Responsive threshold search based memetic
algorithm for balanced minimum
sum-of-squares clustering

Qing Zhou?, Jin-Kao Hao®", Qinghua Wu “*

aLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France,
email: gingzhouqz03Q@gmail.com; jin-kao.hao@univ-angers.fr
b Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
¢School of Management, Huazhong University of Science and Technology, No.
1087, Luoyu Road, Wuhan, China, email: ginghuawul005@gmail.com

Accepted to Information Sciences, April 2021

Abstract

Clustering is a common task in data mining for constructing well-separated
groups (clusters) from a large set of data points. The balanced minimum sum-
of-squares clustering problem is a variant of the classic minimum sum-of-squares
clustering (MSSC) problem and arises from broad real-life applications where the
cardinalities of any two clusters differ by at most one. This study presents the first
memetic algorithm for solving the balanced MSSC problem. The proposed algorithm
combines a backbone-based crossover operator for generating offspring solutions
and a responsive threshold search that alternates between a threshold-based
exploration procedure and a descent-based improvement procedure for improving
new offspring solutions. Numerical results on 16 real-life datasets show that the
proposed algorithm competes very favorably with several state-of-the-art methods
from the literature. Key components of the proposed algorithm are investigated to
understand their effects on the performance of the algorithm.

Keywords: Balanced clustering; minimum sum-of-squares; memetic algorithm;
responsive threshold search; heuristics.

* Corresponding author.

Preprint submitted to Elsevier 3 April 2021

1 Introduction

The minimum sum-of-squares clustering (MSSC) is among the most important
tasks in data science and has numerous practical applications in diverse
domains. Given a set of n data points N = {py, ps, ..., P} in a d-dimensional
Euclidean space R? where the value of each dimension of the data point is
a real number that can be positive, negative, or 0, MSSC is to partition N
into k (k is given) disjoint subsets Cy, Cy, ..., Cy called clusters such that the
sum of the squared distances between each data point to its cluster centroid
is minimized. Let w;, be a binary decision variable such that w;, = 1 if point
p; 1s allocated to cluster g (i € {1,2,...,n}, g € {1,2,...,k}) and 0 otherwise.
The MSSC problem can be formulated as the following optimization problem
[4]:

min i1 25:1 Wig ||pi — 59”2
s.t. Yk jwig=1, i€{1,2,..,n} (1)
wiy €{0,1}, ie€{1,2,..,n}, ge{1,2,. k}

where Z, is the center (or centroid) of cluster g, given by z, = %
i=1 19

(g € {1,2,...,k}); and the norm ||z —y|* designates the squared Euclidean
distance between the two points z € R? and y € R?, ie., [[z—y]|* =

Yoo (@ —)

MSSC is known to be NP-hard [8]. Accordingly, the problem is compu-
tationally challenging. To practically solve MSSC, a variety of heuristic
and metaheuristic algorithms have been proposed to find good approximate
solutions, as shown in the recent review by Pereira et al. [38]. The popular
heuristics for MSSC include the k-means algorithm [23] and its variants, such
as global k-means [30], modified global k-means [5], J-means [19] and HG-
means [17]. Representative metaheuristic algorithms include tabu search [31],
genetic algorithm [27] and variable neighborhood search [38] along with recent
incremental algorithm [25], and convex optimization methods [3].

However, in many applications, it is desirable that the data points are
evenly distributed among the clusters. Practical examples arise from problems,
such as cloud computing [43] and working groups composition [I3], where
the working groups are required to have approximately the same number
of members. This requirement can be formulated by the following balance
constraint:

=1

i=1
which states that the sizes of any two clusters differ by at most one.

The balanced MSSC (BMSSC) problem is obtained by adding the balance
constraint to the MSSC model. Similar to MSSC, BMSSC is known to be
NP-hard for # > 3 in general dimensions [39] and remains NP-hard even for
the particular case of two equal sized clusters (k = 2) [7].

Given the intrinsic hardness and computational challenge of BMSSC, several
heuristic approaches have been used to find sub-optimal solutions within a
limited time frame. Malinen et al. [34] developed a k-means-based clustering
approach that minimizes the mean square error for given cluster sizes. The
algorithm uses the Hungarian method [26] with a time complexity of O(n?)
in the k-means assignment phase, which makes the proposed algorithm more
efficient than the previous O(n*5k3®) time linear programming method used
in constrained k-means. This algorithm can deal with datasets with size
up to 5000 data points. Costa et al. [12] proposed a variable neighborhood
search algorithm for BMSSC based on the nested swap neighborhood. The
algorithm showed competitive performance compared with the state-of-the-
art algorithms.

Despite the importance of the BMSSC model, few practical algorithms
exist for solving BMSSC, and bio-inspired metaheuristics have not been
investigated in the context of BMSSC. Many bio-inspired algorithms have
been proposed to solve various problems, such as multimodal biomedical
image registration [I1], large scale feature selection [29], hardware/software
co-design [22], multimodal optimization [46], and environmental/economic
dispatch problems [40]. More examples can be found in [41J/47]. Among the
numerous bio-inspired approaches, memetic algorithms (MAs) are known to
be particularly suitable for solving difficult problems, including discrete opti-
mization [2T333545], continuous optimization [49], constrained optimization
[48], and multi-objective optimization [2/28/42]. However, investigation on the
use of the memetic approach to solve BMSSC is still missing in the literature.

This work fills the gap by presenting the first population-based MA for solving
BMSSC. The main contributions are summarized as follows:

- The proposed algorithm MA has two original features. First, MA uses
a backbone-based crossover operator for offspring solution generation.
This crossover operator is specially designed for BMSSC, which generates
offspring solutions by inheriting good properties from parent solutions to
guide the search towards promising search regions. Second, MA applies
the responsive threshold search (RTS) that alternates between a threshold-

based exploration (TBE) procedure and a descent-based improvement
(DBI) procedure for local improvement. The TBE procedure explores two
neighborhoods and accepts any encountering neighboring solution as long
as its objective value is not worse than a responsive threshold value. By
contrast the DBI procedure accepts only improved neighboring solutions in
the two neighborhoods. The RTS is able to find better solutions in a larger
area of the search space without being easily trapped into local optima by
alternating between the two complementary procedures.

- Extensive computational assessments are carried out on 16 datasets of 160
real-life benchmark instances, demonstrating the high competitiveness of the
proposed MA approach compared with two state-of-the-art algorithms. The
results of the proposed MA approach provide a reference for performance
assessment of other BMSSC methods for future studies.

The rest of the paper is organized as follows. Section [2| presents the general
framework and main components of the proposed algorithm. Section
reports the computational evaluation of the algorithm. Section (4] analyzes key
algorithmic ingredients, and Section [5| concludes the work.

2 Memetic algorithm for BMSSC

Algorithm 1: Memetic algorithm for BMSSC problem

Input: I: a BMSSC instance, |P|: population size

Output: The best solution S* found

P =1{S', 8% .., S « PopulationInitial() /* Section */

S* < Best(P) /* Record the best solution found so far */

while Stopping condition is not met do

Select two parents S?, S° from P at random

S < CrossOver(S%, S®) /* Section generate an offspring solution
*

/

6 S < ResponsiveT hresholdSearch(S) /* Section improve the
solution */

if f(S) < f(S*) then
L S* <— S /* Update the best solution found so far */

9 | P« PopulationUpdate(P,S) /* Section update the population */

g W

MA is a general framework that combines the exploration capacity of
population-based search and the exploitation ability of local optimization
[20037]. Exploration underlines the capacity to diversify the search to seek
promising search regions, whereas exploitation emphasizes the ability to search
specific regions in depth. An approach solely focusing on exploration can miss
high quality solutions, while a method heavily depending on exploitation
will confine itself in a limited search region and be unable to visit other

promising regions of the search space. When the method can provide a good
balance between exploitation and exploration, a high search performance
could be expected. The proposed MA for BMSSC follows the general memetic
methodology and offers an appropriate conciliation between exploration and
exploitation by combining the backbone-based crossover operator (Section
and the RTS procedure (Section to constitute an effective method.
Algorithm [I] shows the general scheme of MA. The algorithm starts with an
initial population (line 1) with |P| individuals (|P] is the population size)
where each individual is generated by the random construction procedure
described in Section [2.2] Then the algorithm repeats an iterative process to
improve the population until a stopping condition is met (typically a time limit
or a fixed number of generations). At each iteration (generation), two parent
solutions are randomly selected from the population (line 4) and recombined
by the crossover operator to generate an offspring solution (line 5). The newly
generated offspring solution is further improved by the RTS procedure (line
6). Finally, a simple population updating strategy is applied to update the
population (line 9, Section . The main components of MA are presented
in the following subsections.

2.1 Search space and evaluation function

Given a BMSSC instance with a set of n data points N = {p1, pa, ..., p,} and
an integer k, the search space 2 explored by the proposed MA is all partitions
of n points into k disjoint clusters C', Cs, ..., C%, such that the cardinalities
of any two clusters differ by at most one (i.e., Q@ = {{C1,C, ..., Cy.},Us_, Cy =
N,C,NC,=0,|Cy| — |Ch| < 1} where |C,| denotes the cardinality of cluster
Cy). According to Huygens’ theorem [I14], which states that the sum of squares
of the Euclidean distances from all data points of a given cluster to their
centroid, is equal to the sum of squares of the distances between each pair of
points of this cluster divided by its cardinality. Then, the objective function
of (1)) can be rewritten as follows [12]:

Zk: ?;11 Z?:i—f—l WigWig ||pi — pj ||2 (3)
g=1 2:{zr'lzl Wig

The objective value f(S) for any candidate solution S in {2 is evaluated by

Eq. .
2.2 Population nitialization

The |P| individuals of the initial population are constructed as follows. For
each individual, a random solution is generated by performing a series of

insertion operations until all points are allocated to a cluster. Specifically,
a point p is randomly selected for each insertion operation from the set of
unallocated points, and a cluster ¢ with a minimum number of allocated points
is selected from the set of clusters (ties are broken randomly). Then, p is
allocated to cluster g. From an initial solution that each cluster is an empty
set, the insertion operation, which allocates a point p to a cluster g having
the smallest size, can guarantee that the sizes of any two clusters differ by at
most one unity at each time. This generated solution is then improved by the
DBI procedure (Section [2.5.2)). The improved solution will be inserted into the
population if it is not identical to any existing solution from the population.
This procedure repeats until the size of the population reaches | P].

