
A hybrid evolutionary search for the

generalized quadratic multiple knapsack

problem

Qing Zhou a, Jin-Kao Hao a,∗ and Qinghua Wu b,∗

aLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France
bSchool of Management, Huazhong University of Science and Technology, No.

1037, Luoyu Road, Wuhan, China

Accepted to European Journal of Operational Research , April 2021

Abstract

Knapsack problems are useful models that can formulate many real-life applications.
The generalized quadratic multiple knapsack problem (GQMKP) extends the well-
known quadratic multiple knapsack problem by taking into account setups and
knapsack preference of the items. In this study, an efficient hybrid evolutionary
search algorithm (HESA) is proposed to tackle GQMKP, which relies on a knapsack-
based crossover operator to generate new offspring solutions, and an adaptive
feasible and infeasible tabu search to improve new offspring solutions. Other new
features of HESA include a dedicated strategy to ensure a diversified and high-
quality initial population, and a streamlining technique to speed up the evaluations
of candidate solutions. The experiments on two sets of 96 benchmark instances
as well as one large-scale real-life instance show that the proposed algorithm
outperforms the state-of-the-art algorithms from the literature. In particular, HESA
finds 44 improved best-known solutions (new lower bounds) (for more than 45%
cases). The key components of the algorithm are studied to assess their effects on
the algorithm’s performance.

Keywords: Metaheuristics; generalized knapsack problem; evolutionary search;
feasible and infeasible search.

∗ Corresponding author. Emails: qingzhouqz03@gmail.com; jin-kao.hao@univ-
angers.fr and qinghuawu1005@gmail.com

Preprint submitted to Elsevier 3 April 2021

1 Introduction

The knapsack problems (KP) is a classic combinatorial optimization problem,
which has numerous real-world applications [28]. Given a knapsack with a
predefined capacity, and a set of items such that each item has a weight
and a profit, KP is to pack a subset of the items in the knapsack so that
the sum of the profits of the selected items is maximized without exceeding
the capacity of the knapsack. The multiple knapsack problem (MKP) is a
natural generalization of the classic KP by considering m (m > 1) knapsacks
with capacity c1, c2, ..., cm [9,11,22]. The quadratic multiple knapsack problem
(QMKP) deals with multiple knapsacks, and defines a pairwise (quadratic)
profit function between items [12,16].

The generalized quadratic multiple knapsack problem (GQMKP) is an
extension of the canonical QMKP with setups and knapsack preferences of the
items and has shown to be NP-hard [29]. GQMKP has a number of practical
applications in manufacturing and production scheduling, where setups and
machine preferences need to be considered [2,7] (see [29] for a real-life case
study in a plastic injection molding company). The mathematical formulation
of the problem is given in Section 2. Below, we review the existing methods
for solving GQMKP reported in the literature since the introduction of the
problem in 2014.

In [29], Saraç and Sipahioglu presented, along with the definition of the
problem, a genetic algorithm (GA) and a hybrid algorithm (HA) combining
GA and the F-MSG (modified subgradient algorithm handling on feasible
values). GA initializes the population in a random way and uses a 2-
tournament strategy for parent selection. GA adopts a dedicated uniform
based crossover operator to generate offspring solutions, and two different
mutation operators based on local exchange and greedy construction to mutate
the offspring. The authors of [29] tested these algorithms on two sets of 96
benchmark instances that they introduced and a large-scale real-life case.
Their computational results indicated that the hybrid algorithm was better
than GA in terms of solution quality, while GA performed better in terms of
solution time.

In 2016, Chen and Hao [7] presented the first memetic algorithm (MA)
that combines a backbone-based crossover operator and a multi-neighborhood
simulated annealing procedure. They introduced a novel large-sized neighbor-
hood induced by the general-exchange move operator to enhance the search
efficiency of the simulated annealing procedure. In addition, a quality-and-
distance based population updating rule was used to prevent the search from
premature convergence. MA showed a superior performance on the benchmark
instances compared with the reference algorithms.

2

In 2017, Avci and Topaloglu [2] introduced a multi-start iterated local search
method (MS-ILS) that integrates a variable neighborhood descent (VND) with
an adaptive perturbation mechanism. The adaptive perturbation mechanism
helps the algorithm to investigate different search regions while the VND aims
to find high-quality local optima in the examined regions. Moreover, MS-ILS
employs a tabu list to record recently visited solutions to avoid short-term
cycling. The reported results indicated that MS-ILS was capable of producing
high-quality solutions for many benchmark instances.

In 2019, Adouani et al. [1] developed a matheuristic variable neighborhood
search algorithm (MVNS) that combines variable neighborhood search (VNS)
and integer programming (IP). MVNS uses an integer programming based
exact algorithm to enhance the performance of VNS. Their results showed that
MVNS was very competitive compared with the state-of-the-art algorithms
including MA [7] and MS-ILS [2].

According to the reported computational results, MA [7], MS-ILS [2], and
MVNS [1] are the best performing methods for GQMKP in the literature.
Together these algorithms produced the current best-known results for the
two sets of 96 benchmark instances and the large-scale real-life instance.

We observe that compared with other knapsack problems, studies on GQMKP
are quite limited. Moreover, the performances of the existing methods vary
when they are applied to solve large instances. In this work, we aim to
enrich the arsenal of solution methods for GQMKP by proposing an effective
hybrid evolutionary search algorithm (HESA). HESA possesses four original
characteristics. First, HESA uses a knapsack-based crossover operator to
generate new offspring solutions. The design of this operator is motivated
by the observation that high quality local optima share common building
blocks (grouping items), which need to be preserved from parent solutions to
offspring solution. Second, HESA adopts an adaptive feasible and infeasible
tabu search, that uses a mixed search strategy guided by an adaptive penalty-
based evaluation function, to explore both feasible and infeasible solutions
for local optimization. This search strategy is based on the consideration
that relaxing the capacity constraints in a controlled manner helps the
search to tunnel through feasible and infeasible regions to reach high quality
local optima, which are hard to attain otherwise. Third, a fast incremental
evaluation technique is designed to rapidly calculate the move gain of each
candidate move, which significantly increases the computational efficiency of
the proposed algorithm. Finally, HESA starts its search with a high-quality
initial population obtained with a greedy randomized construction procedure.

Computational assessments on the two sets of 96 benchmark instances as
well as the large-scale real-life instance show that HESA is highly effective
compared with the best performing algorithms in the literature. In particular,

3

HESA updates 44 current best-known lower bounds (for 9 small instances of
Set I, 34 large instances of Set II and the real-life instance).

The remainder of the paper is structured as follows. Section 2 presents the
problem and its mathematical formulation. Section 3 describes the design
of the proposed algorithm. Computational results and comparisons with the
state-of-the-art methods are shown in Section 4, followed by an analysis
of important components of HESA in Section 5. Finally, Section 6 draws
conclusions and shows perspectives.

2 Problem statement and mathematical formulation

Given a set of m knapsacks K = {1, 2, ...,m}, each with a capacity ck (k ∈ K)
and a set of n items J = {1, 2, ..., n}, which are categorized into h disjoint
classes R = {1, 2, ..., h}. For each item j (j ∈ J), it is associated with a weight
wj and a profit pjk when j is selected for knapsack k (k ∈ K). Each pair of
items i and j (i, j ∈ J) generates a profit qij if items i and j are allocated to
the same knapsack. Each class r (r ∈ R) incurs a setup time sr when any item
that belongs to class r is allocated to a knapsack k (k ∈ K). If several items
in a same class are allocated to a knapsack, only one setup time is considered.
For each class r (r ∈ R), a maximum number of knapsacks nr are allowed
to which items in class r can be allocated. Let trj be a parameter indicating
whether item j is in class r or not (j ∈ J , r ∈ R): trj = 1 if j is in r, and
trj = 0 otherwise. Let U be a parameter representing a positive large number.
Let xjk be the binary variable taking the value of 1 if item j is selected for
knapsack k, and 0 otherwise. Let yrk be the binary variable such that yrk = 1
if any item in class r is allocated to knapsack k, and yrk = 0 otherwise. Given
the following sets,

- Bk: Set of items that can be allocated to knapsack k ∈ K.

- BBk: Set of classes that can be activated for knapsack k ∈ K.

- Dj: Set of knapsacks to which item j ∈ J can be allocated.

- DDr: Set of knapsacks to which items in class r ∈ R can be allocated.

GQMKP can then be expressed by the following mathematical formulation
[1,2,29].

Maximize
∑
k∈K

∑
j∈Bk

pjkxjk +
∑
k∈K

∑
i∈Bk

∑
j∈Bk(j>i)

qijxikxjk (1)

subject to
∑
j∈Bk

wjxjk +
∑

r∈BBk

sryrk ≤ ck,∀k ∈ K (2)

4

∑
k∈DDr

yrk ≤ nr,∀r ∈ R (3)

∑
k∈Dj

xjk ≤ 1,∀j ∈ J (4)

∑
j∈Bk

trjxjk ≤ Uyrk,∀k ∈ K, ∀r ∈ BBk (5)

xjk ∈ {0, 1}, ∀j ∈ J,∀k ∈ K (6)

yrk ∈ {0, 1}, ∀r ∈ R, ∀k ∈ K (7)

In the above formulation, the objective function (1) is to maximize the total
collected profit. Constraint (2) ensures that the weight sum of the selected
items of each knapsack plus the sum of setup time consumption does not
exceed its capacity. Constraint (3) guarantees that the number of knapsacks
including any item in class r cannot be greater than the maximum number
nr of knapsacks of this class. Constraint (4) enforces that each item can be
allocated to one knapsack at most. Constraint (5) requires that if an item in
class r is selected for knapsack k, then the binary variable yrk must take the
value of 1. Binary values for variables xjk, and yrk are imposed in constraints
(6) and (7), respectively.

3 Hybrid evolutionary search algorithm for the GQMKP

3.1 Main scheme

Algorithm 1: Hybrid evolutionary search algorithm for generalized
quadratic multiple knapsack problem

Input: I: a GQMKP instance, p: population size
Output: Best found solution S∗

1 P = {S1, S2, ..., Sp} ← PopulationInitialization() /* P is the population,
Section 3.2 */

2 S∗ ← Best(P) /* S∗ records the best solution found so far */
3 while Stopping condition is not met do
4 Select randomly two parents Sa, Sb from P

5 So ← CrossOver(Sa, Sb) /* Section 3.3, generate an offspring solution
*/

6 So ← TabuSearch(So) /* Section 3.4, improve the solution */
7 if f(So) > f(S∗) then
8 S∗ ← So /* Update the recorded best solution */

9 P ← UpdatePopulation(P, So) /* Section 3.1, update the population */

5

Memetic algorithm [24,25] is a general hybrid framework that combines
population-based evolutionary search and local search. Various memetic
algorithms have been successfully employed to tackle a number of difficult
combinatorial optimization problems, such as graph partitioning [3,20,21],
quadratic assignment [4,30,33], knapsack [17], and critical nodes identification
[34].

To obtain an effective MA for GQMKP, the design of our hybrid evolutionary
search algorithm (HESA) complies with the design principle of its main search
components [15] and pays a particular attention to its crossover operator
(Section 3.3) and local optimization procedure (Section 3.4). Algorithm 1
summarizes the general procedure of HESA. HESA starts with an initial
population (line 1, Section 3.2) with p (p is a parameter) feasible individuals.
Then, HESA performs a number of generations until a stopping condition
(typically a given number of generations) is satisfied (lines 3-9). At each
generation, two parent solutions in the population are randomly selected (line
4) and recombined by the knapsack-based crossover operator (line 5, Section
3.3) to generate a feasible offspring solution So. Then, So is improved by the
adaptive feasible and infeasible tabu search (line 6, Section 3.4). Finally, So

is used to update the best recorded solution S∗ (lines 7-8) as well as the
population (line 9). To update the population, the offspring solution replaces
the worst solution of the population if So has a better objective value and is
not the same as any solution in the population; otherwise the population is
kept unchanged.

The main components of HESA are presented in the following subsections.

3.2 Population initialization

The initial population P consists of p (p is the population size) feasible
individuals (solutions), and is built by the following population initialization
algorithm (PIA, Algorithm 2). The PIA first generates a number of gr (gr is a
parameter, gr > p) feasible solutions with the greedy randomized construction
procedure (GRCP, Algorithm 3) introduced in [2].

Let S denote a candidate solution, which is a partition of n items into m +
1 knapsacks S = {C0, C1, ..., Cm} such that each Ck (k ∈ {1, 2, ...,m}) is
the set of items allocated to knapsack k, while C0 is a dummy knapsack
containing the unallocated items. GRCP operates as follows. Starting from
S = {C0, C1, ..., Cm}, GRCP first initializes the set of available knapsacks
KL and the set of unallocated items IL, i.e., KL = {1, 2, ...,m}, and IL =
{1, 2, ..., n} \ {C1 ∪ ... ∪ Cm} (lines 1-2, Algorithm 3). Then, GRCP repeats
a series of iterations until KL becomes empty (lines 3-17, Algorithm 3). At

6

Algorithm 2: Population initialization algorithm
Input: I: a GQMKP instance, p: population size, gr: the number of greedy

randomized solutions, µ: shake strength
Output: Population P

1 P ← ∅
2 Sgr ← ∅ /* Sgr is a set of solutions */
3 for t← 1 to gr do
4 Initializing C0 = {1, 2, ..., n}, Ck = ∅ (k ∈ {1, 2, ...,m})
5 S ← {C0, C1, ..., Cm}
6 S ← GreedyRandomConstruction(S) /* Generate a feasible solution in

a greedy randomized manner, Section 3.2 */
7 Sgr ← Sgr ∪ {S}
8 Sort the solutions in Sgr according to their objective values (Eq. (1)) in a

non-ascending order
9 Sp ← select the first p solutions from Sgr

10 for t← 1 to p do
11 S ← select the t-th element of Sp
12 S ← TabuSearch(S) /* Improve the solution, Section 3.4 */
13 if S does not exist in P then
14 P ← P ∪ {S} /* Insert S into P */

15 else
16 repeat
17 S ← RandomShake(S, µ)
18 until S is not the same as any solution in P
19 P ← P ∪ {S} /* Insert S into P */

each iteration, a knapsack k is selected randomly from KL. Then the set of
items FS containing the unallocated items in IL that can fit into knapsack
k and satisfy the constraints (2)-(7) is constructed (lines 5-10, Algorithm 3).
After that, an item j∗ from FS having the largest value density (ties are
randomly broken) is allocated to knapsack k (lines 13-14, Algorithm 3). The
value density vd(j, k) of an item j (j ∈ J) with respect to a knapsack k
(k ∈ K) is defined by [2]:

vd(j, k) = (pjk +
∑

i∈Ck,i 6=j
qij)/wj (8)

Then, j∗ is removed from IL and FS is updated accordingly (lines 15-16,
Algorithm 3). The operations of selecting an item from FS with the largest
value density and updating the sets of Ck, IL as well as FS are repeated until
FS becomes empty (lines 11-16, Algorithm 3). In this case, the knapsack k
becomes unavailable and is removed from KL (line 17, Algorithm 3). This
process is repeated until all knapsacks are examined and an initial solution is
then returned. PIA invokes the GRCP procedure gr times to construct the set

