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Abstract

The maximum s-plex problem is an important model for social network analysis
and other studies. In this study, we present an effective frequency-driven multi-
neighborhood tabu search algorithm (FD-TS) to solve the problem on very large
networks. The proposed FD-TS algorithm relies on two transformation operators
(Add and Swap) to locate high-quality solutions, and a frequency-driven pertur-
bation operator (Press) to escape and search beyond the identified local optimum
traps. We report computational results for 47 massive real-life (sparse) graphs from
the SNAP Collection and the 10th DIMACS Challenge, as well as 52 (dense) graphs
from the 2nd DIMACS Challenge (results for 48 more graphs are also provided in
the Appendix). We demonstrate the effectiveness of our approach by presenting
comparisons with the current best-performing algorithms.
Keywords: Clique relaxation; Heuristic; Massive network; s-plex.

1 Introduction

Given a simple undirected graph G = (V,E) with a set of vertices V and a
set of edges E, let N(v) denote the set of vertices adjacent to v in G. Then,
an s-plex for a given integer s ≥ 1 (s ∈ Z+) is a subset of vertices C ⊆ V
that satisfies the following condition: ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s. Thus,
each vertex of an s-plex C must be adjacent to at least |C| − s vertices in the
subgraph G[C] = (C,E ∩ (C × C)) induced by C.
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The maximum s-plex problem involves finding, for a fixed value of s, an s-
plex of maximum cardinality among all possible s-plexes of a given graph. As
indicated in [3], the maximum s-plex problem can be formulated as a binary
linear program as follows:

max ωs(G) =
∑
i∈V xi

s.t.
∑
j∈V \(N(i)∪{i}) xj ≤ (s− 1)xi + d̄i(1− xi),∀i ∈ V ,

xi ∈ {0, 1}, ∀i ∈ V

(1)

where xi is the binary variable associated with vertex i, such that xi = 1 if
vertex i is in an s-splex, xi = 0 otherwise. Also, d̄i = |V \N(i)|−1 denotes the
degree of vertex i in the complement graph Ḡ = (V, Ē). Note that i /∈ N(i)
by definition.

The s-plex concept was first introduced for graph-theoretic social network
studies [27]. The decision version of the maximum s-plex problem with any
fixed positive integer s is known to be NP-complete [3]. When s equals 1, the
maximum s-plex problem reduces to the popular maximum clique problem,
the decision version of which was among Karp’s 21 NP-complete problems [14].
The maximum s-plex problem is often referred to as a clique relaxation model
[23, 24]. Other clique relaxation models include s-defective clique [37], quasi-
clique [8,21,22], and k-club [7], which are defined by relaxing the edge number,
the edge density, and the pairwise distance of vertices in an induced subgraph,
respectively. In addition to studies of social networks, the maximum s-plex
problem has also been investigated in other contexts [5, 6, 10]. For instance,
an interesting application of the maximum s-plex model was described in
[6], where the maximum s-plex algorithm of [29] was used to find profitable
diversified portfolios on the stock market.

Similar to a clique, an s-plex C has the heredity property, which means that
every subset of vertices C ′ ⊂ C remains an s-plex, i.e., the subgraph induced
by C ′ always has the property of an s-plex [29]. The most successful combi-
natorial algorithms for s-plex essentially rely on the heredity property and a
polynomial feasibility verification procedure. For example, a powerful exact
algorithmic framework was introduced in [29] for detecting optimal hereditary
structures (s-plex and s-defective clique), which is based on the maximum
clique algorithm proposed in [20]. This algorithm performed well on the max-
imum s-plex problem for graphs in the 2nd DIMACS Challenge and popular
large-scale social networks. Other exact algorithms for the s-plex problem in-
clude the following. A branch-and-cut algorithm was introduced in [3] based
on a polyhedral study of the s-plex problem. Two branch-and-bound algo-
rithms were presented in [16], which are based on popular exact algorithms
for the maximum clique problem [9,20]. In [19], exact combinatorial algorithms
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were investigated using methods from parameterized algorithmics. Finally, a
parallel algorithm for listing all the maximal s-plexes was introduced in [36].

However, given the computational complexity of the maximum s-plex prob-
lem, any exact algorithm is expected to require an exponential computational
time to determine the optimal solution in the general case. Thus, it is useful to
investigate heuristic approaches, which aim to provide satisfactory solutions
within an acceptable time frame, but without a provable optimal guarantee for
the solutions obtained. However, our literature review found only two heuris-
tics for the maximum s-plex problem [12,17], which are based on the general
GRASP method [26]. This situation contrasts sharply with the huge body of
heuristics for the conventional maximum clique problem [34] and other clique
relaxation problems [24]. We note that exact and heuristic approaches may
complement each other, and together they can enlarge the classes of problem
instances that can be solved effectively. Moreover, they can even be combined
within a hybrid approach, as exemplified in [17] where the GRASP heuristic
was used to enhance the exact algorithm proposed in [3] to solve very large
social network instances.

In this study, we aim to partially fill the gap in terms of heuristic methods
for solving the maximum s-plex problem by introducing an effective heuristic
approach. The main contributions of this study can be summarized as follows.

• From an algorithmic perspective, this is the first study to employ the tabu
search metaheuristic [11] to solve the maximum s-plex problem (Section
2). Thus, the proposed frequency-driven tabu search algorithm (FD-TS)
integrates several original components. First, FD-TS jointly employs three
dedicated move operators called Add, Swap, and Press, two of which (Swap
and Press) are applied for the first time to the maximum s-plex problem.
Second, we introduce a frequency-based mechanism for perturbation and
constructing initial solutions, which is proven to be more effective than a
random mechanism. We also apply a peeling procedure to dynamically re-
duce the graph with the best identified lower bound. Finally, specific design
decisions are made in order to handle very large networks with thousands
and even millions of vertices.
• From a computational perspective, our experimental results indicate that

the proposed algorithm performs very well with both sparse and dense
graphs (Section 4). For 47 very large networks from the SNAP collection
and the 10th DIMACS Challenge benchmark set, our algorithm success-
fully obtained or improved the best-known results from previous studies for
s = 2, 3, 4, 5. Our algorithm even proved the optimality of many instances
for the first time using the peeling procedure. For 52 dense graphs from the
collection used in the 2nd DIMACS Challenge, our algorithm also obtained
or improved the best-known results for s = 2, 3, 4, 5. To comprehensively
assess the performance of our algorithm, we compared FD-TS with several
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cutting edge algorithms, including the commercial CPLEX solver (version
12.6.1). Results of 48 additional graphs for the s-plex problem are also pre-
sented for the first time in the Appendix.