2.3 Crossover operator

Algorithm 2: Backbone-based crossover operator
Input: Two parent solutions S = {C{,C1, ...,Cl} and
S? ={C%,C3,..,C?}
Output: A feasible offspring solution S° = {C?,CY,...,C}
/* Step 1: Construct a partial solution based on backbone */
Initializing Cf =0 (t € {1, ..., k})
fort:=1tok do
Identify a cluster C] of S' and a cluster Cf. of 5% (g,h € {1,...,k}) to
ensure that C’; and C’,% have the maximum number of identical points
Cy + C; NnC?
Remove all points in C{ from all clusters of S and S?

NI R

/* Step 2: Complete the partial offspring solution */
U<+ {p1,...,pn} \{C?U...UC}} /* U denotes the set of unallocated points
*

® N o wm

9 repeat

10 Select a point p from U at random

11 Select a cluster t from {C?,C9,...,CP} with a minimum number of
points (ties are broken randomly)

12 Cy «+ CY U {p}

13 U<« U\{p}

14 until U is an empty set

15 return S°

The proposed MA algorithm uses a backbone-based crossover operator
(denoted by BCX) to generate promising offspring solutions from existing
solutions in the population. To ensure that the crossover plays its role, it
should be designed in a way that it can transmit good properties from parents
to offspring solutions with respect to the given optimization objective [20]. As
presented in Section[2.1] a solution of BMSSC is a partition of the set of n data
points into £ disjoint clusters. As such, it is more meaningful for a crossover to
manipulate groups of points rather than single point. Crossovers using such an

idea have been successfully applied to solve a number of “grouping” problems,
such as graph coloring [24] and graph partitioning [6].

The BCX generates an offspring solution by inheriting good properties from
two randomly selected parent solutions to guide the search to promising search
regions in accordance with the general principle presented above.

Definition 1 (backbone): Given two parent solutions S* = {C],C3, ...,C}}
and S? = {C? C%,...,C}?}, the backbone of S and S? (denoted as B) is the
set of k subsets of points { B!, B2, ..., B¥}, such that B! (t € {1,2,...,k}) is the
subset of points that are grouped together in both S and S?,i.e., Bt = C’;ﬂC,?L
(9,h € {1,2,...,k}), while B'U B2U ... U B* is as large as possible.

The proposed crossover BCX generates an offspring solution in two steps,
as illustrated in Algorithm [2, BCX first constructs a partial solution by
preserving the backbone of the two selected parent solutions and completes
the partial solution in a random way.

Construct a partial solution based on backbone: To produce a partial
solution based on the backbone, a cluster matching procedure is needed to
identify an optimal matching between clusters of two parent solutions such
that it preserves as many common points in both parent solutions as possible.
This task amounts to the maximum weight matching problem in an edge
weight complete bipartite graph H = (V' E’), where V' consists of k left
vertices and k right vertices, which corresponds to the clusters of the parent
solutions S* and S?, respectively; each edge (C,, C}) € E' is associated with a
weight wes 2, which is the number of identical points in Cj of S* and Cj} of S2.
This maximum weight matching problem can be optimally solved by the classic
Hungarian algorithm [26]. Nevertheless, running the Hungarian algorithm for
each crossover will be too time consuming. Therefore, a fast greedy matching
procedure (lines 3 to 6) is applied to find a near-optimal matching between
the clusters of the parent solutions. This matching procedure creates the
partial solution S in k iterations, and at each iteration ¢, it builds the cluster
Cy of 5 as follows. The procedure first identifies a cluster C’; of S* and a
cluster CF of S* (g,h € {1,...,k}) such that C} and C} have the maximum
number of identical points across all cluster combinations of S* and S?, i.e.,
mazgneq,.. ky|Cqy NCil. Then, the backbone (i.e., all identical points) for each
identified pair of matched clusters is preserved to the corresponding cluster of
the offspring solution, i.e., CY = C’; NC?. At the end of iteration ¢, the points
that belong to the cluster Cf are removed from the clusters of S' and S

Complete the partial solution: To complete the partial offspring solution,
the unallocated points are assigned to the clusters on the basis of a random
construction strategy. Specifically, a series of insertion operations are per-
formed until all unallocated points are assigned. For each insertion operation,

an unallocated point p is randomly selected and allocated to a cluster CY of
S° with the minimum number of points (ties are broken randomly). From a
partial offspring solution, the random construction strategy, which allocates
an unallocated point to a cluster with the minimum size each time until each
unallocated point is allocated, ensures that the completed offspring solution
satisfies the balance constraint.

2.4 Population updating rule

Once the offspring solution is generated by the backbone-based crossover
operator, it is first submitted for improvement by the RTS procedure presented
in Section [2.5 Then, a classic population updating rule is used to update
the population as follows. If the offspring solution is not the same as any
existing solution in the population and has a better quality than the worst
solution of the population, then the offspring replaces the worst solution in
the population; otherwise the offspring is ignored, and the population is kept
unchanged.

2.5 Responsive threshold search

Algorithm 3: Responsive threshold search algorithm

Input: S: an input solution, R;i.: search depth of RTS

Output: The best solution S* found

ic < 0 /* Iteration counter */

S* <— S /* Record the best solution found so far */

fo < f(S*) /* fp records the objective value of the best local optimum */
tr <— compute_threshold_ratio(f,) /* tr indicates the threshold ratio,

Section */

5 tvT <« compute_threshold_value(fy,tr) /* tvT denotes the threshold value,

Section */

N N

6 while ic < R4, do

7 (S, 8*) < threshold_based_exploration(S, tvT) /* Section EI */
8 (S, S*) < descent_based_improvement(S) /* Section @ */

9 if f(S*) < fp then '

10 fy - £(57)

11 tr < compute_threshold_ratio(fy)

12 tvT < compute_threshold_value(fy, tr)
13 tc<—ic+1

14 return S*

The proposed MA algorithm uses a responsive threshold search (RTS) method
as its local optimization component. RTS is designed to ensure intensification

and diversification of the search space.

Basically, RTS alternates between a threshold-based exploration (TBE)
procedure and a descent-based improvement (DBI) procedure. TBE aims to
explore in a large zone of the search space by accepting any encountered
neighboring solution as long as it satisfies a quality threshold value, which
is dynamically adjusted relying on the best local optimum found so far by
jointly applying two neighborhoods induced by two move operators (Section
. To complement this exploratory procedure, DBI is applied to ensure
a more directed and focused search by accepting only improving neighboring
solutions. Thus, TBE and DBI rely on the same neighborhoods, but they use
different criteria to accept neighboring solutions. RTS enlarges its search scope
to find better solutions and avoid being easily trapped into local optima by
alternating between TBE and DBI.

Algorithm |3| summarizes the general scheme of the RTS approach. Starting
from an initial solution S, RTS first calculates the threshold ratio tr and
responsive threshold value tvT" (Section [2.5.1)), which are dynamically updated
by the objective value f;, of the best local optimum. Afterward, the search
enters into the main loop. For each iteration, RTS first applies the TBE
procedure to explore a large area of the search space by accepting neighboring
solutions with objective values not worse than the given threshold tvT". Then,
RTS switches to the DBI procedure to intensify the search by accepting
only improving neighboring solutions. The DBI procedure stops when a local
optimum is reached. If this local optimum is better than the recorded best local
optimum, then the recorded best objective value f;, is updated. In this case,
the threshold ratio ¢r and the responsive threshold value tvT" are also updated
accordingly before moving to the next round of Exploration-Improvement
searches. The above process is repeated until a prefixed number of iterations
Rjier is reached, where Rj., is a parameter called the search depth of RTS.

2.5.1 Threshold-based exploration procedure

The TBE procedure systematically exploits two neighborhoods, i.e., the
insertion neighborhood N; induced by the OneMove operator and the swap
neighborhood Ny induced by the SwapMove operator. The SwapMove
operator has been successfully applied in previous work [12] while the
OneM ove operator is introduced for the first time in this study for BMSSC.
In the succeeding sections, these two move operators are introduced in detail.

OneMowve operator: Given a solution S = {C,Cy, ...,Cy}, the OneMove
operator transfers a point p from its current cluster Cy to another cluster
C}, such that |Cy| > |C}|. To rapidly evaluate the move gain induced by an
OneM ove move, which indicates how much a solution is improved in terms of
the objective value, this study adopts the fast increment evaluation technique.

Algorithm 4: Threshold-based exploration search algorithm

Input: S: an input solution; tvT": threshold value; LL: exploration strength

of TBE

Output: A final solution S and the best solution S* found

1 NH < {N;, Ns} /* NH is composed of the two considered neighborhoods
*
/

2 S* <« S /* S* records the best solution found so far */
3 for ic:=1to LL do

4 for each neighborhood nh € NH do
5 Randomly shuffle all neighboring solutions of nh in the set of
solutions NB_SET(S,nh)
6 for each neighboring solution S" € NB_SET(S,nh) do
if f(5') < tvT then
8 L S« 5
9 if f(S") < f(S*) then
10 L S* 5

11 return S and S*

The main idea is to maintain a n X k matrix v where its element v[p|[g] records
the summation of squared Euclidean distances between a point p to all points

in cluster Cy, ie., y[pllg] = Xeec, [P — q||*. Another k-dimensional vector
[is maintained where its element [[g] denotes the summation of squared
> pec, VIPllg]

distances between each pair of points in cluster Cy, ie., B[g] = z
With these two memories, the move gain of an OneM ove operation denoted
by OneMove(p, C,, C}) can be efficiently calculated by:

_ Blgl —lpllg] | ~ypllkl + B[R] Blgl | BlA]
Af(OneMove(p, Cy, Cp)) = -1 + AR _(\Cg\+ych|)

After each OneMove(p,Cy, C),) operation, a subset of values in v and
affected by the move is conveniently updated as follows: Blg] = fBlg] —
pllgl, BIR) = BIh] + vIpIR], Ylgllgl = ~lallg] — llp — all* Algllh] = ~lgl[h] +
Ilp—q||*,¥q € N. The time complexity of updating 8 and ~ is bounded by
O(1) and O(n), respectively.

