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Abstract—As a usual model for a variety of practical ap- over the distances between the elements'i[89]. Over the
plications, the maximum diversity problem (MDP) is computa- past three decades, MDP has been widely studied under dif-
tional challenging. In this paper, we present an opposition-based ferent names, such as max-avg dispersion [46], edge-vesight

memetic algorithm (OBMA) for solving MDP, which integrates . . .
the concept of opposition-based learning (OBL) into the well- clique [32], denset-subgraph [15], maximum edge-weighted

known memetic search framework. OBMA explores both candi- Subgraph [33] and equitable dispersion [39]. In additiommM
date solutions and their opposite solutions during its initialization also proves to be a useful model to formulate a variety of

and evolution processes. Combined with a powerful local opti- practical applications including facility location, maldar
mization procedure and a rank-based quality-and-distance pool structure design, agricultural breeding stocks, compgiry

updating strategy, OBMA establishes a suitable balance between .
exploration and exploitation of its search process. Computational panels and product design [22], [35]. In terms of computgtio

results on 80 popular MDP benchmark instances show that the complexity, MDP is known to be NP-hard [18].
proposed algorithm matches the best-known solutions for most of ~ Given the interest of MDP, a large number of solution

instances, and finds improved best solutions (new lower bounds) methods for MDP have been investigated. These methods can
for 22 instances. We provide experimental evidences to highlight e gjiviged into two main categories: exact algorithms and
the beneficial effect of opposition-based learning for solving MDP. heuristi . . - .
euristic algorithms. In particular, exact algorithmselif3],
[34] are usually effective on small instances with< 150. To
handle larger instances, heuristic algorithms are oftefepred
to find sub-optimal solutions in an acceptable time frame.
Existing heuristic algorithms for MDP include constructio
|. INTRODUCTION methods [18], [22], greedy randomized adaptive search pro-
IVEN a setN of n elements where any pair of elementsedure (GRASP)[2], [13], [47], iterative tabu search (ITS)
are separated by a distance, theaximum diversity [38], variable neighborhood search (VNS) [4], [8], fine-tum
problem (MDP) aims to select a subsét of m (m is given iterated greedy algorithm (TIG) [30], memetic and hybrid-ev
and m < n) elements fromN in such a way that the lutionary algorithms (MSES [11], GSS [17], MAMDP [53]
sum of pairwise distances between any two elements§ inand TS/MA [52]). Comprehensive surveys and comparisons
is maximized. LetN = {e1,ea,...,¢e,} be the given set of of some important heuristic algorithms prior to 2012 for MDP
elements andl;; € R be the distance between ande; can be found in [4], [35].
(di; = d;;). Formally, MDP can be formulated as the following Recently, research into enhancing search algorithms via
guadratic binary problem [28]. machine learning techniques has gained increasing imteres
in artificial intelligence and operations research. Maehin
learning is one of the most promising and salient research

Index Terms—Maximum diversity, learning-based optimiza-
tion, opposition-based learning, memetic search, tabu search.

max f(z) = %ZZdijxixj (1) areas in artificial intelligence, which has experienced pidra
i=1 j=1 development and has become a powerful tool for a wide range
n of applications. Researchers have made much effort on using
s.t. sz =m (2) machine learning techniques to design, analyze, and select
i=1 heuristics to solve large-scale combinatorial search Iprod
z € {0,1}" (3) [6], [26], [29], [45], [55]. Among the existing heuristicoif
where the binary variable, — 1 (k = 1,...,n) if element MDP, two methods involve hybridization of heuristics and-ma

chine learning techniques. In [47], the proposed GRAIRA
algorithm combines GRASP with data mining technique (i.e.,

MDP belongs to a large family of diversity or dispersior{requent itemset mining). After each GRASP phase, the data
problems whose purpose is to identify a subSerom a set mining process extracts useful patterns from recordee elit

