
An effective hybrid search method for the quadratic knapsack

problem with conflict graphs

Qing Zhoua, Jin-Kao Haob, Zhong-Zhong Jianga and Qinghua Wuc

aSchool of Business Administration, Northeastern University, 195 Chuangxin Road,
Shenyang 110169, China; bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex
01, France; cSchool of Management, Huazhong University of Science and Technology, No.
1037, Luoyu Road, Wuhan, China

Accepted to Journal of the Operational Research Society, May 2023

ARTICLE HISTORY

Compiled May 11, 2023

ABSTRACT
The quadratic knapsack problem (QKP) is a variant of the well-known knapsack
problem and arises in a variety of real life applications. The quadratic knapsack
problem with conflict graphs (QKPCG) further extends QKP by considering the
conflicts of items. In this work, we propose an effective hybrid search method based
on the framework of memetic algorithm to tackle QKPCG. The method integrates
a randomized uniform-based crossover operator to generate promising offspring
solutions, a multi-neighborhood tabu search to perform local optimization, and a
streamline technique to speed up the evaluation of candidate solutions. The method
shows a competitive performance compared to the state-of-the-art approaches in
the literature. It finds 3 improved best-known solutions and matches the best-
known solutions for all the remaining cases out of the 45 benchmark instances.
We investigate the effects of the key ingredients of the algorithm.

KEYWORDS
Quadratic knapsack problem; conflict graphs; heuristics; memetic framework; tabu
search

1. Introduction

The knapsack problem (KP) is a canonical combinatorial optimization problem which
finds various applications such as resources allocation (Aisopos, Tserpes, & Varvarigou,
2013), logistics (Perboli, Gobbato, & Perfetti, 2014) and telecommunications (Van der
Merwe, & Hattingh, 2006). Given a knapsack with its capacity and a set of items, each
with its associated weight and profit, KP seeks to select a subset of items to maximize
the total profit of the selected items without exceeding the knapsack capacity. For a
comprehensive review of KP, the readers are referred to (Kellerer, Pferschy, & Pisinger,
2004).

The quadratic knapsack problem with conflict graphs (QKPCG) extends KP by
considering quadratic profits between items and conflicts of items. In QKPCG, we

CONTACT Zhong-Zhong Jiang. Email: zzjiang@mail.neu.edu.cn

are given a knapsack with a predefined capacity c, a set of n items V = {1, 2, ..., n}
and a conflict graph G = (V,E) where E ⊂ {(i, j) ∈ V × V, i < j} specifies the
incompatibility of items ((i, j) ∈ E means that items i and j cannot be packed in the
knapsack simultaneously). Let w = {w1, w2, ..., wn} be the set of item weights, and
p = {p1, p2, ..., pn} be the set of item profits. Let q = {qij : (i, j) /∈ E} represent the set
of quadratic profits of compatible items. QKPCG is to select a subset of compatible
items to maximize the total profit of the selected items, while satisfying the capacity
constraint. QKPCG is NP-hard (Shi, Wu, & Meng, 2017) and thus computationally
challenging.

Formally, let xi (i ∈ V) be the decision variable such that xi = 1 if item i is placed
in the knapsack, and xi = 0 otherwise. QKPCG can then be expressed as the following
quadratic integer program (Dahmani, & Hifi, 2021; Shi, Wu, & Meng, 2017).

Maximize f =
∑
i∈V

pixi +
∑
i∈V

∑
j∈V,j>i

qijxixj (1)

subject to
∑
i∈V

wixi ≤ c (2)

xi + xj ≤ 1, ∀(i, j) ∈ E (3)

xi ∈ {0, 1}, ∀i ∈ V (4)

The objective function (1) maximizes the overall collected profits. The capacity
constraint (2) guarantees that the total weights of the items in the knapsack do not
exceed its capacity. The disjunctive constraints (3) ensure that the items placed in the
knapsack must be compatible, and the constraints (4) impose that each variable takes
a binary value.

QKPCG has a number of practical applications in domains like portfolio manage-
ment (Dahmani, & Hifi, 2021). A real world case study in establishing an economic
development strategy in the environmental protection zone for QKPCG is presented in
(Shi et al., 2017). Given the relevance of QKPCG, several solution methods have been
proposed in the literature. In Section 2, we review these existing works as well as some
related problems. We notice that compared to KP and QKP, much less efforts have
been dedicated to QKPCG since its introduction in 2017 (Shi, Wu, & Meng, 2017).
In fact only three heuristic algorithms have been developed for practically solving
QKPCG problem. These algorithms have contributed to find satisfying solutions to
a set of benchmark instances of the problem, their performances vary according to
the tested instances and lack stability across the whole range of the benchmark. This
work aims thus to advance the state-of-the-art of solving more efficiently and effectively
QKPCG. For this, we propose a competitive heuristic algorithm, which is able to find,
in a short computing time, high quality solutions on the commonly used benchmark
instances. The main contributions of this work are summarized as follows.

• We present the first hybrid search method (HSM) based on the memetic frame-
work for tackling QKPCG, which possesses three original characteristics. First,
to generate promising offspring solutions, HSM applies a dedicated randomized
uniform-based crossover operator (RUX), which commits to preserving common
items shared by parent solutions. The motivation behind the design of RUX is
that high quality solutions are observed to share a large number of common
items (see Section 5.2). Second, to explore efficiently the search space around
each newly generated solution by the crossover operator, HSM adopts a tabu

2

search optimization procedure which relies on the union of three complementary
neighborhoods. Finally, a fast incremental evaluation technique is devised to
quickly evaluate each candidate move, improving the computational efficiency of
the proposed approach.
• Computational assessments on the set of 45 benchmark instances commonly used

in the literature indicate that the proposed algorithm obtains highly competitive
results compared to the existing best-performing QKPCG methods. It finds 3
novel lower bounds and matches the best-known solutions for all the remaining
cases in a short computing time.

The rest of the paper is organized as follows. Section 2 reviews existing related works.
Section 3 describes the methodology of the proposed algorithm. Section 4 presents the
computational assessment and comparisons. Section 5 shows an analysis of two key
ingredients of the algorithm. Conclusions and perspectives are given in the last section.

2. Related works

To our knowledge, three practical algorithms have been proposed for QKPCG.
Shi et al. (Shi, Wu, & Meng, 2017) developed the first neighborhood search-based
metaheuristic (NSBM) for the problem. NSBM adopts a two-phase construction
procedure to generate a starting solution and a sophisticated large neighborhood search
to explore the solution space. Dahmani and Hifi (Dahmani, & Hifi, 2021) proposed
a modified descent method-based (MDM) heuristic for QKPCG, which combines a
descent-based intensification search and a diversification procedure with degrading
and re-optimization strategies to enhance the search efficiency. The reported results
indicate that the MDM method has a superior performance compared to the reference
algorithms. Dahmani et al. (Dahmani, Hifi, Saadi, & Yousef, 2020) introduced a
population-based search algorithm (PBSA), which integrates binary particle swarm
optimization (BPSO) with a fast and efficient local search procedure. In PBSA, BPSO
maintains a population of solutions and uses the local search to either improve the
quality of each binary solution or repair its infeasibility with the check and repair
operators following the profit/weight ratio (Chih, 2015, 2018). Their study showed that
PBSA was very competitive compared with the state-of-the-art algorithms including
NSBM (Shi, Wu, & Meng, 2017) and MDM (Dahmani, & Hifi, 2021).