SwapMowve operator: The SwapMove operator exchanges two points p and
q from two different clusters C; and Cj. The move gain of a SwapMove
operation denoted as SwapM ove(p, q) can be efficiently computed by:

ldllgl = ~pllg) = Ilp — all* | ~lpl[R] = ~lal[h] — llp — al?
Ag(SwapMove(p, q)) =) + oA

Given that a SwapM ove operation can be decomposed into two consecutive
OneMove moves, the matrix v and the vector § are consecutively updated
two times according to the corresponding OneM ove operation.

10

When several neighborhoods are available, one important issue is how to
integrate these neighborhoods to efficiently explore the search space. Several
ways can be used to combine different neighborhoods proposed in the
literature, such as token-ring and neighborhood union [32]. A key motivation
for considering a combination of multiple neighborhoods is to allow the search
to go beyond local optima and continue its exploration toward still better
solutions. In the TBE procedure, the two neighborhoods N; and N, induced
by the OneMove and the SwapM ove operators, respectively are examined in
a token-ring way, i.e., N; - Ny — N; — The general scheme of the TBE
procedure is summarized in Algorithm [d] Starting from an initial solution S,
TBE explores the two neighborhoods N; and Ny in turn. For each considered
neighborhood, every move in this neighborhood is examined in a random order,
and the resulting neighboring solution S’ is accepted if its objective value is
not worse than the given threshold value tvT', i.e., f(S") < tvT. The improving
and deteriorating solutions are allowed in the TBE procedure as long as its
solution quality meets the threshold accepting rule. In this way, a high number
of moves become available, enabling a large exploration of the search space
and thus enhancing the exploration capability of the approach.

The responsive threshold value tvT is critical to the performance of the TBE
procedure. A particularly large threshold value (tvT'— f;, is very large) may lead
the TBE procedure to a purely random approach, while an extremely small
threshold value (tvT — f, is very small) can greatly weaken the exploration
power of the TBE procedure. Following [10], the threshold value tvT is
dynamically tuned according to the objective value of the recorded best local
optimum f, and the threshold ratio tr, i.e., tvT = (1 + tr) x f,. Thus, the
responsive threshold value tvT dynamically evolves with the best solution
found during the search process. In general, as the RTS proceeds, the local
optimum of better quality will be found, leading to a stricter acceptance
criterion of better candidate solutions in the subsequent search.

To determine a proper value for the threshold ratio tr and inspired by the work
of [10], this study adopts a proportional function where tr strictly decreases

when f, decreases: tr = Weo“b + tc, where ta, tb, and tc are three fixed
7o

coefficients determined empirically, i.e., ta = 16.98,tb = 76.81,tc = 0.0031. To
identify appropriate values for ta, tb, and tc, this study chooses three instances
from three datasets (Iris, Glass, and Vehicle), whose best objective values vary
from small to large, and keeps a fixed value of tr for each of the three selected
instances. For each instance, the obtained best objective value is used as f,
and then three pairs of (fy,tr) are obtained. The values of ta, tb and tc are
obtained by solving the three equations. During the search process of the RT'S,
tr is dynamically recomputed each time f; is updated.

11

Algorithm 5: Descent-based improvement algorithm

B =", B VR =

© @

10
11

12
13

Input: S: an input solution
Output: A final solution S and the best solution S* found
NH «+ {N;, Ng} /* NH is composed of the two considered neighborhoods

S*« S

flagamp < true

while flag_imp = true do

flagimp < false

for each neighborhood nh € NH do

Randomly shuffle all neighboring solutions of nh in the set of
solutions NB_SET(S,nh)
for each neighboring solution S € NB_SET(S,nh) do
if f(9') < f(S) then
S« 5
flagamp < true

if £(S') < f(S*) then
R

14 return S and S*

2.5.2 Descent-based improvement procedure

After the TBE procedure, RTS continues its search with the descent-based
improvement (DBI) procedure (Algorithm |5 that aims at finding new local
optima of increasing quality. Starting with a solution returned by the TBE
procedure, DBI iteratively explores the two neighborhoods N; and Ny in a
token-ring manner N; — N, — N; — For each considered neighborhood, a
neighboring solution S’ is selected at random and replaces the current solution
S if S” is better than S, i.e., f(S) < f(5). This procedure stops when no
improving solutions can be found in neighborhoods N; and Nj. In this case, a

local optimum is achieved.

3 Computational experiments

This section reports the computational results of the proposed MA algorithm
and makes comparisons with state-of-the-art approaches to further evaluate

the effectiveness of the proposed MA algorithm.

12

Table 1
List of datasets.

Dataset n d
Iris 150 4
Wine 178 13
Glass 214 10
Thyroid 215 5
Tonosphere 351 34
Libra 360 90
User knowledge 403 5
Body measurements 507 5
Water treatment plant 527 38
Breast cancer 569 30
Synthetic control 600 60
Vehicle 846 18
Vowel recognition 990 10
Yeast 1484 8
Multiple features 2000 240
Image segmentation 2310 19
Table 2

Parameter levels of the 2-level full factorial experiment.

Parameter low level high level
|P| 10 15
LL 5 20
Riter 50 100

3.1 Benchmark instances and experimental protocol

The MA algorithm is assessed on 16 datasets from the UCI machine learning
repositorym. Table (1| provides details of these datasets. Column “Dataset”
indicates name of the dataset. Columns “n” and “d” refer to the number of
points contained in the dataset and its dimensions, respectively. Following
[BU17], this study generates for each dataset 10 benchmark instances with
10 different number of clusters k € {2,3,4,6,7,10,11,13,15,20}, leading to
various BMSSC test set-ups. Thus, a total of 160 instances is obtained. The
proposed algorithm was programmed in the C/C++ languagem and compiled
with GNU g++ 4.8.3 compiler, running on a computing platform with an Intel

17-4790 processor (3.6 GHz) and 8 GB RAM.

13

5.11 T

—o— COStbest L

5.105
avg

5.171 4

5.095 b

5.085 b

Objective value

5.075 b

5.07]

5.065 b

5.06 : - -
5 10 15 20 25 30

Value of parameter /P/

(a) parameter |P|

5.105

5.1

31
5.095 b

o
=}
©
T
.

Objective value

i I
o o o
N o %
o) 3]
T
L

5.07

5.065

5.06
5 10 15 20 25 30 35 40 45 50

Value of parameter LL

(b) parameter LL

5.11 T

5.105

5.1

5.095
E
5.091]

5.085} b

Objective value

5.08 b

5.075]

5.07f]

5.065 - b

5.06 : : : :
50 100 150 200 250 300

Value of parameter H‘Her

(C) parameter R;ier

Fig. 1. Analysis of influence of the key parameters (|P|, LL, Riter)-
14

Table 3
p-values for the variance analysis with the significance level of 0.05.

Source of variance |P|* LL |P| * Riter LL % Rjter |P|*LL* Rjter
p-value 0.83 0.35 0.32 0.64
Table 4

Settings of parameters.

Parameter Section Description Final value
|P| 2} [2.2 size of population 15
LL 2.5.1 exploration strength of the TBE procedure 5
Riter 2.5 search depth of RTS 50

3.2 Parameter settings

MA is controlled by three parameters: the population size | P|, the exploration
strength of the TBE procedure LL, and the search depth of the RTS Rj.,. To
determine the appropriate parameter settings for MA, a two-level full factorial
experiment [30] is first conducted to observe the interaction effects among the
three parameters with the levels of each parameter shown in Table [2| Given
that each parameter has two levels, there are eight (2° = 8) combinations
for the three parameters. For the experiment, 30 instances were used from
three randomly selected datasets (Wine, Breast cancer, and Vehicle), and
each instance was independently solved 10 times for each combination of the
parameters. Then, the average result of the best objective values obtained on
the 30 instances is considered for each execution. Table [3|shows the analysis of
the variances of the considered results, and the last four columns indicate that
the interaction effects among the parameters are not statistically significant
(p-values > 0.05). Therefore, a one-at-a-time tuning experiment [I8] is carried
out to calibrate these parameters and analyze the influence of a parameter on
the algorithm’s performance. The best configuration of this tuning experiment
is shown in Table 4] For this experiment, a set of potential values are tested
for each parameter while fixing other parameters to their default values as
shown in Table[d Specifically, the three parameters are tested in the following
three sets of potential values: |P| € {5, 10, 15,20,30}, LL € {5, 10,20, 30,50},
and Ry, € {50,100, 150,200, 300}.

The behavior of MA on each parameter is summarized in Fig. [1| where the
X-axis indicates the tested parameter values and the Y-axis shows the average
value over all the 30 selected instances in terms of the best/average objective
value across 10 independent runs. Fig. [I] demonstrates that the value of each

L http://www.ics.uci.edu/ mlearn/MLRepository.html

2 The code of the proposed algorithm will be publicly available at: http://www.
info.univ-angers.fr/pub/hao/MABMSSC.html

15

http://www.info.univ-angers.fr/pub/hao/MABMSSC.html
http://www.info.univ-angers.fr/pub/hao/MABMSSC.html

parameter affects the algorithm’s performance. For the parameter |P|, the
value of 15 is the best choice, while a larger or a smaller value could weaken the
performance of MA. This notion can be explained by the fact that a large value
of |P| (a large population size) makes the algorithm slowly converge within a
given cutoff time, and a small value of |P| (a small population size) cannot
maintain a suitable population diversity during the search process, which
makes the algorithm prematurely converge. MA obtains the best performance
with the value of five for LL and larger values decrease its performance. In
addition, R, = 50 is the best choice for MA. This experiment justifies the
parameter setting in Table [d] and these parameter values were consistently
used in all the following experiments.

