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Abstract—We present frequent pattern based search (FPBS)
that combines data mining and optimization. FPBS is a general-
purpose method that unifies data mining and optimization within
the population-based search framework. The method emphasizes
the relevance of a modular and component-based approach,
making it applicable to optimization problems by instantiating
the underlying components. To illustrate its potential for solving
difficult combinatorial optimization problems, we apply the
method to the well-known and challenging quadratic assignment
problem. We show computational results and comparisons on the
hardest QAPLIB benchmark instances. This work reinforces the
recent trend towards closer cooperations between optimization
methods and machine learning or data mining techniques.

Index Terms—Pattern-based optimization,
optimization, heuristic design, combinatorial
quadratic assignment.
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I. INTRODUCTION

N RECENT years, the interplay of machine learning/data

science and optimization has received increasing attention
[81, [17], [21], [29], [30]. From the perspective of optimization,
machine learning and data mining have been used to calibrate
algorithm parameters [40], select heuristic algorithms [6], [20],
improve the quality of computed solutions [19], [43], and
ameliorate the search capacity [23], [39]. Specifically, data
mining involves discovering useful rules and hidden patterns
from data. By mining relevant information such as frequent
patterns from specific solutions encountered during the search
and exploring the mined information intelligently, search
algorithms can hopefully make their search decisions more
informed and thus improve their search performances. Indeed,
as shown by the review of Section II, several successful
examples have been reported in the literature that demonstrated
the usefulness of data mining for helping an optimization
method to better solve optimization problems.

The current work is concerned with a general-purpose
solution approach hybridizing data mining procedure and

This work was supported in part by the National Natural Science Foundation
of China under Grant 61903144, the Shanghai Sailing Program under Grant
19YF1412400, the Macao Young Scholars Program under Grant AM2020011,
the Key Project of Science and Technology Innovation 2030 supported by the
Ministry of Science and Technology of China under Grant 2018AAA0101302,
the Fundamental Research Funds for the Central Universities of China under
Grant 222201817006, and the Funding from Shenzhen Institute of Artificial
Intelligence and Robotics for Society. (Corresonding author: J.K. Hao)

Y. Zhou is with the Key Laboratory of Advanced Control and Optimization
for Chemical Processes, Ministry of Education and the School of Information
Science and Engineering, East China University of Science and Technology,
130 Meilong Road, 200237 Shanghai, China (e-mail: ymzhou@ecust.edu.cn).

J.K. Hao and B. Duval are with the Department of Computer Science,
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France,
JK. Hao is also affiliated with the Institut Universitaire de France, 1
rue Descartes, 75231 Paris, France (e-mails: jin-hao.hao@univ-angers.fr;
beatrice.duval @univ-angers.{r).

optimization for hard combinatorial optimization problems.
Specifically, we introduce frequent pattern based search
(FPBS) that unifies data mining and optimization within the
population-based search framework. As we discuss in Sections
IT and III-H, our work is motivated and inspired by existing
studies that reported excellent performances on several partic-
ular applications by mixing data mining techniques and a given
metaheuristic. Meanwhile, our research targets a more general
objective that goes beyond previous works in the sense that
the proposed FPBS method intends to be problem independent
and generally applicable to different optimization problems.

From the perspective of design methodology, FPBS is a
modular and component-based method where its composing
parts are independent from one another with well-defined
functionality. Basically, FPBS maintains a population of high-
quality solutions discovered by a suitable optimization pro-
cedure and employs an appropriate data mining procedure
to extract useful information (i.e., frequent patterns) from
the population. The mined patterns are then used to create
new starting solutions for the optimization procedure. Each
improved solution is finally used to update the population
according to a pool management procedure. By combing
frequent pattern mining and effective optimization within
the population-based search framework, the resulting FPBS
algorithm is expected to be able to explore the given search
space in an informed and focused manner, and consequently
to attain high-quality solutions effectively and efficiently.

To show the usefulness of the proposed FPBS method,
we present a case study on the well-known and challenging
quadratic assignment problem (QAP) in Section I'V. Besides its
popularity as one of the most studied NP-hard combinatorial
optimization problems, QAP is also a relevant representative
of the large class of permutation problems. To apply the FPBS
method to solve QAP, we specify the design choices of the
underlying components of the method. We then assess the
resulting FPBS algorithm on the hardest QAP benchmark
instances from the QAPLIB and show its competitiveness
compared to state-of-the-art algorithms. By this case study,
we show how the general FPBS method can be conveniently
adapted to create a very powerful search algorithm by prop-
erly instantiating its components (in the case of QAP, some
components simply come from existing algorithms).

The rest of the paper is organized as follows. Section II
provides a review of related works. Section III is dedicated
to the presentation of the proposed FPBS method. Section
IV showcases the application of FPBS to solve the quadratic
assignment problem. Section V investigates some key issues
of the algorithm, followed by conclusions and research per-
spectives in Section VL.



II. RELATED WORKS

In this section, we provide a literature review focusing on
studies related to combinations of search methods with data
mining techniques for solving combinatorial problems.

Bayesian optimization algorithm (BOA) [26] is an early
precursor of using ideas from machine learning to guide
solution construction. In BOA, hidden structures of the op-
timization problem are discovered with learning techniques
during optimization. Since 2004, several studies investigated
combinations of particular metaheuristics (especially greedy
randomized adaptive search procedure (GRASP)) with data
mining techniques to solve specific optimization problems. For
instance, DM-GRASP [33], [35], a pioneer algorithm origi-
nally designed to solve the set packing problem, is composed
of two phases where GRASP is run for the first half of the
whole search to build an elite set of high-quality solutions. At
the middle of the search, a data mining procedure is applied
to the elite set to mine useful patterns. Then the second phase
uses the second half of the search to run GRASP again to
improve each input solution created with a mined pattern
(instead of using the usual greedy randomized construction
procedure of GRASP). By the same token, DM-HH [23]
combines a dedicated hybrid heuristic HH (mixing greedy
search, local search and path-relinking) and data mining to
solve the particular p-median problem. MDM-GRASP [24],
[27] extended DM-GRASP by performing data mining as
soon as no change occurs in the elite set, instead of doing
data mining only once at the midway of the search process
like in DM-GRASP and DM-HH. The same idea was also
explored by hybridizing data mining with GRASP enhanced
by path-relinking (PR) [7] to solve the particular 2-path
network design problem or variable neighborhood descent
[16] to solve the specific one-commodity pickup-and-delivery
traveling salesman problem. The work of [14] used a memory
of high-quality solutions to improve constructive multistart
methods (e.g., GRASP). This early work does not explicitly
call for a data mining procedure, instead, it extracts, from
the memory, frequency-based information, which is used to
improve the construction phase of GRASP.

In addition to GRASP, data mining has also been hybridized
with other metaheuristics like evolutionary algorithms. To
improve the performance of an evolutionary algorithm for
solving an oil collecting vehicle routing problem, a hybrid
algorithm (GADMLS) combining genetic algorithm, local
search and data mining was proposed in [34]. Another hybrid
approach (GAAR) that uses a data mining module to guide
an evolutionary algorithm was presented in [31] to solve the
constraint satisfaction problem. Besides the standard compo-
nents of a genetic algorithm, a data mining module is added to
find association rules (between variables and values) from an
archive of best individuals found in the previous generations.
There are other related, but more distant works that showed
the benefit of data mining procedure for heuristic search.
For example, in the context of the set partitioning problem,
data mining was applied to extract variable associations from
previously solved instances for identifying promising pairs of
flipping variables in a large neighborhood search method and

thus reducing the explored search space [38]. Another example
is the hybridization of neighborhood search with data mining
techniques for solving the p-median problem [32].