The remainder of this paper is organized as follows. Section 2 presents the
FD-TS algorithm. Section 3 discusses the implementation and complexity is-
sues related to FD-TS. Section 4 presents the computational results obtained
on benchmark instances and provides comparisons with state-of-the-art algo-
rithms. In the final section, we give our conclusions and discuss future research.

2 FD-TS algorithm for the maximum s-plex problem

2.1 General procedure

The general scheme of the proposed FD-TS algorithm is shown in Algo-
rithm 1. FD-TS starts from an initial feasible solution (s-plex) built using
the Init Solution() procedure (Section 2.4), before entering the main multi-
neighborhood local search procedure, Freq Tabu Search(), to improve the ini-
tial solution (Section 2.5). A vector freq, which records the number of times
each vertex is moved in the last round of the Freq Tabu Search() procedure,
is initialized as a null vector (Algorithm 1, line 3). This vector is used by
the Init Solution() procedure as well as the perturbation method explained in
Section 2.5.3. If the solution returned by tabu search is better than the cur-
rent best solution C∗, C∗ is updated (Algorithm 1, lines 7–8). The new lower
bound |C∗| is then given to the Peel() procedure (Section 2.6) to reduce the
current graph (Algorithm 1, line 9). If Peel() returns a reduced subgraph with
fewer vertices than |C∗|, then C∗ must be an optimal solution and the overall
algorithm stops. Otherwise, the algorithm enters a new round of search to
build a new starting solution with Init Solution(), before improving the new
starting solution with Freq Tabu Search() and reducing the graph with Peel()
if this is possible. The algorithm continues until a given stopping condition
(e.g., a cut-off time limit) is met.

2.2 Preliminary definitions

Given G = (V,E), s ∈ Z+, let C ⊆ V be a subset of vertices and N(v) the
set of vertices adjacent to v. The following definitions are provided, which are
useful for the description of our algorithm.

We say that C is a (feasible) solution or an s-plex if ∀v ∈ C, |N(v) ∩ C| ≥
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Algorithm 1: Main framework of Frequency Driven Tabu Search

Input: Problem instance (G, s), predefined sample size q, maximum allowed
iterations in tabu search L.

Output: The largest s-plex ever found
begin1

C∗ ← ∅; /* the best solution found so far */2

freq(v)← 0 for all v ∈ V ; /* frequency count of vertex moves */3

while the stopping condition is not met do4

{C, freq} ← Init Solution(G, s, freq, q); /* §2.4 */5

{C, freq} ← Freq Tabu Search(G, s, C, freq, L); /* §2.5 */6

if |C| > |C∗| then7

C∗ ← C;8

G← Peel(G, s, |C∗|); /* §2.6 */9

if |V | ≤ |C∗| then10

return C∗ ; /* return the best solution found */11

end12

return C∗13

|C| − s; otherwise, C is an infeasible solution (i.e., ∃v ∈ C, |N(v) ∩ C| <
|C| − s). For a vertex v ∈ C, we say that v is saturated (first introduced
in [29]) if |N(v) ∩ C| = |C| − s. If |N(v) ∩ C| < |C| − s, v is deficient.
Obviously, whenever a deficient vertex exists in C, C is an infeasible solution.
The saturated set S of set C is defined as the set of all saturated vertices in
C, i.e., S = {v ∈ C : |N(v) ∩ C| = |C| − s}. We can see that if C is a 1-plex
(i.e., a clique), then all the vertices in C are saturated. The search space Ω
of G includes all s-plexes, Ω = {C ⊆ V : ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s}. For
brevity, we also use N(C) to denote the set of vertices in V \ C with at least
one adjacent vertex in C, N(C) =

⋃
v∈C N(v) \ C.

In Figures 1 and 2, we provide examples of S and N(C), as well as their uses in
the definitions of the Add and Swap operators introduced in the next section.

Finally, the quality of any candidate solution (s-plex) C ∈ Ω is evaluated by
its cardinality |C|. Thus, given two candidate solutions C ′ and C, C ′ is better
than C if |C ′| > |C|.

2.3 Move operators

Our FD-TS algorithm explores the search space Ω by jointly applying three
move (or transformation) operators, Add, Swap, and Press, to generate new
solutions in Ω from the current solution (or s-plex). If we let C be the incum-
bent solution, then each move operator transfers one vertex v ∈ N(C) inside
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Fig. 1. Suppose s = 2, C = {0, 1, 2} is the incumbent solution, S = {1, 2} is the
saturated set of C, then M1 = {3} and C ∪ {3} is an extended s-plex.
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Fig. 2. Suppose s = 2, C = {0, 1, 2, 3} is the incumbent solution, S = {1, 2} is the
saturated set of C, N(C) = {4, 5}. Then for the Swap operator, we get A = {4} and
exchangeable pair < 4, 1 >; B = {5} and exchangeable pairs < 5, 0 > and < 5, 3 >.

C and eliminates zero, one, or more vertices from C to keep C feasible. If
we let OP be a move operator, then we use C ′ ← C ⊕ OP (v,X) to denote
the new (neighboring) solution obtained by applying OP to C (X represents
the subset of vertices eliminated from C, which can possibly be empty). The
details of these operators are described as follows. For simplicity, when the
subset of eliminated vertices X is empty or a singleton, the set notation of X
is ignored.