3.3 Computational comparison with reference algorithms and managerial
insights

According to the computational results reported in one of the latest studies for
BMSSC [12], the balanced k-means algorithm (bk-means) [34] and the variable
neighborhood search based on the “Less Is More Approach” (VNS-LIMA)
[12] exhibit an overall best performance among all the existing heuristics for
BMSSC. Thus, these two heuristic approaches can be considered as the state-
of-the-art algorithms for BMSSC, and they are used as the reference algorithms
in the computational comparisons.

To ensure a fair comparison between MA and the two reference algorithms
bk-means and VNS-LIMA, this study used the source codes of these two algo-
rithms and directly ran them under the computing platform, as described in
Section[3.1] The source code of the bk-means algorithm (in Matlab) is available
at http://www2.uef.fi/en/sipu/data-and-software. The source code (in
C++) of the VNS-LIMA algorithm was kindly provided by the corresponding
author of [12]. In accordance with the same experimental protocol as used in
[12], each compared algorithm was performed 10 independent runs for each
instance. The running time elapsed by the bk-means algorithm for each run
was used as the time limit for VNS-LIMA and MA.

Table [5| presents the comparative results of these three compared heuristic
approaches. Column “k” indicates the number of clusters used in each dataset.
Columns “cost” and “time(s)” refer to the best objective values obtained by
the three compared algorithms and the average CPU times in seconds across 10
independent runs in executing the compared algorithms, respectively. Columns
“Bestpe,” and “Avgp.,” show the percentage deviation of the best objective
value and the average objective value over 10 independent executions from
the best solution value given in column “cost” for the compared algorithms,
respectively. For an instance, the percentage deviation of the best and the

16

http://www2.uef.fi/en/sipu/data-and-software

Table 5

Comparative results between MA and the two reference algorithms bk-means and
VNS-LIMA in terms of percentage deviation from the best solution values obtained
by all the three compared algorithms. The best results are marked in bold (part I).

bk-means VNS-LIMA MA
k cost time(s) Bestpey Avgpey Bestpey, Avgpey Bestpey Avgpes
Iris
2 2.228128e+-002 0.58 0.00 0.00 0.00 0.00 0.00 0.00
3 8.136720e+-001 0.46 0.00 0.00 0.00 0.00 0.00 0.00
4 1.112496e+002 0.69 0.03 1.45 0.00 1.80 0.00 0.00
6 4.320800e+001 0.73 0.03 1.03 0.00 0.00 0.00 0.00
7 6.192013e+001 0.67 2.07 3.89 2.58 4.79 0.00 1.49
10 4.488400e+001 0.90 0.53 1.13 0.00 0.06 0.00 0.02
11 3.473445e4001 0.84 8.90 13.71 1.90 8.35 0.00 2.75
13 3.025152e+4-001 0.79 11.89 16.33 7.36 10.92 0.00 3.32
15 2.190800e+-001 0.57 2.99 6.17 0.00 0.72 0.00 0.69
20 1.797000e+-001 0.64 16.99 22.44 0.00 23.23 21.96 25.22
Wine
2 6.507529e+4-006 0.61 0.00 0.00 0.00 0.00 0.00 0.00
3 2.962226e+006 0.48 0.00 0.42 0.00 0.62 0.00 0.00
4 1.904950e+-006 0.59 0.00 0.18 0.00 0.38 0.00 0.00
6 1.008776e+006 0.51 0.36 2.14 0.36 1.98 0.00 0.00
7 7.345635e4-005 0.55 2.34 3.21 0.49 4.00 0.00 0.00
10 5.061534e+005 0.63 1.34 1.90 0.58 1.57 0.00 0.06
11 4.327903e+005 0.71 0.33 0.87 0.00 2.76 0.00 0.00
13 3.601952e4-005 0.72 3.37 6.39 2.59 7.12 0.00 0.01
15 2.764871e+005 0.82 7.36 9.63 0.89 7.01 0.00 0.00
20 1.737925e+005 0.90 0.43 6.27 0.53 12.21 0.00 0.03
Glass
2 1.036726e+003 3.26 0.00 0.00 0.00 0.00 0.00 0.00
3 8.325955e+-002 2.14 0.00 3.66 0.00 0.35 0.00 0.00
4 7.142026e+-002 2.16 0.37 3.99 0.00 0.20 0.00 0.01
6 5.829703e+4-002 3.26 1.16 2.54 1.17 1.71 0.00 0.00
7 5.046425e4-002 1.96 1.36 2.61 0.00 0.91 0.00 0.08
10 4.185386e+002 1.89 1.28 2.83 0.30 1.60 0.00 0.47
11 4.038911e+002 2.08 1.06 3.48 0.03 0.90 0.00 0.45
13 3.724880e+-002 2.07 1.64 4.58 1.08 2.64 0.00 0.56
15 3.478221e+002 1.96 3.93 6.43 1.17 1.88 0.00 0.60
20 2.805971e+4002 1.73 5.31 12.31 2.13 4.33 0.00 2.64
Thyroid
2 4.150596e+-004 0.93 0.33 0.35 0.33 0.34 0.00 0.30
3 3.441325e+4-004 1.60 0.00 0.10 0.00 0.07 0.00 0.00
4 3.004778e+4004 1.77 0.00 0.38 0.00 0.29 0.00 0.00
6 2.295611e+-004 2.76 2.70 3.32 2.70 3.61 0.00 1.96
7 2.084779e+004 1.65 1.41 1.96 0.41 1.82 0.00 0.00
10 1.582070e+-004 2.50 0.20 2.62 0.28 1.26 0.00 0.09
11 1.380010e+-004 1.57 6.47 8.55 5.00 7.04 0.00 4.47
13 1.272262e+-004 1.78 0.25 2.19 0.16 1.45 0.00 0.06
15 1.177890e+-004 1.82 1.49 4.10 0.37 1.47 0.00 0.34
20 8.687001e+-003 1.49 5.05 7.30 3.17 5.19 0.00 1.35
Tonosphere
2 2.425624e+-003 5.30 0.34 0.41 0.34 0.38 0.00 0.17
3 2.295170e+4-003 9.21 0.00 0.24 0.00 0.00 0.00 0.00
4 2.131964e+-003 9.69 0.42 0.48 0.33 0.39 0.00 0.30
6 1.938683e+003 7.64 0.93 1.90 0.02 0.24 0.00 0.03
7 1.861279e+003 8.53 1.22 2.02 0.00 0.16 0.00 0.04
10 1.689036e+003 7.62 1.01 1.76 0.08 0.24 0.00 0.12
11 1.644647e+003 7.22 1.73 2.18 0.18 0.51 0.00 0.27
13 1.569937e¢+003 7.13 1.62 2.66 0.08 0.52 0.00 0.39
15 1.505582e+-003 7.71 1.95 2.48 0.32 0.66 0.00 0.18
20 1.397595e+-003 6.57 3.19 4.90 0.70 1.09 0.00 0.41

17

Table 5
Comparative results between MA and the two reference algorithms bk-means and

VNS-LIMA in terms of percentage deviation from the best solution values obtained
by all the three compared algorithms. The best results are marked in bold (part II).

bk-means VNS-LIMA MA
k cost time(s) Bestpey AVgpey Bestpey AvVgpey Bestpey AVgpDew
Libra
2 8.345947e+4-002 12.10 0.01 0.91 0.00 0.00 0.00 0.00
3 7.076289e+002 10.45 0.02 0.70 0.00 0.00 0.00 0.00
4 6.276321e+4-002 13.29 0.02 0.22 0.00 0.00 0.00 0.00
6 5.287864e+002 16.80 0.11 0.83 0.00 0.33 0.00 0.06
7 4.882661e+002 6.16 0.44 2.30 0.27 1.26 0.00 0.32
10 4.238042e+002 7.50 0.81 2.23 0.51 1.42 0.00 0.45
11 4.037304e+-002 6.86 2.29 4.59 0.68 1.98 0.00 0.65
13 3.665767e4002 8.69 2.37 4.52 1.01 3.06 0.00 0.90
15 3.362085e+-002 7.14 2.19 5.35 0.91 2.89 0.00 1.40
20 2.874700e+-002 7.62 1.40 3.63 0.86 2.29 0.00 2.36
User knowledge
2 9.149010e+-001 14.85 0.09 2.44 0.09 0.10 0.00 0.03
3 7.815654e+-001 9.78 0.01 1.14 0.01 0.03 0.00 0.00
4 7.020935e+001 8.98 0.23 0.78 0.01 0.56 0.00 0.10
6 5.786701e+001 14.20 0.15 2.94 0.05 0.19 0.00 0.01
7 5.390618e+001 7.73 0.20 1.27 0.07 0.46 0.00 0.30
10 4.458389¢+-001 10.35 1.06 2.92 0.84 1.91 0.00 0.54
11 4.247816e+001 9.49 0.78 2.73 0.78 1.89 0.00 0.73
13 3.915801e+001 8.62 0.59 3.50 0.02 1.73 0.00 0.49
15 3.579933e+-001 9.45 1.74 5.32 2.81 3.85 0.00 0.68
20 3.061470e+-001 7.45 4.25 5.22 2.85 5.35 0.00 1.88
Body
2 1.134111e+005 13.18 0.19 0.25 0.19 0.22 0.00 0.15
3 8.092259¢e+-004 12.03 0.00 0.00 0.00 0.00 0.00 0.00
4 6.739189e+-004 12.04 0.20 0.25 0.20 0.27 0.00 0.18
6 5.476624e+004 14.87 0.07 0.21 0.03 0.15 0.00 0.01
7 4.943618e+-004 19.08 0.24 0.63 0.04 0.21 0.00 0.03
10 4.005231e+004 15.42 0.74 1.21 0.45 0.85 0.00 0.37
11 3.748249e+004 10.20 0.08 2.76 0.17 1.16 0.00 1.20
13 3.416424e+4-004 14.70 0.14 1.03 0.12 0.98 0.00 0.88
15 3.177629e+004 15.53 1.60 1.95 1.09 1.68 0.00 0.25
20 2.723185e+004 11.42 1.68 4.26 1.94 2.81 0.00 1.54
Water treatment plant
2 2.685423e+010 11.02 0.00 0.00 0.00 0.01 0.00 0.00
3 2.065459e+4-010 12.81 0.68 0.68 0.62 0.66 0.00 0.56
4 1.759911e+010 11.74 1.03 1.10 0.87 1.01 0.00 0.70
6 1.399003e+010 10.68 0.44 0.50 0.00 0.34 0.00 0.00
7 1.278665e+010 15.94 0.34 0.78 0.23 0.38 0.00 0.21
10 9.842905e+-009 15.77 0.42 1.24 0.41 1.33 0.00 0.26
11 8.777980e+-009 17.67 3.57 4.23 3.54 4.99 0.00 3.18
13 7.742797e+009 19.02 0.03 1.09 0.16 0.86 0.00 0.00
15 6.544925e+4-009 18.01 0.03 0.81 0.00 0.06 0.00 0.00
20 3.516027e+009 22.00 0.13 0.52 0.03 3.34 0.00 0.00
Breast cancer
2 1.366899e+008 23.04 0.61 0.78 0.61 0.70 0.00 0.49
3 8.743161e+007 11.30 0.64 0.64 0.00 0.45 0.00 0.00
4 5.978607e+4-007 9.43 0.00 0.17 0.00 0.24 0.00 0.00
6 3.973995e+007 8.63 0.00 0.40 0.00 0.56 0.00 0.00
7 3.468144e+-007 8.27 0.03 0.33 0.01 0.32 0.00 0.01
10 2.593484e+-007 12.61 0.00 0.84 0.00 0.70 0.00 0.00
11 2.378349e+007 12.57 1.53 1.68 0.12 1.14 0.00 0.00
13 2.060293e+4-007 12.51 1.44 1.45 0.01 1.15 0.00 0.01
15 1.858171e+4-007 15.76 1.55 1.62 1.40 1.54 0.00 0.01
20 1.455947e¢+007 19.20 0.13 1.10 0.10 1.29 0.00 0.01
Synthetic control
2 2.073382e+006 34.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1.239480e+006 15.82 0.00 0.00 0.00 0.00 0.00 0.00
4 1.269957e+006 30.90 0.38 0.48 0.00 0.13 0.00 0.07
6 1.001825e+006 19.42 0.00 0.13 0.00 0.03 0.00 0.00
7 1.026072e+006 25.52 0.22 0.90 0.14 0.51 0.00 0.08