One observes that the reviewed studies share the basic
idea of using techniques from data science to improve the
search process. It is worth noting, however, that previous
approaches typically deal with specific problems (e.g., p-
median, vehicle routing) with particular optimization methods
(e.g., GRASP). As such, these approaches lacks generality and
are not readily applicable to other problems. In this work,
we aim to generalize the key ideas of these pioneer studies
and propose a general-purpose approach that unifies data
mining and optimization within the population-based search
framework for solving combinatorial optimization problems.

III. FREQUENT PATTERN BASED SEARCH

In this section, we first show the general scheme of the
frequent pattern based search (FPBS) method and then present
its underlying components.

A. General scheme

The basic idea of the proposed FPBS method is to hybridize
data mining and optimization within the population-based
framework with the purpose of achieving a suitable balance
of exploration and exploitation of the search process. Data
mining is responsible for useful patterns extraction from the
population. Extracted patterns are then used as “building
blocks” to create new promising solutions, which are further
improved by optimization. As such, combining data mining
and optimization provides the resulting algorithm with the ca-
pacity of continually exploring new promising search regions
(with pattern-based new solutions) and exploiting particular
regions in depth (with local optimization).

From the perspective of system architecture, FPBS main-
tains a population of high-quality solutions for the purpose
of pattern mining and optimization. Specifically, FPBS is
composed of six independent operating components: an ini-
tialization procedure (Section III-B), a data mining procedure
(Section III-C), a pattern selection procedure (Section III-D),
a frequent pattern based solution construction procedure (Sec-
tion III-E), an optimization procedure (Section III-F) and a
pool management procedure (Section III-G).

The flow diagram and the pseudo-code of the FPBS ap-
proach are shown in Fig. 1 and Algorithm 1, respectively.
FPBS starts from a set of high-quality solutions that are
obtained by the initialization procedure (line 3). From these
high-quality solutions, a data mining procedure is invoked to
mine frequent patterns (line 7). The algorithm enters the main
“while” loop (lines 8-22) to perform a number of generations
to evolve the solutions in the population. At each generation, a
mined pattern is first selected (line 10) and used to create a new
solution(line 12) that is further improved by the optimization
procedure (line 14). The improved solution is finally inserted
to the population according to the pool management policy
(line 19). The process is repeated until a stopping condition
(e.g., a time limit or a given maximum number of generations)
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Fig. 1. Flow diagram of the proposed FPBS approach.

Algorithm 1: The general procedure of the FPBS
approach

Input: Problem instance /I with a minimization objective f,
population size k and number of patterns to be mined
m
Output: The best found solution S*
1 begin
/I construct a population (POP)
POP < InitializePopulation();
/I record the best solution S*
S* < argmin{f(S;):i=1,2,...,k};
/I mine frequent patterns from POP
‘P < MineFrequentPattern(POP, m);
while a stopping condition is not reached do
// select a mined frequent pattern p
p < SelectPattern(P);
/I construct a new solution using p
S < ConstructSolutionBasedPattern(p);
// improve the constructed solution
S’ « Optimize(S);
// update the best solution found so far
if f(S') < f(S*) then
| S*« 5,

e % NN AR W
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// update the population

POP < UpdatePopulation(POP, S’);

/I wake-up the mining procedure when the
population stagnates

21 if population does not evolve any more then

2 | P < MineFrequentPattern(POP, m);

=
=

23 return The best found solution S*;

is satisfied. In addition to its invocation just after the initializa-
tion procedure, the data mining procedure is also waked-up if
no evolution of the population is observed during a predefined
number of generations.

B. Population initialization

FPBS starts its search with a population (POP) composed
of k distinct high-quality solutions. To build the population,

we first generate, by any means (e.g., with a random or greedy
construction method), an initial solution that is improved by
an optimization procedure (see Section III-F). The improved
solution is then inserted into the population according to
the pool management strategy (see Section III-G). We repeat
this process until k different solutions are built. Such an
initialization process is very popular in memetic algorithms
[25] as exemplified in [10], [42].

C. Frequent pattern mining procedure

The frequent pattern mining procedure is used to discover
specific patterns that frequently occurs in high-quality so-
lutions. One typical frequent pattern that can be mined is
frequent itemset, which was originally introduced for mining
transaction databases [3]. Given a transaction database defined
over a set of items, a frequent itemset refers to a set of items
that often appear together in the dataset. Frequent patterns
are not limited to itemsets, and can correspond to more
complex entities such as subsequences or substructures [2]. To
apply frequent pattern mining to combinatorial optimization
problems, it is necessary to define a suitable pattern for the
problem under consideration.

Fig. 2 shows the frequent pattern mining process composed
of three steps: a transformation step that transforms a set of
high-quality solutions to a dataset recognizable by a given
mining procedure; a mining step that mines frequent patterns
from the transformed dataset; and a selection step that selects
a pre-defined number of patterns from the mined patterns.

Mining Algorithm

Pattern Set:
A set of chosen
patterns

Population:
A set of high
quality solutions

Fig. 2. A diagram displaying the process from population to pattern set.

To handle a wide diversity of data types, numerous mining
tasks and algorithms have been proposed in the literature [2].
Within the FPBS framework, the mining algorithm will be
selected based on the characteristics of the chosen pattern
defined for the given problem. For instance, for our case study
on QAP presented in Section IV, a pattern corresponds to a
set of element-location pairs. Thus frequent patterns can be
conveniently represented as frequent itemsets (i.e., a set of
identical element-location assignments). To identify frequent
itemsets, any mining algorithm (like FPmax* [15]) can be
applied. Other frequent pattern mining algorithms are available
according to the types of intended patterns [2].

D. Pattern selection

To construct new solutions based on the mined patterns, we
use a pattern selection procedure to identify the next pattern
that is used to create a new solution. The first strategy for
pattern selection is the tournament selection that works as



follows. Let A be the size of the tournament pool. We randomly
choose A (1 < A < |P|) individuals with replacement
from the mined pattern set P, and then pick the best one
(i.e., with the largest size), where A\ is a parameter. The
computational complexity of this selection strategy is O(|P|).
The advantage of the tournament selection strategy is that
the selection pressure can be easily adjusted by changing the
size of the tournament pool A. The larger the tournament
pool is, the smaller the chance for shorter patterns to be
selected. The second selection strategy is to always pick the
next longest pattern in the set of mined patterns [32]. One
observes that the second selection strategy is a special case
of the tournament selection when A equals the size of the
pattern set. For our study on QAP of Section IV, we adopt
the tournament selection strategy.

E. Solution construction based on mined patterns

Since frequent patterns usually correspond to a set of com-
mon elements shared by the sampled high-quality solutions,
each mined pattern directly defines a partial solution. To obtain
a full solution, it is convenient to apply a random or greedy
procedure to complete the partial solution. While a random
construction procedure adds the missing elements at random,
a greedy procedure completes each missing element according
to a greedy criterion favoring objective optimization. In the
later case, the greedy criterion is a critical issue to consider
with respect to the optimization objective under consideration.

Finally, the solution completion process can also be guided
by high-quality solutions. In this case, the partial solution can
be completed with elements from one or more specific high-
quality solutions. In Section IV, we illustrate such an approach
in the context of solving QAP.

FE. Optimization procedure

For solution improvement (to build the initial population
and to improve each new solution built from a mined pattern),
existing solution algorithms dedicated to the given problem
can be applied in principle. On the other hand, since the
optimization component ensures the key role of search intensi-
fication, it is desirable to call for a powerful search algorithm.
Basically, the optimization procedure can be considered to
be a black-box optimizer that is called to improve an input
solution. For instance, for solving QAP (Section IV), we adopt
the Breakout Local Search (BLS) algorithm [9], which is also
used as the underlying optimization procedure of the memetic
algorithm BMA [10].