N of elements while optimizing an objective function deﬁneaOIUtionS to guide the _following GRASP iterations._Th_e_se
patterns correspond to items that are shared by a significant

Y. Zhou, J.K. Hao (corresponding author) and B. Duval arehwtie number of elite solutions. Another learning-based heigrist
Department of Computer Science, LERIA, UnivegsitAngers, 2 Boulevard js LTS EDA [51], which uses data mining techniques (k-
Lavoisier, 49045 Angers 01, France, J.K. Hao is also affilatvith the - . . . N .
Institut Universitaire de France (E-mail: yangming@infawangers.fr; jin- means clustering and estimation of distribution algorihm
hao.hao@univ-angers.fr and bd@info.univ-angers.fr). to extract useful information from the search history ofutab

erx € N is selected; andr, = 0 otherwise. Equation (2)
ensures that a feasible solutiorexactly containgn elements.



search in order to guide the search procedure to promisiofyopposite solution in Section Ill. OBL is a fast growing
search regions. These learning-based methods have mpomtsearch field in which a variety of new theoretical models
competitive results when they were published. and technical methods have been studied to deal with complex
In this paper, we propose a new learning-based optimizand significant problems [1], [40], [50], [54]. Recently,eth
tion method for solving MDP. The proposed “oppositionidea of OBL has also been used to reinforce sevglaibal
based memetic algorithm (OBMA)” integrates the concept afptimization methods such as differential evolution, joat
opposition-based learning into the popular memetic allgori swarm optimization, biogeography-based optimizatiotifi-ar
(MA) framework. OBMA brings several improvements intccial neural network, bee and ant colony optimization [58], [
the original MA framework. First, we employ opposition- To apply OBL to solve an optimization problem, one needs
based learning (OBL) to reinforce population initializatias to answer a fundamental question: given a solution from the
well as the evolutionary search process, by simultaneouskgarch space, why is it more advantageous to consider an
considering a candidate solution and its corresponding-opmpposite solution of the current solution than a second pure
site solution. Second, we apply a tabu search procedure fandom solution? For one dimensional search space, a proof
local optimization which relies on an improved parametriand an empirical evidence confirmed how much an opposite
constrained neighborhood. Third, we propose a rank-bassmution is better than a uniformly generated random smruti
guality-and-distance pool updating strategy to maintain [41]. This result was further generalized to the N-dimenalo
healthy population diversity. We identify the main contrib search spaces for black-box (continuous) problems in [42].
tions of this work as follows. We observe that existing studies on OBL-based optimiza-
e From an a|gorithmic perspective, we exp|ore for thgon concerns Only glObal Optimization with two exceptions
first time the usefulness of opposition-based learning t8 2008, Ventresca and Tizhoosh [50] proposed a diversity
enhance a popular method (i.e., MA) for combinatoridnaintaining population-based incremental learning atigor
optimization. We investigate how OBL can be bendor solving the traveling salesman problem (TSP), where the
ficially integrated into the MA framework and showconcept of opposition was used to control the amount of
the effectiveness of the approach within the context @fiversity within a given sample population. In 2011, Ergeze
solving the maximum diversity problem. and Simon [14] hybridized open-path opposition and cincula
« From a computational perspective, we compare the pr@Pposition with biogeography-based optimization for swv
posed OBMA algorithm with state-of-the-art results oth€ graph coloring problem and TSP. The main difficulty
several sets of 80 large size MDP benchmark instanc@lsthese applications is how to define and evaluate opposite
with 2,000 to 5,000 elements. Our results indicate thafolutions in a discrete space. OBL being a generally aggkca
OBMA matches most of the best-known results anichnique, its efficiency depends on the matching degree
in particu|ar finds improved best solutions (neW |O\Nebetween the definition of OBL and the solution Space of the
bounds) for 22 instances. These new bounds are vafignsidered problem, as well as the rationality justifying a
able for the assessment of new MDP algorithms. The§émbination of OBL with a search algorithm [54].
computational results demonstrate the competitiveness ) )
of OBMA and the benefit of using OBL to enhance &- Memetic Algorithm
memetic algorithm. The memetic algorithm framework (MA) [36], [27] is a
The reminder of the paper is organized as follows. After \ell-known hybrid search approach combining population-
brief introduction of opposition-based learning and mémetbased search and local optimization. MA has been succhssful
search in Section I, we present in Section IIl the proposépplied to tackle numerous classical NP-hard problems [9],
opposition-based memetic algorithm. Sections IV and V shd#4l. such as graph coloring [31], graph partitioning [7]6]
computational results and comparisons as well as an @&@d generalized quadratic multiple knapsack [10] as well as
perimental study of key issues of the proposed algorithifie maximum diversity problem [11], [53].