18

Table 5
Comparative results between MA and the two reference algorithms bk-means and

VNS-LIMA in terms of percentage deviation from the best solutions obtained by
all the three compared algorithms. The best results are marked in bold (part III).

bk-means VNS-LIMA MA
k cost time(s) Bestpey AVgpey Bestpey AvVgpey Bestpey AVgpDew
Synthetic control
10 8.986148e+-005 21.66 0.37 0.85 0.00 0.18 0.00 0.23
11 8.677623e+-005 34.98 1.22 4.30 0.31 0.58 0.00 0.55
13 7.945551e+4-005 22.98 0.32 1.86 0.19 0.95 0.00 0.08
15 7.221920e4-005 17.89 0.21 1.54 0.00 0.27 0.00 0.00
20 6.698253e+-005 18.31 1.67 1.86 0.80 2.54 0.00 0.61
Vehicle
2 1.234444e4-007 188.50 0.00 0.00 0.00 0.00 0.00 0.00
3 5.565073e+4-006 72.80 0.00 0.00 0.00 0.00 0.00 0.00
4 4.307852e+006 74.11 0.33 0.43 0.33 0.45 0.00 0.18
6 2.894321e+4-006 49.00 0.00 0.24 0.00 0.00 0.00 0.00
7 2.547200e+-006 60.98 0.53 0.70 0.53 0.64 0.00 0.42
10 1.982152e+-006 67.32 0.78 1.00 0.71 0.93 0.00 0.50
11 1.884479e+006 74.11 0.03 0.20 0.00 0.18 0.00 0.00
13 1.715279e+-006 66.06 0.03 0.25 0.01 0.09 0.00 0.00
15 1.542432e+006 96.79 0.22 0.81 0.15 0.47 0.00 0.07
20 1.255201e+4-006 63.51 0.83 1.41 0.14 0.59 0.00 0.19
Vowel recognition
2 3.990564e+-003 344.33 0.00 0.00 0.00 0.00 0.00 0.00
3 3.420870e+-003 281.01 0.01 0.04 0.00 0.00 0.00 0.00
4 3.068941e+4-003 219.45 0.18 0.20 0.04 0.06 0.00 0.04
6 2.614537e+003 156.23 0.45 1.44 0.04 0.36 0.00 0.01
7 2.458453e+003 141.74 0.33 1.35 0.10 0.61 0.00 0.11
10 2.059913e+4-003 137.61 0.10 1.70 0.20 1.13 0.00 0.23
11 1.965081e+-003 124.00 0.01 0.34 0.23 0.88 0.00 0.38
13 1.808734e+003 119.42 0.06 1.79 0.39 0.86 0.00 0.28
15 1.680291e+-003 113.50 1.73 2.69 0.53 1.73 0.00 1.04
20 1.453449e+003 110.67 1.06 3.34 1.06 2.15 0.00 1.03
Yeast
2 9.773783e+-001 3519.64 0.00 0.00 0.00 0.00 0.00 0.00
3 8.618621e+4-001 1920.44 0.00 0.57 0.01 0.44 0.00 0.16
4 7.674756e+001 1305.07 0.00 1.00 0.00 0.01 0.00 0.00
6 6.355879e+-001 913.82 0.03 0.12 0.01 0.05 0.00 0.00
7 5.994364e+001 499.83 0.17 0.21 0.01 0.05 0.00 0.00
10 5.320666e+-001 399.93 0.07 0.22 0.11 0.17 0.00 0.02
11 5.170488e+-001 407.82 0.37 0.60 0.06 0.22 0.00 0.06
13 4.917235e+001 440.11 0.06 0.86 0.13 0.35 0.00 0.02
15 4.696716e+001 426.49 0.78 1.17 0.09 0.36 0.00 0.08
20 4.287956e+001 347.86 0.74 1.96 0.32 0.59 0.00 0.07
Multiple features
2 2.575342e+4-006 2161.69 0.01 1.27 0.00 0.55 0.00 0.00
3 2.386193e+-006 2060.79 0.16 0.84 0.07 0.43 0.00 0.00
4 2.202546e+-006 2058.69 0.00 1.49 0.00 0.11 0.00 0.00
6 1.996044e+-006 1911.31 0.05 0.92 0.01 0.54 0.00 0.01
7 1.949002e+006 2004.90 0.03 0.40 0.02 0.12 0.00 0.00
10 1.750399e+006 1143.41 0.00 0.23 0.06 0.24 0.00 0.00
11 1.709637e+006 1454.06 0.02 0.61 0.07 0.29 0.00 0.00
13 1.639984e+006 1321.74 0.05 0.47 0.14 0.24 0.00 0.04
15 1.580220e+-006 989.70 0.34 0.77 0.22 0.43 0.00 0.08
20 1.473096e+006 880.52 0.21 0.72 0.44 0.98 0.00 0.01
Image segmentation
2 4.042200e+-007 4528.08 0.67 3.60 0.23 2.47 0.00 0.00
3 3.109459e+007 4035.73 0.50 0.94 0.19 0.67 0.00 0.00
4 2.769080e+-007 3736.06 0.53 1.86 0.25 1.06 0.00 0.00
6 2.248472e+4-007 2185.56 0.00 0.53 0.01 0.12 0.00 0.00
7 2.107812e4-007 1805.85 0.39 0.98 0.01 0.65 0.00 0.16
10 1.892045e+4-007 1450.48 0.36 2.12 0.11 1.64 0.00 0.26
11 1.802198e+007 1330.74 0.00 0.74 0.05 0.43 0.00 0.25
13 1.658152e+-007 1272.68 0.49 1.10 0.57 1.36 0.00 0.44
15 1.581005e+007 1450.09 0.00 1.50 0.11 0.27 0.00 0.06
20 1.423043e+007 1477.56 0.21 0.57 0.29 1.55 0.00 0.03

19

Table 6
Comparative statistical results between MA and the two state-of-the-art algorithms
bk-means and VNS-LIMA. The best performances are marked in bold.

bk-means VNS-LIMA MA
#Best/Avg 30/14 47/21 159/155
Average Bestpey/Avgpey (%) 0.99/2.09 0.45/1.38 0.14/0.49
p-valuepe st /p-valueqog 7.47e-27/7.93e-33 7.74e-27/3.29¢-30

Table 7
Results of the Wilcoxon signed rank test for MA and the reference algorithms in
terms of the best and average objective value, with a significance level of 0.05.

Comparison Rifest Ry st p-value R;‘Vg Rave p-value
MA versus bk-means 129 1 7.57e-22 146 2 5.90e-25
MA versus VNS-LIMA 113 1 3.70e-19 138 4 1.48e-23

average objective values is calculated by (f — f*)/f* x 100, where f* is the
best solution value obtained by all the compared algorithms, and f is the
best or the average objective value obtained with each algorithm. A smaller
percentage deviation indicates that a better result is achieved in terms of the
best or the average objective value.

Table [6] summarizes the results reported with the three compared approaches
on all the 160 instances. In Table @, row “#Best/Avg” shows the number
of cases for which an algorithm produces the best results among all the
compared algorithms in terms of the best/average objective value. Row
“Average Bestpe,/Avgpe,(%)” indicates the average percentage deviation of
the best/average objective values from the best solution values over all the
160 instances. To verify whether there is a significant statistical difference
in terms of the best/average objective values between MA and the two
reference algorithms, the statistical results (p-values) from the non-parametric
Friedman test are provided in row “p-valuepes /p-value,,,”. Table |§| illustrates
that in terms of the best/average results (“#Best/Avg”), MA yields the
best results on 159/155 out of the 160 instances, while bk-means and VNS-
LIMA produce the best results on 30/14 and 47/21 cases, respectively. With
regard to the average percentage deviation of the best/average objective
values from the best solution values over all the 160 instances (“Average
Best pey/ AVgpes (%)), MA reports the smallest deviation (0.14%/0.49%) from
the best solution values obtained by all the compared algorithms. The non-
parametric Friedman test (p-value < 0.05) confirms the significant statistical
difference between the results of MA and those of the compared algorithms.
Table [7] shows the results of the Wilcoxon signed rank test [9] to detect
any statistical significant performance difference. Column “Ry,” (“Rf,”)
indicates the sum of ranks for the benchmark graphs, where MA performs
better than the compared algorithm in terms of the best (average) objective

20

value, while “Ry " (“R.,”) represents the sum of ranks for the opposite
cases. MA shows a significant improvement over the two compared reference
algorithms with a significance level of 0.05. This experiment discloses the

effectiveness of the MA algorithm in solving these BMSSC instances.