G. Population management

For each new solution constructed using a mined frequent
pattern, we use the optimization procedure to improve its
quality. Then, we decide whether the improved solution should
be inserted into the population POP. There are a number of
pool updating strategies in the literature [28], [42] that can be
applied within the FPBS approach. First, the classic quality-
based replacement strategy simply inserts the new solution into
the pool to replace the worst solution if the new solution is not

worse than the worst solution in the pool [10]. Second, more
elaborated updating strategies consider additional criteria. For
instance, the quality-and-distance updating strategy considers
not only the quality of the solution, but also its distance to
other solutions in the pool [28]. Finally, the rank-based quality-
and-distance updating strategy proposed in [42] can be applied
as well. For the QAP of Section IV, we adopt the second
updating strategy.

H. Connections with existing studies

As evidenced by the review of Section II, FPBS relies on a
combination of data science techniques and optimization meth-
ods. As such, it shares some basic principles and similarities
with existing studies. Meanwhile, our work targets a broader
objective of designing a general-purpose search framework
that can be instantiated to solve various problems. This stands
in sharp contrast to previous approaches that typically focus
on particular problems and methods. In what follows, we show
the connections between FPBS and the most related studies.

DM-HH [23] combines a dedicated hybrid heuristic (HH)
and data mining to solve the specific p-median problem. The
data mining procedure is used only one time at the middle of
the whole HH search process. DM-GRASP and the multi DM-
GRASP (called MDM-GRASP) [27] hybridize the GRAPS
metaheuristic and data mining to solve the server replication
for reliable multicast problem. DM-GRASP follows exactly
the same approach as DM-HH [23] such that data mining is
applied one time at the middle of the GRASP process. MDM-
GRASP applies data mining multi times: (a) as soon as no
change occurs in the collected elite solutions throughout a
given number of iterations and (b) when the elite set has been
changed and again has become stable. The idea of using pat-
terns is also related to exploiting the concepts of backbone in
binary optimization (e.g. satisfiability [41] and unconstrained
binary quadratic programming [45]) where stable value-to-
variable assignments through a set of high-quality solutions
form the backbone. The principle of backbone was used to
define effective crossovers for problems such as graph coloring
[28], maximum diversity [42] and critical node detection [44],
where common elements shared by two or multiple parent
solutions serve as the partial offspring solution.

FPBS distinguishes itself by the following features. First,
it is a generic and unified framework applicable to various
optimization problems. To apply FPBS to a new problem, it
suffices to instantiate the underlying components. As show-
cased in Section IV, the instantiation can even benefit from
existing algorithms and procedures. Second, FPBS follows the
modular design principle, which eases its application to new
problems by re-using the problem-independent components
and adopting the most suitable problem-specific components.
Third, FPBS unifies data mining and optimization within
the general population-based framework, which makes the
hybridization very flexible and favors the achievement of a
search balance of exploration and exploitation.

Below, we show how FPBS can be conveniently adapted
to the challenging quadratic assignment problem. This appli-
cation also provides an example of using FPBS to solve the



large class of permutation problems (quadratic assignment is
a particular member).

IV. FPBS APPLIED TO THE QUADRATIC ASSIGNMENT
PROBLEM

We now apply the general FPBS approach to QAP and
compare its performance with state-of-the-art algorithms.

A. Quadratic assignment problem

Given a set N = {1,...,n} of n facilities, a set M =
{1,...,n} of n locations that can host the facilities, a flow
a;; from facility 4 to facility j for all ¢,j € N and a distance
buv between locations u and v for all u,v € M, QAP
involves determining a minimal cost assignment of n facilities
to n locations. Clearly, a facility-location assignment can be
conveniently represented by a permutation 7 : {1,...,n} —
{1,...,n} such that 7 (i) represents the assigned location of
facility . Let 2 denote the set of all n-permutations, then the
NP-hard QAP can be formulated as follows.

min () =Y Y aijbre(iye()

TEQ ; -
=1 j=1

(D

The optimization objective of Eq. (1) is to find a permutation
7 in ) that minimizes the sum of the products of the flows
and distances, i.e., f(7*) < f(7w), V7 € Q.

In addition to the facility location problem, QAP finds
applications in electrical circuit design, distributed computing,
and image processing and so on [13], [22]. Moreover, a
number of classic NP-hard problems, such as the traveling
salesman problem, the maximum clique problem, the bin
packing problem and the graph partitioning problem, can also
be recast as QAPs [22].

Due to its practical and theoretical significance, QAP has
attracted much research effort [1], [9], [10], [18], [37]. In fact,
QAP is one of the most studied combinatorial optimization
problems. Since exact algorithms are impractical for instances
with n > 36 [5], a large number of heuristic methods have
been proposed to provide near-optimal approximate solutions
in a reasonable computation time. Detailed reviews of heuristic
and metaheuristic algorithms developed till 2007 for QAP are
available in [13], [22]. Brief reviews of more recent studies
can be found in [4], [9], [10].

B. FPBS for QAP

We use FPBS-QAP (Algorithm 2) to denote the resulting
FPBS algorithm. Since FPBS-QAP inherits the main com-
ponents of FPBS, we only present the specific features re-
lated to QAP: solution representation, optimization procedure,
frequent pattern mining for QAP, solution construction using
QAP patterns, and population update strategy.

1) Search space and neighborhood: Given a QAP instance
with n facilities and n locations, the search space € is
composed of all possible n! permutations. For any solution
7w € QQ, its quality is given by Eq. (1).

To explore the search space, we adopt an effective neigh-
borhood search algorithm called BLS (see Section IV-B2),

Algorithm 2: The FPBS algorithm for QAP

Input: Instance G, population size k, the number of mined
patterns m, time limit .4, and the maximum
number of generations without updating
max_no_update

Output: The best found solution 7*

1 begin

2 POP < InitializePopulation(),

3 7% «—argmin{ f(m) :i=1,2,...,k};

4 ‘P «+ MineFrequentPattern(POP, m);

5 no_update < 0;

6 t < 0;

7 while ¢ < {4, do

8 pi < SelectPattern(P);

9 // build a new solution based selected pattern

10 7 < ConstructSolutionBasedPattern(p;);

11 /I improve the constructed solution

12 7' < BreakoutLocalSearch(m);

13 /I update the best solution found so far

14 if f(n') < f(z*) then

15 | 7'

16 // update the population

17 if UpdatePopulation(POP, ') = True then

18 | no_update + 0;

19 else

20 | no_update < no_update + 1;

21 /I wake-up the mining procedure when the
population is steady

22 if no_update > max_no_update then

23 P < MineFrequentPattern(POP, m);

24 L no_update < 0;

25 return The best found solution 7*;

which relies on the following swap neighborhood. Given a
solution, i.e., a permutation , its neighborhood N(7) is
defined as the set of all possible permutations that can be
obtained by exchanging the values of any two locations 7(u)
and w(v) in =, ie., N(m) = {7’ | 7'(u) = 7(v), 7' (v) =
m(u),u # v and 7©'(i) = 7w(i),¥i # u,v}, which has a
size of n(n — 1)/2. Given a permutation 7 and its objective
value f(m), the objective value of a neighboring permutation
7’ can be effectively calculated according to an incremental
evaluation technique [36].