(1) Add(v): This operator extends the incumbent solution C by including
a new vertex from N(C). Clearly, each application of this operator will
increase the cardinality of the solution by one, which always leads to
a better solution. However, we must take special care to ensure that
the extended solution remains an s-plex. Thus, we identify the following
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vertex subset M1 ⊆ N(C), which has the required feasibility property
(first introduced in [29]):

M1 = {v ∈ N(C) : |N(v) ∩ C| ≥ |C| − s+ 1, S \N(v) = ∅} (2)

By definition (2), if a vertex v in N(C) is adjacent to at least |C|−s+1
vertices in C and adjacent to all the saturated vertices of C, then adding
v to C yields a new solution C ′, the size of which is increased by one (see
Fig. 1 for an example).

The set of neighboring solutions of C induced by Add(v) is then given
by:

NAdd = {C ′ : C ′ ← C ⊕ Add(v), v ∈M1} (3)

The Add operator is used by the search algorithm to improve the qual-
ity of the incumbent solution.

(2) Swap(v, u): This operator exchanges a vertex v ∈ N(C) with another
vertex u in the incumbent solution C (u ∈ C), while keeping the quality
of the solution unchanged. Similar to Add, to ensure the feasibility of the
transformed solutions, we need to identify the set of suitable candidate
pairs < v, u > ∈ N(C) × C. Considering the definition of s-plex, a pair
of vertices < v, u > is eligible for exchange only if it satisfies one of the
following two conditions.
• First, v is adjacent to at least |C| − s vertices in C and u is the unique

saturated vertex that is not adjacent to v (i.e., S \N(v) = {u}).
• Second, v is adjacent to exactly |C| − s vertices in C and these |C| − s

vertices must include all the saturated vertices (i.e., S \N(v) = ∅), and
u is an arbitrary vertex from C \N(v).
We use sets A and B to denote the candidate sets of v that satisfy the

two conditions above, respectively, (see Fig. 2 for an example of these
two types of vertices):

A = {v ∈ N(C) : |N(v) ∩ C| ≥ |C| − s, |S \N(v)| = 1}
B = {v ∈ N(C) : |N(v) ∩ C| = |C| − s, S \N(v) = ∅} (4)

The set of neighboring solutions induced by Swap(v, u) is then given
by:

NSwap = {C ′ : C ′ ← C⊕Swap(v, u), (v ∈ A, u ∈ S\N(v))∨(v ∈ B, u ∈ C\N(v))}
(5)

If we let M2 = A ∪ B, a practical method for generating a suitable
pair < v, u > is to first build the set M2, then pick a vertex v from M2,
and finally determine an appropriate vertex u from S \N(v) or C \N(v).
The Swap operator is used by the search algorithm to visit neighboring
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solutions of equal quality, so a transition with Swap is also called a side-
walk move.

(3) Press(v,X): If we let M3 = N(C) \ (M1 ∪M2), this operator adds one
vertex v ∈ M3 to C and then eliminates two or more vertices from C \
N(v) so the s-plex structure of the new solution is maintained. Obviously,
given a vertex v /∈ M1, the set C ′ = C ∪ {v} is an infeasible solution
because v or the vertices in S \ N(v) become deficient (see Section 2.2)
in G[C ′]. Therefore, to restore the feasibility of the transformed solution,
this operator iteratively eliminates vertices from (C ′ \ {v}) \ N(v) (i.e.,
C \N(v)) until the solution becomes an s-plex. Preference is given to the
deficient vertices in C \N(v) and if no deficient vertex exists in C \N(v),
the vertices to be eliminated are selected randomly from C. All of the
eliminated vertices are collected in X. The set of neighboring solutions
induced by the Press(v,X) operator is given by:

NPress = {C ′ : C ′ ← C ⊕ Press(v,X), v ∈ V \ C,X ⊆ C \N(v)} (6)

By definition, Press eliminates at least two vertices from the solu-
tion (i.e., |X| > 1). Thus, the application of Press always degrades the
quality of the current solution. Hence, this operator is only used by the
perturbation procedure when the Add and Swap operators are no longer
applicable, or when the search stagnates in local optima.

Next, we provide some additional comments about these operators and discuss
some implementation issues.

• Add and Swap have been used in several algorithms for the maximum clique
problem and the equivalent maximum independent set problem [4,13,25,35].
However, given the generality of the maximum s-plex problem, the defini-
tions of these operators are different and more complex in the present study;
in particular, the saturated set S must be involved. The Press operator can
be treated as a dedicated application to the s-plex problem of the PUSH
operator introduced in [38] for the maximum weight clique problem.
• It should be noted that traditional maximum clique benchmark graphs, such

as those from the 2nd DIMACS Challenge, include many dense graphs.
Thus, most maximum clique algorithms typically operate on the comple-
ment graph Ḡ to search for the maximum independent sets in terms of run-
time efficiency [13, 25, 33]. The FD-TS algorithm proposed in the present
study is designed to handle very large real-world networks, which are typi-
cally sparse graphs. Consequently, FD-TS operates directly on the original
graph based on its adjacency-list representation. In addition, we restrict the
candidate vertices considered by the three move operators to N(C) instead
of V \C because N(C) is much smaller than V \C for very large networks.
Indeed, given the size of the networks considered (up to millions of ver-
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tices), even a simple operation such as scanning all the vertices of V \ C
becomes too expensive, and it can slow down the algorithm considerably.
Thus, special care is taken to avoid ineffective or unpromising examinations.
• When Swap and Press are applied, each dropped vertex is forbidden from

rejoining the solution during a number of subsequent iterations to avoid
revisiting previously examined solutions. This is achieved by using a tabu
list (see Section 2.5.4).

2.4 Constructing the initial solutions

Each round of the FD-TS algorithm requires a starting solution (see Algorithm
1, line 5). In general, the starting solutions can be generated by any method
that ensures the s-plex property. In our method, we employ the following
construction procedure, which applies the Add operator while considering the
frequency information for vertex moves.

From a random sample of q vertices (q ∈ [50, 150]), we use the vertex with the
minimum frequency (ties are broken randomly) to create a singleton set C.
From the singleton s-plex C, the procedure repeats the following three steps
to extend the current solution: 1) generate the M1 set from N(C), 2) select
one vertex with the minimum frequency from M1 (ties are broken randomly),
and 3) add the selected vertex to C. We repeat this process until M1 becomes
empty. The final s-plex C is returned as the initial solution.