The disjunctively constrained knapsack problem (DCKP) also known as the
knapsack problem with conflict graph is closely related to QKPCG. The difference
between these two problems is their objective function: a quadratic objective function
for QKPCG and a linear objective function for DCKP. The quadratic function suggests
a higher difficulty for solution methods, especially to obtain exact solutions or high
quality approximate solutions for large-scale instances. Compared to QKPCG, DCKP
has attracted much more attention in the last two decades, and various solution
approaches have been proposed for solving it, including exact algorithms (Coniglio,
Furini, & San Segundo, 2021; Hifi, & Michrafy, 2007; Yamada, Kataoka, & Watanabe,
2002), approximation algorithms (Pferschy, & Schauer, 2017) and heuristic algorithms
(Hifi, & Michrafy, 2006; Salem, Hanafi, Taktak, & Abdallah, 2017; Wei, & Hao, 2021).

According to the computational results shown in the literature on QKPCG, NSBM
(Shi et al., 2017), MDM (Dahmani, & Hifi, 2021) and PBSA (Dahmani et al., 2020) are
the current best performing algorithms for tackling QKPCG, and we use them as the
reference methods in the numerical experimental comparisons. Meanwhile, it is known

3

that the memetic search framework is among the most powerful general approaches for
grouping problems such as graph coloring (Lü, & Hao, 2010) and bin packing (Spencer
et al., 2019). Until now, this method is still unexplored for QKPCG. Therefore, this
work aims at filling this gap by studying for the first time the potential of the memetic
search framework to tackle QKPCG. As demonstrated by the computational results
in Section 4, this method is indeed very effective and robust.

3. Hybrid search method for QKPCG

The proposed HSM method relies on the memetic algorithm (Moscato, 1999),
which combines population-based evolutionary principle and neighborhood-based local
search. The basic rationale behind memetic algorithms is to take advantage of these
two complementary search strategies (Hao, 2012), by combining the exploration
capability of population-based search and exploitation power of local search. The
memetic framework has been successfully applied to a variety of difficult combinatorial
optimization problems, such as job-shop scheduling problems (Constantino, & Segura,
2022; Zhou, He, Ma, Lim, & Pratap, 2022; Zobolas, Tarantilis, & Ioannou, 2009),
critical node detection problems (Alozie, Arulselvan, Akartunalı, & Pasiliao, 2022)
and knapsack problems (Li, Tang, & Liu, 2020; Wei, & Hao, 2021).

3.1. Main scheme

Algorithm 1: Hybrid search method for QKPCG

Input: I: QKPCG graph, population size ps, maximum allowed time tmax

Output: Best found solution S∗

1 P = {S1, ..., Sp} ← pop initial(ps) /* Section 3.3, population initialization */
2 S∗ ← best(P) /* S∗ records the best solution encountered so far */
3 while tmax is not reached do
4 Select randomly two parents Sa, Sb from P

5 So ← cross over(Sa, Sb) /* Section 3.4, generate an offspring solution */
6 So ← tabu search(So) /* Section 3.5, improve the offspring */
7 if f(So) > f(S∗) then
8 S∗ ← So /* Update the recorded best solution */

9 P ← pop update(P, So) /* Update the population */

The general scheme of HSM is presented in Algorithm 1. HSM starts with an
initial population (see line 1, Section 3.3) consisting of ps individuals where ps is
the population size. Then HSM executes a series of generations (see lines 3-9) until it
reaches a stopping condition (typically a given cutoff time tmax). At each generation,
the randomized uniform-based crossover operator is applied to produce an offspring
solution So from two parent solutions randomly chosen in the population (see lines
4-5, Section 3.4). Afterward, So is improved by the multi-neighborhood tabu search
procedure (see line 6, Section 3.5). Finally, So is utilized to update the best recorded
solution S∗ (lines 7-8) as well as the population (line 9). To update the population,
So just replaces the worst solution in the population if So has a better objective value
and So does not exist already in the population. The main components of HSM are
depicted in the following subsections.

4

3.2. Search space and evaluation function

For a given QKPCG instance I = (V,E, c, w), the search space Ω explored by the
proposed HSM algorithm contains all the possible subsets of V satisfying the capacity
constraint and disjunctive constraint, i.e., Ω = {S : S ⊂ V such that

∑
i∈S wi ≤ c and

∀i, j ∈ S, (i, j) /∈ E }. For any solution S ∈ Ω, its quality is evaluated by the objective
value (Eq. (1)). A solution S is better than another solutionS′ only if f(S) > f(S′).

3.3. Population initialization

Algorithm 2: Randomized construction method

Input: QKPCG graph I
Output: A feasible random solution S

1 S ← ∅
2 Identify the item m with the minimum weight wm

3 cw ← c /* cw is the residual weight of the knapsack */
4 R← {1, 2, ..., n} /* R is the set of unvisited items */
5 Perform a random permutation operation on R /* R is a random permutation of

the unvisited item set {1, 2, ..., n} */
6 t← 1
7 while wm ≤ cw do
8 Select the t-th element Rt of R
9 if wRt

≤ cw then
10 if Rt is compatible with each element in S then
11 S ← S ∪ {Rt}
12 cw ← cw − wRt

13 t← t+ 1

14 return S

The initial population P is composed of ps feasible individuals (solutions) and
each solution is constructed by a randomized construction method (RCM, Algorithm
2). Starting from an empty set S, RCM first initializes the set of unvisited items
R = {1, 2, ..., n}. And then a random permutation operation is carried out on R
by executing n random swaps (lines 4-5, Algorithm 2), leading to a randomized set
R = {R1, R2, ..., Rn}, where Ri ∈ {1, 2, ..., n} and Ri 6= Rj for any different i and
j (i, j ∈ {1, 2, ..., n}, i 6= j). Then, RCM repeats a number of iterations to visit the
items and returns a feasible random solution S at the end (lines 7-14, Algorithm 2).
At iteration t, the t-th element Rt of R is visited (line 8, Algorithm 2) and inserted
into the solution S, so long as the weight of Rt does not exceed the residual knapsack
capacity cw = c−

∑
i∈S wi (line 9, Algorithm 2) and Rt is compatible with the selected

items in S (line 10, Algorithm 2). RCM stops once the knapsack capacity is reached,
that is, the residual knapsack capacity cw is less than the minimum weight wm of the
set of item weights.

The generated solution S is then improved by the multi-neighborhood tabu search
procedure (see Section 3.5). The resulting improved solution is inserted into the
population if it is not identical to any existing solution in the population. The process
stops as soon as the number of solutions in the population reaches ps.

The time complexity of RCM algorithm can be estimated as follows. At the
beginning of RCM, a random permutation R is obtained in O(n) time (lines 4-5,
Algorithm 2). At each RCM iteration, an item Rt is inspected for insertion into the

5

current solution S in O(|S|) (lines 8-10, Algorithm 2), where |S| is the number of
selected items in S. Therefore, the total time complexity of RCM is bounded by
O(|S| × n).

3.4. Randomized uniform-based crossover operator

Algorithm 3: Randomized uniform-based crossover operator

Input: Two randomly selected parents Sa and Sb

Output: A feasible offspring solution So

1 So ← ∅
2 Identify the item m with the minimum weight wm

3 cw ← c /* cw is the residual weight of the knapsack */
4 R← {1, 2, ..., n} /* R is the set of unvisited items */
5 Make a random permutation operation on R /* R is a random permutation of the

unvisited item set {1, 2, ..., n} */
6 t← 1
7 while cw ≥ wm do
8 Select the t-th element Rt of R
9 coin← rand(0, 1) /* coin takes the value 0 or 1 with equal probability */

10 if coin 6= 0 then
11 if Rt is selected in the knapsack of Sa and can fit into the knapsack of So

then
12 So ← So ∪ {Rt}
13 cw ← cw − wRt

14 else
15 if Rt is selected in the knapsack of Sb and can fit into the knapsack of So

then
16 So ← So ∪ {Rt}
17 cw ← cw − wRt

18 t← t+ 1

19 return So

The randomized uniform-based crossover operator (denoted as RUX, see Algorithm
3) is a crucial component of HSM algorithm. RUX is applied to generate a diversified
offspring solution from two randomly selected parent solutions at each generation of
HSM. Usually, an effective crossover is expected to inherit good properties (“building
blocks”) of parent solutions and sustain diversity in relation to the parents (Hao,
2012; Neri, & Cotta, 2012). For QKPCG, a preliminary experiment indicated that
high quality solutions share a number of items (refer to Section 5.2), which might be
part of an optimal solution.