2) Breakout local search: To ensure an effective examina-
tion of the search space, we adopt, like the memetic algorithm
BMA [10], the Breakout local search (BLS) algorithm [9] as
our black-box optimizer. In addition to being a state-of-the-art
QAP algorithm, its source code is publicly available, making
it possible to perform meaningful comparative studies.

BLS follows the iterated local search scheme and repet-
itively alternates between a descent search phase (to find
local optima) and a dedicated perturbation phase (to dis-
cover new promising regions). BLS starts from an initial
random permutation, and then improves the initial solution
to a local optimum by the best improvement descent search
with the above swap neighborhood. Upon the discovery of a
local optimum, BLS switches to the perturbation phase. The
perturbation adaptively selects a directed perturbation or a
random perturbation, which is applied L times (L is called



the perturbation strength) [9].

The directed perturbation and random perturbation pro-
vide two complementary means for search diversification.
The directed perturbation applies a selection rule that favors
neighboring solutions with weak objective deterioration, under
the constraint that the neighboring solutions have not been
visited during the last + iterations (where +y is the pre-defined
tabu tenure). The random perturbation selects neighboring
solutions in the neighborhood at random without considering
objective deterioration. BLS alternates between these two
types of perturbation in a probabilistic and adaptive way. The
probability of selecting a particular perturbation is determined
dynamically according to the current number of visited local
optima without improving the best solution found, while the
probability of applying the direct perturbation takes a value no
smaller than a given minimal threshold ). The perturbation
strength L is determined based on a simple reactive strategy.
L is increased if the search returns to the immediate previous
local optimum, and reset to a given initial value Lq otherwise.
Finally, the selected perturbation with the strength L is applied
to transform the current solution. The resulting solution is then
used as the starting solution of the next round of the descent
search procedure (see [9] for more details).

3) Mining frequent patterns for QAP: QAP is a typical per-
mutation problem. For this problem, we define a frequent pat-
tern to be a set of identical location-facility assignments shared
by high-quality solutions, and represent such a pattern by an
itemset. To apply a frequent itemset mining algorithm, we need
to transform a permutation into a set of items. In [16], a trans-
formation is proposed for a generalized traveling salesman
problem. For each pair of elements ((¢) and 7(j)) of a given
permutation 7, an arc (7 (%), w(j)) is generated, thus mapping a
permutation 7 to a set S” of |r| —1 arcs. For example, consider
a permutation © = (5,4,7,2,1,6,3), 7 is transformed to
the set of arcs S' = {(5,4), (4,7),(7,2),(2,1),(1,6), (6,3)}.
This transformation conserves the order of elements. However,
the information between the elements (facilities) and their
locations is lost. In practice, we cannot identify the true
location of an element when only a part of pairs is available.

To overcome this difficulty, we propose another
transformation, which decomposes a permutation 7 of
n elements into a set of ordered element-position pairs
{(1,7(1),(2,7(2),...,(n,m(n))}. Thus the permutation
r = (5,4,7,2,1,6,3) above is transformed into
{(1,5),(2,4),(3,7),(4,2),(5,1),(6,6),(7,3)}, where
each element-position pair (i,7(i)) is considered as an item
(i —1)*|m|+m(3). Fig. 3 shows three solutions (permutations)
with the set {I, I, I3} of three resulting itemsets.

population item set
m 5 4 7 2 1 6 3 5 11 21 23 29 41 45 I,
m 7 4 5 3 1 6 2 - 7 11 19 24 29 41 44 1,
my 7 4 5 2 3 6 1 7 11 19 23 31 41 43 14

Fig. 3. An illustrative example of the transformation procedure, which
transforms a set of three permutations {m1, 72,73} to a set of three item
sets {I1, I2, I3}. For instance, the first element of solution 7y is 71 (1) = 5,
so the item will be (1 — 1) * 7+ 71 (1) = 5.

With the help of our transformation procedure, mining
frequent patterns from multiple permutations becomes the task
of mining frequent itemsets. The main drawback of mining
all frequent itemsets is that if there are many frequent items,
then a high number of subsets of the frequent items need to
be examined. However, it usually suffices to find only the
maximal frequent itemsets (a maximal frequent itemset is that
it has no superset that is frequent). Thus mining frequent
itemsets can be reduced to mine only maximal frequent
itemsets. For this purpose, we adopt the popular FPmax*!
algorithm [15].

FPmax* is one of the most efficient implementations for
computing the maximal frequent itemsets of a database. It
relies on the representation of the database by a prefix tree,
called Frequent Pattern tree (FP-tree), that contains condensed
information about the frequent patterns. Then recursive traver-
sals of this FP-tree enable to obtain the frequent itemsets or
maximal frequent itemsets. Efficient array-based representa-
tions are used to streamline the computation needed to traverse
the FP-tree and obtain the maximal frequent itemsets. In
FPmax*, a user-specified minimum support 6 is necessary to
find all frequent itemsets in a database, where 6 can be any
integer between 2 and the size of database. We set § = 2
according to preliminary experiments (see Table I).

4) Solution construction based on mined pattern: From
the mined frequent items, we apply the tournament selection
strategy (see Section III-D) to select the next pattern that is
used to construct a new solution. Algorithm 3 describes the
main steps of the construction procedure. Initially, we re-map
the chosen pattern into a partial solution 7 (line 3). If the
partial solution 7 contains a number |7| of elements fewer
than a given threshold (i.e., 5 % n), we use a high-quality
solution to guide the construction (lines 4-8). Specifically, we
first randomly select a high-quality solution 7° (called guiding
solution) from the population (line 6), and then we complete
7 based on the guiding solution 7°, by copying the element
of each unassigned position of 7° to 7 under the condition
that the element is unassigned in 7 (line 8). Finally, if 7 is
still an incomplete solution, we randomly assign the remaining
elements to the unassigned positions until a full solution is
obtained (line 10). As explained in Section III, the constructed
new solution is then improved by the optimization procedure
(i.e., BLS) and used to update the population.

5) Population updating: The last step of FPBS-QAP uses
the improved solution (call it 7') from the BLS procedure
to update the population POP, according to the following
strategy. 7’ is inserted into POP if two conditions are satisfied
simultaneously: (i) 7’ is different from any solution in POP
and (ii) 7’ is no worse that the worst solution in POP, i.e.,
f(n')y < f(x*), where " <+ arg max,cpop{f(m)} is the
worst solution in the population.

C. Computational studies of FPBS for QAP
To evaluate the FPBS-QAP algorithm, we first perform a
detailed comparison between FPBS-QAP and two state-of-the-

'The source code of the FPmax* algorithm is publicly available at http:
//fimi.ua.ac.be/src/



Algorithm 3: Solution construction based on mined
pattern.

Input: A selected pattern p and a population POP of size k
Output: A new solution 7
1 begin
/I re-map the selected pattern as a partial solution
7 < Re-map(p);
if |7| < 8 % n then
/I select a guiding solution
70 < SelectGuidedSolution(POP);
/I construct based on guiding solution
7 < GuidedConstruct(, 71’0);

- IS T N7 A N )

9 /lcomplete at random
10 7 <— RandomComplete(r);

-

1 return A new solution 7;

art algorithms, i.e., BLS [9] and BMA [10], whose source
codes are available. Then, we compare FPBS-QAP with four
additional recent state-of-the-art algorithms.

1) Benchmark instances: Experimental evaluations of QAP
algorithms are usually performed on 135 popular benchmark
instances from QAPLIB?. The instance size n ranges from 12
to 150, and is indicated in the instance name. These instances
can be classified into four categories:

o Type L. 114 real-life instances are obtained from practical
QAP applications;

o Type IL. 5 unstructured, randomly generated instances
whose distance and flow matrices are randomly generated
based on a uniform distribution;

o Type III. 5 real-like-life instances are generated instances
that are similar to the real-life QAP instances;

e Type IV. 11 instances with grid-based distances in
which the distances are the Manhattan distance between
points on a grid.