The intuitive assumption that less frequently moved vertices are preferred is
intended to make the initial solution as diverse as possible. Moreover, using a
sample of q vertices instead of the whole set V for seeding the solution helps
to reduce the computational overheads in the initialization procedure. This
is particularly true for massive graphs because scanning all the vertices of
the graph can be time consuming in this case. In Section 4.2, we discuss the
calibration of the parameter q.

2.5 FD-TS

2.5.1 General procedure

The key search procedure employed in the FD-TS algorithm (see Algorithm 2)
combines a double-neighborhood search procedure (we refer to this procedure
as TS2; Algorithm 2, lines 11–24) to facilitate intensification (to obtain local
optima) and a frequency-based perturbation procedure (we refer to this pro-
cedure as PERTURB; Algorithm 2, lines 25–30) for diversification (to escape
from local optima).
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Algorithm 2: Frequency driven tabu search
Input: Problem instance (G, s), current solution C, max. allowed iterations L
Output: The largest s-plex found Cbest

begin1
Cbest ← C;2
tabu list← ∅;3

l← 0 ; /* Counter of cycles of TS2 + PERTURB runs */4
fix← ∅; /* The vertices that are forbidden to drop */5
freq(v)← 0 for all v ∈ V ; /* Reset frequency records */6
λ← 0 ; /* Counter of consecutive non-improving iterations */7

// Run TS2 + PERTURB a maximum of L iterations

while l ≤ L do8
// Start the two neighborhood tabu search procedure - TS2

Updating the saturated subset S ; /* Sect. 2.2 */9
Decompose set N(C) into M ′

1 = {v ∈M1 : v /∈ tabu list ∨ |C|+ 1 > |Cbest|},10
M ′

2 = {v ∈M2 : v /∈ tabu list}, M ′
3 = {v ∈M3 : v /∈ tabu list} ; /* Sect. 2.3 */

if M ′
1 6= ∅ then11
v ← a random vertex from M ′

1;12
C ← C ⊕Add(v);13
freq(v)← freq(v) + 1;14

else if M ′
2 6= ∅ then15

(v, u)← two random exchangeable vertices from M ′
2 ×N(C); /* See Sect. 2.5.2 for16

selection rule */

C ← C ⊕ Swap(v, u);17
Add u to tabu list with tabu tenure Tu; /* Sect. 2.5.4 */18
freq(v)← freq(v) + 1, freq(u)← freq(u) + 1;19

if |C| > |Cbest| then20
Cbest ← C;21
λ← 0;22

else23
λ← λ+ 1;24

// Run the PERTURB procedure

if (No feasible Add and Swap operation) ∨ (λ > s ∗ |Cbest|) ∧M ′
3 6= ∅) then25

v ← a vertex with maximum freq(v) from M ′
3, break ties randomly;26

C ← C ⊕ Press(v,X) ; /* X collects the removed vertices from C, Sect. 2.3 */27
fix← {v}, λ← 0;28
freq(v)← 0, freq(u)← freq(u) + 1 for all u in X;29
Add each u ∈ X to tabu list with tabu tenure Tu; /* Sect. 2.5.4 */30

l← l + 131

end32
Return Cbest, freq;33

Based on a given initial solution, TS2 uses Add and Swap to improve the cur-
rent solution until search stagnation occurs. PERTURB then applies Press to
modify (perturb) the current local optimum and passes the modified solution
to TS2 for further improvement. FD-TS iterates this TS2+PERTURB process
a maximum of L times and then starts the next round of its search procedure.

In addition to the three move operators (Add, Swap, and Press), FD-TS em-
ploys a tabu mechanism (see Section 2.5.4) [11] and a frequency technique to
ensure the effective exploration of the search space. A tabu list (tabu list) is
used to mark the vertices that are forbidden from joining the current solu-
tion during a specific number of iterations. Information related to the move
frequency of each vertex v is collected, where freq(v) records the number of
times that v is operated upon by a move operator in the recent history. Ini-
tially, tabu list is empty and the frequency of each vertex is set to 0. The
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fix set (a singleton set used by the PERTURB procedure) records an added
vertex, which is forbidden from moving out of the current solution in TS2

and the counter l counts the completed iterations, the upper limit of which
is given by the parameter L. Moreover, in order to avoid being trapped by
local optima, a counter λ records the consecutive iterations that have passed
since the last improvement of the current solution. Each time that the counter
λ reaches a threshold, the perturbation procedure is triggered to modify the
current solution using the Press operator.

At the beginning of each iteration, set C is checked to identify the saturated
subset S. Next, N(C) is decomposed into three disjoint subsets: M ′

1, M
′
2,

and M ′
3. These sets correspond to M1, M2, and M3 (defined in Section 2.3),

respectively, but they exclude the vertices in the tabu list. However, a vertex
v ∈ M1 is always retained in M ′

1 if adding v to C leads to a new solution
that is better than the best solution found previously, i.e., |C| + 1 > |Cbest|,
regardless of the tabu status of the vertex.

2.5.2 Solution improvement with Add and Swap

The current solution is transformed successively by applying Add and Swap.
Preference is given to the Add operator. Thus, whenever M ′

1 is not empty, Add
is applied to improve the current solution by adding one vertex of M ′

1 to the
solution (Algorithm 2, lines 11–14). If no vertex can be added to the solution
(M ′

1 = ∅), but M ′
2 is not empty, then the search continues with the Swap(v, u)

operator by visiting solutions of equal quality (Algorithm 2, lines 15–19).

To provide Swap(v, u) with an appropriate exchangeable pair < v, u >, v is
first selected randomly from M ′

2, and u is then selected from the candidate set
defined by the rules given in Section 2.3, while excluding the vertex recorded
in fix. In particular, if v is a vertex of type (set) A, then u is selected from
S \ (N(v) ∪ fix) (which is a trivial set with zero or one vertex); and if v is a
vertex of type (set) B, u is selected randomly from C \ (N(v) ∪ fix). If there
is no eligible candidate for u (S \ N(v) = fix or C \ N(v) = fix), then we
simply give up attempting to apply Swap(v, u) and move on to the PERTURB
procedure (Algorithm 2, line 25).