RUX follows the general principle described above and generates a feasible
offspring solution So which inherits solution features from a randomly selected parent.
Specifically, RUX firstly initializes So = ∅, the set of unvisited items R = {1, 2, ..., n},
and then performs a random permutation operation on R as illustrated in Section
3.3 to obtain a random set R = {R1, R2, ..., Rn} (lines 4-5, Algorithm 3). Next, RUX
performs a series of iterations to build the offspring solution So (lines 7-18, Algorithm
3) until the knapsack capacity is reached. At each iteration t, the t-th element Rt of R
is selected and a parent solution Sr is taken randomly between the two parents Sa and
Sb (lines 8-9, Algorithm 3). Then Rt is added to So, as long as it appears in Sr and
adding Rt to So does not violate the capacity constraint nor the disjunctive constraint

6

(lines 10-13 or lines 14-17, Algorithm 3). The time complexity of RUX is bounded by
O(|So| × n).

3.5. Multi neighborhood tabu search

For local optimization, HSM algorithm employs a multi neighborhood tabu search
(MNTS), which has been successfully applied to tackle a number of combinatorial
optimization problems (Glover, & Laguna, 1998; Wu, Hao, & Glover, 2012). In the
following subsections, we describe the neighborhood structures and fast incremental
evaluation technique, as well as the neighborhood exploration strategy of MNTS
procedure.

3.5.1. Neighborhood structures and fast incremental evaluation technique

The MNTS method jointly exploits three neighborhoods, including the add neighbor-
hood Na, the drop neighborhood Nd and the swap neighborhood Ns, which were also
used in previous studies like (Dahmani, & Hifi, 2021). However, unlike (Dahmani, &
Hifi, 2021) where these neighborhoods are applied according to a specific order, MNTS
exploits the union of these neighborhoods. Moreover, to ensure a high computational
efficiency, MNTS adopts for the time an incremental streamlining evaluation technique
to assess the quality of each neighboring solution. Note that this fast evaluation
technique can benefit other local search algorithms based on these neighborhoods.

Given an incumbent solution S ⊂ V , the Add operator denoted as Add(i) inserts
an item i ∈ V \S into S such that all the constraints (Constraints (2-4)) are satisfied.
To quickly compute the move gain of a candidate move, MNTS introduces the first
fast incremental evaluation technique for QKPCG which was widely used for other
quadratic optimization problems, such as the capacitated clustering problem (Lai, &
Hao, 2016) and the quadratic assignment problem (Zhou, Hao, & Duval, 2020). The
main idea is to hold a n-dimensional vector γ, where its element γ[i] records the
sum of profits between item i and all other items selected in current solution S, i.e.,
γ[i] =

∑
j∈S,j 6=i qij . The move value of an Add(i) operation can then be efficiently

calculated as:

∆f (Add(i)) = pi + γ[i] (5)

Clearly, an Add move always leads to an improved solution since its associated move
gain is always positive. After executing an Add(i) move, the vector γ is updated in
O(n) time as follows: γ[j] = γ[j] + qij , ∀j ∈ V, j 6= i.

The size of Na neighborhood consisting of all the Add candidate moves is bounded
by O(|V \S|).

The Drop operator denoted by Drop(i) removes an item i from the current solution
S. The move gain of dropping an item i can be quickly calculated by:

∆f (Drop(i)) = −pi − γ[i] (6)

Obviously, a Drop move always deteriorates the quality of the current solution. When a
Drop(i) move is performed, the vector γ will be updated in O(n) time: γ[j] = γ[j]−qij ,
∀j ∈ V, j 6= i.

The size of Nd induced by the Drop operator is bounded by O(|S|).

7

The Swap operator exchanges two items i and j (denoted as Swap(i, j)) where
i ∈ S and j /∈ S, while satisfying all the constraints. For a given Swap(i, j) move, its
move gain can be expressed by:

∆f (Swap(i, j)) = pj − pi + γ[j]− γ[i]− qij (7)

One can notice that the move gain of a Swap move can be negative or non-negative.
In other words, a Swap move can improve or worsen a solution with respect to the
objective function or keep the objective value unchanged. Since a Swap move can be
regarded as the compound operation of an Add move followed by a Drop move (or
a Drop move followed by an Add move), γ is then consecutively updated two times
according to the Add move and Drop move in O(n) time.

The size of Ns is bounded by O(|S| × |V \S|) and is usually much larger than that
of Na and Nd.

3.5.2. Exploration with tabu search

Algorithm 4: Multi neighborhood tabu search

Input: A feasible solution S, the search depth of tabu search sd
Output: Best feasible solution found S∗

1 t← 0 /* Non-improve iteration counter */
2 S∗ ← S /* S∗ records the best feasible solution encountered so far */
3 tl[i]← 0, for each i ∈ V /* Initialize the tabu list tl */
4 while t < sd do
5 Select a best admissible neighboring solution S′ from the union of Na, Nd and

Ns

6 S ← S′

7 Update the tabu list tl
8 if f(S) > f(S∗) then
9 S∗ ← S

10 t← 0

11 else
12 t← t+ 1

13 return S∗

When there are several neighborhoods, one important issue is how to apply the
neighborhoods to efficiently explore the search space (Lü, Hao, & Glover, 2011). In
the case of QKPCG, a Swap move might result in a neighboring solution that has a
better quality than any solution obtained by an Add move. Furthermore, when no Add
move can be applied, a Drop move may lead to a neighboring solution better than
any solution produced by a Swap move. Therefore, there is no absolute advantage of
a move operator (and the induced neighborhood) over another one. Based on these
considerations, MNTS procedure examines the Na, Nd and Ns neighborhoods as the
union set Na ∪Nd ∪Ns.

The general scheme of MNTS procedure is given in Algorithm 4. Starting from
an input feasible solution, MNTS replaces the current solution S with the admissible
highest-gain neighboring solution S′ (ties are broken randomly) from the union of
Na, Nd and Ns neighborhoods (lines 5-6, Algorithm 4). Thanks to the fast evaluation
technique above, each iteration can be achieved in O(|S|+ |V \S|+ |S| × |V \S|) time.
To avoid short term cycling, each time an item i is removed from the solution, it is

8

Table 1. Scaling factors of the processors used in each reference algorithm, with respect to the processor used

in this work.

Algorithm Reference Processor type CPU frequency (GHz) Scaling factor
HSM - Intel Xeon E5-2630 v3 2.40 1.00
NSBM (Shi et

al., 2017)
Intel Core i5 3.10 1.29

MDM (Dahmani,
& Hifi,
2021)

Intel core 2 duo 2.53 1.05

PBSA (Dahmani
et al.,
2020)

Intel core 2 duo 2.53 1.05

marked as tabu and forbidden to go back to the solution for the next tt iterations where
tt is a parameter called the tabu tenure (line 7, Algorithm 4). The tabu status of a
move is overridden if the move results in a solution with improved quality (aspiration
criterion). A move is regarded as admissible if it is not marked as tabu or it meets
the aspiration criterion. The best feasible solution found S∗ is updated whenever an
improved solution S is obtained, i.e., f(S) > f(S∗) (lines 8-9, Algorithm 4). MNTS
is repeated until the best recorded solution S∗ cannot be updated for sd consecutive
iterations, where sd is a parameter called the search depth of MNTS, and returns the
best feasible solution during the search process.

