate 20 new instances with partial ranking in the same way as the synthetic

instances. Detailed comparative results are summarized in Table 5, which shows that our

HER algorithm performs significantly better than the SOTA algorithms (Borda and ILS)
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Table 5 Comparison of Our Algorithms and SOTA Algorithms on Real-world Instances with Partial Rankings

Borda ILS ELAHC (this work) HER (this work)

Instance m f̂ t̄ f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

Sushi 10 8.840 0.006 5.782 5.849 1369.078 5.782 5.849 0.147 8.689 8.754 197.310
F1 25 33.950 0.001 30.200 33.850 1812.103 25.500 29.130 1106.626 27.300 29.980 8.882
Tour 153 1647.500 0.001 2075.550 2169.660 3386.329 1554.200 1638.030 3051.146 1313.900 1387.060 3865.272
ATPWomen 50 50 104.654 0.001 156.173 162.412 1199.129 98.789 102.969 1043.898 103.615 108.150 1699.703
ATPWomen 100 100 418.404 0.001 761.942 793.204 1394.210 408.481 426.004 3115.755 408.154 426.439 2625.538
ATPWomen 200 200 1676.577 0.001 3518.327 3551.535 1206.199 1652.346 1682.508 2453.833 1636.789 1662.823 4651.294
ATPMen 50 50 112.558 0.001 161.385 166.827 1488.772 107.039 111.562 1238.126 111.346 115.246 1803.865
ATPMen 100 100 479.039 0.001 755.423 801.131 1270.339 463.539 477.792 1908.376 462.654 475.585 2137.048
ATPMen 200 200 1703.731 0.001 3501.308 3557.277 1571.770 1688.250 1719.808 2712.962 1662.558 1696.846 3513.714

#Wins|Ties|Loses 9|0|0 − 8|0|1 8|0|1 − 5|0|4 5|0|4 − − − −

p-value 3.900e-3 − 1.170e-2 7.800e-3 − 6.523e-1 6.523e-1 − − − −

Notes. The results of each type of instance are averaged over 20 instances. ILS employs ELAHC with ρ= 1 as local optimization instead of HC.

both in terms of f̂ and f̄ at a significance level of 0.05. Compared to ELAHC, we observe

that the HER algorithm finds better results in terms of both f̂ and f̂ on five instances

with m≥ 100. For three instances with m< 100, ELAHC shows better performance than

HER.

5. Application to Label Ranking

To more fully demonstrate the practical interest of our proposed ranking aggregation

method, we present its application to the well-known label ranking problem.

5.1. Label Ranking

Label ranking (Hüllermeier et al. 2008, Cheng et al. 2010, Zhou et al. 2014, Zhou and

Qiu 2018, Alfaro et al. 2021) is an important machine learning task that seeks a mapping

between an instance and a ranking of labels from a finite set, for the goal of representing the

relevance of the ranking to the instance considered. Label ranking extends traditional clas-

sification and multi-label classification in being required to predict the ranking of all class

labels rather than only one or several labels. The problem emerges naturally in applications

such as drug design, recommendation systems, image recognition, text classification, and

meta-learning (Hüllermeier et al. 2008, Adomavicius and Zhang 2016, de Sá et al. 2017).

Due to its wide applicability, label ranking has recently attracted considerable atten-

tion from the machine learning community (Har-Peled et al. 2003, Hüllermeier et al. 2008,

Cheng et al. 2009, 2010, de Sá et al. 2017, Aledo et al. 2017a, Negahban et al. 2017,

Zhou and Qiu 2018, Werbin-Ofir et al. 2019, Dery and Shmueli 2020, Alfaro et al. 2021,

Fotakis et al. 2022). Existing label ranking algorithms can be divided into three cate-

gories: 1) Decomposition approaches that transform a label ranking problem into several

binary classification problems whose outcomes are combined to produce output rankings,
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as in constraint classification (Har-Peled et al. 2003) and ranking by pairwise comparison

(Hüllermeier et al. 2008); 2) Probabilistic approaches that perform label ranking based

on statistical models for ranking data, such as instance-based learning algorithms with

Mallows models (Cheng et al. 2009) and Plackett-Luce models (Cheng et al. 2010); and 3)

Ensemble approaches that aim to improve the accuracy of model outcomes by combining

multiple models instead of using a single model, as represented by bagging (Aledo et al.