Like [9], [10], we ignore the 114 easy instances from Type
I because the known optimal solutions can be found easily
within a short time, often less than one second by our method
and other modern methods. Our experiments focus on the 21
hard instances with unknown optima from Types II-IV. It is
worth mentioning that for these 21 most challenging instances,
no single algorithm including the most recent algorithms can
attain the best-known results for all the instances. Indeed, even
the currently best performing algorithms miss at least two
best-known results. This is understandable given that these
instances have been studied for a long time and some best-
known objective values given on the QAPLIB page have been
achieved under specific and relaxed conditions.

2) Experimental settings: Our FPBS-QAP algorithm® was
implemented in the C++ programming language and complied
with the gcc 4.1.2 and the flag *-O3’. All the experiments were
carried out on a computer equipped with an Intel E5-2670
processor (2.5 GHz and 2 GB RAM) running Linux. With
the ‘-O3’ flag, running the well-known DIMACS machine

Zhttps://www.opt.math.tugraz.at/qaplib/

3We will make the program of the FPBS-QAP algorithm available at http:
/Iwww.info.univ-angers.fr/~hao/fpbs.html

benchmark procedure dfmax.c* on our machine requires 0.19,
1.17 and 4.54 seconds to solve the benchmark graphs r300.5,
r400.5 and 1500.5, respectively. Our computational results
were obtained by running FPBS-QAP with the parameter
setting provided in Table I. To identify an appropriate value
for a given parameter, we compared the performance of the
algorithm with different parameter values, while fixing other
parameter values. Appendix A shows an example to select
the number of the mined patterns m (i.e., the number of
patterns in pattern set). We mention that the setting of Table
I was obtained without using a fine-tuning procedure and
was consistently used to solve all 21 QAP instances. Fine-
tuning some parameters for a specific instance would lead to
improved results. However, doing this will deviate from the
main goal of the work. On the other hand, when applying
FPBS-QAP to new problems, it would be advantageous to
adjust some parameters to achieve the best possible results.

TABLE 1
PARAMETER SETTINGS OF FPBS-QAP ALGORITHM.

Parameter description value
tmasx time limit (hours) 0.5 0r 2.0
4 population size 15

max_no_update  number of times without updating 15

6 minimum support 2

m number of mined patterns in pattern set 11

A tournament pool size 3

B length threshold 0.75

max_iter number of iterations for BLS* 10000

* We used BLS as the local optimization procedure in our algorithm. Other
six parameters of BLS adopt the default values provided in [9].

Following the QAP literature (e.g., [1], [9], [10], [12], [18],
[37]) and to ensure fair comparisons, the proposed FPBS-
QAP algorithm was independently ran 30 times on each test
instance. Our assessment is based on the percentage deviation
(PD) metrics that are widely used in previous studies [1],
[4]1, [9], [10], [12], [18], [37]. The PD metrics measures the
percentage deviation from the best-known value (BKV). For
example, the best percentage deviation (BPD), the average per-
centage deviation (APD) and the worst percentage deviation
(WPD), are respectively calculated according to:

X — BKV
BKV

where X € {B, A, W} corresponds to the best, average and
worst objective value achieved by an algorithm. A smaller
XPD value indicates a better performance.

To analyze these results, we resort to a two-step statistical
test procedure [11]. First, we conduct a Friedman test which
makes the null hypothesis that all compared algorithms are
equivalent. Once the null hypothesis is rejected, we then
proceed with the two-tailed Nemenyi post-hoc test. Both tests
are based on the average ranks. We order the algorithms
for each instance separately, the best performing algorithm
obtaining the rank of 1, the second best rank of 2, and so on.
In case of ties, average ranks are assigned. Finally, we obtain
the average rank of each algorithm by averaging the ranks of
all 21 instances.

XPD =100 % [%] 2)

4dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique



3) Comparison of FPBS-QAP with BLS and BMA: To
evaluate FPBS-QAP, we first show a detailed comparison
with the two main reference algorithms: BLS (Breakout local
search) [9] and BMA (population-based memetic algorithm)
[10]. This experiment was conducted based on three consid-
erations. First, BLS and BMA are among the best performing
QAP algorithms currently available in the literature. Second,
the source codes of BLS and BMA are available, making it
possible to make a fair comparison (using the same computing
platform and stopping conditions). Third, since both FPBS-
QAP and BMA use BLS as their underlying optimization
procedure, this comparison allows us to assess the added value
of the data mining component of FPBS-QAP compared to the
population-based approach BMA. For this experiment, we ran,
like in [9], [10], FPBS-QAP and the two reference algorithms
under two stopping conditions, i.e., a cutoff time of ¢,,,, = 30
minutes (0.5 hour) and a cutoff time of ¢,,,,, = 120 minutes (2
hours). This allows us to study the behavior of the compared
algorithms under short and long time limits.

The comparative performances of FPBS-QAP with BLS and
BMA under the above conditions are presented in Tables II and
III. We report the BPD, APD, WPD values of each algorithm.
At the last two rows of each table, we also show the average
value and the average rank of each indicator. The smaller the
value, the better the performance of an algorithm.

Table II shows that FPBS-QAP achieves the best perfor-
mance compared to BLS and BMA under ¢,,,,,, = 30 minutes.
First, FPBS-QAP finds all best-known values except three
cases (tai60a, tai80a, tail00a) while BLS and BMA fail to
do so for five instances. Second, FPBS-QAP is able to reach
the best-known values of the two largest instances (tail5S0b
and tho150) within the given time limit. BLS fails to find the
best-known values for these two instances within the limit of
30 minutes (it can find these values only under a very long
time limit of ¢,,,, = 10 hours). BMA performs better than
BLS by attaining the best-known value of tail50b, but still
fails on tho150. When we check the average performance of
each algorithm over the 21 instances given in the last two rows
of Table II, we observe that the average BPD value of FPBS-
QAP is only 0.036%, which is better than 0.044% of BLS,
and 0.042% of BMA. Similar observations can be made for
the average WPD indicator. For the average APD indicator,
FPBS-QAP is slightly worse than BMA, but it is better than
BLS. It is worth noting that FPBS-QAP achieves the smallest
average ranks for all three performance indicators.

With three algorithms and 21 instances, the critical value of
F(2,40) for the significant level 0.05 is 3.232. At a significant
level of 0.05, we reject the null hypothesis for the APD
indicator (Fr = 4.967 > 3.232) and the WPD indicator
(Fr = 6.051 > 3.232), but we accept the null hypothesis
for the BPD indicator (Fr = 0.795 < 3.232) according to
the Friedman test. For both APD and WPD indicators, we
additionally conduct a Nemenyi test. At a significant level of

0.05, the critical value is 2.343 x |/ 2X% = 0.723. We observe

that FPBS-QAP significantly outperforms BLS both in terms
of the APD indicator (i.e., 2.500 — 1.643 > 0.723) and the
WPD indicator (i.e., 2.548 — 1.642 > 0.723). Compared to

BMA, FPBS-QAP achieves smaller average ranks but there is
no significant differences between them.