7

Algorithm 3: Greedy randomized construction procedure

Input: a GQMKP instance I, a solution S = {C0, C1, ..., Cm}
Output: A feasible solution denoted by S = {C0, C1, ..., Cm}

1 KL← {1, 2, ...,m} /* KL is the set of available knapsacks */
2 IL← {1, 2, ..., n} \ {C1 ∪ ... ∪ Cm} /* IL is the set of unallocated items */
3 while |KL| > 0 do
4 /* |KL| is the size of KL */
5 Select a knapsack k from KL at random
6 FS ← ∅
7 for t← 1 to |IL| do
8 /* |IL| is the size of IL */
9 if the t-th element jt of IL can fit into knapsack k then

10 FS ← FS ∪ {jt} /* FS is the set of unallocated items that can
fit into knapsack k */

11 while |FS| > 0 do
12 /* |FS| is the size of FS */
13 j∗ ← argmax{vd(j, k), j ∈ FS} /* j∗ denotes the item from FS

having the largest value density with respect to knapsack k */
14 Ck ← Ck ∪ {j∗} /* Allocate item j∗ to knapsack k */
15 IL← IL \ {j∗} /* Remove item j∗ from IL */
16 Update FS

17 KL← KL \ {k} /* Remove knapsack k from KL */

18 C0 = {1, 2, ..., n} \ {C1 ∪ C2 ∪ ... ∪ Cm}
19 return S = {C0, C1, ..., Cm}

of solutions Sgr with gr members (lines 3-7, Algorithm 2). Then, PIA sorts the
elements in Sgr according to their objective values (Eq. (1)) in a non-ascending
order, and selects the first p elements as the set Sp (lines 8-9, Algorithm
2). Finally, PIA repeats a series of iterations until the population contains p
individuals (lines 10-19, Algorithm 2). At each iteration t, the t-th element S of
Sp is chosen and is improved by the tabu search procedure (Section 3.4) (lines
11-12, Algorithm 2). The improved solution S is inserted into the population
P if it is not the same as any existing solution in P (lines 13-14, Algorithm 2).
Otherwise, a random shake procedure is applied to S to change a small part
of S and make it different from the solutions of P , and then S is added to P
(lines 15-19, Algorithm 2). The random shake procedure consists of µ (µ is a
parameter called the shake strength) operations, each performing a random
move from the combined feasible reallocate and swap neighborhoods (Section
3.4.1). By this means, PIA is able to generate an initial population of high
quality that contributes to the efficiency of the search process.

We now consider the time complexity of the greedy randomized construction
procedure GRCP. At the beginning of GRCP, the set of unallocated items IL
is initialized in O(n) time (line 2, Algorithm 3). At each iteration of GRCP,

8

the set of items in IL that can fit into the selected knapsack k, i.e., FS, is
identified in O(|IL|) time, where |IL| is the size of IL (lines 7-10, Algorithm
3). And then an item j∗ from FS having the largest value density with respect
to k is identified in O(|FS| × |Ck|) (line 13, Algorithm 3), where |FS| and
|Ck| denote the sizes of FS and Ck, respectively, while FS is updated in
O(|IL|) (line 16, Algorithm 3). Therefore, the total time complexity of GRCP
is bouned by O(n)+O((|FS|×|Ck|+|IL|)×|FS|×m) (denoted by O(GRCP)).

3.3 Knapsack-based crossover operator

Algorithm 4: knapsack-based crossover operator

Input: Two randomly selected parents Sa = {Ca0 , Ca1 , ..., Cam}, and
Sb = {Cb0, Cb1, ..., Cbm}

Output: A feasible offspring solution So = {Co0 , Co1 , ..., Com}
1 Initializing Co0 = {1, 2, ..., n}, Cok = ∅ (k ∈ {1, 2, ...,m})
2 t← 1 /* Iteration counter */
3 while t <= m do
4 if t% 2 6= 0 then
5 Choose a knapsack C∗ ∈ Sa (C∗ 6= Ca0) having the largest profit
6 Cot ← C∗

7 else
8 Choose a knapsack C∗ ∈ Sb (C∗ 6= Cb0) having the largest profit
9 Cot ← C∗

10 Remove all the items in C∗ from Sa and Sb

11 t← t+ 1

12 Co0 = {1, 2, ..., n} \ {Co1 ∪ Co2 ∪ ... ∪ Com}
13 So ← {Co0 , Co1 , ..., Com}
14 So ← GreedyRandomConstruction(So) /* Complete the solution in a

greedy randomized manner, Section 3.2 */
15 return So = {Co0 , Co1 , ..., Com}

The knapsack-based crossover operator (denoted by KCX) is a key search
component of the proposed HESA algorithm. At each generation of HESA,
KCX is used to generate a new offspring solution by recombining two parent
solutions selected randomly from the population. Generally, a successful
crossover operator should not only generate diversified solutions but also
transfer good properties (“building blocks”) from parents to offspring solutions
in relation to a given optimization objective [15]. As GQMKP can be viewed
as a grouping problem [7], it is more meaningful and natural for a crossover to
manipulate groups of items rather than individual items. Crossover operators
utilizing such an idea have been successfully used to tackle a number of
grouping problems including graph partitioning problem [3] and graph coloring
problem [18]. Moreover, a previous study discloses that high quality solutions

9

of GQMKP share groups of items [7].

The proposed KCX operator follows the general principle presented above
and is described in Algorithm 4. Let Sa = {Ca

0 , C
a
1 , ..., C

a
m}, and Sb =

{Cb
0, C

b
1, ..., C

b
m} be the given parent solutions, KCX generates one offspring

solution So = {Co
0 , C

o
1 , ..., C

o
m} by alternatively and successively inheriting

the knapsacks with the largest profit from the parent solutions. This is
reasonable because by inheriting the most profitable knapsacks from both
parents, the offspring solution will conserve these good building blocks through
the crossover process.

Specifically, KCX operates in two sequential steps. The first step (lines 3-
11) consists of m iterations (i.e., one knapsack per iteration), where at each
iteration t, a knapsack C∗ (C∗ 6= Ca

0 and C∗ 6= Cb
0) from a reference parent

(determined in an alternative way) is chosen such that C∗ has the largest
profit. Then, C∗ becomes the t-th knapsack of the offspring So, followed by
the removal of all the items in C∗ from the parent solutions Sa and Sb. Note
that the first step may result in a solution, where some knapsacks are possibly
not fully filled. In other words, some unallocated items could fit into the
knapsacks of the solution and satisfy all the constraints. The second step
of KCX (lines 12-14) thus completes the solution by the GRCP procedure
presented in Section 3.2.

We estimate the time complexity of KCX as follows. KCX first sets the m
knapsacks to be empty in O(1) time (line 1, Algorithm 4). At each iteration
of KCX, the profit of each knapsack of Sa or Sb is computed in O(n+ n× n)
time and the knapsack C∗ with the largest profit is identified in O(m) time
(line 5 or 8, Algorithm 4). The items in C∗ are removed from Sa and Sb in
O(|C∗|) time, where |C∗| is the size of C∗ (line 10, Algorithm 4). After that,
the solution So is completed by the GRCP procedure in O(GRCP) time (line
14, Algorithm 4). Therefore, the total time complexity of KCX is bounded by
O((n+ n× n+m+ |C∗|)×m) + O(GRCP).

As indicated in Section 1, MA [7], which is one of the best performing
algorithms for GQMKP, uses the backbone-based crossover operator (denoted
by BCX) for solution recombination. The main difference between BCX and
KCX is that BCX aims to transfer common items shared in both parents to
the offspring as many as possible, while KCX transfers to the offspring all the
items in a knapsack with the largest profit from a reference parent which is
determined in an alternative manner.

10

3.4 Adaptive feasible and infeasible tabu search

The proposed HESA algorithm uses an adaptive feasible and infeasible
tabu search (AFITS) to improve initial solutions and offspring solutions. As
discussed in [13], for constrained optimization problems, oscillating between
infeasible and feasible regions during the search process can help to find
high-quality solutions, which are difficult to locate if the search process is
confined in feasible regions only (see [26,27,31] for some specific examples).
The proposed AFITS algorithm follows this idea and explores an enlarged
search space including both feasible and infeasible solutions unlike existing
GQMKP algorithms, such as MA [7], MS-ILS [2], and MVNS [1], which only
visit feasible regions. AFITS is based on the general framework of the well-
known tabu search [14]. In addition, AFITS uses an adaptive parameter β
tuned dynamically on the basis of the search context to control the importance
given to the infeasible solutions (Section 3.4.2). The neighborhood structures
and fast incremental evaluation technique as well as the exploration strategy
of AFITS are presented in the following subsections.

3.4.1 Neighborhood structures and fast incremental evaluation technique

AFITS exploits two neighborhoods, i.e., the reallocate neighborhood Nr and
the swap neighborhood Ns, which have been successfully employed in previous
studies [1,2,7].

Reallocate operator : Given a current solution S = {C0, C1, ..., Cm}, the
Reallocate operator (denoted by Real(i, Cu, Cv)) transfers an item i from
its current knapsack Cu ∈ {C0, C1, ..., Cm} to another knapsack Cv ∈
{C1, C2, ..., Cm} (Cu 6= Cv) satisfying constraints (2)-(7). Note that this
operator can add an unallocated item collected in C0 to a knapsack. To
efficiently calculate the move gain of a candidate move, AFITS adopts for
the first time a fast incremental evaluation technique. The main idea is to
maintain a n× (m+ 1) matrix γ, where its element γ[j][k] records the sum of
profits between an item j and all other items in knapsack Ck of the current
solution S, i.e., γ[j][k] =

∑
i∈Ck,i 6=j qij. Given that C0 of S is a dummy knapsack

that has no contribution to the objective value of S, all the values of the 0-th
column of γ are initialized to 0, i.e., γ[j][0] = 0, j ∈ J . Let Pjk be a parameter,
where for each item j ∈ J , Pjk = pjk when k ∈ {1, 2, ...,m} and Pjk = 0 when
k = 0. The move gain of a Real(i, Cu, Cv) operation can then be efficiently
calculated by:

∆f (Real(i, Cu, Cv)) = γ[i][v]− γ[i][u] + Piv − Piu (9)

After performing a Real(i, Cu, Cv) move, the matrix γ is updated in O(n) time

11

as follows: γ[j][u] = γ[j][u] − qij, γ[j][v] = γ[j][v] + qij, ∀j ∈ {1, 2, ..., n}, j 6=
i, u 6= 0, v 6= 0.

Swap operator : The Swap operator (denoted as Swap(i, j)) exchanges
two items i and j from two different knapsacks Cu and Cv (Cu, Cv ∈
{C0, C1, ..., Cm}, Cu 6= Cv), by keeping all constraints satisfied. This operator
requires that one of the two selected items is allocated and the other item is
unallocated, or both of the two selected items are allocated but they belong
to different knapsacks. When a Swap(i, j) move is performed, the associated
move gain can be efficiently computed as:

∆f (Swap(i, j)) =


(γ[i][v]− γ[i][u] + γ[j][u]− γ[j][v] + Piv − Piu

+Pju − Pjv − qij, if u = 0 ∨ v = 0)

(γ[i][v]− γ[i][u] + γ[j][u]− γ[j][v] + Piv − Piu
+Pju − Pjv − 2× qij, if u 6= 0 ∧ v 6= 0)

(10)

Given that a Swap move is composed of two consecutive Reallocate moves, γ
is consecutively updated two times as for the Reallocate operation. Updating
γ after a Swap move can also be realized in O(n) time. As such the Swap
moves benefit from the fast incremental evaluation technique similar to the
Reallocate moves.

3.4.2 Exploration of feasible and infeasible solutions with tabu search

The main idea behind AFITS is to enable the search to visit intermediary
infeasible solutions by relaxing the capacity constraints (Constraint (2)) of the
knapsacks in a controlled manner. Complying with the general idea of penalty
function for constrained optimization, AFITS uses an extended penalty-based
evaluation function F , which combines the objective function with a penalty
function to assess the quality of both feasible and infeasible solutions.

Let S = {C0, C1, ..., Cm} denote a candidate solution in the enlarged search
space, the objective function f(S) (Eq. (1)) is equivalent to the sum of total
profits of all knapsacks, i.e.,

f(S) =
m∑
k=1

tp(k) (11)

where tp(k) is the total profit of the knapsack k, given by tp(k) =
∑
j∈Ck

pjk +∑
i∈Ck

∑
j∈Ck,j>i

qij.

12

Algorithm 5: Adaptive feasible and infeasible tabu search
Input: A feasible solution S, the search depth of tabu search sd
Output: Best feasible solution found S∗

1 t← 0
2 β ← 1
3 S∗ ← S /* S∗ records the best feasible solution found so far */

4 Sb ← S /* Sb records the best solution found so far in terms of the
extended penalty-based evaluation function F */

5 Initialize the tabu list tl
6 while t < sd do
7 Select a best admissible neighboring solution S′ from the union of Nr

and Ns neighborhoods in terms of F
8 S ← S′

9 Update the tabu list tl
10 if g(S) = 0∧ f(S) > f(S∗) then
11 S∗ ← S

12 if F (S) > F (Sb) then
13 Sb ← S
14 t← 0

15 else
16 t← t+ 1

17 if All previous λ solutions are feasible then
18 β ← β/τ

19 else if They are all infeasible solutions then
20 β ← β × τ
21 if β < 1 then
22 β ← 1

23 return S∗

Let Z = {Z1, Z2, ..., Zm} be a m-dimensional vector, where each element Zk
is the set of classes such that for each class r ∈ Zk, the item selected to the
knapsack k has at least one that belongs to r. Let W be another m-dimensional
vector W = {W1,W2, ...,Wm} to record the total weight of each knapsack
of solution S, i.e., Wk =

∑
j∈Ck

wj +
∑
r∈Zk

sr. The penalty function g(S)
corresponds to the infeasibility degree of S, given by the overall overloaded
parts of all the knapsacks to the capacity limit, i.e., g(S) =

∑m
k=1 ok, where

ok =

Wk − ck, if Wk > ck

0, otherwise
(12)

Then, the extended evaluation function F is a linear combination of the
objective function f(S) and the penalty function g(S):

13

F (S) = f(S)− β × g(S) (13)

where β is a parameter that controls the degree of infeasibility and is
dynamically tuned using a self-adjustment method [31].

AFITS explores the reallocate neighborhood Nr and the swap neighborhood
Ns in a union way without considering the capacity constraints of the
knapsacks. To quickly calculate the move gain of a candidate move with respect
to F , AFITS further uses a fast incremental evaluation technique. Specifically,
for a given move denoted as mv (Reallocate, Swap), its move gain is defined
by:

∆F (mv) = ∆f (mv)− β ×∆g(mv) (14)

With the help of the matrix γ presented above, the move gain ∆f (mv) of
each move mv relative to the objective function f is efficiently calculated in
O(1) time. Similarly, given that each move induced by Reallocate, and Swap
operators involves only two knapsacks, the total weight of the two knapsacks
can be directly computed with the assistance of the m-dimensional vector W
above. Moreover, the move value ∆g(mv) of each move mv related to the
change in terms of the penalty function g can be conveniently determined
according to Eq. (12) in O(1) time. Therefore, with the data structures γ
and W , the move gain that corresponds to the variation in the penalty-based
evaluation function F can be efficiently calculated in constant time. As such,
the penalty-based evaluation function F of each neighboring solution can be
efficiently computed as F = F + ∆F .