2017a, de Sá et al. 2017, Zhou and Qiu 2018), boosting (Dery and Shmueli 2020), and

voting rules (Werbin-Ofir et al. 2019). Compared with decomposition and probabilistic

approaches, ensemble approaches have achieved SOTA performance.

Rank aggregation plays a key role in label ranking in that the performance of a label

ranking algorithm depends greatly on the results of the rank aggregation. Commonly, a set

of rankings is aggregated by the weak Borda heuristic (Borda 1781) and a more powerful

rank aggregation heuristic would offer the potential to improve the existing label ranking

algorithms. To show the relevance of the methods proposed here, we consider the enhanced

late acceptance hill climbing (ELAHC) method as an example, and integrate it into the

label ranking forest (de Sá et al. 2017).

5.2. Label Ranking Forest

The Label Ranking Forest (LRF) (de Sá et al. 2017) is an ensemble approach that has been

highly successful in application to many datasets, whose source code is publicly available

at the GitHub website1. We undertook the challenge of seeing if we could enhance this

approach using our ELAHC procedure.

Figure 2 presents the framework of LRF method. During the prediction phase, a dataset

used as a test sample is passed through all K trees simultaneously (starting at the root

node) until it reaches the leaf nodes. Each decision tree Ti generates a predicted ranking

πi by aggregating the target rankings (RA1st for short) of the training examples stored in

a leaf node, i.e., {πi1, πi2, . . . , πiri}. The resulting K predicted rankings, i.e., π1, π2, . . . , πK

are aggregated into a final predicted ranking (RA2nd for short). LRF therefore performs K

tasks of producing rankings of the RA1st type together with a final RA2nd rank aggregation

task.

Both RA1st and RA2nd rank aggregation tasks can be solved by a heuristic algorithm

(e.g., HER, ELAHC and Borda). To explore the usefulness of ELAHC to enhance the

1 https://github.com/rebelosa/labelrankingforests

https://github.com/rebelosa/labelrankingforests
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Figure 2 Framework of Label Ranking Forest

standard LRF approach, we experimentally compared LRF with three variants: 1) LRF10

is obtained from LRF by only performing the K RA1st tasks with ELAHC; 2) LRF01

modifies LRF by only performing the RA2nd task with ELAHC; and 3) LRF11 modifies

LRF by performing the rank aggregation of both the RA1st tasks and RA2nd) tasks with

ELAHC. Note that the HER method can similarly be applied to enhance LRF. However,

HER is a time-consuming population-based algorithm, and therefore we focused on using

the faster ELAHC method to perform rank aggregation in both the training phase and

predicting phase.

5.3. Computational Results

Our experiments are conducted on 21 publicly available datasets consisting of 16 semi-

synthetic and 5 real-world datasets2. Following general practice (Hüllermeier et al. 2008,

Cheng et al. 2010, Zhou and Qiu 2018), we use Kendall’s tau coefficient (Kendall 1938)

to evaluate the performance of the label ranking algorithms tested. We applied LRF to

generate K = 100 decision trees to provide the default parameters in our experiments. All

results were obtained based on a four-fold cross validation.