This work also tries to provide some implications from the computational and
comparison results as managerial insights for the decision makers in certain
domains, such as cluster analysis. First, the proposed MA method could be
adapted to other cardinality-constrained MSSC clustering problems where the
cardinality of each cluster is predefined but does not need to be the same
[50]. Second, the solution cost significantly decreases with the increase in the
number of clusters k, and the running time required to reach the obtained
solution generally becomes less. Accordingly, in a studied clustering problem
where the k£ value is unknown in advance, the decision makers can use as
many clusters as possible (i.e., determine a k value as large as possible) within
a given upper bound to reduce operating costs.

3.4 Time-to-target (TTT) and convergence analyses

To obtain a deeper insight into the performance of the three algorithms, this
section produced the TTT plots that are useful tools to compare stochastic
algorithms by comparing their running time distributions [I]. A TTT plot
for an algorithm is generated as follows [I]: Ex independent executions of
the algorithm are performed for each given instance. In each execution, the
running time required to achieve a given target value is recorded. The running
times are sorted in an ascending order, and a probability pb, = (I — 0.5)/Ex
is associated with the [th sorted running time t;. Then, the point (¢, pb;) is
plotted.

To produce the TTT plots, experiments were performed on eight instances
randomly selected from the following datasets: Ionosphere, User knowledge,
Water treatment plant, Breast cancer, Vehicle, Vowel recognition, Multiple
features, and Image segmentation. Two hundred independent runs were
executed for each instance. To enable all the compared approaches to arrive
at the target in each run, the target value was set to be a value that was 0.5%
larger than the best objective value found by bk-means.

Fig. |2| presents the TTT plots for the compared algorithms on the eight
selected instances. Fig. 2l demonstrates that MA outperforms all the reference
algorithms on the six instances from the datasets Image segmentation,
Multiple features, User knowledge, Vehicle, Vowel recognition, and Water
treatment plant by obtaining the given target value with the shortest running
time. For the remaining two instances from the datasets Breast cancer and

21

1 T T T T T T =
= bk-means
0.9; O VNS-LIMA +
—+—MA
0.8 4
0.7: 1
0.3; 1
0.2; 1
0.1 1
5 10 15 20 25 30 35 40
Time to target value
(a) Breast cancer (k = 2)
1 —— ¢
—%— bk-means
0.9; O VNS-LIMA 4
——MA
0.8; 4
0.7]
> 0.6: 1
g o0s 4
)
= 04 i
0.3 4
0.2 1
0.1 1
&
2 4 6 8 10 12 14
Time to target value
(C) Tonosphere (k = 2)
— bk—méans
VNS-LIMA

—+—MA

Probability

20 30 40 50 60 70 80
Time to target value

(e) User knowledge (k = 4)

¥
#FL T beemeans
O VNS-LIMA §
—+—MA

Probability
o
2

0 S . .
[50 100 150
Time to target value

200 250

(g) Vowel recognition (k = 11)

—— =
j * —#— bk-means
VNS-LIMA 4
—+—MA
=
8]
]
2
o 4
4000 6000 8000 10000
Time to target value
segmentation (k = T7)
==k
bk-means
VNS-LIMA
—+—MA
>]
£
E]
o
o 4
500 1000 1500 2000 2500 3000 3500 4000
Time to target value
(d) Multiple features (k = 7)
1 T T T T T T —
k-means
0.9 #F70 UNS-LIMA 4
—+—MA
0.8: /]
07¢]
> 0.6- B
8 05]
8
[

o
Iy

10 20 30 40 50 60 70 80 90
Time to target value

(f) Venicle (k = 6)

0.9:

Probability
o o o o o o
L N TR - T

o
.

o

(h)

20 40 60 80 100 120 140 160
Time to target value

Water treatment plant (k = 13)

Fig. 2. Probability distribution for the time (in seconds) to obtain a given target

value.

22

x 10
45 - - - - 55 - - - - - -
=x= bk-means = %= bk-means
- © = VNS-LIMA - © = VNS-LIMA
4t N ——MA 1 5F ——MA 1
e s
X e %
o 351 ' N o 450 ' N
3 1 2 1 \
] ' 5]
: ' :
£ 3 1 1 £ 4 \ 1
8 5 1 ¥
5 ! s | k
o b 1 o 3.5F 1 S
25 4 5t 4
g ' g | *
s | -] . \
z ' 2 \
2! i q 3F ! q
1 1 1
\ ' 1 1
150 " ' 1 251 ! 1 q
& o o St - - % 1 o
e . e e o
1 2 ' h) ! :
0 5 10 15 20 25 0 100 400 500 600 700
Running time in seconds Running time in seconds
(a) Breast cancer (k = 2) (b) Image segmentation (k =7)
x10°
3300 455
= %= bk-means . = %= bk-means
3200 ~ © ~ VNS-LIMA | N - © = VNS-LIMA
——MA Jd w ——MA
" -
3100 1 Sy
x =%
] \ 3 x
3 30001, 1 2 35f . 1
g g g
2 " 2 [
G 280011y 4 g
) Vs, 2 3 H 1
° L . 4 ° g
g 28001 ! N s | \
o ' * o \ 3
2 2700t N q 2ask 1
< 1 X < \ A
1 « . .
2600} 1 % 4 \ 3,
1 ‘«‘ 2% e o ol A XTSI
25001 ' q
1
e e
2400 n ' n n n 15
0 2 4 6 8 10 12 0 50 100 150 200 250 300 350 400 450
Running time in seconds Running time in seconds
(C) Tonosphere (k = 2) (d) Multiple features (k = 7)
x107
130 % T T T T T T 35 T T T T -
1 = %= bk-means = %= bk-means
1 - © - VNS-LIMA - © - VNS-LIMA
' ——MA Eid ——MA 1
120 !] I
! A
! b 4
S0l] g 2,
2 110 2
£ 1 g 1
2 | 2 2 —
8 8
£ 100t !] 8
8 i 8
g . 215 4
€ ! g
]]
g %o ! 1 H
! ! 1
1
80P 0-Or -@ 0~ @ ©- -G -~ —-00-00- - - -0 - -0 - 05]
R .
<
o R I R I TR R R R g 0 L L L L L
[2 4 6 8 10 12 14 16 [20 80 100 120
Running time in seconds Running time in seconds
(e) User knowledge (k = 4) (f) Vehicle (k = 6)
x10'"°
5500 T T T T T T T 5 T - - - - - -
= %= bk-means = %= bk-means
D = © = UNS-LIMA 457 = © = UNS-LIMA |
500017y ——MA 7 ——MA
A i
45000 .] 4 |
° LY " 1
2 1 E 2350 4
S 000l ¥ — Ean
2 1 P 2 4b]
B 1 \ 59,
£ 35001, \ B 2 .
;’w,) \ 52.5 f B
g s000! v — g | "y
g 1 \ g Ll]
< 1 H < v
2500 1 1 [
. \ 150y 4
* !
2000 2= SR = e] Vo
DAY —aa |
1500 05
[20 40 60 80 100 120 140 160 [5 10 15 20 25 30 35 40
Running time in seconds Running time in seconds
(g) Vowel recognition (k = 11) (h) Water treatment plant (k = 13)

Fig. 3. Convergence profiles of MA and the two reference algorithms bk-means and
VNS-LIMA.

23

Ionosphere, MA similarly performs compared with VNS-LIMIA and dominates
bk-means. Fig. 3| shows the convergence profiles of MA and the two reference
algorithms on the eight selected graphs to illustrate the evolution of the
average objective value across 10 independent runs during the search process.
MA requires less time to obtain even better solutions than bk-means and
VNS-LIMA for all the tested graphs. Similar results are observed for the
remaining instances. This experiment further confirms the highly competitive
performance of the proposed MA approach with respect to the two reference
algorithms.

4 Analysis

In this section, some key ingredients of the proposed algorithm are analyzed
to understand their effects on the algorithm’s performance, including the RTS
and the backbone-based crossover operator.

4.1 Efficiency of the RTS

To evaluate the efficiency of the RTS, it is compared with the state-of-the-art
algorithms bk-means and VNS-LIMA. For this comparison, the same three
datasets (Wine, Breast cancer, and Vehicle) as in Section [3.2 are used. All the
compared algorithms were performed under the same experimental condition
as shown in Section [3.1] and executed 10 independent runs for each instance.
Table |8 reports the comparative results of the compared algorithms. Row
“4# Best” summarizes the number of instances for which the corresponding
algorithm produces the best solutions among the compared algorithms. Row
“Avg” reports the average percentage deviation from the best solution values
obtained by all the compared algorithms within this experiment. The p-values
from the non-parametric Friedman tests are reported in the last row of the
table.