4. Computational experiments

To evaluate the performance of HSM algorithm, we present computational experiments
on a set of benchmark instances from the literature.

4.1. Benchmark instances

Our computational assessments are based on a set of 45 benchmark instances1, which
are grouped into 9 classes (noted from 1qkpcg to 9qkpcg) where each class consists of
5 instances. These instances are introduced by Shi et al. (Shi et al., 2017) and later
used in other studies (Dahmani, & Hifi, 2021; Dahmani et al., 2020). The instances
are characterized by: the number of items n ∈ {100, 150, 200}, and the density of the

graph d (calculated by d = |E|
n∗(n−1) where |E| is the number of pairs of incompatible

items) varies from 2% to 8%. All instances were generated according to the standard
model used by Billionnet and Soutif (Billionnet, & Soutif, 2004) for the quadratic
functions, and the specificity of the disjunctive constraints as studied by Yamada et
al. (Yamada et al., 2002).

4.2. Experimental settings

The HSM algorithm was programmed in C++ language2 and compiled using the g++
7.3.0 compiler with the “-O3” option. HSM was executed on a computing platform
with an Intel Xeon E5-2630 v3 processor (2.4 GHz) and 1 GB RAM under the Linux
operating system. Following the reference algorithms (Dahmani, & Hifi, 2021; Dahmani

1https://github.com/neteasefans/QKPCG.git
2The source codes of the HSM algorithm will be publicly available at the GitHub page

9

Table 2. Values of parameters tuned with the ‘irace’ package.

Parameter Section Description Candidate values Final value
ps 3.3 size of population {5, 10, 20, 30, 50} 10
tt 3.5.2 tabu tenure {10, 20, 30, 50, 100} 20
sd 3.5.2 search depth of tabu search {1000, 2000, 5000, 10000,

20000}
10000

et al., 2020), HSM was performed independently ten times on each instance with
different random seeds. The cutoff time tmax for each run was set to 200 seconds as in
(Dahmani, & Hifi, 2021; Dahmani et al., 2020; Shi et al., 2017).

To evaluate the performance of HSM, we conduct experimental comparisons with
three state-of-the-art QKPCG heuristics in the literature, including the NSBM (Shi
et al., 2017), MDM (Dahmani, & Hifi, 2021) and PBSA (Dahmani et al., 2020).
The numerical results reported by these methods are directly compiled from the
corresponding literature. To make a relatively fair comparison in running time, we used
the CPU frequency as the main indicator to compare the speeds of the processors used
by HSM and the reference methods. Table 1 shows the processer type and its frequency
used in each algorithm, as well as resulting scaling factor in relation to the processor
used in this work (Intel Xeon E5-2630 v3, 2.4 GHz) which servers as a basis. The
processor used in this paper is thus a little slower than that utilized by the reference
approaches. Note that the running time reported by all algorithms is provided for
indicative purposes only, since the runtime of each algorithm is influenced by some
additional factors including the programming language, data structures, operating
system and compiler options.

4.3. Parameter tuning

The HSM algorithm has only 3 parameters: the population size ps, the tabu tenure tt
and the search depth of tabu search sd. These parameters are tuned with an automatic
tuning package named ‘irace’ (López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari,
& Stützle, 2016) dedicated to off-line parameter configuration for parameterized
algorithms. In this tuning experiment, we selected randomly 5 instances from the
set of 45 benchmarks as the training instances, and set the tuning budget of HSM
to 1000. The candidate values of each parameter serving as the input of the ‘irace’
software are chosen according to our preliminary experiments. Table 2 presents the
candidate values as well as the final value determined by ‘irace’ for each parameter.

4.4. Computational results and comparisons with state-of-the-art
algorithms

Table 3 shows the detailed results of HSM as well as the results of three reference
heuristics (NSBM (Shi et al., 2017), MDM (Dahmani, & Hifi, 2021) and PBSA
(Dahmani et al., 2020)) on the set of 45 benchmark instances. Column ‘Ins.’ indicates
the instance name and ‘fbk’ reports the best-known result compiled from all published
results in the literature. Columns ‘fbest’, ‘favg’ and ‘tavg(s)’ show respectively the
best objective value, the average objective value, and the average running time in
seconds to reach the final objective value over 10 independent executions. Note that the
running time of MDM is unavailable. Columns ‘#hits’ and ‘σ’ represent respectively
the number of runs reaching fbest, and the standard deviation of the objective values
obtained across 10 independent runs for HSM. Row ‘#Best’ records the number of

10

T
a
b
le

3
.

C
o
m

p
a
ra

ti
v
e

re
su

lt
s

b
et

w
ee

n
H

S
M

a
n

d
th

re
e

re
fe

re
n

ce
a
lg

o
ri

th
m

s
o
n

th
e

se
t

o
f

4
5

b
en

ch
m

a
rk

s.
T

h
e

b
es

t
re

su
lt

s
a
re

m
a
rk

ed
in

b
o
ld

.

N
S

B
M

M
D

M
P

B
S

A
H

S
M

In
s.