Conclusions and perspective are provided in Section VI. A typical MA algorithm (Algorithm 1) begins with a set of
random or constructed solutions (initial population). A&ick
Il. BACKGROUND generation, MA selects two or more parent solutions from

. L " trae population, and performs a recombination or crossover
This section introduces the concept of opposition-base : ) .
. ) .0peration to generate one or more offspring solutions. Then
learning and the general memetic search framework, WhICP\ P . )
. . a local optimization procedure is invoked to improve the off
are then combined in the proposed approach. . . ; .
spring solution(s). Finally, a population managementtsga
. _ is applied to decide if each improved offspring solution is
A. Opposition-based Learning accepted to join the population. The process repeats until a
Opposition-based learning (OBL) was originally proposestopping condition is satisfied. We show below how OBL and
as a machine intelligence scheme for reinforcement legrniMA can be combined to obtain a powerful search algorithm
[49]. The main idea behind OBL is the simultaneous consifbr the highly combinatorial maximum diversity problem.
eration of a candidate solution and its corresponding dfgos
solution. To explain the concept of opposition, we consiler !!l. OPPOSITIONBASED MEMETIC ALGORITHM FORMDP
real numberz € [a,b], then the opposite numberis defined  We describe in this section the proposed opposition-based
asz = a+b—z. For the case of MDP, we define the concephemetic algorithm for MDP. We start with the issues of so-



Algorithm 1 The general memetic algorithm framework  the constraint defined by Equation (2). We make two related
1: Input: a problem instance and population size p comments. First, as we observe in Section IV, the MDP
2: ﬁ%‘&%‘;;h?nﬁgftpﬁﬂg%f found benchmark instances in the literature correspond to the cas

n . . : .

3 P ={S',52,....5" « Poolinitialization () m < 5 Secqnd, in practice, yvhen an qpposne.solutlon
/I We suppose it is a maximization problem, record the best 1S re_qwred while there are multiple opposite solutions, we
solution found so far can just select one solution at random among the candidate

4: S* = argmax{f(S*)|i =1,2,...,p} opposite solutions.

: while a stopping condition is not reached do

6: (S%,...,57) < ParentsSelection (P)

/I Generate an offspring solution

[

Algorithm 2 Opposition-based memetic algorithm for MDP

7. S° + CrossoverOperator(S', .. ., S%) 1: Input: a n x n distance matrix (d;), and an integer m < n
/I Improve the offspring solution 2: Output: the best solution S* found
8  S° + Locallmprovement(s®) // Build ;'I-m |9|t|al population, Seqt!on l-c -
/I Accept or discard the improved solution 3: P*: {s%,S ,...,Si} « OppositionBasedPoollnitialize()
9: P+ UpdatePopulation (P, 5°) 4 5" «—argmax{f(5):i=1,2,...,p}
/Il Update the best solution found 5: while a stopping condition is not reqched do ,-
10 if £(S°) > f(S*) then 6: Randomly select two parent solutions S* and S’ from P
11 S* L go /I Generate an offspring solution and its opposite solution
12:  endif by crossover, Section IlI-E o
13- end while 7. S°,5° « BackboneBasedCrossover(S®, S7)