Table [§| illustrates that for all the 30 instances, RTS produces the best
results on 30/30 instances in terms of the best/average objective values,
while bk-means and VNS-LIMA yield the best results on 12/3 and 16/4
cases, respectively. In terms of the average percentage deviation (“Avg”)
from the best solution values obtained by all the compared algorithms, RTS
shows the smallest deviation (0.00%/0.11%). The p-values (< 0.05) from the
non-parametric Friedman test in terms of the best and average objective
values reveal a significant statistical difference between the RTS and the two
compared algorithms. The results of Wilcoxon signed rank test shown in Table
[9 also confirm the superiority of RT'S. This experiment demonstrates that RT'S

24

Table 8

Comparative results between RTS and two state-of-the-art algorithms bk-means
and VNS-LIMA in terms of percentage deviation from the best solutions obtained
by all the compared algorithms. The best results are indicated in bold.

bk-means VNS-LIMA RTS
k cost Bestpey Avgper Bestpey Avgpey Bestpey Avgpes
Wine
2 6.507529e+4-006 0.00 0.00 0.00 0.00 0.00 0.00
3 2.962226e+006 0.00 0.42 0.00 0.62 0.00 0.00
4 1.904950e+006 0.00 0.18 0.00 0.38 0.00 0.00
6 1.010016e+006 0.24 2.01 0.24 1.85 0.00 0.27
7 7.352635e4-005 2.25 3.12 0.39 3.90 0.00 0.13
10 5.074534e+4-005 1.08 1.63 0.33 1.31 0.00 0.10
11 4.327903e+005 0.33 0.87 0.00 2.76 0.00 0.00
13 3.612952e+4-005 3.05 6.06 2.28 6.79 0.00 0.24
15 2.771871e+4-005 7.09 9.35 0.64 6.74 0.00 0.07
20 1.737925e+005 0.43 6.27 0.53 12.21 0.00 1.46
Breast cancer
2 1.375244e+4-008 0.00 0.17 0.00 0.09 0.00 0.00
3 8.743161e+-007 0.64 0.64 0.00 0.45 0.00 0.00
4 5.978607e+007 0.00 0.17 0.00 0.24 0.00 0.00
6 3.973995e+007 0.00 0.40 0.00 0.56 0.00 0.00
7 3.468144e+007 0.03 0.33 0.01 0.32 0.00 0.00
10 2.593484e+007 0.00 0.84 0.00 0.70 0.00 0.00
11 2.378349e+007 1.53 1.68 0.12 1.14 0.00 0.00
13 2.060493e+007 1.43 1.44 0.00 1.14 0.00 0.48
15 1.858171e+4-007 1.55 1.62 1.40 1.54 0.00 0.02
20 1.455947e+4-007 0.13 1.10 0.10 1.29 0.00 0.02
Vehicle
2 1.234444e+007 0.00 0.00 0.00 0.00 0.00 0.00
3 5.565073e+-006 0.00 0.00 0.00 0.00 0.00 0.00
4 4.322273e+006 0.00 0.10 0.00 0.12 0.00 0.00
6 2.894321e+-006 0.00 0.24 0.00 0.00 0.00 0.00
7 2.560683e+-006 0.00 0.17 0.00 0.11 0.00 0.00
10 1.995501e+006 0.11 0.33 0.04 0.25 0.00 0.00
11 1.884479e+006 0.03 0.20 0.00 0.18 0.00 0.00
13 1.715241e+006 0.03 0.25 0.01 0.09 0.00 0.04
15 1.542432e+006 0.22 0.81 0.15 0.47 0.00 0.26
20 1.255876e+006 0.77 1.36 0.09 0.54 0.00 0.20
Best 12 3 16 4 30 30
Avg 0.69 1.39 0.21 1.53 0.00 0.11
p-value 2.61e-4 2.07e-6 1.08e-4 2.03e-7
Table 9

Results of the Wilcoxon signed rank test for RT'S and the compared algorithms for
both the best and average objective values, with a significance level of 0.05.

Comparison R?;est Ry st p-value R;g Rave p-value
RTS versus bk-means 18 0 1.95e-4 27 0 5.58e-6
RTS versus VNS-LIMA 14 0 9.79e-4 26 0 8.30e-6

is competitive with the state-of-the-art algorithms on these BMSSC instances.

25

Table 10

Comparative results between MA and the multi-start version of RTS in terms
of percentage deviation from the best solutions obtained by all the compared
algorithms. The best results are indicated in bold.

RTS MA
k cost Bestpey Avgpev Bestpey Avgpev
‘Wine
2 6.507529e+006 0.00 0.00 0.00 0.00
3 2.962226e+006 0.00 0.00 0.00 0.00
4 1.904950e+006 0.00 0.00 0.00 0.00
6 1.008776e+-006 0.12 0.40 0.00 0.00
7 7.345635e+005 0.10 0.22 0.00 0.00
10 5.061534e+005 0.26 0.35 0.00 0.06
11 4.327903e+4-005 0.00 0.00 0.00 0.00
13 3.601952e+4-005 0.31 0.55 0.00 0.01
15 2.764871e+4-005 0.25 0.33 0.00 0.00
20 1.737925e4-005 0.00 1.46 0.00 0.03
Breast cancer
2 1.366899e+-008 0.61 0.61 0.00 0.49
3 8.743161e+007 0.00 0.00 0.00 0.00
4 5.978607e+007 0.00 0.00 0.00 0.00
6 3.973995e+-007 0.00 0.00 0.00 0.00
7 3.468144e+007 0.00 0.00 0.00 0.01
10 2.593484e+007 0.00 0.00 0.00 0.00
11 2.378349e+007 0.00 0.00 0.00 0.00
13 2.060293e+007 0.01 0.49 0.00 0.01
15 1.858171e4-007 0.00 0.02 0.00 0.01
20 1.455947e4-007 0.00 0.02 0.00 0.01
Vehicle
2 1.234444e+007 0.00 0.00 0.00 0.00
3 5.565073e+006 0.00 0.00 0.00 0.00
4 4.307852e+006 0.33 0.33 0.00 0.18
6 2.894321e+-006 0.00 0.00 0.00 0.00
7 2.547200e+-006 0.53 0.53 0.00 0.42
10 1.982152e+006 0.67 0.67 0.00 0.50
11 1.884479e+006 0.00 0.00 0.00 0.00
13 1.715241e+006 0.00 0.04 0.00 0.01
15 1.542432e+006 0.00 0.26 0.00 0.07
20 1.255201e+006 0.05 0.25 0.00 0.19
Best 19 14 30 29
Avg 0.11 0.22 0.00 0.07
p-value 3.89e-3 9.67e-4

Table 11
Wilcoxon signed rank test results between MA and RTS in terms of the best and
average objective values, with a level of significance of 0.05.

Comparison R R p-value R;rv ¢ Ravg p-value

best best
MA versus RTS 11 0 3.35e-3 16 1 4.18e-4

4.2 Effect of the backbone-based crossover operator

As shown in Section [2] the proposed MA approach adopts a dedicated
backbone-based crossover that transfers common points grouped together from
parents to offspring. Additional experiments were performed to evaluate the

26

benefit of the backbone-based crossover. For this purpose, the approach was
compared with its underlying local search method, i.e., the RTS algorithm.
Experiments were executed on the same selection of the three datasets as
before. To solve every instance, each algorithm was ran 10 times under the
same experimental protocol as described in Section [3.1] To be fair, RT'S was
run in a multi-restart way until the time limit was reached.

Tables [10] and [11] show the results reported by the two algorithms. MA and
RTS produce the best results on 30/29 and 19/14 out of the 30 instances,
respectively, in terms of the best/average objective values. Moreover, MA
shows a smaller average percentage deviation (“Avg”) from the best solution
values obtained by the two compared algorithms (0.00%/0.07%) in terms
of the best and the average objective values. The p-values (< 0.05) from
the non-parametric Friedman test confirm the statistical significance of the
comparison between RTS and MA in terms of the best/average objective
values. Meanwhile the Wilcoxon signed rank test results reveal that MA
outperforms RTS with a level of significance 0.05. This experiment further
confirms that the backbone-based crossover operator plays an important role
to the performance of the MA algorithm.

5 Conclusions

This work proposes a population-based MA for the BMSSC problem that is
obtained by imposing the balance property to the classic MSSC. The proposed
algorithm hybridizes a backbone-based crossover operator with an effective
local optimization procedure based on RTS. The specific crossover operator
generates promising offspring solutions by inheriting good properties from
parent solutions, while RTS relies on a combined use of two neighborhoods
and two complementary search strategies to explore high-quality candidate
solutions.

Extensive computational experiments on 16 datasets of 160 instances show
that MA outperforms the state-of-the-art BMSSC algorithms, including bk-
means and VNS-LIMA, in terms of the best and average solution values.
Specifically, MA yields the best results on 159/155 out of the 160 instances in
terms of the best/average objective values, and such a performance has never
been reported in the BMSSC literature by any other algorithm. These results
also largely dominate the those obtained by two state-of-the-art algorithms
(bk-means and VNS-LIMA), which is confirmed by the Wilcoxon signed rank
test. Moreover, the TTT analysis further confirms the competitiveness of
MA with respect to the reference algorithms in terms of the computational
efficiency. Additional experiments are also performed to analyze the influences
of the key parameters and ingredients on the performance of the algorithm.

27

Given the excellent results achieved by the proposed algorithm, the algorithm
can be considered to be an advanced tool for the general BMSSC model. Given
that BMSSC can conveniently formulate a number of real-world applications,
the proposed algorithm can be employed by researchers and practitioners to
tackle these practical problems. Moreover, the distribution of our code to the
public domain will further facilitate such applications.

Considering that the proposed algorithm is a heuristic approach, the gap be-
tween the reported solutions and the optimal solutions cannot be determined.
Additional research work on the exact and approximate methods that can
guarantee the solution quality is thus needed. Furthermore, the RTS strategy
can be improved by investigating other thresholding techniques, such as tabu
thresholding [15]. Finally, the MA algorithm examines only feasible solutions
satisfying the balance constraint on the cardinality of the clusters. Meanwhile,
relaxing some constraints for constrained problems during the search can be
beneficial [T6/44/48]. Search strategies that thus explore feasible and infeasible
solutions must be investigated.

Acknowledgments

We are grateful to the reviewers of this paper for their comments and
suggestions. We would like to thank the authors of [12] and [34] for sharing
the codes of the VNS-LIMA and bk-means algorithms. This work is partially
supported by the National Natural Science Foundation of China (Grant nos.
71771099, 71821001, 71810107003, and 71620107002).

References

[1] Aiex, R. M., Resende, M. G. C., & Ribeiro, C. C. (2007). TTT plots: a perl
program to create time-to-target plots. Optimization Letters, 1(4), 355-366.

[2] Asgari, N., Rajabi, M., Jamshidi, M., Khatami, M., & Farahani, R. Z. (2017).
A memetic algorithm for a multi-objective obnoxious waste location-routing
problem: a case study. Annals of Operations Research, 250(2), 279-308.