f
b
k

f
b
e
s
t

f
a
v
g

t a
v
g
(s

)
f
b
e
s
t

f
a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g
(s

)
f
b
e
s
t

f
a
v
g

t a
v
g
(s

)
#
h
it
s

σ
1
q
k
p

cg
1

1
7
0
7
1

1
6
6
4
2

1
6
2
8
0
.2

0
1
1
7
.7

8
1
7
0
6
1

1
6
8
5
9
.5

0
1
7
0
7
1

1
6
8
5
9
.5

0
3
5
.0

0
1
7
0
7
1

1
7
0
7
1
.0
0

0
.2

4
1
0

0
.0

0
1
q
k
p

cg
2

1
3
5
0
0

1
2
2
7
2

1
2
0
0
6
.2

0
1
2
5
.3

4
1
3
5
0
0

1
3
3
3
2
.2

0
1
3
5
0
0

1
3
3
6
9
.8

0
1
5
.0

0
1
3
5
0
0

1
3
4
6
6
.9
0

3
8
.3

7
6

4
1
.4

6
1
q
k
p

cg
3

1
6
1
5
6

1
5
8
4
3

1
5
6
1
2
.6

0
1
4
8
.1

4
1
6
1
5
6

1
6
1
1
1
.5

0
1
6
1
5
6

1
6
1
1
1
.5

0
2
1
.4

4
1
6
1
5
6

1
6
1
5
6
.0
0

0
.6

8
1
0

0
.0

0
1
q
k
p

cg
4

1
9
9
2
1

1
9
6
5
9

1
9
5
9
4
.2

0
1
0
2
.3

0
1
9
9
2
1

1
9
7
1
4
.9

0
1
9
9
2
1

1
9
8
0
6
.5

0
1
5
.3

3
1
9
9
2
1

1
9
9
2
1
.0
0

1
.8

1
1
0

0
.0

0
1
q
k
p

cg
5

1
6
8
7
0

1
5
4
9
9

1
5
3
7
8
.8

0
3
7
.1

8
1
6
8
7
0

1
6
8
3
3
.7

0
1
6
8
7
0

1
6
8
4
3
.7

0
2
4
.1

1
1
6
8
7
0

1
6
8
7
0
.0
0

0
.1

4
1
0

0
.0

0
2
q
k
p

cg
1

1
1
2
1
7

1
1
2
0
5

1
0
8
9
5
.0

0
8
2
.7

8
1
1
1
7
2

1
1
1
7
2
.0

0
1
1
2
1
7

1
1
1
8
1
.0

0
5
.8

9
1
1
2
1
7

1
1
2
1
7
.0
0

3
.9

5
1
0

0
.0

0
2
q
k
p

cg
2

1
0
9
3
3

1
0
5
6
5

1
0
4
3
8
.2

0
8
8
.8

3
1
0
9
1
1

1
0
8
1
2
.0

0
1
0
9
3
3

1
0
8
4
2
.6

0
1
5
.8

9
1
0
9
3
3

1
0
9
3
3
.0
0

5
.2

1
1
0

0
.0

0
2
q
k
p

cg
3

1
1
2
4
8

1
1
1
6
3

1
1
0
8
4
.8

0
4
7
.0

2
1
1
2
3
2

1
1
2
1
2
.7

0
1
1
2
4
8

1
1
2
1
8
.1

0
1
8
.1

1
1
1
3
1
2

1
1
3
1
2
.0
0

4
.5

1
1
0

0
.0

0
2
q
k
p

cg
4

1
5
5
9
9

1
5
5
9
9

1
5
5
9
9
.0
0

1
5
6
.0

7
1
5
5
9
9

1
5
5
9
9
.0
0

1
5
5
9
9

1
5
5
9
9
.0
0

6
.1

1
1
5
5
9
9

1
5
5
9
9
.0
0

0
.4

7
1
0

0
.0

0
2
q
k
p

cg
5

1
2
5
8
0

1
2
5
8
0

1
2
5
4
1
.6

0
1
9
.2

8
1
2
5
8
0

1
2
4
4
2
.6

0
1
2
5
8
0

1
2
5
2
0
.6

0
1
4
.0

0
1
2
5
8
0

1
2
5
8
0
.0
0

2
0
.2

0
1
0

0
.0

0
3
q
k
p

cg
1

7
4
5
5

7
4
5
5

7
3
3
7
.0

0
1
7
.0

0
7
4
5
5

7
4
5
5
.0
0

7
4
5
5

7
4
5
5
.0
0

1
4
.3

3
7
4
5
5

7
4
5
5
.0
0

0
.2

5
1
0

0
.0

0
3
q
k
p

cg
2

7
3
4
3

7
3
4
3

7
3
4
3
.0
0

5
7
.4

4
7
3
4
3

7
2
6
6
.8

0
7
3
4
3

7
3
4
3
.0
0

8
.7

8
7
3
4
3

7
3
4
3
.0
0

0
.1

9
1
0

0
.0

0
3
q
k
p

cg
3

7
2
8
5

7
2
5
8

7
2
0
0
.6

0
8
8
.5

8
7
2
8
5

7
2
8
5
.0
0

7
2
8
5

7
2
8
5
.0
0

1
0
.8

9
7
2
8
5

7
2
8
5
.0
0

0
.3

0
1
0

0
.0

0
3
q
k
p

cg
4

8
0
0
6

7
9
9
1

7
9
8
8
.6

0
5
9
.8

5
8
0
0
6

7
8
9
9
.8

0
8
0
0
6

8
0
0
6
.0
0

1
8
.1

1
8
0
0
6

8
0
0
6
.0
0

0
.1

4
1
0

0
.0

0
3
q
k
p

cg
5

7
3
5
0

7
3
5
0

7
1
5
6
.4

0
4
.3

8
7
3
5
0

7
1
9
2
.6

0
7
3
5
0

7
3
0
7
.6

0
2
3
.1

1
7
3
5
0

7
3
5
0
.0
0

0
.1

8
1
0

0
.0

0
4
q
k
p

cg
1

2
0
7
2
6

1
9
4
5
7

1
8
9
3
1
.4

0
2
9
.8

4
2
0
4
0
1

2
0
1
1
6
.4

0
2
0
7
2
6

2
0
1
1
6
.4

0
2
4
.5

6
2
0
7
2
6

2
0
6
3
5
.1
0

9
4
.4

9
7

1
3
8
.3

5
4
q
k
p

cg
2

2
1
6
7
7

1
9
2
4
0

1
8
7
4
9
.0

0
9
7
.1

1
2
1
6
7
7

2
1
4
0
6
.8

0
2
1
6
7
7

2
1
4
0
6
.8

0
2
0
.0

0
2
1
6
7
7

2
1
6
7
7
.0
0

2
0
.8

5
1
0

0
.0

0
4
q
k
p

cg
3

2
1
9
5
3

2
0
8
6
4

2
0
5
3
8
.2

0
7
3
.4

8
2
1
8
9
7

2
1
0
7
7
.2

0
2
1
9
5
3

2
1
3
3
2
.2

0
3
5
.5

6
2
1
9
5
3

2
1
9
5
3
.0
0

1
2
.0

5
1
0

0
.0

0
4
q
k
p

cg
4

3
1
1
2
3

3
1
0
8
2

3
0
7
3
7
.8

0
3
.0

1
3
1
1
2
3

3
1
1
2
3
.0
0

3
1
1
2
3

3
1
1
2
3
.0
0

1
8
.0

0
3
1
1
2
3

3
1
1
2
3
.0
0

0
.5

7
1
0

0
.0

0
4
q
k
p

cg
5

2
0
7
9
2

1
8
7
2
7

1
8
0
8
3
.4

0
1
2
4
.4

7
2
0
7
8
1

2
0
6
6
0
.6

0
2
0
7
9
2

2
0
6
6
0
.6

0
4
3
.3

3
2
0
7
9
2

2
0
7
9
2
.0
0

7
.7

2
1
0

0
.0

0
5
q
k
p

cg
1

1
5
5
1
7

1
4
8
7
1

1
4
7
4
5
.0

0
1
1
0
.4

4
1
5
3
5
3

1
5
1
5
7
.7

0
1
5
5
1
7

1
5
1
8
9
.9

0
1
4
.8

9
1
5
5
1
7

1
5
5
1
7
.0
0

8
.3

9
1
0

0
.0

0
5
q
k
p

cg
2

1
5
5
2
9

1
5
0
6
8

1
4
9
5
6
.2

0
1
.6

2
1
5
5
2
9

1
5
5
1
1
.1

0
1
5
5
2
9

1
5
5
1
1
.1

0
1
8
.1

1
1
5
5
9
4

1
5
5
6
1
.5
0

3
3
.5

1
5

3
2
.5

0
5
q
k
p

cg
3

1
5
3
7
0

1
5
1
3
2

1
4
9
4
6
.2