5.3.1. Results on Semi-synthetic Datsets. Table 6 summarizes the comparative

results of LRF and its three variants on the sixteen semi-synthetic datasets which were

derived from multiclass datasets in the UCI Repository of machine learning databases and

the Statlog collection (Hüllermeier et al. 2008). Values in bold identify results better than

2 https://en.cs.uni-paderborn.de/de/is/research/research-projects/software/label-ranking-datasets

https://en.cs.uni-paderborn.de/de/is/research/research-projects/software/label-ranking-datasets
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LRF, where larger values identify better results. The bottom row of the table also provides

the average rank of each algorithm for all datasets. We rank the algorithms for each dataset

separately, the best performing algorithm getting the rank of 1, the second best rank 2,. . . ,

and so on. In case of ties, average ranks are assigned. Finally, the average rank is obtained

by averaging all the ranks of each algorithm on all datasets. For the indicator of average

rank, the smaller the value, the better the algorithm.

Table 6 Comparison of LRF Algorithms with Different Rank Aggregation Strategies on Semi-synthetic Datasets

Dataset Instances Features Labels LRF LRF10 LRF01 LRF11

Authorship 841 70 4 0.892 0.893 0.892 0.892
Bodyfat 252 7 7 0.203 0.200 0.206 0.207
Calhousing 20640 4 4 0.185 0.185 0.182 0.169
Cpu-small 8192 6 4 0.485 0.490 0.479 0.487
Elevators 16599 9 9 0.750 0.752 0.748 0.756
Fried 40760 9 5 0.856 0.855 0.862 0.867
Glass 214 9 6 0.885 0.893 0.887 0.894
Housing 506 6 6 0.804 0.809 0.807 0.811
Iris 150 4 3 0.956 0.956 0.959 0.960
Pendigits 10992 16 10 0.884 0.885 0.890 0.906
Segment 2310 18 7 0.941 0.942 0.940 0.945
Stock 950 5 5 0.905 0.905 0.906 0.910
Vehicle 846 18 4 0.860 0.861 0.860 0.862
Vowel 528 10 11 0.861 0.861 0.862 0.864
Wine 178 13 3 0.902 0.901 0.905 0.906
Winsconsin 194 16 16 0.860 0.861 0.860 0.862

avg. rank − − − 3.250 2.563 2.813 1.375

From Table 6, we observe that all three variants of LRF obtain smaller average ranks

than LRF, indicating that ELAHC can significantly improve LRF. Specifically, LRF10

achieves better results on 9 out of 16 tested datasets, the same results on 4 datasets, and

slightly worse results on 3 datasets. (Only strictly better results are highlighted in bold.)

LRF01 obtains better results on 9 out of 16 tested datasets, and the same result on 3

datasets. LRF11 achieves better results on 14 out of 16 tested datasets, the same result on

1 dataset, and a worse result on 1 dataset. This experiment demonstrates the interest of

using the ELAHC algorithm to enhance the well-established LRF algorithm.

5.3.2. Results on Real-world Datasets. Table 7 lists the comparative results of LRF

and its three variants on 5 real-world datasets from the bioinformatics fields. These datasets

are obtained from 5 microarray experiments (cold, diau, dtt, heat, spo) (Hüllermeier et al.

2008). This table shows that ELAHC can significantly enhance LRF for these real-world

datasets too. Each of the three variants of LRF using the ELAHC method outperforms

the original LRF in terms of the average rank. In particular, LRF11 obtains the smallest
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average rank 1.000, LRF01 obtains the second-best average rank 2.100, and LRF10 obtains

the third-best average rank of 3.400, while the average rank of LRF is 3.500.

Table 7 Comparison of LRF Algorithms with Different Rank Aggregation Strategies on Real-world Datasets

Dataset Instances Features Labels LRF LRF10 LRF01 LRF11

cold 2465 24 4 0.076 0.078 0.081 0.086
diau 2465 24 7 0.229 0.228 0.230 0.232
dtt 2465 24 4 0.114 0.110 0.118 0.121
heat 2465 24 6 0.028 0.029 0.029 0.030
spo 2465 24 11 0.145 0.145 0.152 0.156

avg. rank − − − 3.500 3.400 2.100 1.000

6. Analysis and Discussion

This section presents additional experiments to gain a deeper understanding of the HER

and ELAHC methods. We perform two groups of experiments: 1) to demonstrate the

superiority of the ELAHC procedure, and 2) to evaluate the effectiveness of the CPSX

operator. The following experiments were conducted on 10 representative instances, where

each instance is selected based on its θ and m values.