/I Perform a double trajectory search, Section IlI-D
8:  S° < TabuSearch(S°)/«trajectory 1: search around S° «/

. . .9 if £(S°) > f(S™) then
lution representation and search space, followed by aldétai . {g( :) Sof( )

presentation of the ingredients of the proposed approach. 11: end if
/I Insert or discard the improved solution, Section IlI-F

. . 12: P < RankBasedPoolUpdating (P, S°) o
A. Solution Representation and Search Space 13: 5S¢ « TabuSearch(S°)/«trajectory 2: search around S° x/

Given a MDP instance with selN = {ej,ea,...,e,} 140 if f(S°) > f(S™) then
and integerm, any subsetS C N of size m is a feasible 15 ST =8°

; ; ; 6: endif
solution. A candidate solutioly can then be represented by1L Il Insert o discard the improved solution, Section lI-F

S = {esq);es(2), -+ €sem} such thatS(i) is the index of 7. p'.~ RankBasedPoolUpdating (P, 5°)
elementi in N or equivalently by a binary vector of size of1g: end while
n such that exactlyn variables receive the value of 1 and thé

othern — m variables receive the value of 0. The qua“ty of The proposed OBMA a|gorithm consists of four key compo-

a candidate solutioy' is assessed by the objective functifn nents: an opposition-based population initializationcedure,

of Equation (1). a backbone-based crossover operator, an opposition-based
Given a MDP instance, the search sp&tés composed of gouple trajectory search procedure and a rank-based yyualit

all them-element subsets of, i.e., 2 = {S C N : |S| =m}. and-distance pool updating strategy. OBMA starts from a

. . . 1 .
The size ofQ is given by () = ity and increases collection of diverse elite solutions which are obtainedthy

extremely fast withn and m. opposition-based initialization procedure (SectionQ)l- At
each generation, two parent solutions are selected at mando
B. Main Scheme from the population, and then the backbone-based crossover

The proposed OBMA algorithm for MDP is based on op@Peérator (Section I.II—E) iS a}pplied to the selected_ paréats
position learning, which relies on the key concept of opfeosigenerate an offspring solution and a corresponding opposit
solution in the context of MDP, which is defined as follows Solution. Subsequently, the opposition-based doubledrajy

Definition 1 (Opposite solution)Given a MDP instance Search procedure (Section I1I-D) is invoked to search siaul
with set N' and integerm, let S be a feasible solution of N€ously from the offspring solution and its opposite Solui
Q represented by its binany-vectorz, an opposite solutios Finally, the rank-based pool updating strategy (Sectioifr)
corresponds to a feasible binary vectowhose components decides whether these two improved offspring solutionsisho
match the complemehof = as closely as possible. be |n§erted into the popula}tlon._Tms_ process repeats antil

According to this definition, ifm < %, 5 corresponds to StoPping condition (€.g., a time limit) is satisfied. The et
any subset of elements of sizeiaffrom N\ S. If m = %, the framework of the OBMA algorithm is shown in Algorithm 2
unique opposite solution is given B = N \ S. If m > 2, while its components are described in the following sestion

S'is any subset ofi — m elements fromV \ S, completed by
other2m — n elements fromsS. C. Opposition-based Population Initialization

We observe that a diversification framework introduced in The initial populationP is composed of diverse and high
[21] also yields the type of opposite solution provided by iy solutions. Unlike traditional population initiation,

our definition and applies to constraints more general th%ﬂr population initialization procedure integrates thecapt

lLetz € {0,1}", its complements is an n-vector such that[i] = 1 if qf OBL. As shown ip Algorithm 3, the OBL-baseq initializa-.
z[i] = 0; T[i] = 0 if «[i] = 1. tion procedure considers not only a random candidate soluti



but also a Corresponding OppOSite solution. Specifica|g, Vﬁlgorlthm 4 Parametric constrained nEighborhOOd tabu search

first generate a pair of solutions, i.e., a random solutiod: Input: a starting solution .S, the maximum allowed iterations