0
1
6
1
.4

3
1
5
1
7
8

1
5
0
8
6
.1

0
1
5
3
7
0

1
5
0
8
6
.1

0
2
6
.4

4
1
5
3
7
0

1
5
3
7
0
.0
0

3
7
.8

7
1
0

0
.0

0
5
q
k
p

cg
4

1
8
9
5
4

1
8
3
8
0

1
8
2
7
2
.2

0
1
6
1
.6

4
1
8
9
5
4

1
8
7
5
7
.2

0
1
8
9
5
4

1
8
9
3
8
.8

0
2
8
.4

4
1
8
9
5
4

1
8
9
5
4
.0
0

3
.8

1
1
0

0
.0

0
5
q
k
p

cg
5

1
5
7
1
5

1
5
6
0
7

1
5
3
1
3
.2

0
4
4
.8

4
1
5
7
1
5

1
5
6
8
6
.1

0
1
5
7
1
5

1
5
7
0
2
.2

0
2
8
.5

6
1
5
7
1
5

1
5
7
1
5
.0
0

4
.4

3
1
0

0
.0

0
6
q
k
p

cg
1

8
9
6
9

8
9
6
9

8
8
4
0
.0

0
1
3
6
.2

6
8
6
9
8

8
6
8
8
.0

0
8
9
6
9

8
6
8
8
.0

0
2
4
.3

3
8
9
6
9

8
9
6
9
.0
0

1
4
.2

5
1
0

0
.0

0
6
q
k
p

cg
2

9
6
5
8

9
1
9
3

9
0
9
8
.8

0
1
8
.4

3
9
6
5
8

9
4
0
3
.5

0
9
6
5
8

9
4
0
3
.5

0
2
1
.2

2
9
6
5
8

9
6
5
8
.0
0

1
.0

2
1
0

0
.0

0
6
q
k
p

cg
3

8
5
7
8

8
5
0
8

8
5
0
4
.4

0
7
9
.8

6
8
5
7
8

8
3
7
5
.8

0
8
5
7
8

8
5
5
5
.1

0
2
9
.4

4
8
5
7
8

8
5
7
8
.0
0

7
.7

9
1
0

0
.0

0
6
q
k
p

cg
4

9
6
5
7

9
6
3
0

9
1
5
6
.4

0
1
4
7
.4

3
9
6
5
7

8
7
6
1
.0

0
9
6
5
7

9
6
5
7
.0
0

1
0
.5

6
9
6
5
7

9
6
5
7
.0
0

3
.5

4
1
0

0
.0

0
6
q
k
p

cg
5

9
3
3
8

9
3
3
5

9
3
3
5
.0

0
1
4
1
.6

8
9
3
3
8

9
3
3
8
.0
0

9
3
3
8

9
3
3
8
.0
0

2
4
.8

9
9
3
3
8

9
3
3
8
.0
0

1
.7

7
1
0

0
.0

0
7
q
k
p

cg
1

2
7
0
1
0

2
4
6
0
2

2
4
1
8
7
.8

0
1
2
7
.8

9
2
7
0
1
0

2
6
6
2
8
.3

0
2
7
0
1
0

2
6
6
5
9
.4

0
6
1
.2

2
2
7
0
1
0

2
6
8
4
2
.0
0

2
8
.9

6
2

8
4
.0

0
7
q
k
p

cg
2

3
0
3
4
3

2
8
6
8
6

2
8
3
5
4
.6

0
1
5
2
.2

5
3
0
2
9
0

3
0
0
3
9
.9

0
3
0
3
4
3

3
0
1
1
5
.5

0
4
8
.6

7
3
0
3
4
3

3
0
3
1
9
.6
0

3
6
.2

5
7

4
9
.4

1
7
q
k
p

cg
3

2
6
6
8
5

2
3
4
2
0

2
2
4
4
4
.6

0
4
3
.4

8
2
6
5
3
9

2
6
4
3
7
.1

0
2
6
6
8
5

2
6
4
9
7
.4

0
4
7
.1

1
2
6
6
8
5

2
6
6
8
5
.0
0

7
.1

4
1
0

0
.0

0
7
q
k
p

cg
4

3
4
1
1
0

3
2
6
4
1

3
2
3
5
0
.2

0
2
2
.3

6
3
4
1
1
0

3
3
6
8
7
.2

0
3
4
1
1
0

3
3
6
8
7
.2

0
4
4
.0

0
3
4
1
1
0

3
4
1
1
0
.0
0

4
6
.4

8
1
0

0
.0

0
7
q
k
p

cg
5

2
5
9
4
7

2
2
7
3
5

2
1
7
6
2
.4

0
9
0
.1

7
2
5
9
4
7

2
5
8
1
5
.4

0
2
5
9
4
7

2
5
8
1
5
.4

0
7
1
.4

4
2
5
9
4
7

2
5
8
4
6
.7
0

6
0
.4

1
4

9
3
.0

7
8
q
k
p

cg
1

1
8
6
6
8

1
8
5
8
3

1
8
5
8
3
.0

0
1
0
.4

5
1
8
3
7
8

1
8
1
5
2
.3

0
1
8
6
6
8

1
8
3
3
1
.9

0
2
5
.2

2
1
8
6
6
8

1
8
6
2
9
.2
0

8
3
.9

1
6

5
9
.7

3
8
q
k
p

cg
2

2
0
0
2
1

1
9
6
2
0

1
9
4
0
6
.2

0
1
2
6
.9

4
1
9
8
4
1

1
9
6
5
6
.3

0
2
0
0
2
1

1
9
8
1
3
.5

0
4
1
.5

6
2
0
0
2
1

2
0
0
2
1
.0
0

3
2
.3

4
1
0

0
.0

0
8
q
k
p

cg
3

1
7
9
1
1

1
7
4
6
9

1
6
9
9
8
.6

0
5
9
.9

2
1
7
9
1
1

1
7
7
4
3
.5

0
1
7
9
1
1

1
7
8
0
6
.9

0
5
8
.1

1
1
7
9
7
4

1
7
9
1
7
.3
0

4
8
.0

2
1

1
8
.9

0
8
q
k
p

cg
4

2
1
1
6
8

2
0
7
1
5

2
0
5
2
4
.0

0
1
0
0
.6

5
2
1
1
6
8

2
0
9
0
4
.4

0
2
1
1
6
8

2
1
1
6
8
.0
0

3
4
.6

7
2
1
1
6
8

2
1
1
6
8
.0
0

1
0
.5

4
1
0

0
.0

0
8
q
k
p

cg
5

1
8
7
5
7

1
8
4
8
0

1
8
0
0
0
.4

0
3
8
.8

8
1
8
7
5
7

1
8
7
0
1
.5

0
1
8
7
5
7

1
8
7
0
1
.5

0
4
8
.8

9
1
8
7
5
7

1
8
7
5
7
.0
0

1
2
.1

8
1
0

0
.0

0
9
q
k
p

cg
1

1
1
1
8
0

1
1
1
8
0

1
1
1
8
0
.0
0

1
1
0
.2

7
1
1
1
8
0

1
0
9
1
4
.0

0
1
1
1
8
0

1
0
9
1
4
.0

0
5
0
.7

8
1
1
1
8
0

1
1
1
8
0
.0
0

1
9
.9

1
1
0

0
.0

0
9
q
k
p

cg
2

1
0
5
9
8

1
0
5
7
7

1
0
5
3
4
.2

0
6
3
.7

7
1
0
5
9
8

1
0
2
8
6
.3

0
1
0
5
9
8

1
0
3
3
8
.6

0
5
4
.5

6
1
0
5
9
8

1
0
5
9
8
.0
0

4
3
.0

5
1
0

0
.0

0
9
q
k
p

cg
3

1
1
0
2
2

1
0
8
6
9

1
0
8
5
2
.6

0
1
2
.3

0
1
1
0
2
2

1
0
8
4
9
.3

0
1
1
0
2
2

1
0
8
4
9
.3

0
4
9
.8

9
1
1
0
2
2

1
1
0
2
2
.0
0

2
.5

8
1
0

0
.0

0
9
q
k
p

cg
4

1
1
7
5
1

1
1
7
5
1

1
1
3
0
8
.0

0
1
5
0
.0

0
1
1
7
5
1

1
1
4
3
3
.8

0
1
1
7
5
1

1
1
7
0
7
.0

0
3
5
.6

7
1
1
7
5
1

1
1
7
2
9
.0
0

5
6
.7

9
9

6
6
.0

0
9
q
k
p

cg
5

1
0
7
6
1

1
0
7
1
3

1
0
6
0
2
.4

0
4
7
.2

7
1
0
7
4
3

1
0
5
1
7
.1

0
1
0
7
6
1

1
0
5
1
7
.1

0
3
8
.0

0
1
0
7
6
1

1
0
7
6
1
.0
0

3
3
.3

3
1
0

0
.0

0
#

B
es

t
4
2

8
3

2
8

5
4
2

9
4
5

4
5

A
v
g
.