The general scheme of AFITS is presented in Algorithm 5. Starting from a
feasible input solution, AFITS iteratively replaces the current solution S with
the best admissible neighboring solution S ′ (ties are randomly broken), in
terms of F from the union of Nr and Ns neighborhoods (lines 6-22, Algorithm
5), in O(n× (m+ 1) + n× n) time for each iteration with the help of the fast
incremental evaluation technique (Section 3.4.1). To prevent the search from
short-term cycling, each time an item j (j ∈ J) is removed from its original
knapsack Ck (k ∈ {0, 1, ...,m}), it is forbidden to add j to Ck for the next tt
iterations (tt is a parameter called tabu tenure) (line 9, Algorithm 5). A move
is however always performed if it leads to the best solution never encountered
during the search. During the search process, β is divided (multiplied) by τ if
all previous λ solutions are feasible (infeasible) and its initial value is set to be 1
(lines 17-22, Algorithm 5). The values of τ and λ are empirically set to 2 and 5,
respectively. Generally, a larger (smaller) value of β imposes a heavier (lighter)
penalization to infeasible solutions and results in a search, which grants less
importance to infeasible (feasible) solutions. The best feasible solution found

14

S∗ is updated by the current solution S if S is feasible, (i.e., g(S) = 0) and
has a better quality than S∗ in terms of the objective function f (lines 10-11,
Algorithm 5). Similarly, the best solution found Sb is renewed with S if S is
better than Sb in terms of F (lines 12-14, Algorithm 5). The search stops when
the best solution found Sb cannot be updated for sd consecutive iterations,
where sd is a parameter called the search depth of AFITS, and then the best
feasible solution S∗ is returned.

4 Results of computational experiments

To assess the performance of the proposed HESA algorithm, we test the
algorithm on the two sets of benchmark instances and a large-scale real-life
instance commonly used in the literature, and compare the results with the
state-of-the-art methods.

4.1 Benchmark instances and experimental protocol

The two sets of 96 benchmark instances were first introduced in [29] and later
used in [1,2,7], while the real-life instance was tested only in [7,29].

• Set I: This set consists of 48 small-sized instances with n = 30 items, m ∈
{1, 3} knapsacks, h ∈ {3, 15} classes, and density values d ∈ {0.25, 1.00}.
• Set II: It contains 48 large-sized instances, which are characterized by their

number of items n = 300, number of knapsacks m ∈ {10, 30}, number of
classes h ∈ {30, 150}, and density values d ∈ {0.25, 1.00}.
• Real-life: This instance corresponds to a real application concerning plastic

parts production with injection machines. The instance was first introduced
in [29] and faithfully regenerated by the authors of [7]. This instance has
the following features: n = 500 items, m = 40 knapsacks, h = 300 classes,
and density d = 1.00.

These instances have unknown optimal solutions. All the input data and
the certificates of the results obtained by the proposed HESA algorithm
are available at http://www.info.univ-angers.fr/pub/hao/HESA-GQMKP.

html.

Table 1 shows for each instance of Set I and Set II, the following information:
instance name (Ins.), number of items (n), number of knapsacks (m), number
of classes (h), and density (d).

The HESA algorithm was implemented in C++ and compiled using GNU g++
8.3.0 with the “-O3” option (We will make our code publicly available at the

15

http://www.info.univ-angers.fr/pub/hao/HESA-GQMKP.html
http://www.info.univ-angers.fr/pub/hao/HESA-GQMKP.html

Table 1
List of benchmarks.

Ins. n m h d Ins. n m h d

Set I (48 instances) Set II (48 instances)

5-1 30 3 15 1.00 1-1 300 10 30 0.25

5-2 30 3 15 1.00 1-2 300 10 30 0.25

5-3 30 3 15 1.00 1-3 300 10 30 0.25

6-1 30 1 3 0.25 2-1 300 30 150 0.25

6-2 30 1 3 0.25 2-2 300 30 150 0.25

6-3 30 1 3 0.25 2-3 300 30 150 0.25

8-1 30 3 15 0.25 3-1 300 10 150 0.25

8-2 30 3 15 0.25 3-2 300 10 150 0.25

8-3 30 3 15 0.25 3-3 300 10 150 0.25

15-1 30 1 3 0.25 4-1 300 10 150 1.00

15-2 30 1 3 0.25 4-2 300 10 150 1.00

15-3 30 1 3 0.25 4-3 300 10 150 1.00

18-1 30 1 3 1.00 7-1 300 10 30 1.00

18-2 30 1 3 1.00 7-2 300 10 30 1.00

18-3 30 1 3 1.00 7-3 300 10 30 1.00

20-1 30 1 15 1.00 9-1 300 30 30 0.25

20-2 30 1 15 1.00 9-2 300 30 30 0.25

20-3 30 1 15 1.00 9-3 300 30 30 0.25

22-1 30 3 3 0.25 10-1 300 30 30 1.00

22-2 30 3 3 0.25 10-2 300 30 30 1.00

22-3 30 3 3 0.25 10-3 300 30 30 1.00

23-1 30 3 3 1.00 11-1 300 10 30 0.25

23-2 30 3 3 1.00 11-2 300 10 30 0.25

23-3 30 3 3 1.00 11-3 300 10 30 0.25

25-1 30 3 15 1.00 12-1 300 30 150 1.00

25-2 30 3 15 1.00 12-2 300 30 150 1.00

25-3 30 3 15 1.00 12-3 300 30 150 1.00

26-1 30 1 15 1.00 13-1 300 30 150 0.25

26-2 30 1 15 1.00 13-2 300 30 150 0.25

26-3 30 1 15 1.00 13-3 300 30 150 0.25

27-1 30 1 15 0.25 14-1 300 10 30 1.00

27-2 30 1 15 0.25 14-2 300 10 30 1.00

27-3 30 1 15 0.25 14-3 300 10 30 1.00

28-1 30 1 15 0.25 16-1 300 30 30 0.25

28-2 30 1 15 0.25 16-2 300 30 30 0.25

28-3 30 1 15 0.25 16-3 300 30 30 0.25

29-1 30 3 3 0.25 17-1 300 30 30 1.00

29-2 30 3 3 0.25 17-2 300 30 30 1.00

29-3 30 3 3 0.25 17-3 300 30 30 1.00

30-1 30 3 3 1.00 19-1 300 10 150 1.00

30-2 30 3 3 1.00 19-2 300 10 150 1.00

30-3 30 3 3 1.00 19-3 300 10 150 1.00

31-1 30 3 15 0.25 21-1 300 10 150 0.25

31-2 30 3 15 0.25 21-2 300 10 150 0.25

31-3 30 3 15 0.25 21-3 300 10 150 0.25

32-1 30 1 3 1.00 24-1 300 30 150 1.00

32-2 30 1 3 1.00 24-2 300 30 150 1.00

32-3 30 1 3 1.00 24-3 300 30 150 1.00

16

Table 2
Settings of parameters.

Parameter Section Description Considered values Final
value

p 3.2 size of population {5, 10, 20, 30, 50} 10

gr 3.2 number of greedy randomized
solutions

{100, 500, 1000, 2000, 5000} 1000

µ 3.2 shake strength {0.02, 0.05, 0.08, 0.10, 0.20} 0.10

tt 3.4.2 tabu tenure {10, 20, 30, 50, 100} 50

sd 3.4.2 search depth of tabu search {500, 1000, 2000, 5000, 10000} 2000

Table 3
Scaling factors of the processors used in the reference algorithms, based on the
processor used in this work.

Algorithm Reference Processor type CPU frequency (GHz) Scaling factor

HESA this work Intel E5-2695 v4 2.10 1.00

MA [7] AMD Opteron 4184 2.80 1.33

MS-ILS [2] Intel core 2 duo T7500 2.20 1.05

MVNS [1] Intel core 2 duo B960 2.40 1.14

link above). All experiments were conducted on a computing platform with
an Intel E5-2695 v4 processor (2.10 GHz) and 1 GB RAM, running Debian
8.3.0-6.

4.2 Parameter tuning

HESA requires 5 parameters: the population size p, the number of greedy
randomized solutions gr, the shake strength µ, the tabu tenure tt, and the
search depth of tabu search sd. To tune these parameters, we used the “irace”
package [19], which implements the Iterated F-Race method [5] to determine
automatically the most suitable parameter settings from a set of possible
parameter configurations. For this tuning experiment, a set of 15 randomly
selected instances from Set I and Set II were used, i.e., 1-1, 1-3, 3-1, 3-2, 10-1,
11-3, 13-3, 14-2, 14-3, 16-3, 18-2, 23-1, 24-1, 24-2, and 31-2. The tuning budget
(the maximum number of runs of the algorithm) was set to 1000 runs, where
each run stops after performing a fixed number of 100 generations. The range
of possible parameter values and final values suggested by “irace” are shown
in Table 2. The final parameter values were used in all the experiments.

17

Table 4
Summarized results between HESA and three reference algorithms on the instances
of Set I and Set II. The best results are marked in bold.

Instance set MA MS-ILS MVNS HESA

Set I (48 instances)

#Best 35/28 39/33 39/38 48/46

#Improve/#Match 0/44 0/48 0/48 9/39

Average Time(s) 0.35 1.92 1.77 0.25

Average gbest/gavg(%) -0.45/-0.58 0.00/-0.09 0.00/0.00 0.74/0.67

p-valuebest 3.11e-4 2.70e-3 2.70e-3

p-valueavg 1.24e-4 1.62e-3 2.09e-2

Set II (48 instances)

#Best 4/0 8/0 14/19 40/33

#Improve/#Match 0/8 0/29 0/47 34/6

Average Time(s) 3025.75 2896.87 287.25 336.61

Average gbest/gavg(%) -0.51/-0.83 -0.10/-1.46 0.00/-0.03 3.46/3.23

p-valuebest 1.01e-8 2.96e-7 6.02e-5

p-valueavg 4.14e-8 7.76e-9 3.48e-2

Table 5
Results of the Wilcoxon signed-rank test for HESA and the reference algorithms on
the instances of Set I and Set II, with a significance level of 0.05.

Instance set Comparison R+
best

R−
best

p-value R+
avg R−

avg p-value

Set I (48 instances)

HESA vs. MA 13 0 1.47e-3 20 2 2.01e-4

HESA vs. MS-ILS 9 0 7.69e-3 15 2 1.18e-3

HESA vs. MVNS 9 0 7.69e-3 10 2 6.04e-3

Set II (48 instances)

HESA vs. MA 41 3 1.03e-7 43 5 5.77e-8

HESA vs. MS-ILS 39 5 1.92e-6 44 4 1.78e-7

HESA vs. MVNS 34 8 3.40e-5 29 15 2.82e-2

Table 6
Comparative results between HESA and two state-of-the-art algorithms (GA [29],
MA [7]) on the real-life instance. The dominating values are marked in bold.

GA MA HESA

fbk fbest favg tavg fbest favg tavg fbest favg tavg

16018.80 15884.30 15669.10 9133.48 16018.80 15908.50 2611.21 16642.61 16599.11 1763.87

4.3 Comparative results with state-of-the-art algorithms

To assess the performance of our HESA algorithm, this section provides an
extensive computational comparison between HESA and several state-of-the-
art algorithms from the literature on the two sets of 96 benchmark instances

18

and the large-scale real-life instance. According to the computational results
presented in one of the latest studies on GQMKP [1], the following three
algorithms can be considered to be the best performing ones for GQMKP: the
population-based memetic algorithm (MA) [7], the multi-start iterated local
search algorithm (MS-ILS) [2] and the matheuristic variable neighborhood
search algorithm (MVNS) [1]. Therefore, we use them as the main reference
algorithms for the computational comparisons. On the basis of [1,2,7], HESA
was executed independently 30 times per instance by using different random
seeds, where for the z-th (z = {1, 2, ..., 30}) execution, the random seed was
set to be z. Considering that the source codes of the reference algorithms are
not available, the numerical results reported by the reference algorithms are
directly compiled from the related literature.

Note that the stopping conditions of the reference algorithms are not uniform.
Specifically, MVNS [1] stops if there is no solution improvement after exploring
a fixed number of kmax neighborhoods (kmax is set to be the number of classes
in the paper). MS-ILS [2] is terminated after it performs a number ofmaxStart
(a parameter of MS-ILS) times of the iterated local search (ILS). MA [7] uses
two different stopping criteria: a short time limit of 100 generations and a
long time limit of 500 generations. The algorithm proposed in [29] utilizes
two types of termination conditions together. One of them examines whether
the algorithm has performed a given number nf of generations. The other
terminates the algorithm if the solution has not been improved during ni
consecutive generations (nf and ni are parameters). In our work, the stopping
condition of the HESA algorithm is a fixed number of 100 generations as in
[7].

It is a difficult task to provide a fully fair comparison between HESA
and the reference algorithms due to the differences in computing platforms,
implementations and termination conditions, etc. We thus mainly focus on the
quality criterion of the obtained solutions and provide computation times for
indicative purposes only. On the basis of [8,23,32], we used the CPU frequency
to compare the speeds of the processors that were employed to test HESA and
the reference algorithms. Using our processor (Intel E5-2695 v4, 2.10 GHz) as a
basis, Table 3 shows the scaling factors of the processors used by the reference
algorithms, indicating that the processor used in this study is a slightly slower.

Table 4 summarizes the comparative results on the instances of Set I and Set II.
Row “#Best” indicates the number of instances for which the corresponding
algorithm yields the best result among all the compared algorithms in terms
of the best and average objective value. Row “#Improve/#Match” shows the
number of cases where each algorithm improves or matches the best-known
solution in the literature. The average running time in seconds required by each
algorithm to reach its final objective value across all the tested instances is
provided in row “Average Time(s)”. The average percentage gap from the best

19

or average objective value to the best-known solution in the literature is given
in row “Average gbest/gavg(%)”. For each instance, the percentage gaps of the
best and the average objective value are computed as (f−fbk)/fbk×100, where
f is the best or the average objective value obtained by the given algorithm
and fbk is the best-known solution from the literature. To verify whether there
exists a statistically significant difference between HESA and the compared
algorithms in terms of the best (average) objective values, the p-values from
the nonparametric Friedman test [10] are provided in row “p-valuebest” (“p-
valueavg”). Detailed results on the benchmark instances of Set I and Set II are
presented in Tables 14 and 15 of the Appendix, respectively.