S, € © and a corresponding opposite soluti®naccording to
Definition (1) of Section IlI-B (if multiple opposite soluths

MaxIter
2: Output: the best solution S* found
S*« S

exist, one of them is taken at random). These two solutiong ;;., . ¢
are then improved by the tabu search procedure described gnnitialize the tabu list
Section 1lI-D. Finally, the better one of the two improvedé6: Calculate the gain(e;) for each elemente; € N according to

solutions S’ is inserted into the population i’ is not the
same as any existing individual of the population. Otheswis

we modify S’ with the swap operation (see Section 11I-D1) .
until S’ becomes different from all individuals i before 10:

Eq. (4)
7: while iter < MaxIter do

minGain < min{gain(e;) : e; € S}
Determine subset U§ according to Eq. (6)
maxGain < max{gain(e;) : e; € N\ S}

inserting it into the population. This procedure is repdatetil
the population is filled up withp solutions. With the help of
this initialization procedure, the initial solutions &f are not
only of good quality, but also of high diversity.

Algorithm 3 Opposition-based population initialization
1: Input: population size p
2: Output: an initial population P = {S*, S?, ..., S"}
3: count =0
4: while count < p do
5 /+ Generate a random solution S™ and its opposite solu-
tion S™ «/
6: S" < TabuSearch (S")
7: 87 + TabuSearch (S7)
8: I« Identify the better solution between S™ and S™ «/
9: 8+ argmax{f(S"), f(S")}
10:  /x Insert S’ into the population P or modify it */
11:  if S’ is different from any solutions in the P then

12: Add S’ into the population P directly

13:  else

14: Modify S’ and add it into the population P
15: count < count + 1

16: end if

17: end while

D. Opposition-based Double Trajectory Search Procedure

11:  Determine subset Uy, ¢ according to Eq. (7)

12:  Choose a best eligible swap(e., ) (see Sect. I11-D3)

130 S+ S\ {e.}U{es}

14:  Update the tabu list and gain(e;) for each elemente; € N
according to Eq. (8)

15:  if f(S) > f(S™) then

16: S*+ S

17:  end if

18: iter <— iter + 1

19: end while

according to some specific transition rule (e.g., accepting
the first or the best improving transition). Clearly, theesiz
of this neighborhood is bound b@(m(n — m)) and an
exhaustive exploration of all the possible swap moves is too
time-consuming for the large valuesfTo reduce the size of
the swap neighborhood, we employ an extension of a candidate
list strategy sometimes called a neighborhood decompasiti
strategy [19] or a successive filtration strategy [44], amiciv

we refer to as a constrained swap strategy [53]. As it is
shown in the experimental analysis of Section V-A, although
this constrained swap strategy accelerates the searchgstoc

it imposes a too strong restriction and may exclude some
promising swap moves for the tabu search procedure. In this
work, we introduce thgparametric constrained neighborhood
which adopts the idea of the constrained neighborhood, but

In the proposed OBMA algorithm, we use an oppositionyeakens the imposed constraint by introducing a parameter