[3] Bagirov, A. M., Taheri, S., & Ugon, J. (2016). Nonsmooth DC programming
approach to the minimum sum-of-squares clustering problems. Pattern
Recognition, 53, 12-24.

[4] Bagirov, A. M., & Yearwood, J. (2006). A new nonsmooth optimization
algorithm for minimum sum-of-squares clustering problems. European Journal
of Operational Research, 170(2), 578-596.

28

[5] Bai, L., Liang, J., Sui, C., & Dang, C. (2013). Fast global k-means clustering
based on local geometrical information. Information Sciences, 245, 168-180.

[6] Benlic, U., & Hao, J. K. (2011). A multilevel memetic approach for improving
graph K-partitions. IEEE Transactions on Evolutionary Computation, 15(5),
624-642.

[7] Bertoni, A., Goldwurm, M., Lin, J., & Sacca, F. (2012). Size constrained
distance clustering: separation properties and some complexity results.
Fundamenta Informaticae, 115(1), 125-139.

[8] Brucker, P. (1978). On the complexity of clustering problems. In: R. Henn,
B. Korte, & W. Oettli (Eds.), Optimization and Operations Research, Lecture
Notes in Economics and Mathematical Systems, vol 157 (pp. 45-54). Berlin:
Springer.

[9] Carrasco, J., Garcia, S., Rueda, M. M., Das, S., & Herrera, F. (2020). Recent
trends in the use of statistical tests for comparing swarm and evolutionary
computing algorithms: Practical guidelines and a critical review. Swarm and
Evolutionary Computation, 54, 100665.

[10] Chen Y. & Hao, J. K. (2015). Iterated responsive threshold search for the
quadratic multiple knapsack problem. Annals of Operations Research, 226(1):
101-131.

[11] Chen, Y., He, F., Li, H., Zhang, D., & Wu, Y. (2020). A full migration BBO
algorithm with enhanced population quality bounds for multimodal biomedical
image registration. Applied Soft Computing, Vol 93, Article 106335.

[12] Costa, L. R., Aloise, D., & Mladenovi¢, N. (2017). Less is more: basic variable
neighborhood search heuristic for balanced minimum sum-of-squares clustering.
Information Sciences, 415-416, 247-253.

[13] Desrosiers, J., Mladenovié¢, N., & Villeneuve, D. (2005). Design of balanced
MBA student teams. Journal of the Operational Research Society, 56(1), 60-66.

[14] Edwards, A. W. F., & Cavalli-Sforza, L. L. (1965). A method for cluster analysis.
Biometrics, 21(2), 362-375.

[15] Glover, F. (1995). Tabu thresholding: improved search by nonmonotonic
trajectories. ORSA Journal on Computing, 7(4), 426-442.

[16] Glover, F., & Hao, J. K. (2011). The case for strategic oscillation. Annals of
Operations Research, 183(1), 163-173.

[17] Gribel, D., & Vidal, T. (2019). HG-means: A scalable hybrid genetic algorithm
for minimum sum-of-squares clustering. Pattern Recognition, 88, 569-583.

[18] Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis
of environmental models. Environmental Monitoring and Assessment, 32(2),
135-154.

29

[19] Hansen, P., & Mladenovié, N. (2001). J-means: a new local search heuristic for
minimum sum of squares clustering. Pattern Recognition, 34(2), 405-413.

[20] Hao, J. K. (2012). Memetic algorithms in discrete optimization. In: F. Neri,
C. Cotta, & P. Moscato (Eds.), Handbook of Memetic Algorithms, Studies in
Computational Intelligence, Vol 379 (pp. 73-94). Berlin: Springer.

[21] Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network
design under disruption and uncertainty considering resilience strategies: A
parallel memetic algorithm for a real-life case study. Transportation Research
Part E: Logistics and Transportation Review, 87, 20-52.

[22] Hou, N., He, F., Zhou, Y., &Chen, Y. (2020). An Efficient GPU-based parallel
tabu search algorithm for hardware/software co-design. Frontiers of Computer
Science, 14(5), 1-18.

[23] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern
Recognition Letters, 31(8), 651-666.

[24] Jin, Y., & Hao, J. K. (2016). Hybrid evolutionary search for the minimum sum
coloring problem of graphs. Information Sciences, 352-353, 15-34.

[25] Karmitsa, N., Bagirov, A. M., & Taheri, S. (2017). New diagonal bundle method
for clustering problems in large data sets. European Journal of Operational
Research, 263(2), 367-379.

[26] Kuhn, H. W. (2005). The Hungarian method for the assignment problem. Naval
Research Logistics, 52(1), 7-21.

[27] Laszlo, M., & Mukherjee, S. (2007). A genetic algorithm that exchanges
neighboring centers for k-means clustering. Pattern Recognition Letters, 28(16),
2359-2366.

[28] Liang, J., Xue, Y., & Wang, J. (2020). Bi-objective memetic GP with dispersion-
keeping Pareto evaluation for real-world regression. Information Sciences, 539,
16-35.

[29] Li, H., He, F., Liang, Y., & Quan, Q. (2019). A dividing-based many-objective
evolutionary algorithm for large-scale feature selection. Soft Computing, 24(9),
6851-6870.

[30] Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering
algorithm. Pattern Recognition, 36(2), 451-461.

[31] Liu, Y., Yi, Z., Wu, H., Ye, M., & Chen, K. (2008). A tabu search approach for
the minimum sum-of-squares clustering problem. Information Sciences, 178(12),
2680-2704.

[32] L, Z., Hao, J. K., & Glover, F. (2011). Neighborhood analysis: a case study
on curriculum-based course timetabling. Journal of Heuristics, 17(2), 97-118.

[33] Lu, Y., Hao, J. K., & Wu, Q. (2019). Hybrid evolutionary search for the traveling
repairman problem with profits. Information Sciences, 502, 91-108.

30

[34] Malinen, M. I.; & Frénti, P. (2014, August). Balanced K-means for clustering.
In: P. Franti, G. Brown, M. Loog, F. Escolano, & M. Pelillo (Eds.), Structural,
Syntactic and Statistical Pattern Recognition. S+SSPR 2014. Lecture Notes in
Computer Science, vol 8621 (pp. 32-41). Berlin: Springer.

[35] Mirsaleh, M. R., & Meybodi, M. R. (2016). A Michigan memetic
algorithm for solving the community detection problem in complex network.
Neurocomputing, 214, 535-545.

[36] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley &
Sons.

[37] Neri, F., & Cotta, C. (2012). Memetic algorithms and memetic computing
optimization: A literature review. Swarm and Evolutionary Computation, 2,
1-14.

[38] Pereira, T., Aloise, D., Brimberg, J., & Mladenovié¢, N. (2018). Review of basic
local searches for solving the Minimum Sum-of-Squares Clustering Problem. In:
P. Pardalos, & A. Migdalas (Eds.), Open Problems in Optimization and Data
Analysis, Vol 141 (pp. 249-270). Cham: Springer.

[39] Pyatkin, A., Aloise, D., & Mladenovi¢, N. (2017). NP-Hardness of balanced
minimum sum-of-squares clustering. Pattern Recognition Letters, 97, 44-45.

[40] Qu, B. Y., Zhu, Y. S., Jiao, Y. C., Wu, M. Y., Suganthan, P. N.; & Liang, J.
J. (2018). A survey on multi-objective evolutionary algorithms for the solution
of the environmental/economic dispatch problems. Swarm and Evolutionary
Computation, 38, 1-11.

[41] Rajasekhar, A., Lynn, N., Das, S., & Suganthan, P. N. (2017). Computing
with the collective intelligence of honey bees—a survey. Swarm and Evolutionary
Computation, 32, 25-48.

[42] Shen, X. N., Minku, L. L., Marturi, N., Guo, Y. N., & Han, Y. (2018). A Q-
learning-based memetic algorithm for multi-objective dynamic software project
scheduling. Information Sciences, 428, 1-29.

[43] Su, W., Hu, J., Lin, C., & Shen, S. (2015, June). SLA-aware tenant placement
and dynamic resource provision in SaaS. In 2015 IEEE International Conference
on Web Services (pp. 615-622). New York: IEEE.

[44] Sun, W., Hao, J. K., Lai, X., & Wu, Q. (2018). Adaptive feasible and infeasible
tabu search for weighted vertex coloring. Information Sciences, 466, 203-219.

[45] Yadegari, E., Alem-Tabriz, A., & Zandieh, M. (2019). A memetic algorithm with
a novel neighborhood search and modified solution representation for closed-
loop supply chain network design. Computers & Industrial Engineering, 128,
418-436.

[46] Yong, J., He, F., Li, H., & Zhou, W. (2019). A Novel Bat Algorithm
based on Cross Boundary Learning and Uniform Explosion Strategy. Applied
Mathematics-A Journal of Chinese Universities, 34(4), 480-502.

31

[47] Zhao, S. Z., Suganthan, P. N., & Das, S. (2010). Dynamic multi-swarm particle
swarm optimizer with sub-regional harmony search. In IEEE Congress on
Evolutionary Computation (pp. 1-8). Barcelona: IEEE.

[48] Zhou, Q., Benlic, U., Wu, Q., & Hao, J. K. (2019). Heuristic search to the
capacitated clustering problem. European Journal of Operational Research,
273(2), 464-487.

[49] Zhou, Q., Benlic, U., & Wu, Q. (2020). A memetic algorithm based on
reformulation local search for minimum sum-of-squares clustering in networks.
Information Sciences, 541, 271-296.

[50] Zhu, S., Wang, D., & Li, T. (2010). Data clustering with size constraints.
Knowledge-Based Systems, 23(8), 883-889.

32

	Introduction
	Memetic algorithm for BMSSC
	Search space and evaluation function
	Population initialization
	Crossover operator
	Population updating rule
	Responsive threshold search

	Computational experiments
	Benchmark instances and experimental protocol
	Parameter settings
	Computational comparison with reference algorithms and managerial insights
	Time-to-target (TTT) and convergence analyses

	Analysis
	Efficiency of the RTS
	Effect of the backbone-based crossover operator

	Conclusions
	References