2.5.3 Perturbation with Press

Inevitably, at a certain search stage, no candidate vertex v or candidate pair
< v, u > is available for the Add(v) or Swap(v, u) operator (i.e., both M ′

1 and
M ′

2 are empty or no eligible vertex can be found for u), or the search stagnates
on the Swap(v, u) operator. In the latter case, search stagnation occurs when
the current solution has not been improved for s∗|Cbest| consecutive iterations.
The self-adaptive threshold, s ∗ |Cbest|, is identified based on the assumption
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that if the current s-plex cannot be improved even after the replacement of
each of its vertices at least s times by the Swap operator, then no better
solution can be found in the current search region. To continue the search, the
algorithm triggers the PERTURB procedure in order to move the search to a
distant new region. This procedure applies the Press(v,X) operator, where v
is the vertex from M ′

3 with the largest freq value and X collects the dropped
vertices from C \ N(v) to recover a feasible solution (Algorithm 2, lines 26–
27). It is important to reset the frequency of vertex v (Algorithm 2, line 29),
or the accumulated frequency of this vertex could dominate other vertices
in subsequent cycles. The dropped vertices in X are added to the tabu list
(Algorithm 2, line 30) and they will not be considered during the forbidden
period, as explained in the next section.

2.5.4 Tabu tenure and management

As mentioned above, to avoid revisiting recently examined solutions, we use a
tabu list to record the vertices dropped from the current solution in order to
exclude them from consideration during a number of consecutive iterations.
According to the definitions in Section 2.3, each application of Swap(v, u)
or Press(v,X) removes one or more vertices from the current s-plex. Each
dropped vertex u will be kept in the tabu list for the next Tu iterations (the
tabu tenure), which is set according to the following two rules:

Tu = 10 + random(0, |M2|), u is dropped by Swap(v, u)

Tu = 7, u ∈ X is dropped by Press(v,X)
(7)

where random(0, I) is a random integer in {0, . . . , I}. These rules are based
on previous studies of the related maximum clique problem [13,35]. The first
rule estimates the forbidden period for vertices for side-walk moves with the
Swap operator, which ensures that a dropped vertex will not be reconsidered
for at least 10 iterations, and the second rule for the Press operator prevents
any dropped vertex from being reconsidered for a small number of iterations
(seven in this case). Based on experiments, we observed that other values
around these tabu tenures obtained similar performance. Thus, we selected
the values used in [13,35].

Finally, the tabu list is more useful when the number of candidate vertices
for Swap or Press is limited, because a dropped vertex u will have a high
probability of being added again to the solution if it is not prohibited. However,
if numerous candidate vertices exist (such as in massive graphs), there is little
chance of a dropped vertex being re-selected immediately. Thus, the tabu
mechanism is more useful for graphs of limited size than massive graphs.
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2.6 Reducing large (sparse) graphs

Given a graph G = (V,E) and a parameter s, suppose that after tabu search
(Algorithm 1, line 6), the current best s-plex has cardinality |C∗| (lower bound
of the maximum s-plex of G). Clearly, to further improve C∗, considering any
vertex in V with a degree smaller than or equal to |C∗| − s would not be
beneficial because such a vertex cannot extend C∗. Thus, these vertices can
be safely removed from the graph [1]. In FD-TS, we explore this strategy using
the Peel(G, s, |C∗|) procedure (Algorithm 1, line 9), which recursively deletes
the vertices (and their incident edges) with a degree less than or equal to
|C∗| − s until no such vertex exists. Finally, if the subgraphs obtained after
Peel(G, s, |C∗|) have fewer vertices than |C∗|, then C∗ must be an optimal
solution because no better solution can exist.

For very dense graphs, the Peel procedure may not reduce the graph size
greatly because the degrees of most vertices will remain larger than |C∗| − s.
However, this technique is highly effective when it is applied to large sparse
graphs such as massive real-world complex networks. As shown in Section
4.3, by using the high-quality lower bound |C∗| provided by our tabu search
procedure, this pruning technique can effectively reduce large sparse graphs
to very small graphs (even the null graph).

We note that the idea of removing unpromising vertices was used previously
in a GRASP heuristic for detecting dense subgraphs (quasi-cliques) in massive
sparse graphs [1], as well as in several exact algorithms for the maximum clique
and s-plex problems [3, 29,32].

3 Implementation and time complexity

To effectively implement FD-TS, we maintain two structures: the vector degC [v]
(i.e., degC [v] = |N(v)∪C|, v ∈ V ) and the set N(C) (i.e., N(C) =

⋃
v∈C N(v)\

C), which are updated whenever the current solution C changes. Thus, each
time a vertex (say u) is added to or removed from C by a move operator, we
increase or decrease degC [v] by one for each v ∈ N(u). Since the set N(C)
must only contain vertices with degC [v] > 0, it is also adjusted when degC [v]
changes.

Next, we discuss the time complexity of the main components of the proposed
algorithm. First, we consider the procedure for constructing initial solutions
(Section 2.4). In each iteration, we need to build the subset M1 from N(C)
and update degC [v] and N(C) after adding a vertex, which can be achieved
in O(|N(C)|+ ∆) (∆ = maxv∈V {|N(v)|}).
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The efficiency of TS2 (Section 2.5) and PERTURB (Section 2.5.3) is closely
related to the method used for building sets M ′

1, M
′
2, and M ′

3 from N(C) from
scratch in each iteration. In our implementation, we build the saturated set
S (Algorithm 2, line 9) from C in a time of O(|C|) at the very beginning of
each iteration. Then, for each vertex in N(C) (e.g., u), we count the number
of saturated vertices in the set of vertices adjacent to u, i.e., |S ∩N(u)| (the
saturated connectivity of u). Obviously, if the saturated connectivity of u is
0, S \ N(u) = ∅; and if the saturated connectivity of u is 1, |S \ N(u)| = 1.
According to the definitions of M1, M2, and M3, once the saturated connec-
tivity of u and degC [u] is known, it is trivial to identify u as an element of
M ′