based double trajectory search procedure (ODTS) for lqgal o, (,, > 1 to control the size of the explored neighborhood.
timization. ODTS simultaneously searches around an offgpr gty constrained neighborhoods rely on the notion of move
solution 5° and one opposite solutiof’. The local optimiza- gain of each element; with respect to the objective value of
tion procedure used here is an |mproved constrained nengh.ime current solutiors defined as follows.
hood tabu search. Tabu search is a well-known metaheuristic
that guides a local search heuristic to explore the solution
space beyond local optimality [20]. The original consteain
neighborhood tabu search algorithm was proposed in [53], _ )
which is specifically designed for MDP by using a constrained L8t swap(eu,e,) denote the swap operation which ex-
neighborhood and a dynamic tabu tenure management mecH#nges an elemeat, € S against an element, ¢ N\ 5.
nism. Compared with this tabu search algorithm, our impdovednce a swaps ~““*““““), ' is made, it provides a new
tabu search procedure (see Algorithm 4) distinguishedf itseolution.S” = S\ {e, } U {e, } and the move gaid\,,, of this
by its parametric constrained neighborhood which alloves tlswap can be calculated according to the following formula.
search process to explore more promising candidate sofutio
In the following, we present the key ingredients of this loca
optimization procedure including the parametric conagéi
neighborhood, the fast neighborhood evaluation techrgguae  Equation (5) suggests that in order to maximize the move
the dynamic tabu tenure management scheme. gain, it is a good strategy to consider swap moves that replac
1) Parametric constrained neighborhooth general, local in the current solutiors' an elementk,, with a small gain by
search for MDP starts from an initial solutiofi and sub- an elemente, out of S with a large gain. In other words,
sequently swaps an element §fand an element ofV \ S the search process can only consider swap moves that involve

gain(e;) = Z dij,i=1,2,...,m 4)

e;eS

Ao = f(S') — f(S) = gain(e,) — gain(e,) — dyy,  (5)



an element,- from S with the minimal gain value and anfrom S during this period. The tabu status of an element is
elemente,- in N'\ S with a maximal gain value. However thedisabled if the swap operation with this element leads to a
move gain also depends on the distamage,- betweene,- solution better than any already visited solution (thiserid
and e,-. These remarks lead to the following definition forcalled theaspiration criterionin tabu search). An eligible swap

the parametric constrained neighborhood. move involves only elements that are not forbidden by the tab
For a current solutiort, let minGain = min{gain(e;) : list or satisfy the aspiration criterion.
e; € S}t and marGain = max{gain(e;) : ¢, € N\ S} It is important to determine a suitable tabu tenure for the

and dq, = max{d;; : 1 < ¢ < j < n}. The parametric elements of a swap. Yet, there does not exist a universally
constrained neighborhood relies on the two following sets. applicable tabu tenure management scheme. In this paper, we
adopt a dynamic tabu list management technique which was
proposed in [16] and proved to work well for MDP [53]. The
tabu tenurdl’,, of an element,, taking part in a swap operation
is determined according to a periodic step functibfiter),
whereiter is the number of iterations. Specifically,(iter)
Uns =1{ei € N\'S : gain(e;) = mazGain — Bdmaaj} takes the value of (a parameter set to 15 in this worR)x a,
(7) 4xaand8xa according to the value ater, and eacl (iter)
Therefore, a constrained neighbor solutih can be ob- value is kept for 100 consecutive iterations (see [16], [f68]
tained fromS by swapping one element, € U and another more details). Following [53], we sét, = T'(iter) for the
elemente, € Uy, ¢- Clearly, the evaluation of all constrainedelemente,, dropped from the solution arfd, = 0.7« 7 (iter)
neighboring solutions can be achieved(|Ug| x [Ug, 4|). for the element, added to the solution.
Conveniently, we can adjust the value of parametép > 1)  To implement the tabu list, we use an integer vedtoof
to control the size of the constrained neighborhood. size n whose components are initially set to 0 (i.él]i] =
One notices that the neighborhood of [53] is a special ca8e?i € [1,...,n]). After eachswap(e,, e,) operation, we set
of the above neighborhood when= 2. In general, a larger H|[u] (resp.H [v]) to iter + T, (resp.iter +T,), whereiter is
p value leads to a less constrained neighborhood comparedh® current number of iterations afig (resp.T;) is the tabu
the neighborhood of [53], allowing thus additional promgsi tenure explained above. With this implementation, it isyver
candidate solutions to be considered by the tabu searcle-prag@asy to know whether an elementis forbidden by the tabu
dure. The experimental analysis of Section V-A confirms tHist as follows. Ifiter < H]i], thene; is forbidden by the tabu
effectiveness of this parametric constrained neighbathoo list; otherwise,e; is not forbidden by the tabu list.
2) Fast neighborhood evaluation techniqueOnce a
qup(e,lt, e,) move is performed, we need_ to update the 9aiNs Backbone-based Crossover Operator
gain(e;) affected by the move. To rapidly determine the