6.1. Assessment of Enhanced Late Acceptance Hill Climbing

Recall that ELAHC is designed to reinforce the well-known late acceptance hill climb-

ing (LAHC) heuristic (Burke and Bykov 2017) by introducing a relaxed acceptance and

replacement strategy and a fast incremental evaluation mechanism. Consequently, it is of

interest to experimentally compare ELAHC with LAHC. For each tested instance, we exe-

cute both LAHC and ELAHC 10 times with different random seeds under the same time

limit t̂= 600 seconds, and then record the best solution value (f̂) found during 10 runs,

the average solution value (f̄), and the average computation time in seconds (t̄) needed to

achieve the best solution value at each run. In this experiment, the lengths of history cost

list ρ of LAHC and ELAHC are ρ= 3000 and ρ= 5, respectively. They are experimentally

determined based on the parameter sensitivity analysis, as shown in the online supplement

(Zhou et al. 2023a).

Figure 3 shows the comparative performances of ELAHC and LAHC in terms of the

best solution value, average solution value and average computation time, where the x-axis

presents instances, and the y-axis denotes the corresponding performance, and Figure 3 (a)

and (b) demonstrate the performance gaps. By treating LAHC as a baseline algorithm, we
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Figure 3 Comparison between ELAHC and LAHC in terms of (a) Best Solution Value, (b) Average Solution

Value, and (c) Average Computation Time

calculate the performance gap as (f −f ′)/f ′, where f ′ is the result of LAHC (i.e., baseline

algorithm) and f is the result of ELAHC. A performance gap smaller than zero indicates

that ELAHC obtains a better result on the corresponding instance. From 3(a), we observe

that ELAHC performs better than LAHC in terms of the best solution value (f̂), obtaining

better results in 6 instances, and the same results in the remaining 4 instances. In terms

of average solution value (f̄), ELAHC shows a much better performance than LAHC with

improved results in 8 instances and the same results in the 2 remaining instances. In terms

of average computation time (t̄), Figure 3(c) shows that ELAHC uses less computation

time than LAHC for all 10 instances. The experiment confirms that ELAHC outperforms

LAHC on the problem addressed in this paper.

6.2. Effectiveness of Concordant Pairs-based Semantic Crossover

To evaluate the effectiveness of the concordant pairs-based semantic crossover (CPSX), we

experimentally compare HER with its three variants, namely HER′, HER′′, and HER′′′,

where CPSX is replaced by three popular permutation crossover operators (Pavai and

Geetha 2016): order crossover (OX), order-based crossover (OBX), and position-based

crossover (PBX).

Table 8 summarizes the comparative results of the HER and its three variants on the 10

selected instances, reporting the best result f̂ and the average result f̄ of each algorithm

over ten runs. We also list the average value, and the average rank of each performance

indicator in the two bottom rows of the table. We observe that HER outperforms all three
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Table 8 Comparison of HER Algorithms with Different Crossover Operators (OX, OBX, PBX and CPSX)

HER′(with OX) HER′′ (with OBX) HER′′′ (with PBX) HER (with CPSX)