1, M
′
2 or M ′

3. Consequently, decomposing N(C) (Algorithm 2, line 10) can
be achieved in O(|N(C)| ∗∆).

Next, we consider the time complexity when employing the move operators.
First, for the Add operator, we only need to update the vector degC [v] and set
N(C) after reallocating a vertex v, which can be achieved in O(∆). Second, to
apply Swap with a vertex v ∈ N(C), we first need to identify the other vertex
u ∈ C. According to the rule defined in Section 2.5.2, the sets S \ N(v) and
C\N(v) can be identified by traversing sets C and N(v) respectively. Thus, the
time required to identify u is bounded by O(|C|+∆) = O(2∗∆+s) = O(∆+s)
(because |C| ≤ ∆ + s), while updating degC [v] and N(C) is bounded by
O(2 ∗∆) = O(∆) because two vertices are displaced during each application
of Swap. Finally, each application of the Press operator can be achieved in
O(∆2).

Overall, one operator (Add, Swap or Press) is applied during one iteration, so
the total time complexity of TS2 and PERTURB for each iteration is bounded
by O(|C|+|N(C)|∗∆+∆2). We note that for sparse graphs, |C|, N(C), and ∆
are usually extremely small compared with the number of vertices in a graph.

4 Computational assessment

4.1 Benchmarks

In this section, we present computational evaluations of the proposed FD-TS
algorithm for the maximum s-plex problem based on the following three sets
of 79 (19, 17, and 43, respectively) benchmark graphs.

• Stanford Large Network Dataset Collection (SNAP) 1 . SNAP pro-
vides a large range of large-scale social and information networks [15], in-

1 http://snap.stanford.edu/data/
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cluding graphs retrieved from social networks, communication networks,
citation networks, web graphs, product co-purchasing networks, Internet
peer-to-peer networks, and Wikipedia networks. Some of these networks
are directed graphs, so we simply ignored the direction of each edge and
eliminate self-looping and duplicated edges.
• The 10th DIMACS Implementation Challenge Benchmark (10th
DIMACS) 2 . This testbed contains many large networks, including artifi-
cial and real-world graphs from different applications. This benchmark set
is popular for testing graph clustering and partitioning algorithms. More
information about the graphs can be obtained from [2].
• The 2nd DIMACS Implementation Challenge Benchmark (2nd
DIMACS) 3 . This set is from the 2nd DIMACS Implementation Challenge
for the maximum clique problem. These instances cover real-world problems
(e.g., coding theory, fault diagnosis, and the Steiner triple problem) and
random graphs. The instances range from small graphs (50 vertices and
1,000 edges) to large graphs (4,000 vertices and 5,000,000 edges). These
DIMACS graphs are very popular and they are generally used as a testbed
for evaluating clique and s-plex algorithms. Unlike the instances in the two
first benchmark sets, most of these instances are dense graphs.

4.2 Experimental protocol and parameter tuning

The proposed FD-TS algorithm was implemented in C++ 4 and compiled by
g++ with optimization option ‘-O3’. All experiments were conducted on a
computer with an AMD Opteron 4184 processor (2.8 GHz and 2 GB RAM)
running CentOS 6.5. When we solved the DIMACS machine benchmarking
program fdmax.c 5 without compilation optimization flag, the run time on
our machine was 0.40, 2.50, and 9.55 seconds for graphs r300.5, r400.5, and
r500.5, respectively.

An interesting feature of FD-TS is that it has very few parameters. In addition
to the tabu tenure discussed in Section 2.5.4, the parameter q (the sample
number of vertices in Section 2.4) was set to 100. As indicated in Section
2.4, q is not a sensitive parameter so we simply fixed it to the middle value in
the range of [50,150]. However, according to our experiments, the best value of
parameter L, which specifies the maximum number of iterations in each round
of tabu search, was highly dependent on the instance considered. We compared
different values in {10, 100, 1000, 5000} for L with s = 2, 3, 4, 5 for six selected
instances from the 2nd DIMACS benchmark set (MANN a27, brock400 2,

2 http://www.cc.gatech.edu/dimacs10/downloads.shtml
3 http://www.cs.hbg.psu.edu/txn131/clique.html
4 We will make our program available.
5 ftp://dimacs.rutgers.edu/pub/dsj/clique/
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brock800 2, C1000.9, keller6, p hat1500-3 ). As a trade-off, we retained L =
1000 because the algorithm achieved the best average solution quality in most
cases. We also observed that fine tuning L for each pair (instances, s) could
improve the performance. However, to report our computational results, we
used the fixed setting L = 1000, which allowed the algorithm to obtain highly
competitive results. Given the stochastic nature of our algorithm, we ran FD-
TS to solve each instance 20 times for each given s, where each run was limited
to a maximum of 180 CPU seconds (3 minutes).

4.3 Computational results for very large networks from SNAP and the 10th
DIMACS Challenge

Table 1 shows the performance of FD-TS on 47 instances taken from the SNAP
and 10th DIMACS benchmarks, namely, all 37 instances tested in [29] for the
s-plex problem, as well as 10 instances from the recent literature [32]. Note
that in [32], only the best clique size was reported, which is just a lower bound
of the maximum s-plex for s = 2, 3, 4, 5. To be complete, we also report our
results for the remaining 20 instances from [32] in the Appendix (Table A.1).

For each instance, the columns “Instance,” “|V |,” and “|E|” indicate basic
information for the name, number of vertices, and number of edges, respec-
tively. For each s = 2, 3, 4, 5, column “BKV” denotes the best-known objective
values collected from [29] (for the first 37 instances) and [32] (for the last 10
instances). For the items in this column, an additional symbol “*” indicates
that this objective value was proved to be optimal in [29], and the symbol ω
shows that this value is the maximum clique size mentioned in [32] (which is
a lower bound of the maximum s-plex). The “max” column shows the best
objective value found by FD-TS among its 20 trials and the “time” column
indicates the average time (in seconds) required for runs to obtain the best ob-
jective value (excluding the time spent reading the graph). The “|V ′|” column
shows the number of remaining vertices in the reduced subgraph after execut-
ing the Peel(G, s,max) procedure (see Section 2.6). As mentioned earlier, if
the number of vertices in the reduced subgraph (column “|V ′|”) is less than
or equal to the lower bound (column “max”), then the latter is guaranteed to
be the optimal solution. In these cases, we put a “*” beside the value.