gain of each element;, we resort to the fast neighborhood The crossover operator plays a critical role in memetic
evaluation technique used in [2], [4], [53]. search and defines the way information is transmitted from

parents to offspring [24]. A meaningful crossover operator
) ] should preserve good properties of parent solutions throug
gain(e;) + diy if ei=eu the recombination process. In our case, we adopt a backbone-
gain(e;) = < gain(e;) — diy if e =e, based crossover operator which generates an offsprintji@olu
gain(e;) + dy, — diy, it e; # e, ande; # e,. N the same way as in [53] while introducing additionally an
(8) opposite solution. For MDP, the backbone is a good property
Updating the gains af elements require®(n) time. There- that is to be transmitted from parents to offspring, as shiown
fore, the time to update the parametric constrained neighb®efinition 2. Specially, the backbone-based crossoveratper
hood at each iteration is bounded ©yn)+O(|Ug| x|Ug, 4[). not only produces an offspring solution, but also creates a
3) Dynamic tabu tenure management sche®rting with corresponding opposite solution.
a solutionS, tabu search iteratively visits a series of neigh- Definition 2 (backbone [24], [53])Let S* and S” be two
boring solutions generated by the swap operator. At easblutions of MDP, the backbone of* and S is defined as
iteration, a best swap(i.e., with the maximum move gainthe set of common elements shared by these two solutions,
A,.) is chosen among the eligible swap moves to transforne., S* N .S*.
the current solution even if the resulting solution is worse Given a population? = {S*, 52 ..., S} of p individuals,
than the current solution. To prevent the search from cgcliran offspring solution is constructed in two phases. The first
among visited solutions, tabu search typically incorpesas  phase randomly selects two parerfi§ and SV in P and
short-term history memory{, known as the tabu list [20]. identifies the backbone which is used to form the partial
Initially, all elements are eligible for a swap operatiomd® offspring S°, i.e.,, S° = S* N SY. If |S°| < m, then
aswap(ey, €,) is performed, we record it in the tabu list to the second phase successively extesdswith m — |S°|
mark element, as tabu, meaning that eleme#tis forbidden other elements in a greedy way. Specifically, we alternitive
to join again solutionS during the nextT, iterations {, is consider each parent and select an unassigned element with
called the tabu tenure). Similarly, element is also marked maximum gain with respect t6° until S° reaches the size
as tabu for the next,, iterations and thus cannot be removedf m. Once the offspring solutio§® is obtained, we generate

Us={e; €8 :gain(e;) < minGain + gdmw} (6)

and



its corresponding opposite solutiéit according to Definition pool updating strategy. The step of parents selection is
1. Consequently, we obtain two different and distant offgpr bounded byO(1). The backbone-based crossover operation
solutionsS° and S° which are further improved by the tabucan be achieved i (nm?). The computational complexity

search procedure of Section IlI-D. of the parametric constrained neighborhood search proeedu
is O((n+|Ug| x |UZCV\S|)Maa;Iter), where|U§| is the number
F. Rank-based Pool Updating Strategy of elements that can be swapped out fran U, | is