One observes from Table 4 that in terms of the best objective value, HESA
produces the best result for 48 (40) cases out of the 48 Set I instances (Set II
instances), while MA, MS-ILS and MVNS provide the best result for 35 (4), 39
(8) and 39 (14) instances, respectively. With regard to the average objective
value for the two benchmarks, HESA reports 46 (33) best results against 28
(0) for MA, 33 (0) for MS-ILS, and 38 (19) for MVNS. In particular, HESA
reports improved best-known solutions for 9 out of the 48 small-sized instances
(Set I) and matches the best-known solution for all the remaining instances.
More importantly, for the 48 large-sized instances of Set II, HESA improves
(matches) 34 (6) best-known solutions, and misses the best-known solution
only for the 8 remaining instances. For both sets, HESA further reports the
best result on the average percentage gap of the best/average objective value
to the best-known solution (0.74%/0.67% and 3.46%/3.23%). In terms of the
average running time (in seconds) required to reach the final objective value,
for the Set I benchmark, HESA shows a slightly better performance than
all the compared algorithms. Meanwhile for the Set II benchmark, HESA
performs better than MA and MS-ILS, but slightly worse than MVNS. The p-
values from the nonparametric Friedman test (rows p-valuebest and p-valueavg)
show that there are statistically significant differences between HESA and the
reference algorithms, in terms of the best and the average objective value
(p-values < 0.05) on both Set I and Set II instances. Table 5 shows the
results from the popular Wilcoxon signed-rank test recommended in [6,10]
to verify whether there is a statistically significant difference between HESA
and each competing algorithm. Column R+

best (R+
avg) denotes the sum of ranks

for the instances, where HESA performs better than the compared algorithm,
in terms of the best (average) objective value, while R−best (R−avg) refers to the
sum of ranks for the opposite cases. Table 5 demonstrates that HESA has
a significant improvement over the three compared algorithms (MA, MS-ILS
and MVNS) with a level of significance α = 0.05. These observations highlight
the superiority of HESA on both Set I and Set II benchmark instances.

Table 6 presents the comparative results between HESA and the reference
algorithms GA [29] and MA [7] on the real-life instance, where the results
of the reference algorithms are compiled from [7]. Column “fbk” reports the

20

Table 7
Summarized results of HESA under the short time limit of 100 generations and the
long time limit of 500 generations. The best results are indicated in bold.

Set I (48 instances) Set II (48 instances)

HESA (100 Gs) HESA (500 Gs) HESA (100 Gs) HESA (500 Gs)

#Best 48/44 48/48 27/14 48/48

Average Time(s) 0.25 0.74 336.61 584.15

Average gbest/gavg(%) 0.74/0.67 0.74/0.71 3.46/3.23 3.55/3.32

p-valuebest 1.00 4.59e-6

p-valueavg 2.53e-2 5.51e-9

Table 8
Comparative results of HESA under the short time limit of 100 generations and the
long time limit of 500 generations on the real-life instance.

HESA (100 Gs) HESA (500 Gs)

fbk fbest favg tavg fbest favg tavg

16018.80 16642.61 16599.11 1763.87 16712.21 16667.78 5339.46

Table 9
Results of the Wilcoxon signed-rank test of HESA with the long time limit of 500
generations on the Set I and Set II benchmarks, with a significance level of 0.05.

Instance set Comparison R+
best

R−
best

p-value R+
avg R−

avg p-value

Set I HESA (100 Gs) vs. HESA (500 Gs) 0 0 1.00 5 0 4.31e-2

Set II HESA (100 Gs) vs. HESA (500 Gs) 21 0 5.96e-5 34 0 3.65e-7

best-known solution from the literature. Columns “fbest”, and “favg” show
the best and average objective value across 30 independent runs, respectively.
Column “tavg” gives the average running time in seconds required to reach
the final objective value. Table 6 indicates that HESA achieves the best
performance compared to the reference algorithms, in terms of the best and
average objective value, with a shorter computation time. Moreover, HESA
updates the best-known solution for this real-life instance.

To sum up, the proposed HESA algorithm competes very favorably with
the existing GQMKP algorithms both in terms of solution quality and
computational efficiency. With a similar or shorter computation time, the
algorithm is able to find equal or better solutions for a majority of the tested
instances including the real-life case. The advantage of the algorithm over the
other algorithms is more significant on large scale instances than on small
instances. As the result, the algorithm is particularly suitable for dealing with
large and practical GQMKP applications.

21

4.4 Comparative results with a long time limit

In this section, we check whether HESA can find still better results if it is
given more time. For this, we used the same long time limit of 500 generations
as [7]. Tables 7 and 8 summarize the results of HESA under a short time limit
of 100 generations (HESA (100 Gs)), and a long time limit of 500 generations
(HESA (500 Gs)) on the instances of Set I and Set II as well as the real-life
instance, respectively. Detailed results of this experiment on the Set I and Set
II benchmarks are given in Tables 16 and 17 of the Appendix.

Tables 7 and 8 demonstrate that HESA is capable of finding even better
solutions if a long time limit is allowed. Particularly, in terms of the best
objective value, HESA (500 Gs) yields the best result for 48 (48) cases
against 48 (27) instances for HESA (100 Gs) on the Set I benchmark (Set
II benchmark). In terms of the average objective value, HESA (500 Gs)
dominates HESA (100 Gs) by reporting the best result for 48 (48) instances
against 44 (14) instances on the Set I (Set II) instances. When considering
the average percentage gap of the best/average objective value to the best-
known solution, HESA (500 Gs) shows a better result for the two benchmarks
(0.74%/0.71% and 3.55%/3.32%). In terms of computational time to reach
the final objective value, HESA (100 Gs) requires 0.25/336.61 seconds for the
the Set I/II benchmarks against 0.74/584.15 seconds for HESA (500 Gs). The
nonparametric Friedman test results (rows p-valuebest and p-valueavg) indicate
that there exist statistically significant differences between the compared
algorithms, in terms of the best and average objective value for the Set II
benchmark (p-values< 0.05). For the Set I instances, there exists a statistically
significant difference between HESA (100 Gs) and HESA (500 Gs) in terms of
the average objective value (p-value < 0.05), however, the difference in terms
of the best objective value (p-value > 0.05) is marginal. The statistical results
of the Wilcoxon signed-rank test from Table 9 further confirm the advantage
of HESA (500 Gs) on the solution quality.

5 Analysis

This section provides an analysis of two key ingredients of the proposed
algorithm: the knapsack-based crossover operator and the mixed search
strategy of exploring both feasible and infeasible solutions. The experiments
were conducted on the 15 randomly selected instances used in Section 4.2.

22

Table 10
Comparison results of HESA and its two variants HESAbb and HESAuni that employ
the backbone-based crossover and the uniform crossover operator, respectively.

HESA HESAbb HESAuni

Ins. fbest favg tavg fbest favg tavg fbest favg tavg

1-1 5176.49 5155.67 957.37 5133.68 5112.53 1014.88 5167.92 5149.26 769.46

1-3 5952.06 5935.10 1211.08 5912.10 5891.46 955.53 5944.23 5917.09 1091.53

3-1 35320.30 35238.30 681.18 35190.50 34860.32 46.10 35255.50 35204.78 655.45

3-2 43326.30 43281.83 529.87 43236.60 42985.67 43.31 43322.40 43259.52 474.77

10-1 13208.88 13206.60 234.88 11320.58 10107.15 32.13 12642.19 12127.57 287.29

11-3 11471.10 11404.58 925.72 11359.70 11322.04 1038.96 11452.00 11401.74 1446.03

13-3 4722.70 4706.42 527.20 4714.00 4682.50 793.26 4715.00 4706.34 751.90

14-2 25980.14 25980.14 60.85 25976.66 25916.73 13.87 25980.14 25980.14 88.08

14-3 31536.06 31536.06 44.27 31536.06 31529.36 11.33 31536.06 31536.06 130.55

16-3 14221.90 14129.35 641.44 14029.60 13909.80 726.30 14213.50 14115.18 1484.03

18-2 8551.08 8548.01 0.10 8551.08 8551.08 0.11 8551.08 8548.01 0.10

23-1 503.00 503.00 322.93 503.00 503.00 199.94 503.00 502.87 162.03

24-1 53814.17 53413.35 1644.66 53059.93 52958.58 955.91 53426.67 53272.92 1309.30

24-2 60199.73 60027.66 1554.82 59662.11 59334.54 808.09 59908.04 59759.00 1380.31

31-2 666.00 666.00 3.86 666.00 666.00 1.23 666.00 666.00 1.27

#Best 15 14 4 3 5 3

p-valueF 9.11e-4 2.28e-3 1.57e-3 9.11e-4

Average 20976.66 20915.47 622.68 20723.44 20555.38 442.73 20885.58 20809.77 668.81

Table 11
Wilcoxon signed-rank test results of HESA and its two variants HESAbb and
HESAuni on the 15 randomly selected instances, with a significance level of 0.05.

Comparison R+
best

R−
best

p-value R+
avg R−

avg p-value

HESA vs. HESAbb 11 0 3.35e-3 12 1 1.87e-3

HESA vs. HESAuni 10 0 5.06e-3 11 0 3.35e-3

5.1 Effect of the knapsack-based crossover operator

To examine the efficiency of the knapsack-based crossover operator of the
proposed algorithm, we compared HESA with two variants HESAbb, and
HESAuni that use the backbone-based crossover [7] and the uniform crossover
operators [29], respectively. Indeed, the backbone-based crossover was used
in the memetic algorithm [7], while the uniform crossover was employed in
the genetic algorithm [29]. These two operators are thus reasonable reference
crossovers for GQMKP. For this experiment, HESA, HESAbb, and HESAuni

were independently ran 30 runs to solve each instance of the 15 selected
instances with a time limit of 1800 seconds per run.

Tables 10 and 11 present the comparative results of HESA and its two

23

0 200 400 600 800 1000 1200 1400 1600 1800
1.125

1.13

1.135

1.14

1.145

1.15
x 10

4

Running time in seconds

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e

HESA

HESA
bb

HESA
uni

(a) 11-3

0 200 400 600 800 1000 1200 1400 1600 1800
5.26

5.28

5.3

5.32

5.34

5.36

5.38

5.4
x 10

4

Running time in seconds

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e

HESA

HESA
bb

HESA
uni

(b) 24-1

Fig. 1. Convergence graphs of HESA and two variants HESAbb and HESAuni on
the instances 11-3 and 24-1.

variants HESAbb, and HESAuni, where the symbols have the same meanings as
those in previous tables. Row “p-valueF” reports the p-value results from the
nonparametric Friedman test between HESA and the compared algorithms,
in terms of the best and the average objective value. Row “Average” presents
the averaged result across all the tested instances and all the executions. One
observes that in terms of the best/average objective value, HESA, HESAbb,
and HESAuni report the best result in 15/14, 4/3, and 5/3 out of 15 instances,
respectively. The Wilcoxon signed-rank test further confirms the superiority
of HESA with a significance level of 0.05. To illustrate the evolution of the
best objective value during the search process, Fig. 1 provides the running
profile (convergence graph) of HESA and the variants HESAbb, and HESAuni

24

Table 12
Comparative results of AFITS and its variant FLS that visits only feasible solutions
on 15 randomly selected instances.

AFITS FLS

Ins. fbest favg tavg fbest favg tavg

1-1 5147.01 5117.39 425.82 5128.22 5076.95 522.36

1-3 5932.39 5898.53 581.12 5915.25 5863.14 462.43

3-1 35164.80 34884.45 627.33 35285.00 35070.56 776.79

3-2 43326.10 43130.08 701.24 43277.40 43005.13 580.28

10-1 11427.61 9988.28 171.02 9696.74 8657.48 9.31

11-3 11409.20 11316.60 435.44 11344.90 11208.23 513.73

13-3 4725.80 4705.03 582.86 4714.20 4681.48 380.70

14-2 25980.14 25980.14 74.21 25951.34 25941.25 231.10

14-3 31536.06 31536.06 175.53 31536.06 31536.06 20.02

16-3 14155.00 14047.20 618.48 14121.40 13980.42 624.20

18-2 8535.72 8535.72 0.04 8551.08 8551.08 0.03

23-1 503.00 503.00 586.29 501.00 494.08 240.87

24-1 53534.18 53183.14 551.60 52966.73 52351.63 377.37

24-2 59858.88 59482.29 487.73 59516.93 58874.00 192.56

31-2 666.00 666.00 8.86 666.00 666.00 89.02

#Best 13 13 4 4

p-valueF 1.26e-2 1.26e-2

Average 20793.46 20598.26 401.84 20611.48 20397.17 334.72

Table 13
Wilcoxon signed-rank test results of AFITS and its variant FLS on the 15 randomly
selected instances, with a significance level of 0.05.

Comparison R+
best

R−
best

p-value R+
avg R−

avg p-value

AFITS vs. FLS 11 2 2.31e-2 11 2 1.92e-2

on instances 11-3, and 24-1, where X-axis and Y-axis show the running time
in seconds and the best objective value, respectively. Fig. 1 shows that HESA
requires less times to reach even better final solutions compared with HESAbb

and HESAuni. Similar results are also observed for other instances. This
experiment highlights the usefulness of the knapsack-based crossover operator.

5.2 Advantage of searching both feasible and infeasible solutions

To evaluate the effect of the strategy that oscillates between feasible and
infeasible search areas of AFITS, an experiment was conduced to compare
AFITS and a variant FLS that explores only feasible solutions during the
search process. For a fair comparison, AFITS and FLS were ran 30 independent
times per instance, with a time limit of 1800 seconds for each run, under the

25

0 200 400 600 800 1000 1200 1400 1600 1800
1.095

1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135

1.14

1.145
x 10

4

Running time in seconds

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e

AFITS

FLS

(a) 11-3

0 200 400 600 800 1000 1200 1400 1600 1800
5.26

5.27

5.28

5.29

5.3

5.31

5.32

5.33

5.34

5.35

5.36
x 10

4

Running time in seconds

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e

AFITS

FLS

(b) 24-1

Fig. 2. Convergence graphs of AFITS and its variant FLS on instances 11-3 and
24-1.

same experimental protocol as shown in Section 4.1.

Table 12 summarizes the comparative results. One observes that AFITS
produces 13 best results against 4 best results for FLS in terms of both the
best and average objective value. The nonparametric Friedman test indicates
that there exists a significant difference between AFITS and FLS for both the
best and average objective values (p-values < 0.05). The Wilcoxon signed-rank
test results from Table 13 further indicate that AFITS performs better than
FLS with a significance level of 0.05. The convergence graphs of AFITS and
FLS on instances 11-3, and 24-1 provided in Fig. 2 show that AFITS requires
less running times to reach even better solutions compared with FLS. This
experiment clearly demonstrates that exploring both feasible and infeasible

26

solutions contributes to the performance of the algorithm.

6 Conclusions

The generalized quadratic multiple knapsack problem (GQMKP) is a sig-
nificant member of the large class of knapsack problems. In this work, we
introduced an effective hybrid evolutionary search algorithm to solve GQMKP
with the following original features: (i) a knapsack-based crossover for new
offspring generation; (ii) an adaptive feasible and infeasible tabu search for
effective local optimization; (iii) a fast incremental technique to streamline
the evaluations of candidate solutions; (iv) a dedicated strategy to ensure a
diversified and high-quality initial population.