Instance f̂ f̄ f̂ f̄ f̂ f̄ f̂ f̄

MM050n0.001 02 575.480 575.516 575.480 575.534 575.480 575.506 575.480 575.502
MM050n0.001 11 561.480 561.480 561.480 561.486 561.480 561.480 561.480 561.480
MM100n0.200 01 416.000 416.000 416.000 416.000 416.000 416.000 416.000 416.000
MM100n0.200 05 411.720 411.720 411.720 411.720 411.720 411.720 411.720 411.720
MM150n0.100 08 1249.580 1249.598 1249.580 1249.622 1249.580 1249.598 1249.580 1249.598
MM150n0.100 17 1266.090 1266.100 1266.090 1266.114 1266.090 1266.100 1266.090 1266.100
MM200n0.010 04 7667.850 7668.052 7668.030 7668.366 7667.850 7668.056 7667.910 7668.054
MM200n0.010 13 7704.840 7704.978 7704.920 7705.284 7704.800 7704.938 7704.800 7705.060
MM250n0.001 01 14353.330 14353.888 14353.870 14354.682 14353.490 14353.912 14353.330 14353.650
MM250n0.001 10 14442.240 14442.674 14442.340 14443.086 14442.540 14442.964 14442.140 14442.604

avg. value 4864.861 4865.001 4864.951 4865.189 4864.903 4865.027 4864.853 4864.977

avg. rank 2.300 2.100 3.000 3.700 2.500 2.300 2.200 1.900

variants, achieving a better average value and average rank in terms of both f̂ and f̄ ,

confirming the effectiveness of CPSX used in HER.

7. Concluding Remarks

Our hybrid evolutionary ranking algorithm for solving the challenging rank aggregation

problem with both complete and partial rankings integrates two distinguishing components

that underlie its effectiveness. To generate promising offspring rankings, the algorithm uses

a problem-specific crossover based on concordant pairs of two parent rankings. Supplement-

ing this, the algorithm introduces an enhanced late acceptance hill climbing procedure to

perform local optimization, which reinforces the well-known late acceptance hill climbing

heuristic by a relaxed acceptance and replacement strategy and a fast incremental eval-

uation mechanism. Empirical results on synthetic and real-world benchmark instances of

both complete and partial rankings show that the algorithm performs significantly better

than state-of-the-art methods.

To further demonstrate the usefulness of the proposed method for practical problems,

we applied our method to label ranking, which is a relevant task in machine learning. The

computational outcomes demonstrate that our proposed method can benefit existing label

ranking algorithms by generating better rank aggregations. We also perform three groups

of experiments to verify the effectiveness of the method’s key algorithmic components.

Several avenues exist for future research. First, it would be interesting to test the pro-

posed method for other applications. The codes of the proposed algorithms are made pub-

licly available to facilitate such applications. Second, our concordant pairs-based semantic

crossover for permutation encoding enriches the pool of existing permutation crossovers.
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We envision that this crossover may find uses in applications where an order relation among

a permutation of elements is relevant. Third, we plan to experimentally compare existing

label ranking algorithms that are enhanced by our advanced rank aggregation methods.

Considerable effort has been devoted to using machine learning techniques to improve

optimization methods in recent years. As a complement to this, the present work may be

viewed as a contribution to research on the use of optimization methods to solve machine

learning problems more efficiently.
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Appendix. Online Supplement

A. Parameter Sensitivity Analysis

The enhanced late acceptance hill climbing (ELAHC) procedure reinforces the well-known late acceptance

hill climbing (LAHC) method by a relaxed acceptance and replacement strategy (to increase the diversity

of the search) and a fast incremental evaluation mechanism (to speed up the computation of cost function

for the rank aggregation problem). The length of the history cost list ρ is the only parameter of both the

LAHC and ELAHC methods, which strongly influences the convergence speed and solution quality.

To study the effect of the parameter ρ value, we experimentally compare the performance of both LAHC

and ELAHC algorithms under different ρ values. Our experiments are conducted on ten representative

instances, each solved ten times with t̂= 1000 seconds. Detailed comparative results of LAHC and ELAHC

algorithms are summarized in Tables 1 and 2, respectively. In these two tables, column 1 presents the instance

name (Instance), columns 2-4 report the result of the algorithm with ρ= 1, identifying the best result (f̂),

the average result (f̄) and the computation time (t̄) over 10 runs. Columns 5-7, 8-10, 11-13 present the

corresponding results of the algorithm for other three ρ values.