Moreover, for instances where the optimum could not be determined in ei-
ther [29] or FD-TS, we conducted an additional experiment with the CPLEX
solver (version 12.6.1). First, we reduced the original graph by applying the
Peel(G, s,max) procedure. Then, for the reduced subgraph and a given s ∈
{2, 3, 4, 5}, a cutoff time of one CPU hour was used when running CPLEX
with the mathematical model (1) presented in Section 1. Experiments were
conducted using the same machine employed for running FD-TS. The best
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objective values found by CPLEX are listed in the “cplex” column, where “*”
indicates the optimal values. If CPLEX was unable to load the model, the
entry is marked by “N/A.”

Table 1 shows that FD-TS always obtained the same or better objective values
compared with the current best-known results (BKV values) (better objec-
tive values are highlighted with a bold font). In particular, FD-TS improved
the best-known results for more instances as s increased (FD-TS found bet-
ter solutions for 7, 15, 19, 21 instances with s = 2, 3, 4, 5, respectively). This
observation indicates that the instances become more challenging for exact al-
gorithms with a larger s. Using the Peel procedure, FD-TS was also provably
optimum for the first time for 6, 6, 6, 10 instances and s = 2, 3, 4, 5, respec-
tively. For the cases where the number of vertices in the reduced subgraph
remained larger than the lower bound given by FD-TS, the majority of these
cases were manageable when the subgraph had less than 10,000 vertices (ex-
ceptions include the instances 333SP, cage15, cit-Pattens, and wiki-Talk for
s = 2). In terms of the computational time, FD-TS was able to obtain the
best solutions in less than one second in most cases, including instances with
millions of vertices. The average time required by FD-TS on cit-Patents for
s = 3 was the longest but still less than one minute. Unfortunately, and sim-
ilarly to CPLEX, it could not determine any solution better than that found
by FD-TS in one hour when given the reduced subgraph. However, for the
instances rgg n 2 17 s0 with s = 5, and rgg n 2 20 s0 with s = 4 and 5, op-
timal solutions were also obtained by CPLEX. Finally, we note that for the
instances coPapersCiteseer, coPapersDBLP, and cond-mat-2005, the size of
the maximum clique was the same as the size of the maximum s-plex for
s = 2, 3, 4, 5.
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4.4 Computation results for graphs from the 2nd DIMACS Challenge

Table 2 shows the computational results obtained by FD-TS for 52 classical
hard instances from the 2nd DIMACS set, with s = 2, 3, 4, 5. The first group
contains all 36 instances that have been studied by four state-of-the-art s-
plex algorithms [3, 16, 19, 29]. The second group includes 16 additional large
2nd DIMACS instances with at least 800 vertices, which have not been tested
previously by any existing s-plex algorithm. For the sake of completeness, we
also tested the remaining 28 instances of this benchmark set, for which no
previous s-plex result is available. These results are reported in Table A.2 of
the Appendix.

For each instance, the following information is included. The “|V |” column
shows the number of vertices in the original graph. The “ω” column indicates
the best-known maximum clique size reported previously [34] (lower bounds
for the maximum s-plex). The “BKV” column indicates the best-known ob-
jective values obtained by the algorithms in [3, 16, 19, 29] (proven optima are
indicated by “*”). The letters between parentheses following each “BKV”
value indicate the algorithm(s) that obtained the BKV value.

• “B” - A branch-and-cut algorithm [3] based on polyhedral analysis of the
convex hull of the maximum s-plex problem. This algorithm was evaluated
based on instances from the 2nd DIMACS set with s = 1, 2. Each instance
was solved within a maximum of 3 hours on a machine with a 2.66 GHz
XEON R© processor, 3 GB RAM, and 120 GB HDD.
• “M” - A branch-and-bound algorithm [16] adapted from the classical max-

imum clique algorithm [20]. Results were obtained based on 2nd DIMACS
instances with s = 2, 3, 4. The experiments were conducted on a machine
with a 2.2 GHz Dual-Core AMD Opteron processor and 3 GB RAM. A time
limit of one hour was allowed to solve each instance.
• “T” - A generalized algorithm framework used to detect optimal hereditary

structures in graphs [29]. For the maximum s-plex problem, this approach
was tested based on instances from the 2nd DIMACS, 10th DIMACS and
SNAP benchmark sets, for s = 2, 3, 4, 5. Experiments were conducted with
a Dell Optiplex GX620 computer with an Intel CoreTM2 Quad 3 GHz pro-
cessor and 4 GB RAM with a time limit of 3 hours for each instance.
• “H” - Exact combinatorial algorithms based on methods from parameterized

algorithmics [19]. Results were reported for a subset of the 2nd DIMACS
instances (s = 1, 2) with a time limit of 3 hours on a machine with an AMD
Athlon 64 3700+ 2.2 GHz CPU, 3 GB RAM, and 1M L2 cache.

For instances where the optimal solution has not been proven by any of the
algorithms mentioned above (i.e., no “*” is indicated for “BKV”), we used
the CPLEX solver to solve these instances (i.e., their reduced subgraphs after
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applying the Peel procedure, see Section 2.6) with a time limit of one CPU
hour on our computer. The “cplex” column shows the best feasible solutions
attained by CPLEX. The “max(ave)” column reports the maximum value
achieved by FD-TS in 20 runs and the average value (in parentheses) if the
20 best values were not the same. The “time” column shows the average time
(in seconds) required by the runs that obtained the best value among the 20
runs. Obviously, the total time allowed to FD-TS in 20 runs (180*20 = 3600
s) was exactly one hour.