The performance of the proposed HESA algorithm was verified on the two
sets of 96 commonly used benchmark instances as well as one large-scale real-
life instance. The computational results showed that HESA competes very
favorably with the current state-of-the-art methods in the literature. In terms
of solution quality, HESA found 44 improved best-known solutions (new lower
bounds) (for 9 small instances of Set I, 34 large instances of Set II and the
real-life instance). HESA is also computationally effective by reaching equal
or better solutions for most tested instances with a shorter time compared
with the best reference algorithms. To shed lights on the impacts of the
mixed feasible and infeasible search strategy and the knapsack-based crossover
operator, we presented additional experiments to investigate these two key
components.

In addition to the reported computational results that can be useful for future
studies on GQMKP, the code of our HESA algorithm that we make publicly
available can be used by researchers and practitioners to solve various problems
that can be formulated as GQMKP. Moreover, the design ideas adopted in
the proposed algorithm are of general nature, they can be adapted to design
effective algorithms for other related problems.

Given that the proposed algorithm is a heuristic approach, the gap between the
reported solutions and the optimal solutions cannot be determined. Therefore,
additional research is needed to study exact and approximate methods with
quality guarantee. In addition, to further improve the search efficiency of
the algorithm, other neighborhoods could be considered to complement the
reallocate and the swap neighborhoods used in GQMKP studies. Finally,
the proposed algorithm requires several parameters whose tuning may be
fastidious. It would be interesting to study self-adaptive approaches that can
dynamically adapt the parameters to the search landscape under examination.

27

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions
which helped us to improve the paper. We also thank Dr. Yuning Chen [7]
and Dr. Tugba Saraç [29] for sharing the problem instances.

References

[1] Adouani, Y., Jarboui, B., & Masmoudi, M. (2019). A matheuristic for the 0–
1 generalized quadratic multiple knapsack problem. Optimization Letters, in
press, https://doi.org/10.1007/s11590-019-01503-z

[2] Avci, M., & Topaloglu, S. (2017). A multi-start iterated local search algorithm
for the generalized quadratic multiple knapsack problem. Computers &
Operations Research, 83, 54-65.

[3] Benlic, U., & Hao, J. K. (2011). A multilevel memetic approach for improving
graph K-partitions. IEEE Transactions on Evolutionary Computation, 15(5),
624-642.

[4] Benlic, U., & Hao, J. K. (2015). Memetic search for the quadratic assignment
problem. Expert Systems with Applications, 42(1), 584-595.

[5] Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and
iterated F-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete,
L., & Preuss, M. (Eds.), Experimental Methods for the Analysis of Optimization
Algorithms (pp. 311-336). Berlin: Springer.

[6] Carrasco, J., Garćıa, S., Rueda, M. M., Das, S., & Herrera, F. (2020). Recent
trends in the use of statistical tests for comparing swarm and evolutionary
computing algorithms: Practical guidelines and a critical review. Swarm and
Evolutionary Computation, 54, 100665.

[7] Chen, Y. N., & Hao, J. K. (2016). Memetic search for the generalized quadratic
multiple knapsack problem. IEEE Transactions on Evolutionary Computation,
20(6), 908-923.

[8] Chen, Y. N., & Hao, J. K. (2017). An iterated “hyperplane exploration”
approach for the quadratic knapsack problem. Computers & Operations
Research, 77, 226-239.

[9] Dell’Amico, M., Delorme, M., Iori M., & Martello, S. (2018). Mathematical
models and decomposition methods for the multiple knapsack problem.
European Journal of Operational Research, 274(3), 886-899.

[10] Derrac, J., Garćıa, S., Molina, D., & Herrera, F. (2011). A practical tutorial
on the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms. Swarm and Evolutionary
Computation, 1(1), 3-18.

28

[11] Detti, P. (2021). A new upper bound for the multiple knapsack problem.
Computers & Operations Research, 129, 105210.

[12] Galli, L., Martello, S., Rey, C., & Toth, P. (2020). Polynomial-size formulations
and relaxations for the quadratic multiple knapsack problem. European Journal
of Operational Research, 291(3), 871-882.

[13] Glover, F., & Hao, J. K. (2011). The case for strategic oscillation. Annals of
Operations Research, 183(1), 163-173.

[14] Glover, F., & Laguna, M. (1998). Tabu search. In: DU, DZ., & Pardalos, P.
M. (Eds.), Handbook of Combinatorial Optimization (pp. 2093-2229). Boston:
Springer.

[15] Hao, J. K. (2012). Memetic algorithms in discrete optimization. In: Neri, F.,
Cotta, C., & Moscato, P. (Eds.), Handbook of Memetic Algorithms, Studies in
Computational Intelligence, Vol 379 (pp. 73-94). Berlin: Springer.

[16] Hiley, A., & Julstrom, B. A. (2006). The quadratic multiple knapsack
problem and three heuristic approaches to it. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation (pp. 547-552).
Washington: ACM.

[17] Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., & Nojima, Y. (2009).
Implementation of multiobjective memetic algorithms for combinatorial
optimization problems: a knapsack problem case study. In: Goh, CK., Ong,
YS., & Tan, K. C. (Eds.), Multi-Objective Memetic Algorithms, Studies in
Computational Intelligence, vol 171 (pp. 27-49). Berlin: Springer.

[18] Jin, Y., & Hao, J. K. (2019). Solving the Latin square completion problem
by memetic graph coloring. IEEE Transactions on Evolutionary Computation,
23(6), 1015-1028.

[19] López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., &
Stützle, T. (2016). The irace package: iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3, 43-58.

[20] Lu, Z., Hao, J. K., & Wu, Q. H. (2020). A hybrid evolutionary algorithm for
finding low conductance of large graphs. Future Generation Computer Systems,
106, 105-120.

[21] Lu, Z., Zhou, Y., & Hao, J. K. (2021). A hybrid evolutionary algorithm for
the clique partitioning problem. IEEE Transactions on Cybernetics, in press,
https://doi.org/10.1109/TCYB.2021.3051243

[22] Martello, S., & Toth, P. (1980). Solution of the zero-one multiple knapsack
problem. European Journal of Operational Research, 4(4), 276-283.

[23] Martinelli, R., Poggi, M., & Subramanian, A. (2013). Improved bounds for
large scale capacitated arc routing problem. Computers & Operations Research,
40(8), 2145-2160.

29

[24] Moscato, P. (1999). Memetic algorithms: A short introduction. In New ideas in
optimization (pp. 219-234). McGraw-Hill Ltd., UK.

[25] Neri, F., Cotta, C., & Moscato, P. (2012). Handbook of Memetic Algorithms,
Studies in Computational Intelligence (Vol 379). Berlin: Springer.

[26] Paraskevopoulos, D. C., Laporte, G., Repoussis, P. P., & Tarantilis, C. D.
(2017). Resource constrained routing and scheduling: review and research
prospects. European Journal of Operational Research, 263(3), 737-754.

[27] Qin, J., Xu, X. H., Wu, Q. H., & Cheng, T. C. E. (2016). Hybridization of tabu
search with feasible and infeasible local searches for the quadratic multiple
knapsack problem. Computers & Operations Research, 66, 199-214.

[28] Salkin, H. M., & Kluyver, C. D. (1975). The knapsack problem: a survey. Naval
Research Logistics Quarterly, 22(1), 127-144.

[29] Saraç, T., & Sipahioglu, A. (2014). Generalized quadratic multiple knapsack
problem and two solution approaches. Computers & Operations Research, 43,
78-89.

[30] Silva, A., Coelho, L. C., & Darvish, M. (2021). Quadratic assignment problem
variants: A survey and an effective parallel memetic iterated tabu search.
European Journal of Operational Research, 292(3), 1066-1084.

[31] Sun, W., Hao, J. K., Lai, X. J., & Wu, Q. H. (2018). Adaptive feasible and
infeasible tabu search for weighted vertex coloring. Information Sciences, 466,
203-219.

[32] Usberti, F. L., França, P. M., & França, A. L. M. (2013). GRASP with
evolutionary path-relinking for the capacitated arc routing problem. Computers
& Operations Research, 40(12), 3206-3217.

[33] Zhang, H. Z., Liu, F., Zhou, Y. Y., & Zhang, Z. Y. (2020). A hybrid method
integrating an elite genetic algorithm with tabu search for the quadratic
assignment problem. Information Sciences, 539, 347-374.

[34] Zhou, Y., Hao, J. K., & Glover, F. (2019). Memetic search for identifying critical
nodes in sparse graphs. IEEE Transactions on Cybernetics 49(10), 3699-3712.

Appendix

This appendix provides 1) detailed comparative results between HESA and
the state-of-the-art methods in the literature on the 48 small-sized instances
of Set I and 48 large-sized instances of Set II under the condition indicated in
Section 4.3 (Tables 14 and 15), and 2) comparative results of HESA under a
short time limit of 100 generations and a long time limit of 500 generations
on the instances of Set I and Set II (Tables 16 and 17). In each table,

30

column “Ins.” indicates the instance name, and column “fbk” reports the
best-known solution from the literature. Columns “fbest”, “favg”, and “tavg”
show for each algorithm the best objective value, the average objective value
and the average running time in seconds to reach the final objective value
across 30 independent runs, respectively. Row “#Best” indicates the number of
instances for which the corresponding algorithm reports the best result among
all the compared algorithms, in terms of the best and average objective value.
Row “#Improve” (“#Match”) denotes the number of cases that an algorithm
improves (matches) the best-known solution in the literature. The best results
are marked in bold.

31

T
a
b

le
14

.
C

om
p

ar
at

iv
e

re
su

lt
s

b
et

w
ee

n
H

E
S

A
an

d
th

re
e

st
at

e-
of

-t
h

e-
ar

t
al

go
ri

th
m

s
(M

A
[7

],
M

S
-I

L
S

[2
]

an
d

M
V

N
S

[1
])

on
th

e
48

sm
a
ll

-s
iz

ed
in

st
an

ce
s

of
S

et
I

(p
ar

t
1
).

M
A

M
S
-I
L
S

M
V
N
S

H
E
S
A

In
s.