A.1. Sensitivity of LAHC to ρ

Table 1 Comparisons among LAHC Algorithms with Different ρ Values (i.e., ρ∈ {1,1000,3000,10000})

ρ= 1 ρ= 1000 ρ= 3000 ρ= 10000

Instance f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

MM050n0.001 02 575.780 576.170 0.303 575.680 575.802 3.376 575.620 575.730 9.755 575.560 575.706 31.835

MM050n0.001 11 561.720 561.968 0.258 561.520 561.668 3.450 561.500 561.588 10.233 561.520 561.578 33.134

MM100n0.200 01 416.000 416.050 1.329 416.000 416.040 16.694 416.000 416.012 48.043 416.000 416.014 159.280

MM100n0.200 05 411.720 411.730 1.342 411.720 411.732 17.407 411.720 411.726 49.882 411.720 411.730 162.409

MM150n0.100 08 1249.720 1249.876 7.092 1249.680 1249.836 43.814 1249.660 1249.736 120.153 1249.620 1249.706 392.398

MM150n0.100 17 1266.190 1266.262 6.572 1266.110 1266.190 45.945 1266.130 1266.196 122.270 1266.110 1266.160 391.908

MM200n0.010 04 7669.290 7670.330 32.744 7668.570 7668.916 101.805 7668.010 7668.366 267.294 7667.750 7668.006 850.411

MM200n0.010 13 7706.640 7707.304 28.301 7705.140 7705.628 99.559 7704.820 7705.220 259.608 7704.720 7704.990 838.776

MM250n0.001 01 14358.490 14359.676 56.230 14354.470 14355.376 196.067 14353.650 14354.220 432.508 14359.390 14359.774 997.502

MM250n0.001 10 14446.360 14448.256 61.728 14443.260 14444.150 179.042 14442.300 14443.120 417.091 14448.260 14448.568 997.404

avg.value 4866.191 4866.762 19.590 4865.215 4865.534 70.716 4864.941 4865.191 173.684 4866.065 4866.223 485.506

avg.rank 3.500 3.650 − 2.500 2.800 − 1.900 1.700 − 2.100 1.850 −

Table 1 summarizes the results of the LAHC algorithms with different ρ values {1,1000,3000,10000}. The

bottom line gives the average value and average rank of each performance indicator. From this we observe

that LAHC with a small ρ value (e.g., ρ= 1) quickly becomes trapped in a local optimum, leading to poor

performance (with smallest average value and average rank). For large values of ρ (e.g., ρ= 3000), the search

is less prone to becoming trapped but incurs the cost of a slower convergence speed. The solution quality

can be poor if the computation time is not enough. To make a balance between the solution quality and

computation time, a ρ= 3000 is suitable for LAHC, which achieves the smallest average values in terms of

both f̂ and f̄ . For the average rank, LAHC with ρ= 3000 also obtains the smallest rank value in terms of f̂

and f̄ .

1
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A.2. Sensitivity of ELAHC to ρ

Table 2 summarizes the results of the ELAHC algorithms with different ρ values {1,5,10,15}. The bottom

line gives the average value and average rank of each performance indicator, disclosing that ELAHC with

ρ= 1 quickly converges to an unattractive local optimum, leading to poor performance (with smallest average

value and average rank). For larger values of ρ (e.g., ρ= 5), the search is less prone to becoming trapped but

exhibits a slower convergence speed. The larger ρ value, the slower convergence speed. To make a balance

between the solution quality and computation time, ρ = 5 is suitable for ELAHC, achieving the smallest

average values in terms of both f̂ and f̄ . For the average rank, ELAHC with ρ= 5 also obtains the second

smallest rank value in terms of both f̂ and f̄ .