Under the long time limit of ¢,,,, = 120 minutes, our
FPBS-QAP algorithm is able to achieve even better results
as well as BLS and BMA. As we see from Table III, the best-
known values are attained more often than under the limit
of t,4, = 30 minutes. Interestingly, FPBS-QAP successfully
finds the best-known value for one more instance (tai60a),
missing only 2 BKV against the unchanged 5 cases for BLS
and 3 cases for BMA. For the average performance, the
average BPD value of FPBS-QAP is 0.026%, which is the
best compared to 0.033% of BMA, and 0.034% of BLS.
FPBS-QAP also achieves the smallest average APD value
and average WPD value. Furthermore, FPBS-QAP has the
best average rank on all three indicators compared to BLS
and BMA. Finally, FPBS-QAP achieves a marginally better
average performance, there is no significant difference among
the compared algorithm at a significance level of 0.05.

In summary, the FPBS-QAP algorithm competes favorably
with the two best-performing (sequential) QAP algorithms
(i.e., BLS and BMA) according to the different indicators used.
The computational results demonstrate the effectiveness of
FPBS-QAP, and further show the usefulness of using frequent
patterns mined from high-quality solutions to guide the search
for an effective exploration of the search space.

4) Comparison with more state-of-the-art algorithms: We
now extend our experimental study by comparing FPBS-QAP
with four other recent state-of-the-art QAP algorithms.

o Parallel hybrid algorithm (PHA) [37] using the MPI
libraries was run on a high-performance cluster with 46
nodes (each node with 2 CPUs, 4 cores per CPU and 16
GB of RAM), a total of 736 GB RAM and a high capacity
disk of 6.5 TB configured in a high-performance RAID.

o Two-stage memory powered great deluge algorithm
(TMSGD) [1] was run on a computer (2.1 GHz and 8
GB RAM). The algorithm was run until the number of
fitness evaluations reaches 20000 x n (n is the instance
size).

o Parallel multi-start hyper-heuristic algorithm (MSH) [12]
was run on the same high performance cluster as the
above PHA algorithm.

o Parallel breakout local search using OpenMP (BLS-
OpenMP) [4], implemented on OpenMP (an API for
shared-memory parallel computations that runs on multi-
core computers), was executed on a personal computer
with an Intel Core i7-6700 CPU 3.4 GHZ with 4 cores
and 16 GB RAM.

One notices that three of these four recent QAP algorithms
are implemented and run on parallel machines and their results
have been obtained on different computing platforms, with
different stopping conditions. Thus, the comparison shown in
this section was provided mainly for indicative purposes. On
the other hand, the availability of our FPBS-QAP program
makes it possible for researchers to make fair comparisons
with FPBS-QAP.

Table IV presents the comparative results between our
FPBS-QAP algorithm and the four reference algorithms. Fol-
lowing [1], [4], [12], [37], we focus on the APD indicator



TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED FPBS-QAP ALGORITHM WITH BLS AND BMA ON 21 HARD INSTANCES UNDER tynqz = 30 MINUTES.
FOR EACH ALGORITHM, WE CONDUCT 30 INDEPENDENT RUNS ON EACH INSTANCE.

BPD APD WPD
Instance BKV | BLS BMA  FPBS-QAP BLS BMA  FPBS-QAP BLS BMA  FPBS-QAP
tai40a 3139370 | 0.000  0.000 0.000 0.067  0.067 0.067 0.074  0.074 0.074
tai50a 4938796 | 0.000  0.039 0.000 0.199  0.203 0.288 0364  0.372 0.445
tai60a 7205962 | 0.204  0.165 0.165 0375  0.362 0.351 0472 0.384 0.471
tai80a 13499184 | 0375  0.379 0.320 0.599  0.517 0.509 0.730  0.681 0.682
tail00a 21052466 | 0.323  0.290 0.275 0.568  0.452 0.430 0.632  0.623 0.613
tai50b 458821517 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tai60b 608215054 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tai80b 818415043 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tail00b 1185996137 | 0.000  0.000 0.000 0.001  0.033 0.033 0.045  0.198 0.142
tail50b 498896643 | 0.003  0.000 0.000 0205  0.183 0.193 0397  0.318 0.321
sko72 66256 | 0.000  0.000 0.000 0.000  0.002 0.000 0.000  0.063 0.000
sko81 90998 | 0.000  0.000 0.000 0.007  0.000 0.000 0.011 0.000 0.000
sko90 115534 | 0.000  0.000 0.000 0.023  0.009 0.007 0.095  0.038 0.038
sko100a 152002 | 0.000  0.000 0.000 0.006  0.008 0.000 0.024  0.043 0.000
sko100b 153890 | 0.000  0.000 0.000 0.001  0.000 0.000 0.004  0.000 0.000
sko100c 147862 | 0.000  0.000 0.000 0.001  0.000 0.000 0.004  0.000 0.000
sko100d 149576 | 0.000  0.000 0.000 0.003  0.000 0.000 0.011 0.000 0.000
sko100e 149150 | 0.000  0.000 0.000 0.002  0.000 0.001 0.006  0.000 0.004
sko100f 149036 | 0.000  0.000 0.000 0.003  0.002 0.001 0.032  0.025 0.021
will00 273038 | 0.000  0.000 0.000 0.001  0.000 0.000 0.003  0.000 0.000
tho150 8133398 | 0.013  0.002 0.000 0.069  0.031 0.041 0.135  0.129 0.130
avg.value | 0.044 0.042 0.036 0.101 0.089 0.091 0.145  0.140 0.140
avg.rank | 2167  2.048 1.785 2.500 1.857 1.643 2.548 1.810 1.642
TABLE III

PERFORMANCE COMPARISON OF THE PROPOSED FPBS-QAP ALGORITHM WITH BLS AND BMA ON 21 HARD INSTANCES UNDER tmqz = 120
MINUTES. FOR EACH ALGORITHM, WE CONDUCT 30 INDEPENDENT RUNS ON EACH INSTANCE.

BPD APD WPD
Instance BKV | BLS BMA  FPBS-QAP BLS BMA  FPBS-QAP BLS BMA  FPBS-QAP
tai40a 3139370 | 0.000  0.000 0.000 0.012  0.047 0.037 0.074  0.074 0.074
tai50a 4938796 | 0.000  0.000 0.000 0.077  0.091 0.106 0251  0.289 0.231
tai60a 7205962 | 0.036  0.161 0.000 0.241 0.195 0.189 0353  0.352 0.311
tai80a 13499184 | 0.397  0.303 0.288 0510  0.434 0.467 0.637  0.564 0.618
tail00a 21052466 | 0.281 0.223 0.250 0.455  0.378 0.380 0.574  0.513 0.466
tai50b 458821517 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tai60b 608215054 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tai80b 818415043 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
tail00b 1185996137 | 0.000  0.000 0.000 0.000  0.010 0.000 0.000  0.100 0.000
tail50b 498896643 | 0.001 0.000 0.000 0.109  0.200 0.092 0243 0427 0.313
sko72 66256 | 0.000  0.000 0.000 0.000  0.004 0.000 0.000  0.063 0.000
sko81 90998 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
sko90 115534 | 0.000  0.000 0.000 0.000  0.009 0.010 0.000  0.038 0.038
sko100a 152002 | 0.000  0.000 0.000 0.001  0.002 0.000 0.008  0.043 0.000
sko100b 153890 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
sko100c 147862 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
sko100d 149576 | 0.000  0.000 0.000 0.001 0.000 0.000 0.005  0.000 0.000
sko100e 149150 | 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000
sko100f 149036 | 0.000  0.000 0.000 0.001  0.001 0.003 0.005  0.005 0.005
will00 273038 | 0.000  0.000 0.000 0.001 0.000 0.000 0.002  0.000 0.000
tho150 8133398 | 0.007  0.000 0.000 0.049  0.026 0.006 0.126  0.104 0.064
avg.value | 0034 0.033 0.026 0.069  0.067 0.061 0.108  0.123 0.101
avg.rank | 2.190 1.953 1.857 2072 2.071 1.857 2.143  2.167 1.690

(defined in Section IV-C2) for this study and include, only
for indicative purposes, the computation times (7°(m)), which
should be interpreted with caution for the reasons raised above.
For completeness, we also include the results of BLS and
BMA from Table IV. In the last row of the table, we again
indicate the average value of each indicator. Since the results
of MSH and BLS-OpenMP for instances tail50b, will00
and thol150 are not available, it is not meaningful to include
average ranking information of the compared algorithms like
in Tables II and III.