f
b
k

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

5
-1

2
8
3
5
.3
0

2
8
3
5
.3
0

2
8
2
8
.2
2

1
.2
3

2
8
3
5
.3
0

2
8
3
5
.3
0

3
.2
4

2
8
3
5
.3
0

2
8
3
5
.3
0

2
.2
3

2
8
3
5
.3
0

2
8
3
5
.3
0

0
.0
3

5
-2

3
3
0
4
.8
0

3
2
9
3
.4
8

3
2
9
3
.9
0

0
.8
3

3
3
0
4
.8
0

3
2
9
3
.4
8

1
.6
5

3
3
0
4
.8
0

3
3
0
4
.8
0

2
.0
4

3
3
0
4
.8
0

3
3
0
4
.8
0

0
.0
6

5
-3

1
6
7
8
.0
0

1
6
7
8
.0
0

1
6
7
8
.0
0

0
.0
1

1
6
7
8
.0
0

1
6
7
8
.0
0

3
.1
7

1
6
7
8
.0
0

1
6
7
8
.0
0

1
.8
6

1
7
5
6
.3
0

1
7
5
6
.3
0

0
.0
3

6
-1

3
4
6
.4
0

3
4
6
.4
0

3
4
6
.4
0

0
.0
1

3
4
6
.4
0

3
4
6
.4
0

2
.4
8

3
4
6
.4
0

3
4
6
.4
0

2
.2
5

3
4
6
.4
0

3
4
6
.4
0

0
.0
3

6
-2

5
5
4
.0
0

5
5
4
.0
0

5
5
4
.0
0

0
.0
1

5
5
4
.0
0

5
5
4
.0
0

1
.4
1

5
5
4
.0
0

5
5
4
.0
0

2
.0
9

5
5
4
.0
0

5
5
4
.0
0

0
.0
2

6
-3

4
2
8
.7
0

4
2
8
.7
0

4
2
8
.7
0

0
.0
1

4
2
8
.7
0

4
2
8
.7
0

1
.7
5

4
2
8
.7
0

4
2
8
.7
0

1
.1
6

4
2
8
.7
0

4
2
8
.7
0

0
.0
3

8
-1

3
0
9
.2
1

3
0
9
.2
1

3
0
9
.2
1

0
.9
1

3
0
9
.2
1

3
0
9
.2
1

2
.2
5

3
0
9
.2
1

3
0
9
.2
1

2
.0
2

3
1
8
.0
1

3
1
7
.3
8

0
.7
4

8
-2

3
5
3
.8
5

3
5
3
.8
5

3
5
3
.6
9

0
.1
1

3
5
3
.8
5

3
5
3
.8
5

2
.9
7

3
5
3
.8
5

3
5
3
.8
5

2
.0
9

3
7
4
.3
0

3
7
4
.3
0

0
.1
3

8
-3

5
4
1
.5
7

5
4
1
.5
7

5
4
1
.5
7

0
.0
3

5
4
1
.5
7

5
4
1
.5
7

2
.8
5

5
4
1
.5
7

5
4
1
.5
7

2
.2
5

5
5
6
.5
7

5
5
6
.5
7

0
.5
0

1
5
-1

9
1
.5
4

9
1
.5
4

9
1
.5
4

0
.3
2

9
1
.5
4

9
1
.5
4

1
.6
0

9
1
.5
4

9
1
.5
4

2
.2
2

9
1
.5
4

9
1
.5
4

0
.0
3

1
5
-2

3
0
6
.3
8

3
0
6
.3
8

3
0
6
.3
8

0
.0
2

3
0
6
.3
8

3
0
6
.3
8

2
.8
5

3
0
6
.3
8

3
0
6
.3
8

2
.1
3

3
0
6
.3
8

3
0
6
.3
8

0
.0
3

1
5
-3

7
5
.6
2

7
5
.6
2

7
5
.4
5

0
.3
7

7
5
.6
2

7
5
.6
2

2
.7
7

7
5
.6
2

7
5
.6
2

1
.3
8

7
5
.6
2

7
5
.6
2

0
.0
3

1
8
-1

5
3
8
7
.7
0

5
3
8
7
.7
0

5
3
8
7
.7
0

0
.0
1

5
3
8
7
.7
0

5
3
8
7
.7
0

2
.1
1

5
3
8
7
.7
0

5
3
8
7
.7
0

2
.0
3

5
3
8
7
.7
0

5
3
8
7
.7
0

0
.0
4

1
8
-2

8
5
5
1
.0
8

8
5
5
1
.0
8

8
5
5
1
.0
8

0
.0
0

8
5
5
1
.0
8

8
5
5
1
.0
8

3
.0
3

8
5
5
1
.0
8

8
5
5
1
.0
8

1
.2
9

8
5
5
1
.0
8

8
5
4
8
.0
1

0
.1
1

1
8
-3

7
7
6
0
.5
1

7
7
6
0
.5
1

7
7
6
0
.5
1

0
.0
0

7
7
6
0
.5
1

7
7
6
0
.5
1

1
.4
3

7
7
6
0
.5
1

7
7
6
0
.5
1

1
.0
5

7
7
6
0
.5
1

7
7
6
0
.5
1

0
.0
5

2
0
-1

1
5
9
9
.8
5

1
5
9
9
.8
5

1
5
9
9
.8
5

0
.0
1

1
5
9
9
.8
5

1
5
9
9
.8
5

1
.9
9

1
5
9
9
.8
5

1
5
9
9
.8
5

1
.0
2

1
5
9
9
.8
5

1
5
9
9
.8
5

0
.0
4

2
0
-2

9
2
5
.5
9

9
2
5
.5
9

9
2
5
.5
9

0
.0
1

9
2
5
.5
9

9
2
5
.5
9

2
.8
1

9
2
5
.5
9

9
2
5
.5
9

1
.5
5

9
2
5
.5
9

9
2
5
.5
9

0
.0
4

2
0
-3

9
3
1
.3
3

9
3
1
.3
3

9
3
1
.3
3

0
.0
1

9
3
1
.3
3

9
3
1
.3
3

2
.8
3

9
3
1
.3
3

9
3
1
.3
3

1
.4
2

9
3
1
.3
3

9
3
1
.3
3

0
.0
6

2
2
-1

1
9
2
3
.6
1

1
9
0
4
.8
6

1
9
0
4
.8
6

0
.0
2

1
9
2
3
.6
1

1
9
1
1
.1
1

3
.3
0

1
9
2
3
.6
1

1
9
2
3
.6
1

2
.0
3

1
9
2
3
.6
1

1
9
2
3
.6
1

0
.0
3

2
2
-2

1
3
1
4
.0
9

1
3
1
4
.0
9

1
3
1
4
.0
9

0
.0
1

1
3
1
4
.0
9

1
3
1
4
.0
9

1
.3
3

1
3
1
4
.0
9

1
3
1
4
.0
9

2
.1
5

1
3
1
4
.0
9

1
3
1
4
.0
9

0
.0
4

2
2
-3

1
7
9
9
.0
9

1
7
9
9
.0
9

1
7
9
9
.0
9

0
.0
2

1
7
9
9
.0
9

1
7
9
9
.0
9

2
.0
4

1
7
9
9
.0
9

1
7
9
9
.0
9

1
.1
3

1
7
9
9
.0
9

1
7
9
9
.0
9

0
.0
3

2
3
-1

4
7
1
.0
0

4
7
1
.0
0

4
7
1
.0
0

0
.0
2

4
7
1
.0
0

4
7
1
.0
0

2
.5
3

4
7
1
.0
0

4
7
1
.0
0

2
.0
5

5
0
3
.0
0

4
9
6
.0
8

1
.4
7

2
3
-2

9
5
9
.7
0

9
5
9
.7
0

9
5
9
.7
0

0
.0
6

9
5
9
.7
0

9
5
9
.7
0

1
.0
2

9
5
9
.7
0

9
5
9
.7
0

2
.9
9

9
8
9
.7
0

9
8
3
.4
3

2
.4
1

2
3
-3

1
2
4
1
.0
0

1
2
4
1
.0
0

1
2
4
1
.0
0

0
.3
2

1
2
4
1
.0
0

1
2
4
1
.0
0

1
.2
0

1
2
4
1
.0
0

1
2
4
1
.0
0

2
.8
1

1
2
4
1
.0
0

1
2
3
1
.6
6

3
.2
2

2
5
-1

2
1
1
8
.3
3

2
1
1
8
.3
3

2
1
1
8
.3
3

1
.5
2

2
1
1
8
.3
3

2
1
1
8
.3
3

1
.3
4

2
1
1
8
.3
3

2
1
1
8
.3
3

1
.0
5

2
1
1
8
.3
3

2
1
1
8
.3
3

0
.0
9

2
5
-2

4
2
6
2
.6
4

4
2
6
2
.6
4

4
1
9
5
.0
5

1
.6
6

4
2
6
2
.6
4

4
1
9
3
.0
1

1
.1
2

4
2
6
2
.6
4

4
2
6
2
.6
4

0
.9
8

4
2
6
2
.6
4

4
2
6
2
.6
4

0
.0
7

2
5
-3

2
9
6
2
.0
6

2
9
6
2
.0
6

2
9
6
2
.0
6

1
.0
3

2
9
6
2
.0
6

2
9
6
2
.0
6

1
.0
2

2
9
6
2
.0
6

2
9
6
2
.0
6

1
.2
5

2
9
6
2
.0
6

2
9
6
2
.0
6

0
.0
4

32

T
a
b

le
14

.
C

om
p

ar
at

iv
e

re
su

lt
s

b
et

w
ee

n
H

E
S

A
an

d
th

re
e

st
at

e-
of

-t
h

e-
ar

t
al

go
ri

th
m

s
(M

A
[7

],
M

S
-I

L
S

[2
]

an
d

M
V

N
S

[1
])

on
th

e
48

sm
a
ll

-s
iz

ed
in

st
an

ce
s

of
S

et
I

(p
ar

t
2
).

M
A

M
S
-I
L
S

M
V
N
S

H
E
S
A

In
s.

f
b
k

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

2
6
-1

1
7
4
7
.6
0

1
7
4
7
.6
0

1
7
4
7
.6
0

0
.0
1

1
7
4
7
.6
0

1
7
4
7
.6
0

2
.6
6

1
7
4
7
.6
0

1
7
4
7
.6
0

0
.9
3

1
7
4
7
.6
0

1
7
4
7
.6
0

0
.0
4

2
6
-2

2
4
3
3
.6
0

2
4
3
3
.6
0

2
4
3
3
.6
0

0
.0
1

2
4
3
3
.6
0

2
4
3
3
.6
0

1
.2
0

2
4
3
3
.6
0

2
4
3
3
.6
0

1
.1
7

2
4
3
3
.6
0

2
4
3
3
.6
0

0
.0
6

2
6
-3

2
2
9
3
.2
0

2
2
9
3
.2
0

2
2
9
3
.2
0

0
.0
1

2
2
9
3
.2
0

2
2
9
3
.2
0

1
.3
2

2
2
9
3
.2
0

2
2
9
3
.2
0

2
.0
7

2
2
9
3
.2
0

2
2
9
3
.2
0

0
.0
4

2
7
-1

2
2
4
7
.9
5

2
2
4
7
.9
5

2
2
4
7
.9
5

0
.0
1

2
2
4
7
.9
5

2
2
4
7
.9
5

2
.7
6

2
2
4
7
.9
5

2
2
4
7
.9
5

1
.9
9

2
2
4
7
.9
5

2
2
4
7
.9
5

0
.0
2

2
7
-2

1
9
6
6
.5
2

1
9
6
6
.5
2

1
9
6
6
.5
2

0
.0
1

1
9
6
6
.5
2

1
9
6
6
.5
2

1
.0
5

1
9
6
6
.5
2

1
9
6
6
.5
2

2
.1
4

1
9
6
6
.5
2

1
9
6
6
.5
2

0
.0
3

2
7
-3

1
3
8
3
.4
9

1
3
8
3
.4
9

1
3
8
3
.4
9

0
.0
1

1
3
8
3
.4
9

1
3
8
3
.4
9

1
.0
9

1
3
8
3
.4
9

1
3
8
3
.4
9

1
.8
6

1
3
8
3
.4
9

1
3
8
3
.4
9

0
.0
4

2
8
-1

9
7
8
.8
0

9
7
8
.8
0

9
7
8
.0
7

0
.1
2

9
7
8
.8
0

9
7
8
.8
0

2
.6
7

9
7
8
.8
0

9
7
8
.8
0

1
.2
3

9
7
8
.8
0

9
7
8
.8
0

0
.0
4

2
8
-2

4
0
3
6
.0
0

4
0
3
6
.0
0

4
0
3
5
.6
2

0
.0
4

4
0
3
6
.0
0

4
0
3
6
.0
0

1
.1
2

4
0
3
6
.0
0

4
0
3
6
.0
0

1
.1
1

4
0
3
6
.0
0

4
0
3
6
.0
0

0
.0
3

2
8
-3

2
6
3
4
.0
0

2
6
3
4
.0
0

2
6
3
4
.0
0

0
.0
1

2
6
3
4
.0
0

2
6
3
4
.0
0

1
.1
4

2
6
3
4
.0
0

2
6
3
4
.0
0

1
.1
9

2
6
3
4
.0
0

2
6
3
4
.0
0

0
.0
3

2
9
-1

1
9
3
5
.8
0

1
5
6
7
.6
0

1
5
2
0
.3
3

0
.1
9

1
9
3
5
.8
0

1
9
3
5
.8
0

2
.4
6

1
9
3
5
.8
0

1
9
3
5
.8
0

2
.0
1

1
9
3
5
.8
0

1
9
3
5
.8
0

0
.0
3

2
9
-2

2
8
2
0
.0
0

2
7
8
2
.0
0

2
7
8
2
.0
0

0
.1
0

2
8
2
0
.0
0

2
8
2
0
.0
0

1
.0
8

2
8
2
0
.0
0

2
8
2
0
.0
0

1
.6
4

2
8
2
0
.0
0

2
8
2
0
.0
0

0
.0
5

2
9
-3

3
2
8
5
.6
0

3
2
8
5
.6
0

3
2
8
5
.6
0

0
.0
5

3
2
8
5
.6
0

3
2
8
5
.6
0

1
.0
3

3
2
8
5
.6
0

3
2
8
5
.6
0

1
.4
5

3
2
8
5
.6
0

3
2
8
5
.6
0

0
.0
4

3
0
-1

7
2
1
.3
9

7
2
1
.3
9

7
1
7
.2
7

0
.4
0

7
2
1
.3
9

7
1
9
.5
8

2
.4
7

7
2
1
.3
9

7
2
1
.3
9

2
.0
1

7
2
1
.3
9

7
2
1
.3
9

0
.0
5

3
0
-2

6
1
2
.5
9

6
1
2
.5
9

6
1
2
.5
9

0
.0
3

6
1
2
.5
9

6
1
2
.5
9

1
.0
2

6
1
2
.5
9

6
1
2
.5
9

1
.8
9

6
1
2
.5
9

6
1
2
.5
9

0
.0
6

3
0
-3

1
0
3
2
.3
5

1
0
3
2
.3
5

1
0
3
2
.3
5

0
.0
4

1
0
3
2
.3
5

1
0
3
1
.9
4

1
.8
8

1
0
3
2
.3
5

1
0
3
2
.3
5

1
.5
5

1
0
3
2
.3
5

1
0
3
2
.3
5

0
.1
0

3
1
-1

4
9
1
.9
0

4
9
1
.9
0

4
9
1
.9
0

1
.5
2

4
9
1
.9
0

4
9
1
.9
0

1
.9
8

4
9
1
.9
0

4
9
1
.9
0

3
.1
1

5
0
7
.9
0

5
0
7
.9
0

0
.5
7

3
1
-2

6
4
0
.0
0

6
4
0
.0
0

6
4
0
.0
0

0
.4
9

6
4
0
.0
0

6
4
0
.0
0

1
.2
1

6
4
0
.0
0

6
4
0
.0
0

2
.0
5

6
6
6
.0
0

6
6
5
.2
0

0
.9
7

3
1
-3

5
2
6
.1
0

5
2
6
.1
0

5
2
6
.1
0

5
.3
7

5
2
6
.1
0

5
2
6
.1
0

1
.1
6

5
2
6
.1
0

5
2
6
.1
0

2
.0
4

5
3
8
.4
0

5
3
8
.4
0

0
.4
1

3
2
-1

1
1
4
2
5
.2
0

1
1
4
2
5
.2
0

1
1
2
7
1
.9
0

0
.0
2

1
1
4
2
5
.2
0

1
1
2
8
3
.2
1

2
.6
1

1
1
4
2
5
.2
0

1
1
3
9
3
.7
5

2
.5
3

1
1
4
2
5
.2
0

1
1
4
2
5
.2
0

0
.0
5

3
2
-2

1
5
9
1
4
.2
0

1
5
9
1
4
.2
0

1
5
9
1
4
.2
0

0
.0
0

1
5
9
1
4
.2
0

1
5
9
1
4
.2
0

1
.0
3

1
5
9
1
4
.2
0

1
5
9
1
4
.2
0

1
.1
3

1
5
9
1
4
.2
0

1
5
9
1
4
.2
0

0
.0
4

3
2
-3

1
9
2
7
3
.5
0

1
9
2
7
3
.5
0

1
9
2
7
3
.5
0

0
.0
0

1
9
2
7
3
.5
0

1
9
2
7
3
.5
0

1
.0
9

1
9
2
7
3
.5
0

1
9
2
7
3
.5
0

1
.2
5

1
9
2
7
3
.5
0

1
9
2
7
3
.5
0

0
.0
4

#
B
es
t

3
5

2
8

3
9

3
3

3
9

3
8

4
8

4
6

#
Im

p
ro
v
e

0
0

0
9

#
M
a
tc
h

4
4

4
8

4
8

3
9

33

T
a
b

le
15

.
C

om
p

ar
at

iv
e

re
su

lt
s

b
et

w
ee

n
H

E
S

A
an

d
th

re
e

st
at

e-
of

-t
h

e-
ar

t
al

go
ri

th
m

s
(M

A
[7

],
M

S
-I

L
S

[2
]

an
d

M
V

N
S

[1
])

on
th

e
48

la
rg

e-
si

ze
d

in
st

a
n

ce
s

o
f

S
et

II
(p

ar
t

1
).