Table 2 Comparisons among ELAHC Algorithms with Different ρ Values (i.e., ρ∈ {1,5,10,15})

ρ= 1 ρ= 5 ρ= 10 ρ= 15

Instance f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄ f̂ f̄ t̄

MM050n0.001 02 575.900 576.194 0.160 575.640 575.728 1.861 575.600 575.688 8.723 575.540 575.670 18.766

MM050n0.001 11 561.700 561.922 0.130 561.500 561.574 1.940 561.480 561.554 9.326 561.480 561.518 22.007

MM100n0.200 01 416.000 416.048 0.675 416.000 416.012 19.953 416.000 416.004 110.484 416.000 416.000 278.871

MM100n0.200 05 411.720 411.736 0.738 411.720 411.730 20.690 411.720 411.724 126.336 411.720 411.724 302.653

MM150n0.100 08 1249.800 1249.918 3.270 1249.580 1249.636 55.452 1249.580 1249.612 263.505 1249.580 1249.618 645.462

MM150n0.100 17 1266.110 1266.202 4.579 1266.110 1266.140 48.320 1266.090 1266.110 249.941 1266.090 1266.110 599.331

MM200n0.010 04 7670.010 7670.356 15.841 7667.750 7667.952 262.215 7667.670 7667.776 983.677 7669.250 7669.456 991.769

MM200n0.010 13 7706.240 7707.396 23.169 7704.580 7704.756 254.853 7704.600 7704.698 989.951 7706.120 7706.390 993.734

MM250n0.001 01 14358.130 14359.780 28.262 14352.570 14353.268 412.931 14353.970 14354.246 994.869 14358.850 14359.134 994.320

MM250n0.001 10 14447.120 14448.066 44.503 14441.640 14442.230 405.860 14442.880 14443.088 996.642 14447.480 14447.902 995.623

avg.value 4866.273 4866.762 12.133 4864.709 4864.903 148.408 4864.959 4865.050 473.345 4866.211 4866.352 584.254

avg.rank 3.450 4.000 − 2.150 2.400 − 1.900 1.600 − 2.500 2.000 −

ELAHC is an enhanced version of LAHC. Due to the use of a relaxed acceptance and replacement strategy,

more non-improving solutions are accepted and their cost values are updated in the list. Therefore, ELAHC

requires a smaller ρ value than LAHC, as confirmed by the comparison between results summarized in Tables

1 and 2.

A.3. Sensitivity of HER to ρ

As indicated in the description of HER, the ELAHC method is used to perform local optimization during

the search. To investigate the effect of ρ on the performance of HER, we run HER with four different ρ

values {1,5,10,15}. Detailed results in terms of the best result (fbest) and average result (favg) are presented

in Figure 1. The x-axis indicates the ρ values, and y-axis shows the performance gaps. By treating HER

with ρ= 1 as a baseline, we calculate the performance gap as (f − f̃)/f̃ , where f is the result of the HER

algorithm with ρ ∈ {1,5,10,15} and f̃ is the result of the HER algorithm with ρ = 1. A performance gap

smaller than zero means a better result for the corresponding instance.

From Figure 1, we observe that HER with a small ρ ∈ {1,5} value demonstrates a significantly better

performance than HER with a large ρ ∈ {10,15}. Taking the MM050n0.001 02 instance as an example,
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Figure 1 Comparison among HER Algorithms with different ρ Values (ρ∈ {1,5,10,15})

we see that HER with ρ = 5 achieves the best performance in terms of both the best result and average

result. Similar observations apply to the other nine instances. These results confirm that ρ= 5 is a suitable

parameter value for ELAHC used in HER.