1
6
0
4
4
.9

3
1
5
4
3
3
.9

6
1
5
1
9
4
.5

0
8
0
.8

9
1
6
0
0
4
.9

6
1
5
8
2
4
.5

4
1
6
0
4
4
.9

3
1
5
8
9
7
.3

4
2
9
.4

3
1
6
0
4
9
.2
0

1
6
0
3
6
.6
3

1
8
.9
0

11

Table 4. Results of the Wilcoxon signed-rank test between HSM and the reference algorithms on the set of

45 benchmark instances, with a significance level of 0.05.

Comparison R+
best R−

best p-value R+
avg R−

avg p-value
HSM vs. NSBM 37 0 1.14e-7 42 0 1.65e-8
HSM vs. MDM 17 0 2.93e-4 40 0 3.57e-8
HSM vs. PBSA 3 0 0.11 36 0 1.68e-7

instances for which a corresponding algorithm produces the best result among the
compared algorithms, with respect to the best/average objective value. Row ‘Avg.’
denotes the average values of the corresponding indicators.

We can observe from Table 3 that HSM is able to find 3 improved best-known
solutions (i.e., 2qkpcg3, 5qkpcg2 and 8qkpcg3), while matching the best-known
solution for all the remaining instances. In terms of the average objective value,
HSM yields the best results in 45 instances, while NSBM, MDM and PBSA report
respectively the best result in 3, 5 and 9 cases. Moreover, HSM hits consistently the
best objective value in each run for many instances, indicating the high robustness of
the proposed approach, which is also confirmed by the small standard deviation (σ) on
most test instances. Additionally, HSM is more computationally efficient than NSBM
and PBSA in most cases. To detect whether there are statistical differences between
the compared methods, Table 4 provides the results of Wilcoxon signed-rank test
with a significance level of 0.05 as recommended in (Carrasco, Garćıa, Rueda, Das, &
Herrera, 2020). Column R+

best (R+
avg) reports the sum of ranks for the cases where HSM

outperforms the compared algorithm with respect to the best (average) objective value,
while R−best (R−avg) represents the sum of ranks for the opposite cases. Table 4 indicates
that HSM performs significantly better than the compared approaches NSDM, MDM
and PBSA, except the case between HSM and PBSA in terms of the best objective
value with a p-value > 0.05. These observations demonstrate the superiority of HSM,
in terms of the solution quality and computing efficiency, compared to the state-of-
the-art algorithms.

Finally, the experimental results demonstrate that the proposed HSM algorithm
is a highly competitive approach for finding high-quality solutions for the existing
QKPCG benchmark. This has some practical implications. First, as indicated in the
introduction, QKPCG is a general model for a number of real problems. Given that
the source codes of our HSM algorithm will be publicly available, researchers and
practitioners can adopt our algorithm to solve problems that can be formulated by
QKPCG. Indeed, thanks to the high efficiency and effectiveness of the algorithm, one
can expect that our algorithm helps to find better solutions or solve some problems
that cannot be solved with existing methods. Second, the proposed approach is
stochastic nature, implying that it is easy to run the algorithm multiple times to
obtain many high-quality solutions. This feature is of interest for decision-making
because the decision-maker can easily obtain a set of alternative solutions from which
the best decision can be made based on additional criteria. Finally, our approach
could be adapted to other related problems constrained by a conflict graph such as
the disjunctively constrained knapsack problem and flow shop scheduling problem with
conflict graphs.

12

Table 5. The results of Wilcoxon signed-rank test of HSM with a multi-start version of MNTS on the set of

45 benchmarks, with a significance level of 0.05.

Comparison R+
best R−

best p-value R+
avg R−

avg p-value
HSM vs. MS-MNTS 1 0 0.32 10 1 7.65e-3

5. Discussions

In this section, additional experiments are reported to analyze the impacts of the
population-based framework to the proposed algorithm. In addition, we present
experimental results to support the design of the proposed crossover operator.

5.1. Advantage of the population-based framework

We made an experiment to assess the effects of the population-based framework. For
this purpose, we showed a comparison of the proposed HSM algorithm with a multi-
start version of MNTS procedure (denoted as MS-MNTS) where the crossover operator
and the population mechanism are removed. For a fair comparison, HSM and MS-
MNTS were run independently 10 times per instance, under the experimental settings
described in Section 4.2.

The results of Wilcoxon signed-rank test shown in Table 5 indicate the superiority of
HSM compared to MS-MNTS, by finding better results in 1 (10) instances with respect
to the best (average) objective value. This experiment demonstrates the effectiveness
of the population-based framework to the overall performance of HSM.

5.2. The motivation behind the uniform-based crossover operator

To illustrate the rationale behind the proposed crossover operator, we provide an
experimental analysis of structural similarities between high-quality solutions. Given
two solutions Sa and Sb, their similarity is defined as the proportion of the commonly

shared items: sim(Sa, Sb) = |Sa∩Sb|
|Sa∪Sb| .

We run HSM method 100 independent times on 10 randomly selected instances, and
record the best solution found for each run with a cutoff time of n

20 seconds. We then
calculate the maximum similarity (denoted as simmax), the average similarity (denoted
simavg) and the minimum similarity (denoted simmin) between any two solutions for
each instance. The results of the solution similarities are displayed in Fig. 1. From Fig.
1, one observes that the average similarity between high-quality solutions is very high,
over 0.85 for each instance, which suggests that a large number of shared items might
form building blocks of a globally optimal solution, and provides a solid basis for the
design of the uniform-based crossover operator in this work.

6. Conclusions

This work investigates the quadratic knapsack problem with conflict graphs, which
is a variant of the classic knapsack problem. An effective and robust hybrid search
method is developed to tackle the problem, which features a randomized uniform-
based crossover operator to create promising offspring solutions, a multi-neighborhood
tabu search to efficiently explore the search space, and a fast incremental evaluation

13

0.75

0.8

0.85

0.9

0.95

1

S
o
lu

ti
o
n
 s

im
ila

ri
ty

1q
kp

cg
3

1q
kp

cg
5

2q
kp

cg
2

3q
kp

cg
4

5q
kp

cg
2

5q
kp

cg
4

6q
kp

cg
3

6q
kp

cg
5

7q
kp

cg
2

8q
kp

cg
1

sim
max

sim
avg

sim
min

Figure 1. Similarity between high-quality solutions on 10 randomly selected instances from the set of 45

benchmarks.

technique to speed up the examination of neighboring solutions.
We demonstrate the performance of the proposed algorithm HSM on the set of

45 commonly used benchmarks. The comparative results reveal that HSM competes
favorable with the current best algorithms in the literature. In particular, it updates
the best-known solutions (new lower bounds) for 3 instances and matches the best-
known results for all the remaining cases within a short running time. Additional
experiments assess the usefulness of the population-based framework as well as the
multi-neighborhood tabu search procedure and justify the design of the randomized
uniform-based crossover.

The proposed HSM method is very effective and robust for QKPCG by obtaining
high quality solutions in a reasonable time frame. It would be possible to adapt its basic
ideas to design effective algorithms for other similar problems such as the disjunctively
constrained knapsack problem. Also, the algorithm can be used to solve practical
problems that can be formulated as QKPCG and the availability of its source codes
facilitates such applications.