Table 2 shows that the FD-TS algorithm matched or improved (highlighted
in bold font) the current best-known results with s = 2, 3, 4, 5. The average
objective values obtained by our algorithm were even better than the best-
known values based on these instances for different s (except for MANN a27
and MANN a45 with s = 2). In terms of the stability of the best solution, for
most of the small instances (|V | ≤ 400) in the first group, the best solution
could be obtained in each of the 20 runs (except for MANN a27, brock400 4
and san200 0.7 2 with s = 2, brock400 1 with s = 5). The larger graphs in
the second group of the table (which were not reported previously), such as
brock800 X, CXXX.X, hamming10-4, and keller6, represent the most chal-
lenging cases for FD-TS because the best solution could not be found in ev-
ery run. Moreover, for instances such as brock400 1, brock800 2, brock800 3,
keller6, and p hat1500-2, FD-TS failed to achieve a 100% success rate as s
increased. However, for instances such as MANN a27 and brock800 4, there
was no correlation between the success rate and the value of s. In terms of
the computational time, FD-TS achieved its best values rather quickly, since
it rarely exceeded one minute, whereas CPLEX failed to solve these instances
(in fact, the reduced subgraphs) to optimality for any s within one hour. Nev-
ertheless, for the cases where the optimal value is still unknown, the lower
bounds obtained by CPLEX were competitive compared with the four other
reference algorithms [3, 16,19,29].
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4.5 Impact of frequency information

As described in Sections 2.4 and 2.5, the construction procedure and per-
turbation procedure are guided by frequency information. In this section, we
evaluate the effectiveness of this frequency strategy. We compared the origi-
nal FD-TS algorithm with a variant, FD-TS-R, in which the frequency-based
vertex selection rule was replaced by a random selection rule. In particular,
to create a new solution, FD-TS-R randomly adds a vertex from M1 to the
current solution (Section 2.4) and randomly selects a vertex from M ′

3 for per-
turbation (Algorithm 2, line 31).

To better differentiate FD-TS and FD-TS-R, we selected 27 instances from
the three benchmark sets, such that the selected instances cover different
characteristics (random vs real-world, dense vs sparse) and are sufficiently
challenging based on the search effort required to attain the best solutions
according to the results of Tables 1 and 2. For this experiment, both FD-
TS and FD-TS-R were run 20 times to solve each instance, each run being
limited to 20 seconds for the 2nd DIMACS instances and 180 seconds for the
other (larger) instances. We compared the average objective values reached by
both algorithms (“ave” columns), the average time required to first obtain the
best objective value (“time” columns), and the improvement in the average
objective value achieved by FD-TS as a percentage (“ave imp” column).

Table 3 shows the results achieved for s = 2, 3, 4, 5 respectively. A difference
in the average solution quality obtained by the two algorithms was only ob-
served with the 2nd DIMACS instances (the first 12 instances). For the large
instances, both FD-TS and FD-TS-R converged so fast that the best solution
was found quite early (the average time required to first obtain the best solu-
tion was less than one second in most cases). For the 2nd DIMACS instances,
FD-TS achieved better solutions than FD-TS-R for 5, 6, 8, 8 instances with
s = 2, 3, 4, 5, respectively (marked in bold font). In addition, for 4, 4, 4, 2 in-
stances with s = 2, 3, 4, 5, respectively, the average objective values found by
FD-TS were worse than those found by FD-TS-R (marked in italic font). In
general, there was a slight advantage when using the frequency mechanism,
and it increased with s. This experiment confirms that the frequency mech-
anism is helpful for solving hard dense graphs that require persistent search
efforts.
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5 Conclusions and perspectives

The NP-hard maximum s-plex problem is significant in both theory and prac-
tice. In this study, we proposed an effective local search algorithm for solving
this problem heuristically based on the general tabu search method. To ensure
its efficiency, the proposed algorithm combines a multi-neighborhood search
procedure with vertex-moving frequency, where the search process is driven by
two intensification oriented operators (Add and Swap) and one diversification
operator (Press). Dedicated rules are defined to explore the neighborhoods
introduced by these operators. Information regarding vertex moves is collected
and used to guide the construction of the starting solutions and the pertur-
bation process. A graph peeling technique is also integrated to dynamically
reduce large sparse graphs.

We assessed the performance of the proposed algorithm using three popular
benchmark sets: 47 instances from the Stanford Large Network Dataset Col-
lection and the 10th DIMACS Implementation Challenge, and 52 dense graphs
from the 2nd DIMACS Implementation Challenge. For the SNAP and 10th DI-
MACS benchmarks, FD-TS obtained improved solutions (new lower bounds)
for 7, 15, 19, 20 instances when s = 2, 3, 4, 5, respectively. Moreover, many of
these solutions were proved to be optimal using the Peel procedure. FD-TS
also performed very well on the instances from the 2nd DIMACS benchmark
set. The Peel procedure was no longer effective for these dense graphs, but
FD-TS still obtained the current best-known results for all of the instances
and discovered better solutions for most instances compared with four recent
reference algorithms and the powerful CPLEX solver. Additional results for 48
more graphs from the above benchmark sets showed in the Appendix further
demonstrated the performance of the proposed algorithm.

Several areas of research require further investigation. First, to achieve high
search robustness across a large range of problem instances with very different
characteristics, it would be useful to develop adaptive and learning techniques
to help the algorithm to adjust its search strategies dynamically. Second, it
would be interesting to explore other ways of employing frequency information
to improve the performance of the algorithm. For instance, we could investigate
frequency information in new selection rules for the transformation operators
as well as other guided perturbation mechanisms such as that proposed in [4].
Finally, it would be interesting to adapt the ideas introduced in this work
to design search algorithms for other clique-relaxations, such as s-defective
clique [37], quasi-clique [1, 22,31] and k-club [7, 18,28,30].
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A Computational results on additional instances

This Appendix includes additional results of our FD-TS algorithm and CPLEX
for 48 instances from the three benchmark sets. Note that these instances have
not been tested previously by any s-plex algorithm. Only lower bounds (from
the best-known maximum clique sizes [32, 34]) are available. Table A.1 con-
tains the 20 large SNAP and 10th DIMACS instances while Table A.2 includes
the remaining 28 instances of the 2nd DIMACS Challenge.
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