B. Comparison Between Iterated Local Search and its Improved Version

The original iterated local search (ILS) method for the rank aggregation problem is a multi-start local search

algorithm based on the hill climbing (HC) algorithm, which demonstrates the best performance when the

algorithms are allowed to perform a large number of fitness evaluations. Note that ILS employs HC to

perform local optimization, which causes it to achieve a bad performance. To remedy this, we implemented

an improved ILS method by replacing HC with the enhance late acceptance hill climbing (ELAHC) with

ρ= 1. We conducted a detailed performance comparison between the original ILS and improved ILS on both

synthetic and real-world instances with complete rankings, whose outcomes are as follows.
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B.1. Results on Synthetic Instances

Table 3 summarizes the detailed comparative results on synthetic instances. For each algorithm, we report

the best result (f̂), the average result (f̄), and the average time in seconds (t̄). From Table 3, we observe

that the improved ILS method performs better than the original method in all 20 cases in terms of both f̂

and f̄ .

Table 3 Comparisons of the Original ILS and Improved ILS on Synthetic Instances

Instance Original ILS (with HC) Improved ILS (with ELAHC)

θ m f̂ f̄ t̄ f̂ f̄ t̄

0.200 050 337.900 357.308 3164.665 183.140 187.913 723.482
0.100 050 417.180 426.984 3607.289 311.950 320.296 30.213
0.010 050 571.910 577.889 4331.544 550.970 559.797 333.231
0.001 050 579.480 584.879 4090.002 561.740 569.968 1137.292
0.200 100 1590.090 1663.185 4357.084 405.140 411.884 389.789
0.100 100 1697.160 1756.552 3571.267 776.020 787.745 1190.498
0.010 100 2303.440 2320.391 3074.636 2126.890 2153.107 3401.334
0.001 100 2376.530 2393.986 3547.358 2290.990 2306.096 3662.618
0.200 150 3911.680 4072.344 4091.270 629.410 636.948 152.134
0.100 150 4028.860 4164.913 3813.916 1245.730 1260.166 2464.411
0.010 150 5123.720 5188.640 3637.212 4533.430 4586.122 2082.753
0.001 150 5406.240 5431.022 4491.537 5144.480 5191.362 3788.802
0.200 200 7491.710 7628.279 2548.153 851.290 862.693 115.287
0.100 200 7535.900 7714.423 3483.566 1711.440 1734.231 2286.683
0.010 200 9070.050 9185.279 3625.224 7625.320 7698.460 3830.479
0.001 200 9667.810 9706.857 3599.662 9182.900 9240.152 3768.522
0.200 250 11819.520 12354.986 3268.002 1075.790 1087.684 456.757
0.100 250 11888.110 12359.140 4139.456 2186.420 2206.824 3190.976
0.010 250 14002.130 14276.435 3707.153 11182.830 11301.168 3641.871
0.001 250 15180.200 15219.913 3593.352 14337.260 14434.251 3097.111

? The results of each combination of θ and m are averaged over 20 instances.

B.2. Results on Real-world Instances

Table 4 summarizes the detailed comparative results on real-world instances, leading to the same conclusion

as in Table 3, that the improved ILS method significantly outperforms the original ILS method.

Table 4 Comparisons of the Original ILS and Improved ILS on Real-world Instances

Original ILS (with HC) Improved ILS (with ELAHC)

Instance f̂ f̄ t̄ f̂ f̄ t̄

Sushi 19.181 19.190 2772.938 19.181 19.181 1.003
F1 77.450 79.930 3714.395 68.750 68.750 0.197
Tour 4882.300 4913.240 4001.894 3480.100 3480.800 2938.547
ATPWomen 50 353.481 361.592 3531.377 185.750 185.750 4.264
ATPWomen 100 1693.558 1739.742 3072.500 715.019 715.019 954.638
ATPWomen 200 7743.269 7858.192 4309.973 2823.423 2823.596 3467.266
ATPMen 50 346.269 364.565 2777.543 197.962 197.962 7.795
ATPMen 100 1746.250 1779.123 4194.137 862.365 862.365 1947.933
ATPMen 200 7742.212 7899.108 4777.542 2810.519 2810.823 3543.888
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