On the other hand, for several benchmark instances, the success rate of the algorithm
to attain its best solutions remains low, implying that further amelioration is still
possible. For instance, it would be interesting to improve the population management
by considering both solution quality and distance (Hao, 2012) and pseudo random
number assignment strategies (Chih, 2023). To enhance the local search component, it
would be useful to investigate search strategies examining both feasible and infeasible

14

solutions like in (Wei, & Hao, 2023). Finally, as a heuristic algorithm, HSM cannot
ensure the optimality of the obtained solutions nor an approximation ratio relative to
the optimal solution. To fill the gap, efforts are needed to develop practical exact and
approximation algorithms.

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions, which
helped us to improve the paper. This work was partially supported by the National
Natural Science Foundation of China (Grant Nos. 71671033, 72201053) and China
Postdoctoral Science Foundation (Grant No. 2021M700716).

References

Aisopos, F., Tserpes, K., & Varvarigou, T. (2013). Resource management in software as a
service using the knapsack problem model. International Journal of Production Economics,
141(2), 465-477.

Alozie, G. U., Arulselvan, A., Akartunalı, K., & Pasiliao Jr, E. L. (2022). A heuristic approach
for the distance-based critical node detection problem in complex networks. Journal of the
Operational Research Society, 73(6), 1347-1361.

Billionnet, A., & Soutif, É. (2004). An exact method based on Lagrangian decomposition for
the quadratic knapsack problem. European Journal of operational research, 157(3), 565-575.

Carrasco, J., Garćıa, S., Rueda, M. M., Das, S., & Herrera, F. (2020). Recent trends in the use
of statistical tests for comparing swarm and evolutionary computing algorithms: Practical
guidelines and a critical review. Swarm and Evolutionary Computation, 54, 100665.

Chih, M. (2015). Self-adaptive check and repair operator-based particle swarm optimization
for the multidimensional knapsack problem. Applied Soft Computing, 26, 378-389.

Chih, M. (2018). Three pseudo-utility ratio-inspired particle swarm optimization with local
search for multidimensional knapsack problem. Swarm and Evolutionary Computation, 39,
279-296.

Chih, M. (2023). Stochastic stability analysis of particle swarm optimization with pseudo
random number assignment strategy. European Journal of Operational Research, 305(2),
562-593.

Coniglio, S., Furini, F., & San Segundo, P. (2021). A new combinatorial branch-and-bound
algorithm for the knapsack problem with conflicts. European Journal of Operational
Research, 289(2), 435-455.

Constantino, O. H., & Segura, C. (2022). A parallel memetic algorithm with explicit
management of diversity for the job shop scheduling problem. Applied Intelligence, 52(1),
141-153.

Dahmani, I., & Hifi, M. (2021). A modified descent method-based heuristic for binary quadratic
knapsack problems with conflict graphs. Annals of Operations Research, 298(1), 125-147.

Dahmani, I., Hifi, M., Saadi, T., & Yousef, L. (2020). A swarm optimization-based search
algorithm for the quadratic knapsack problem with conflict graphs. Expert Systems with
Applications, 148, 113224.

Glover, F. , & Laguna, M. (1998). Tabu search. In: DU, DZ., & Pardalos, P. M. (Eds.),
Handbook of Combinatorial Optimization (pp. 2093-2229). Boston: Springer.

Hao, J. K. (2012). Memetic Algorithms in Discrete Optimization. In: Neri, F., Cotta,
C., & Moscato, P. (Eds.), Handbook of Memetic Algorithms, Studies in Computational
Intelligence, Vol 379 (pp. 73-94). Berlin: Springer.

Hifi, M., & Michrafy, M. (2006). A reactive local search-based algorithm for the disjunctively
constrained knapsack problem. Journal of the Operational Research Society, 57(6), 718-726.

15

Hifi, M., & Michrafy, M. (2007). Reduction strategies and exact algorithms for the disjunctively
constrained knapsack problem. Computers & operations research, 34(9), 2657-2673.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Multidimensional Knapsack Problems. In:
Knapsack Problems (pp. 235-283). Berlin: Springer.

Lai, X., & Hao, J. K. (2016). Iterated variable neighborhood search for the capacitated
clustering problem. Engineering Applications of Artificial Intelligence, 56, 102-120.

Li, Z., Tang, L., & Liu, J. (2020). A memetic algorithm based on probability learning for
solving the multidimensional knapsack problem. IEEE Transactions on Cybernetics, 52(4),
2284-2299.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3, 43-58.

Lü, Z., & Hao, J. K. (2010). A memetic algorithm for graph coloring. European Journal of
Operational Research, 203(1), 241-250.

Lü, Z., Hao, J. K., & Glover, F. (2011). Neighborhood analysis: a case study on curriculum-
based course timetabling. Journal of Heuristics, 17(2), 97-118.

Moscato, P. (1999). Memetic algorithms: A short introduction. In New ideas in optimization
(pp. 219-234). McGraw-Hill Ltd., UK.

Neri, F., & Cotta, C. (2012). Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation, 2, 1-14.

Perboli, G., Gobbato, L., & Perfetti, F. (2014). Packing problems in transportation and supply
chain: new problems and trends. Procedia-Social and Behavioral Sciences, 111, 672-681.

Pferschy, U., & Schauer, J. (2017). Approximation of knapsack problems with conflict and
forcing graphs. Journal of Combinatorial Optimization, 33(4), 1300-1323.

Salem, M. B., Hanafi, S., Taktak, R., & Abdallah, H. B. (2017). Probabilistic Tabu search
with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem. RAIRO-
Operations Research, 51(3), 627-637.

Shi, X., Wu, L., & Meng, X. (2017). A new optimization model for the sustainable development:
Quadratic knapsack problem with conflict graphs. Sustainability, 9(2), 1-10.

Spencer, K. Y., Tsvetkov, P. V., & Jarrell, J. J. (2019). A greedy memetic algorithm for
a multiobjective dynamic bin packing problem for storing cooling objects. Journal of
Heuristics, 25, 1-45.

Van der Merwe, D. J., & Hattingh, J. M. (2006). Tree knapsack approaches for local access
network design. European Journal of Operational Research, 174(3), 1968-1978.

Wei, Z., & Hao, J. K. (2021). A threshold search based memetic algorithm for the disjunctively
constrained knapsack problem. Computers & Operations Research, 136, 105447.

Wei, Z., Hao, J. K. Ren, J. & Glover F. (2023). Responsive strategic oscillation for solving the
disjunctively constrained knapsack problem. European Journal of Operational Research (in
press) doi.org/10.1016/j.ejor.2023.02.009

Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum
weight clique problem. Annals of Operations Research, 196(1), 611-634.

Yamada, T., Kataoka, S., & Watanabe, K. (2002). Heuristic and exact algorithms for
the disjunctively constrained knapsack problem. Information Processing Society of Japan
Journal, 43(9), 2864-2870.

Zhou, F., He, Y., Ma, P., Lim, M. K., & Pratap, S. (2022). Capacitated disassembly scheduling
with random demand and operation time. Journal of the Operational Research Society,
73(6), 1362-1378.

Zhou, Y., Hao, J. K., & Duval, B. (2020). Frequent pattern-based search: a case study on
the quadratic assignment problem. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 52(3), 1503-1505.

Zobolas, G. I., Tarantilis, C. D., & Ioannou, G. (2009). A hybrid evolutionary algorithm for the
job shop scheduling problem. Journal of the Operational Research Society, 60(2), 221-235.

16