M
A

M
S
-I
L
S

M
V
N
S

H
E
S
A

In
s.

f
b
k

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

1
-1

5
1
0
7
.8
0

5
0
9
3
.0
6

5
0
7
4
.5
0

7
4
1
9
.1
6

5
1
0
0
.5
4

5
0
1
6
.8
2

3
7
9
3
.4
2

5
1
0
7
.8
0

5
1
0
2
.1
7

2
2
5
.2
3

5
1
6
9
.5
9

5
1
4
2
.5
5

6
5
6
.6
4

1
-2

4
8
8
9
.5
8

4
8
4
8
.5
8

4
8
3
0
.2
0

8
1
0
1
.9
1

4
8
5
8
.8
4

4
7
8
4
.0
7

4
4
9
3
.5
7

4
8
8
9
.5
8

4
8
8
9
.5
8

2
9
5
.0
9

4
9
0
9
.0
3

4
8
8
4
.4
9

6
0
5
.4
4

1
-3

5
9
0
2
.8
6

5
8
9
6
.0
1

5
8
7
6
.0
5

6
8
2
3
.4
1

5
9
0
2
.8
6

5
8
2
3
.7
3

4
7
1
0
.7
9

5
9
0
2
.8
6

5
8
9
8
.2
3

2
5
9
.0
1

5
9
4
0
.1
4

5
9
2
0
.0
0

6
4
6
.4
5

2
-1

2
6
0
8
.1
2

2
6
0
7
.8
4

2
6
0
1
.3
1

3
5
3
0
.1
3

2
6
0
8
.1
2

2
5
5
7
.2
2

5
1
7
5
.5
0

2
6
0
8
.1
2

2
6
0
1
.2
0

4
4
3
.0
4

2
6
0
8
.6
1

2
6
0
1
.4
2

2
1
7
.9
2

2
-2

2
2
8
5
.3
2

2
2
8
5
.3
2

2
2
8
1
.6
3

3
5
7
0
.4
8

2
2
5
7
.8
8

2
2
4
9
.6
2

3
9
2
5
.3
0

2
2
8
5
.3
2

2
2
8
5
.3
2

5
2
5
.1
1

2
2
8
2
.1
6

2
2
7
6
.1
4

2
1
6
.3
5

2
-3

2
5
8
0
.6
2

2
5
7
8
.1
4

2
5
7
3
.4
0

2
9
4
6
.7
5

2
5
8
0
.6
2

2
5
7
4
.9
6

3
4
6
4
.2
3

2
5
8
0
.6
2

2
5
7
7
.0
8

3
9
0
.0
3

2
5
7
9
.4
5

2
5
7
3
.3
1

2
2
3
.0
7

3
-1

3
2
2
1
6
.2
0

3
2
1
8
9
.1
0

3
2
1
4
7
.3
0

2
6
9
3
.5
7

3
2
2
1
0
.8
0

3
2
1
6
3
.7
4

1
7
3
4
.3
7

3
2
2
1
6
.2
0

3
2
2
1
0
.3
2

3
0
7
.9
8

3
5
3
2
0
.3
0

3
5
2
2
2
.6
1

3
9
5
.2
7

3
-2

4
0
3
5
4
.9
0

4
0
3
0
2
.4
0

4
0
1
6
9
.7
0

1
4
3
7
.1
5

4
0
3
5
4
.9
0

4
0
2
3
9
.6
3

2
3
9
9
.4
7

4
0
3
5
4
.9
0

4
0
3
5
4
.9
0

5
2
3
.0
2

4
3
3
0
6
.6
0

4
3
2
7
6
.3
1

3
4
0
.2
7

3
-3

3
2
7
7
2
.4
0

3
2
7
6
6
.7
0

3
2
7
4
9
.4
0

3
4
1
4
.0
5

3
2
7
6
8
.2
0

3
2
7
0
4
.8
5

4
2
2
0
.0
1

3
2
7
7
2
.4
0

3
2
7
7
2
.4
0

3
0
9
.1
5

3
5
9
9
0
.9
0

3
5
9
0
0
.8
5

3
7
9
.3
5

4
-1

9
0
4
8
.4
0

9
0
4
5
.8
0

9
0
2
7
.8
6

4
3
2
3
.7
0

9
0
4
8
.4
0

9
0
2
9
.0
1

2
7
2
0
.3
7

9
0
4
8
.4
0

9
0
4
8
.4
0

2
2
3
.0
6

9
0
7
4
.7
0

9
0
6
6
.5
9

5
2
0
.7
5

4
-2

8
4
6
8
.5
0

8
4
6
5
.0
0

8
4
4
8
.0
0

4
8
7
1
.1
0

8
4
6
8
.5
0

8
4
2
5
.5
8

2
2
0
7
.6
1

8
4
6
8
.5
0

8
4
5
9
.3
6

2
5
5
.0
3

8
4
6
7
.6
0

8
4
6
5
.7
7

4
4
0
.3
0

4
-3

8
4
9
7
.2
0

8
4
9
1
.3
0

8
4
7
5
.1
0

4
4
6
7
.0
5

8
4
9
4
.2
0

8
4
5
0
.9
3

2
0
5
8
.6
8

8
4
9
7
.2
0

8
4
9
0
.2
3

1
8
9
.4
5

8
5
0
4
.2
0

8
4
9
2
.1
5

4
9
5
.7
7

7
-1

6
8
1
6
5
.5
0

6
8
1
2
9
.0
0

6
8
0
2
9
.4
0

3
3
1
4
.5
9

6
8
1
6
5
.5
0

6
8
0
6
0
.7
7

1
6
6
9
.4
1

6
8
1
6
5
.5
0

6
8
1
6
0
.8
1

3
0
1
.0
9

6
8
1
6
5
.5
0

6
8
1
6
1
.3
2

1
6
3
.4
6

7
-2

6
5
6
4
3
.5
0

6
5
6
1
6
.8
0

6
5
5
4
6
.2
0

2
5
4
2
.8
4

6
5
6
4
3
.5
0

6
5
5
5
9
.2
6

1
9
4
3
.8
3

6
5
6
4
3
.5
0

6
5
6
4
3
.5
0

2
0
8
.0
1

6
5
6
4
3
.5
0

6
5
6
4
3
.5
0

1
7
8
.7
8

7
-3

6
9
4
4
0
.9
0

6
9
3
9
7
.6
0

6
9
2
7
9
.3
0

3
1
0
4
.2
0

6
9
4
4
0
.9
0

6
9
2
9
5
.3
9

2
3
0
4
.8
4

6
9
4
4
0
.9
0

6
9
4
4
0
.9
0

2
0
5
.2
1

6
9
4
8
2
.1
0

6
9
4
2
3
.9
2

1
7
9
.4
3

9
-1

9
2
5
6
.4
7

9
2
5
2
.4
7

9
2
4
2
.6
0

1
4
8
5
.9
6

9
2
5
6
.4
7

9
2
4
5
.7
4

3
2
6
2
.6
2

9
2
5
6
.4
7

9
2
5
6
.4
7

5
5
8
.8
2

9
2
5
6
.4
7

9
2
5
5
.0
0

1
1
5
.1
5

9
-2

1
3
0
1
3
.2
0

1
3
0
0
7
.3
0

1
2
9
8
8
.9
0

3
1
2
0
.5
3

1
3
0
0
9
.0
8

1
2
9
4
3
.8
5

3
2
1
5
.7
1

1
3
0
1
3
.2
0

1
3
0
1
3
.2
0

3
9
8
.8
6

1
3
0
5
3
.6
1

1
3
0
1
8
.2
6

3
0
5
.4
8

9
-3

1
6
3
8
5
.9
7

1
6
3
7
2
.0
0

1
6
3
5
9
.2
0

2
8
2
2
.2
4

1
6
3
8
5
.9
7

1
6
3
6
4
.2
9

3
5
4
7
.4
3

1
6
3
8
5
.9
7

1
6
3
8
5
.9
7

4
8
0
.2
0

1
6
3
9
8
.1
9

1
6
3
9
7
.0
5

3
3
2
.0
0

1
0
-1

1
3
2
1
4
.6
6

1
3
1
9
6
.3
0

1
3
1
2
5
.8
0

3
7
6
1
.9
0

1
3
2
1
4
.6
6

1
1
1
4
7
.2
4

5
0
7
8
.3
4

1
3
2
1
4
.6
6

1
3
2
1
4
.6
6

5
0
8
.1
1

1
3
2
0
8
.8
8

1
3
2
0
5
.0
6

1
4
5
.9
6

1
0
-2

1
3
0
1
5
.0
8

1
3
0
0
3
.3
0

1
2
7
7
9
.2
0

3
7
9
6
.6
1

1
3
0
1
5
.0
8

1
1
2
0
9
.8
8

5
4
8
2
.6
6

1
3
0
1
5
.0
8

1
3
0
1
5
.0
8

5
1
4
.2
0

1
3
0
6
6
.2
0

1
3
0
6
6
.2
0

1
7
1
.4
0

1
0
-3

1
3
0
6
8
.4
7

1
3
0
5
7
.0
0

1
3
0
0
8
.6
0

4
1
1
4
.5
8

1
3
0
6
8
.4
7

1
1
6
7
2
.0
9

4
0
4
6
.2
3

1
3
0
6
8
.4
7

1
3
0
6
8
.4
7

3
9
7
.0
3

1
3
0
7
9
.4
7

1
3
0
7
9
.2
5

1
6
3
.0
2

1
1
-1

7
1
2
1
.9
0

7
1
1
6
.5
0

7
1
0
3
.5
5

7
1
1
.6
3

7
1
2
1
.9
0

7
1
0
8
.1
7

2
5
3
6
.7
4

7
1
2
1
.9
0

7
1
2
1
.9
0

3
0
6
.0
5

9
1
8
9
.3
0

9
1
4
8
.0
6

5
1
7
.4
2

1
1
-2

6
7
7
4
.7
0

6
7
7
1
.5
0

6
7
5
8
.1
9

5
3
7
.4
4

6
7
7
4
.7
0

6
7
6
0
.1
5

2
5
4
6
.2
0

6
7
7
4
.7
0

6
7
7
4
.7
0

4
1
4
.8
9

1
1
4
9
6
.7
0

1
1
4
4
1
.5
8

5
7
8
.7
7

1
1
-3

7
7
4
7
.1
0

7
7
4
5
.1
0

7
7
2
6
.9
6

9
1
1
.5
3

7
7
4
7
.1
0

7
7
0
5
.3
6

2
9
5
2
.5
8

7
7
4
7
.1
0

7
7
4
7
.1
0

2
6
2
.4
0

1
1
4
4
6
.4
0

1
1
3
8
4
.6
1

5
9
1
.7
0

1
2
-1

5
9
5
9
2
.0
0

5
9
2
3
4
.1
0

5
9
1
3
7
.7
0

6
1
4
0
.0
9

5
9
5
9
2
.0
0

5
9
3
8
1
.4
2

4
6
6
5
.9
1

5
9
5
9
2
.0
0

5
9
5
9
2
.0
0

3
0
1
.1
7

5
9
6
3
1
.0
0

5
9
5
2
2
.5
9

4
6
0
.9
6

1
2
-2

6
1
7
3
7
.4
0

6
1
4
8
9
.7
0

6
1
1
8
1
.7
0

4
8
0
0
.1
7

6
1
7
2
5
.2
0

6
1
4
4
9
.7
0

4
1
6
3
.0
9

6
1
7
3
7
.4
0

6
1
7
3
0
.0
8

3
6
0
.2
3

6
2
1
5
4
.1
0

6
1
6
9
5
.4
7

4
3
7
.6
3

1
2
-3

6
1
1
6
5
.7
0

6
0
8
9
9
.3
0

6
0
7
4
9
.7
0

5
1
5
6
.6
6

6
1
1
6
5
.7
0

6
0
9
8
8
.8
9

4
5
4
1
.5
9

6
1
1
6
5
.7
0

6
1
1
6
5
.7
0

4
8
9
.2
0

6
1
3
7
9
.7
0

6
1
2
5
0
.1
7

3
6
6
.8
6

34

T
a
b

le
15

.
C

om
p

ar
at

iv
e

re
su

lt
s

b
et

w
ee

n
H

E
S

A
an

d
th

re
e

st
at

e-
of

-t
h

e-
ar

t
al

go
ri

th
m

s
(M

A
[7

],
M

S
-I

L
S

[2
]

an
d

M
V

N
S

[1
])

on
th

e
48

la
rg

e-
si

ze
d

in
st

a
n

ce
s

o
f

S
et

II
(p

ar
t

2
).

M
A

M
S
-I
L
S

M
V
N
S

H
E
S
A

In
s.