Table IV shows that the average APD value of FPBS-QAP
is 0.061%, which is only slightly higher than 0.058% of the
parallel PHA algorithm and better than all remaining reference
algorithms. If we check the average computation times of the
compared algorithms, we see that FPBS-QAP requires the least
time to achieve its results, even if three reference algorithms
were run on parallel computers. This comparison thus provides
additional supporting evidences about the competitiveness of
FPBS-QAP compared to state-of-the-art QAP algorithms in
terms of solution quality and computation efficiency.



TABLE IV
COMPARATIVE PERFORMANCE BETWEEN THE FPBS-QAP ALGORITHM AND STATE-OF-THE-ART ALGORITHMS ON HARD INSTANCES IN TERMS OF THE
APD VALUE. COMPUTATIONAL TIME ARE GIVEN IN MINUTES FOR INDICATIVE PURPOSES.

APD T(m)

Instance BKV BLS* BMA* PHA® MSH® BLS-OpenMP®  TMSGD FPBS-QAP BLS* BMA*  PHA® MSH® BLS-OpenMP®  TMSGD FPBS-QAP
tai40a 3139370 0.012 0.047 0.000 0.261 0.000 0.261 0.037 40.7 289 10.6 30.0 322 27.8 525
tai50a 4938796 0.077 0.091 0.000 0.165 0.000 0.276 0.106 47.0 38.8 12.7 375 68.2 41.1 67.8
tai60a 7205962 0.241 0.195 0.000 0.270 0.000 0.448 0.189 739 347 19.6 45.0 107.9 78.9 60.0
tai80a 13499184 0.510 0.434 0.644 0.530 0.504 0.832 0.467 58.0 69.9 40.0 60.0 236.0 1113 552
tail00a 21052466 0.455 0.378 0.537 0.338 0.617 0.874 0.380 58.4 59.9 71.9 75.0 448.5 1383 36.1
tai50b 458821517 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.2 0.1 58 3.0 0.7 10.2 0.2
tai60b 608215054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.3 0.4 9.5 32 18.6 336 0.4
tai80b 818415043 0.000 0.000 0.000 0.000 0.000 0.025 0.000 39 2.0 277 4.0 218.1 0.0 1.4
tail00b 1185996137 0.000 0.010 0.000 0.000 0.000 0.028 0.000 6.1 8.1 425 50 160.8 72.6 29
tail50b 498896643 0.109 0.200 0.026 * * 0.051 0.092 4.7 56.0 1774 * * 258.0 46.4
sko72 66256 0.000 0.004 0.000 0.000 0.000 0.007 0.000 3.0 0.7 33.6 3.6 1.8 38.0 48
sko81 90998 0.000 0.000 0.000 0.000 0.000 0.019 0.000 10.3 32 399 4.1 2.4 57.1 33
sko90 115534 0.000 0.009 0.000 0.000 0.000 0.031 0.010 19.6 3.6 40.5 4.5 33 93.8 24
sko100a 152002 0.001 0.002 0.000 0.003 0.000 0.029 0.000 51.0 28.6 41.7 75.0 29.8 153.2 8.5
sko100b 153890 0.000 0.000 0.000 0.004 0.000 0.015 0.000 21.6 11.0 423 75.0 85 164.3 58
sko100c 147862 0.000 0.000 0.000 0.003 0.000 0.013 0.000 224 71 422 75.0 43 154.5 8.7
sko100d 149576 0.001 0.000 0.000 0.004 0.000 0.017 0.000 385 12.6 41.9 75.0 12.9 148.9 16.2
sko100e 149150 0.000 0.000 0.000 0.000 0.000 0.016 0.000 44.2 53 42.5 75.0 43 146.1 12.2
sko100f 149036 0.001 0.001 0.000 0.000 0.000 0.013 0.003 40.2 23.7 42.0 75.0 17.1 153.4 4.0
will00 273038 0.001 0.000 0.000 * * 0.008 0.000 289 6.9 420 * * 155.1 16.4
thol50 8133398 0.049 0.026 0.009 * * 0.039 0.006 642 839 1774 * * 512.8 574
avg.value ‘ 0.067 0.069 0.058 0.088 0.062 0.143 0.061 322 23.1 47.8 40.3 76.4 1214 22.0
* The results of BLS and BMA were obtained by running the programs on our computer with ty,q = 120 minutes. These results are slightly different from the results reported in [9], [10].

© PHA, MSH and BLS-OpenMP are parallel algorithms that were run on high-performance platforms under various stopping conditions.

V. ANALYSIS AND DISCUSSION

In this section, we perform additional experiments to gain
understandings of the FPBS algorithm including the rationale
and the effectiveness of the pattern based solution construction.

A. Rationale behind pattern-based solution construction

To explain the rationale behind the solution construction
technique based on mined frequent patterns, we analyze the
structural similarity between high-quality solutions in the
population (POP), and the length distribution of the frequent
patterns mined from POP. Given two high-quality solutions
7% and 7¢, we define their similarity by sim (7%, 7t) = @
where n (n = |r|) is the length of a feasible solution, and
7% N 7wt is the set of common elements shared by 7° and
wt. The larger the similarity between two solutions, the more
common elements they share.

As mentioned above, a mined frequent pattern corresponds
to a set of identical elements shared by two or more solutions
under a given minimum support 6. A frequent pattern can
be directly converted to a partial solution, thus we define the
length of a pattern p by len(p) = % where the length of a
pattern is the proportion of the number of identical elements
over the total number of elements. A longer pattern length
indicates thus more shared elements. The solution similarity
can be shown to be a special case of the pattern length as
follows. Given a population (PO P) of high-quality solutions,
we suppose p is a frequent pattern mined from POP. When
the minimum support § = 2, the pattern p is simplified as the
set of common elements shared by two solutions 7* and 77,
i.e., p «+ 7' N . Therefore, the length of pattern p can be
computed as w The pattern length len(p) is thus reduced
to the solution similarity between 7 and 77, i.e., len(p) =
=071 — sim(n?,77). This observation is further confirmed
according to the results reported in Fig. 4, where the curve of
the maximum solution similarity (left sub-figure) is exactly the
same as the curve of the maximum length (right sub-figure).

In this experiment, we solved each benchmark instance
with %, = 30 minutes. After each run, we obtain a
population of high-quality solutions. To analyze the solu-
tion similarity of these high-quality solutions, we calculate
the maximum similarity (denoted as max_sim) and min-
imum similarity (denoted as min_sim) between any two
solutions by max_sim = maxi<;<j</pop|{sim(S*,S7)}
and min_sim = min1§i<j§|pop|{sim(5”,S])} respec-
tively. We also calculate the average similarity (denoted
as avg_sim) between any two solutions by avg_sim =
TPOPTRPOPT—T) Li<i<j<|pop| 5im(S’, 7). Then we cal-
culate the length distribution (i.e., max_len, min_len and
avg_len) of a set of |[POP| longest frequent patterns mined
from POP. The results of the similarity between high-quality
solutions and the length distribution of the mined frequent
patterns are presented in Fig. 4.
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Fig. 4. Solution similarity between high-quality solutions (left sub-figure)
and length distribution of the mined patterns (right sub-figure).