f
b
k

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

f
b
e
s
t

f
a
v
g

t a
v
g

1
3
-1

4
2
1
0
.1
0

4
2
1
0
.1
0

4
1
9
4
.5
9

1
9
0
1
.7
1

4
1
9
6
.2
0

4
1
3
2
.3
1

1
1
7
6
.3
2

4
2
0
7
.2
0

4
1
9
8
.1
7

1
9
0
.1
3

4
2
1
2
.1
0

4
2
1
2
.0
3

2
4
1
.4
3

1
3
-2

4
1
3
9
.9
0

4
1
3
9
.9
0

4
1
3
6
.0
1

1
3
1
8
.5
1

4
1
1
9
.6
0

4
0
8
6
.2
6

1
1
8
1
.0
3

4
1
3
9
.9
0

4
1
3
9
.9
0

2
0
1
.2
5

4
1
4
5
.6
0

4
1
2
6
.5
1

2
6
5
.2
5

1
3
-3

4
7
4
5
.1
0

4
7
3
4
.9
0

4
7
1
7
.2
7

2
1
2
3
.2
2

4
7
2
2
.1
0

4
6
6
6
.3
2

1
1
6
0
.9
6

4
7
4
5
.1
0

4
7
4
2
.8
5

1
8
6
.1
7

4
7
2
2
.7
0

4
7
0
0
.9
9

1
7
7
.0
0

1
4
-1

2
6
8
6
8
.6
0

2
6
8
6
8
.6
0

2
6
8
6
8
.6
0

4
.6
1

2
6
8
6
8
.6
0

2
6
8
6
8
.6
0

1
4
1
6
.3
4

2
6
8
6
8
.6
0

2
6
8
6
8
.6
0

2
1
3
.0
7

2
6
9
2
0
.1
5

2
6
9
2
0
.1
5

9
.5
3

1
4
-2

2
5
9
7
6
.2
0

2
5
9
2
9
.6
0

2
5
7
2
0
.0
0

3
0
4
.6
6

2
5
8
8
5
.6
7

2
5
7
4
3
.6
1

1
2
9
0
.0
7

2
5
9
7
6
.2
0

2
5
9
7
2
.2
7

2
8
7
.0
6

2
5
9
8
0
.1
4

2
5
9
7
9
.7
2

5
8
.9
1

1
4
-3

3
1
4
4
8
.2
0

3
1
4
4
8
.2
0

3
1
4
4
8
.2
0

3
0
1
.2
1

3
1
4
4
8
.2
0

3
1
4
4
4
.5
5

1
3
5
3
.2
5

3
1
4
4
8
.2
0

3
1
4
4
8
.2
0

2
6
6
.5
2

3
1
5
3
6
.0
6

3
1
5
3
5
.8
3

4
0
.4
2

1
6
-1

1
4
1
6
6
.8
0

1
4
1
2
9
.1
0

1
4
0
6
0
.9
0

1
9
3
2
.4
2

1
4
1
6
6
.8
0

1
4
0
8
6
.3
4

1
0
1
1
.3
2

1
4
1
6
6
.8
0

1
4
1
6
6
.8
0

1
9
8
.0
3

1
4
2
0
7
.3
0

1
4
0
6
5
.2
1

4
2
9
.4
3

1
6
-2

1
6
6
1
2
.4
0

1
6
6
1
1
.9
0

1
6
5
7
7
.6
0

1
6
3
4
.6
5

1
6
6
1
2
.4
0

1
6
5
8
2
.0
7

8
1
1
.8
2

1
6
6
1
2
.4
0

1
6
6
1
2
.4
0

1
8
3
.0
6

1
6
6
4
3
.9
0

1
6
6
2
6
.7
8

3
3
7
.7
7

1
6
-3

1
4
2
5
1
.0
0

1
4
2
4
0
.8
0

1
4
2
1
0
.1
0

2
3
9
1
.5
8

1
4
2
5
1
.0
0

1
4
2
3
0
.6
4

9
4
0
.7
1

1
4
2
5
1
.0
0

1
4
2
5
1
.0
0

1
9
2
.7
1

1
4
1
8
7
.8
0

1
4
1
0
8
.8
8

3
6
0
.8
0

1
7
-1

4
1
5
7
.2
0

4
1
5
7
.2
0

4
1
4
7
.0
9

1
2
2
1
.6
9

4
1
5
7
.2
0

4
1
4
9
.1
2

3
2
4
2
.9
4

4
1
5
7
.2
0

4
1
5
7
.2
0

1
9
8
.6
5

4
1
5
7
.2
0

4
1
5
7
.2
0

6
8
.1
5

1
7
-2

3
9
1
1
.0
0

3
9
0
1
.3
0

3
8
9
1
.4
8

1
5
0
0
.7
3

3
8
9
2
.0
0

3
8
8
1
.1
0

3
0
0
9
.3
0

3
9
1
1
.0
0

3
9
1
1
.0
0

1
0
3
.3
3

3
9
0
1
.3
0

3
8
9
9
.3
7

9
2
.0
1

1
7
-3

3
7
6
7
.7
0

3
7
6
7
.7
0

3
7
6
7
.6
7

1
4
4
4
.6
5

3
7
5
6
.8
0

3
7
4
4
.6
8

3
4
6
0
.1
6

3
7
6
7
.7
0

3
7
6
7
.7
0

1
9
6
.1
3

3
7
6
7
.7
0

3
7
6
7
.7
0

9
4
.3
2

1
9
-1

6
8
7
3
.0
7

6
8
6
9
.8
0

6
8
6
6
.3
3

8
4
3
.0
8

6
8
7
3
.0
7

6
8
5
3
.0
2

1
6
4
1
.7
9

6
8
7
3
.0
7

6
8
6
5
.8
6

1
5
3
.6
9

6
8
7
7
.7
4

6
8
7
5
.3
1

1
7
3
.0
6

1
9
-2

8
0
4
2
.7
9

8
0
2
8
.5
4

7
8
3
1
.8
5

1
8
4
7
.3
8

8
0
4
2
.7
9

7
8
8
8
.1
3

2
1
3
7
.2
1

8
0
4
2
.7
9

8
0
4
2
.7
9

2
0
1
.0
6

8
0
4
3
.4
7

8
0
3
3
.4
4

1
5
7
.8
9

1
9
-3

8
1
5
5
.0
5

8
1
5
5
.0
5

8
1
5
4
.8
7

1
4
1
0
.0
2

8
1
4
2
.8
4

8
1
3
1
.6
2

1
7
2
4
.0
9

8
1
5
5
.0
5

8
1
5
5
.0
5

1
1
3
.2
0

8
1
5
5
.0
5

8
1
5
5
.0
5

1
9
4
.5
6

2
1
-1

2
2
2
3
0
.2
3

2
2
2
2
1
.9
0

2
2
1
8
7
.0
0

7
5
7
0
.7
0

2
2
2
1
0
.2
3

2
2
1
2
1
.5
4

3
1
0
0
.5
6

2
2
2
3
0
.2
3

2
2
2
2
5
.0
7

1
6
7
.2
3

2
2
2
4
0
.4
0

2
2
2
2
5
.6
7

3
3
3
.7
2

2
1
-2

2
5
2
6
6
.5
0

2
5
2
5
4
.5
0

2
5
1
9
9
.7
0

5
5
4
4
.1
7

2
5
2
6
6
.5
0

2
5
1
6
5
.9
1

3
8
6
7
.1
8

2
5
2
6
6
.5
0

2
5
2
6
0
.0
6

2
0
0
.0
3

2
5
3
6
4
.9
3

2
5
3
0
9
.0
8

2
8
8
.5
6

2
1
-3

2
8
5
9
3
.4
0

2
4
5
7
4
.1
0

2
4
5
4
1
.2
0

8
9
8
4
.8
1

2
8
5
6
5
.6
3

2
7
8
4
7
.1
5

3
9
1
4
.0
1

2
8
5
9
3
.4
0

2
8
5
8
9
.1
7

1
8
8
.1
4

2
4
6
1
2
.3
6

2
4
5
8
9
.8
8

3
0
3
.0
4

2
4
-1

5
3
3
2
0
.5
0

5
2
6
5
2
.7
0

5
2
2
5
3
.3
0

9
1
.5
9

5
3
3
1
8
.7
6

5
3
1
7
3
.8
1

3
1
0
3
.3
3

5
3
3
2
0
.5
0

5
3
3
1
2
.3
5

2
0
3
.4
8

5
3
4
7
0
.2
0

5
3
3
5
0
.1
0

9
0
3
.0
0

2
4
-2

5
9
7
2
3
.2
0

5
7
7
7
1
.6
0

5
7
5
1
3
.4
0

2
8
6
8
.0
1

5
9
7
1
2
.0
9

5
9
1
6
9
.7
3

3
1
9
0
.8
2

5
9
7
2
3
.2
0

5
9
7
1
9
.3
2

2
0
3
.6
0

6
0
0
1
0
.8
6

5
9
8
1
2
.0
6

8
7
7
.9
3

2
4
-3

5
3
0
7
3
.7
2

5
2
6
4
2
.7
0

5
2
3
6
1
.6
0

7
7
.3
4

5
3
0
7
3
.7
2

5
2
9
2
9
.6
5

3
4
5
6
.2
6

5
3
0
7
3
.7
2

5
3
0
7
3
.7
2

2
9
0
.7
3

5
3
6
6
8
.1
2

5
3
4
3
3
.8
9

9
0
4
.9
1

#
B
es
t

4
0

8
0

1
4

1
9

4
0

3
3

#
Im

p
ro
v
e

0
0

0
3
4

#
M
a
tc
h

8
2
9

4
7

6

35

Table 16
Comparison results of HESA under a short time limit of 100 generations and a long
time limit of 500 generations on the 48 small-sized instances of Set I.

HESA (100 Gs) HESA (500 Gs)

Ins. fbk fbest favg tavg fbest favg tavg

5-1 2835.30 2835.30 2835.30 0.03 2835.30 2835.30 0.03

5-2 3304.80 3304.80 3304.80 0.06 3304.80 3304.80 0.06

5-3 1678.00 1756.30 1756.30 0.03 1756.30 1756.30 0.03

6-1 346.40 346.40 346.40 0.03 346.40 346.40 0.03

6-2 554.00 554.00 554.00 0.02 554.00 554.00 0.02

6-3 428.70 428.70 428.70 0.03 428.70 428.70 0.02

8-1 309.21 318.01 317.38 0.74 318.01 317.53 3.86

8-2 353.85 374.30 374.30 0.13 374.30 374.30 0.14

8-3 541.57 556.57 556.57 0.50 556.57 556.57 0.47

15-1 91.54 91.54 91.54 0.03 91.54 91.54 0.03

15-2 306.38 306.38 306.38 0.03 306.38 306.38 0.03

15-3 75.62 75.62 75.62 0.03 75.62 75.62 0.03

18-1 5387.70 5387.70 5387.70 0.04 5387.70 5387.70 0.04

18-2 8551.08 8551.08 8548.01 0.11 8551.08 8548.01 0.11

18-3 7760.51 7760.51 7760.51 0.05 7760.51 7760.51 0.06

20-1 1599.85 1599.85 1599.85 0.04 1599.85 1599.85 0.04

20-2 925.59 925.59 925.59 0.04 925.59 925.59 0.04

20-3 931.33 931.33 931.33 0.06 931.33 931.33 0.06

22-1 1923.61 1923.61 1923.61 0.03 1923.61 1923.61 0.03

22-2 1314.09 1314.09 1314.09 0.04 1314.09 1314.09 0.04

22-3 1799.09 1799.09 1799.09 0.03 1799.09 1799.09 0.03

23-1 471.00 503.00 496.08 1.47 503.00 496.68 3.69

23-2 959.70 989.70 983.43 2.41 989.70 989.30 11.62

23-3 1241.00 1241.00 1231.66 3.22 1241.00 1240.33 10.13

25-1 2118.33 2118.33 2118.33 0.09 2118.33 2118.33 0.08

25-2 4262.64 4262.64 4262.64 0.07 4262.64 4262.64 0.06

25-3 2962.06 2962.06 2962.06 0.04 2962.06 2962.06 0.04

26-1 1747.60 1747.60 1747.60 0.04 1747.60 1747.60 0.04

26-2 2433.60 2433.60 2433.60 0.06 2433.60 2433.60 0.06

26-3 2293.20 2293.20 2293.20 0.04 2293.20 2293.20 0.05

27-1 2247.95 2247.95 2247.95 0.02 2247.95 2247.95 0.03

27-2 1966.52 1966.52 1966.52 0.03 1966.52 1966.52 0.04

27-3 1383.49 1383.49 1383.49 0.04 1383.49 1383.49 0.04

28-1 978.80 978.80 978.80 0.04 978.80 978.80 0.04

28-2 4036.00 4036.00 4036.00 0.03 4036.00 4036.00 0.03

28-3 2634.00 2634.00 2634.00 0.03 2634.00 2634.00 0.03

29-1 1935.80 1935.80 1935.80 0.03 1935.80 1935.80 0.03

29-2 2820.00 2820.00 2820.00 0.05 2820.00 2820.00 0.04

29-3 3285.60 3285.60 3285.60 0.04 3285.60 3285.60 0.05

30-1 721.39 721.39 721.39 0.05 721.39 721.39 0.04

30-2 612.59 612.59 612.59 0.06 612.59 612.59 0.06

30-3 1032.35 1032.35 1032.35 0.10 1032.35 1032.35 0.09

31-1 491.90 507.90 507.90 0.57 507.90 507.90 0.55

31-2 640.00 666.00 665.20 0.97 666.00 665.87 2.80

31-3 526.10 538.40 538.40 0.41 538.40 538.40 0.39

32-1 11425.20 11425.20 11425.20 0.05 11425.20 11425.20 0.06

32-2 15914.20 15914.20 15914.20 0.04 15914.20 15914.20 0.04

32-3 19273.50 19273.50 19273.50 0.04 19273.50 19273.50 0.04

#Best 48 44 48 48

#Improve 9 9

#Match 39 39

36

Table 17
Comparison results of HESA under a short time limit of 100 generations and a long
time limit of 500 generations on the 48 large-sized instances of Set II.

HESA (100 Gs) HESA (500 Gs)

Ins. fbk fbest favg tavg fbest favg tavg

1-1 5107.80 5169.59 5142.55 656.64 5176.49 5156.50 1086.81

1-2 4889.58 4909.03 4884.49 605.44 4926.24 4900.18 1336.93

1-3 5902.86 5940.14 5920.00 646.45 5952.06 5935.80 1281.99

2-1 2608.12 2608.61 2601.42 217.92 2611.19 2602.09 538.31

2-2 2285.32 2282.16 2276.14 216.35 2293.89 2281.91 437.27

2-3 2580.62 2579.45 2573.31 223.07 2583.64 2574.91 339.97

3-1 32216.20 35320.30 35222.61 395.27 35320.30 35238.30 703.23

3-2 40354.90 43306.60 43276.31 340.27 43326.30 43282.06 579.85

3-3 32772.40 35990.90 35900.85 379.35 35996.80 35915.76 622.82

4-1 9048.40 9074.70 9066.59 520.75 9074.70 9068.58 613.76

4-2 8468.50 8467.60 8465.77 440.30 8467.60 8466.46 535.99

4-3 8497.20 8504.20 8492.15 495.77 8504.20 8492.15 535.83

7-1 68165.50 68165.50 68161.32 163.46 68165.50 68164.72 180.12

7-2 65643.50 65643.50 65643.50 178.78 65643.50 65643.50 212.81

7-3 69440.90 69482.10 69423.92 179.43 69482.10 69423.92 158.23

9-1 9256.47 9256.47 9255.00 115.15 9256.47 9255.00 107.28

9-2 13013.20 13053.61 13018.26 305.48 13053.61 13022.58 313.65

9-3 16385.97 16398.19 16397.05 332.00 16398.19 16397.05 322.61

10-1 13214.66 13208.88 13205.06 145.96 13208.88 13205.06 150.72

10-2 13015.08 13066.20 13066.20 171.40 13066.20 13066.20 156.45

10-3 13068.47 13079.47 13079.25 163.02 13079.47 13079.25 159.77

11-1 7121.90 9189.30 9148.06 517.42 9194.60 9162.40 899.51

11-2 6774.70 11496.70 11441.58 578.77 11501.40 11460.98 938.16

11-3 7747.10 11446.40 11384.61 591.70 11471.10 11404.83 1003.03

12-1 59592.00 59631.00 59522.59 460.96 59643.00 59547.94 870.19

12-2 61737.40 62154.10 61695.47 437.63 62190.20 61804.70 767.83

12-3 61165.70 61379.70 61250.17 366.86 61478.90 61262.68 752.29

13-1 4210.10 4212.10 4212.03 241.43 4212.10 4212.03 272.16

13-2 4139.90 4145.60 4126.51 265.25 4149.60 4129.82 562.04

13-3 4745.10 4722.70 4700.99 177.00 4722.70 4706.24 492.17

14-1 26868.60 26920.15 26920.15 9.53 26920.15 26920.15 9.41

14-2 25976.20 25980.14 25979.72 58.91 25980.14 25980.14 63.13

14-3 31448.20 31536.06 31535.83 40.42 31536.06 31536.06 47.03

16-1 14166.80 14207.30 14065.21 429.43 14207.30 14071.73 607.83

16-2 16612.40 16643.90 16626.78 337.77 16643.90 16629.38 715.08

16-3 14251.00 14187.80 14108.88 360.80 14272.90 14131.05 700.10

17-1 4157.20 4157.20 4157.20 68.15 4157.20 4157.20 65.98

17-2 3911.00 3901.30 3899.37 92.01 3901.30 3899.93 186.95

17-3 3767.70 3767.70 3767.70 94.32 3767.70 3767.70 102.76

19-1 6873.07 6877.74 6875.31 173.06 6877.74 6875.54 347.36

19-2 8042.79 8043.47 8033.44 157.89 8043.47 8034.03 202.88

19-3 8155.05 8155.05 8155.05 194.56 8155.05 8155.05 231.39

21-1 22230.23 22240.40 22225.67 333.72 22242.40 22225.80 471.63

21-2 25266.50 25364.93 25309.08 288.56 25391.93 25309.98 490.32

21-3 28593.40 24612.36 24589.88 303.04 24612.36 24589.88 370.47

24-1 53320.50 53470.20 53350.10 903.00 53832.25 53561.95 2575.78

24-2 59723.20 60010.86 59812.06 877.93 60234.98 60087.76 1923.42

24-3 53073.72 53668.12 53433.89 904.91 53797.22 53668.75 1995.95

#Best 27 14 48 48

#Improve 34 37

#Match 6 6

37

	Introduction
	Problem statement and mathematical formulation
	Hybrid evolutionary search algorithm for the GQMKP
	Main scheme
	Population initialization
	Knapsack-based crossover operator
	Adaptive feasible and infeasible tabu search

	Results of computational experiments
	Benchmark instances and experimental protocol
	Parameter tuning
	Comparative results with state-of-the-art algorithms
	Comparative results with a long time limit

	Analysis
	Effect of the knapsack-based crossover operator
	Advantage of searching both feasible and infeasible solutions

	Conclusions
	References