Fig. 4 clearly shows a high similarity between high-quality
solutions. Specifically, for all instances, the maximum solution



similarity is larger than 0.9. Also, the average solution simi-
larities between any two high-quality solutions are larger than
0.5 except for sko72, for which the average solution similarity
is about 0.4. A more significant observation can be derived
based on the lengths of the mined patterns showed in the
right sub-figure. The high structural similarities between the
high-quality solutions provide the rationale behind our solution
construction based on mined patterns.

B. Effectiveness of pattern-based solution construction

The frequent pattern based solution construction method
is a good alternative to the general crossover operator in
evolutionary algorithms. To demonstrate the effectiveness of
the solution construction using frequent patterns, we compared
FPBS-QAP with its alternative version FPBS-QAP, where the
frequent pattern based solution construction is replaced by
the standard uniform crossover operator used in the memetic
algorithm BMA [10]. Since BMA also uses BLS as its key
local optimization procedure and the uniform crossover, FPBS-
QAP can be treated as a BMA variant. For this experiment,
we ran both FPBS-QAP and FPBS-QAP, on each benchmark
instance 10 times with a time limit of %,,,, = 30 minutes.
The comparative results are summarized in Table V.

TABLE V
COMPARISONS BETWEEN FPBS-QAPy AND FPBS-QAP UNDER THE
TIME LIMIT OF ¢tz = 30 MINUTES. THE NUMBER OF TIMES THE
BEST-KNOWN VALUE HAS BEEN REACHED AFTER 10 RUNS IS INDICATED
IN PARENTHESES.

FPBS-QAP,* FPBS-QAP
Instance ‘ BPD APD WPD BPD APD WPD
tai40a 0.000(2) 0.059  0.074 0.000(1) 0.067  0.074
tai50a 0.241(0) 0.318  0.392 0.000(1) 0.279 0415
tai60a 0.164(0) 0.334  0.486 0.165(0) 0377  0.469
tai80a 0.446(0) 0.533  0.622 0.430(0) 0.516  0.614
tail00a 0.316(0) 0.466  0.615 0.311(0) 0402  0.553
tai5S0b 0.000(10) ~ 0.000  0.000 0.000(10) ~ 0.000  0.000
tai60b 0.000(10)  0.000  0.000 0.000(10)  0.000  0.000
tai80b 0.000(10) ~ 0.000  0.000 0.000(10) ~ 0.000  0.000
tail00b 0.000(8) 0.018  0.100 0.000(6) 0.040  0.100
tail50b 0.000(1) 0.204  0.358 0.000(1) 0.191 0321
sko72 0.000(9) 0.006  0.063 0.000(10)  0.000  0.000
sko81 0.000(10)  0.000  0.000 0.000(10)  0.000  0.000
sko90 0.000(9) 0.004  0.038 0.000(6) 0.015  0.038
sko100a 0.000(9) 0.002  0.016 0.000(10)  0.000  0.000
sko100b 0.000(8) 0.001  0.004 0.000(10)  0.000  0.000
sko100c 0.000(10)  0.000  0.000 0.000(10) ~ 0.000  0.000
sko100d 0.000(10)  0.000  0.000 0.000(10) ~ 0.000  0.000
sko100e 0.000(10)  0.000  0.000 0.000(7) 0.001  0.004
sko100f 0.000(7) 0.002  0.005 0.000(7) 0.003  0.021
will00 0.000(9) 0.000  0.002 0.000(10)  0.000  0.000
thol50 0.002(0) 0.022  0.080 0.000(1) 0.051  0.123
avg.value | 0.056 0.094  0.136 0.043 0.092  0.130
avgrank | 1.571 1.500  1.595 1.429 1.500  1.405

* FPBS-QAP can also be treated as a variant of BMA [10] by removing the
mutation procedure.

Table V indicates that FPBS-QAP performs better than
FPBS-QAP,. FPBS-QAP achieves a better or equal BPD
value on all instances except tai60a. For tai60a, the BPD
value of FPBS-QAP is 0.165%, which is only marginally
worse than 0.164% for FPBS-QAP,. The average BPD value
of FPBS-QAP is also better than that of FPBS-QAP,, i.e.,
0.043% < 0.056%. FPBS-QAP also achieves better results in

terms of the average APD value and the average WPD value.
For the average rank, FPBS-QAP always achieves a better or
equal average rank on all three indicators.

Table V shows that both algorithms achieve the same BPD
value on 16 out of the 21 instances, and FPBS-QAP outper-
forms FPBS-QAP;y on 4 out of the 5 remaining instances.
Importantly, while FPBS-QAPy misses the best-known values
of two of the hardest instances (tai50a and tho150) (indeed,
these BKV can only be reached by few state-of-the-art algo-
rithms), FPBS-QAP manages to hit these values. Given the
small number of different BPD values, it is not surprising that
there is no significant difference between these two algorithms
in terms of the BPD indicator. These observations confirm
that the data mining and pattern-based solution construction
procedures contribute to the effectiveness of the FPBS-QAP
algorithm, in particular for solving difficult instances.

VI. CONCLUSIONS AND FURTHER WORK

We presented the frequent pattern based search (FPBS)
method, which aims to unify data mining and optimization
within the population-based search approach. The method
relies on a modular and component-based approach to enable
a wide range of applications, including in particular subset
selection and permutation problems. We demonstrated the
viability of the proposed FPBS method on the well-known
quadratic assignment problem. Extensive computational results
on popular QAPLIB benchmarks showed that the resulting
FPBS-QAP algorithm performs remarkably well compared to
very recent state-of-the-art algorithms.

For future work, two directions can be followed. First, this
study focused on exploring maximal frequent itemsets. It is
worth studying alternative patterns like sequential patterns and
graph patterns. Second, the proposed method intends to be
of general-purpose, it would be interesting to investigate its
application to more combinatorial problems, particularly other
permutation problems (e.g., linear ordering and traveling sales-
man problem) and subset selection problems (e.g., diversity
and critical node problems).
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APPENDIX
A. Parameter tuning

To investigate the impact of number of mined patterns
m (m > 1) on the new solutions constructed by the solution
construction method, we varied the values of m within a
reasonable range and compared their performances. The box
and whisker plots shown in Fig. 5 are obtained by considering
ten different values m € {1,3,...,21}. The experiments
were conducted on four representative instances selected from
different families (tail00a, tail50b, sko100f and tho150). For
each m value and each instance, we ran the algorithm 10 times
with t,,4, = 30 minutes.
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Fig. 5. Impact of the number of patterns m in pattern set. Box and whisker
plots corresponding to 10 different values of m € {1,3,...,21} in terms of
the percentage deviation (PD) from the best-known value.

In Fig. 5, X-axis indicates the values for m and Y-axis
shows the performance (i.e., the percentage deviation from the
best-known value). We observe small PD fluctuations ranging
from 0 to 0.6% and depending on the instances. Indeed,
although there are some outliers, the first quartile is very close
to the third quartile for each m value. This indicates that
even if m influences the performance of the algorithm, this
influence is limited and in particular depends on the structure
of the problem instances. Generally, our experiments on other
parameters of FPBS-QAP led to similar conclusions. That is,
they do influence the performance of the algorithm according
to the tested instances, yet their impacts are rather limited. As
a result, the parameter values given in Table I can be used as
the default values of FPBS-QAP.
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