To maintain a healthy diversity of the population, we us&'® number of elements iV \ .5 that can be swapped
a rank-based pool updating strategy to decide whether tHE S ?‘”d MazlIter is the allowable maximum number.
improved solutions §° and S°) should be inserted into the ©f iterations in tapu search. T'he computational complexny
population or discarded. This pool updating strategy simder the pool updating strategy i (p(m?* + p)), wherep is
taneously considers the solution quality and the distarese 1€ Population size. To summarize, the total computational
tween individuals in the population to guarantee the pdjaria COmMPplexity of the proposed OBMA within one generation is
diversity. Similar quality-and-distance pool updatingagtgies O(nm” + (n + US| x [Ug s[)MaxIter).
have been used in memetic algorithms in [10], [31], [48]]{53

For two solutionsS* and S”, we use the well-known set- IV. COMPUTATIONAL RESULTS

theoretic partition distance [23] to measure their distanc
This section presents computational experiments to test th

D(S*,8%) = m — Sim(S",S") (9) efficiency of our OBMA algorithm. We aim to 1) demonstrate
the added value of OBMA (with OBL) compared to the
memetic search framework (without OBL), and 2) evaluate the
performance of OBMA with respect to the best-known results
ever reported by state-of-the-art algorithms in the liene

where Sim(S™,S") = |S* N SY| denotes the number of
common elements shared 8§ and S".

Given a population” = {S*,S%,...,S?} and one solution
St in P, the average distance betweghand the remaining
individuals in P is computed by [10].

AD(S*,P) = B > D(s',8) (10)
ijeP,j7éi

A. Benchmark Instances

Our computational assessment were based on 80 large
instances with 2000 to 5000 elements which are classified int
To update the population with an improved offspring sahe following sets.
lution (S” or S°), let us consider the case 6 (the same  get | contains three data sets: MDG-a (also known as

procedure is applied t6°). We first tentatively insers® into Typel 22), MDG-b and MDG-c. They are available at http:
the populationP, i.e., P’ < P U {S°}. Then all individuals /mww.optsicom.es/mdpl/.

. . .
in P are assessed based on the following function. « MDG-a: This data set consists of 20 instances with

n = 2000, m = 200. The distancel;; between any two

Score(S', P') = B+ RF(f(S"))+ (1 —B)* RE(AD(S", P")) elements andj is an integer number which is randomly

(12) selected between 0 and 10 from a uniform distribution.
where RF(f(S%)) and RF(AD(S%, P')) represent respec- « MDG-b: This data set includes 20 instances with=
tively the rank of solutior5? with respect to its objective value 2000, m = 200. The distanced;; between any two
and the average distance to the population. Specificalfy,) elementsi and j is a real number which is randomly
ranks the solutions aP in decreasing order according to their ~ selected between 0 and 1000 from a uniform distribution.
objective values or their average distances to the populaii o MDG-c: This data set is composed of 20 instances with
case of ties, the solution with the smallest index is prefirr n = 2000, m = 300, 400, 500, 600. The distancg;
£ is the weighting coefficient between the objective value of between any two elemenisand j is an integer number
the solution and its average distance to the populationghwhi which is randomly selected between 0 and 1000 from a
is empirically set tog = 0.6. uniform distribution.

Based on this scoring function, we identify the worst get | (b2500) contains 10 instances with = 2500,
solution S* with the Igrgest score value. from the populgtlogln = 1000, where the distancé;; between any two elements
P’ 1f the worst solutionS™ is not the improved offspring ., gng e; is an integer randomly generated frdm100, 100].

5%, then the population is updated by replacifiy by 5% This data set was originally derived from the unconstrained

otherwise,S* is simply discarded. binary quadratic programming problem by ignoring the diag-
_ . onal elements and is part of ORLIB: http://people.brurmel.a
G. Computational Complexity of OBMA uk/~mastjjb/jeb/orlib/files/.

To analyze the computational complexity of the proposed Set Il (p3000 and p5000) contains 5 very large instances
OBMA algorithm, we consider the main steps in one generaith n = 3000 and m = 1500, and 5 instances with =
tion in the main loop of Algorithm 2. 5000 andm = 2500, whered;; are integers generated from
As shown in Algorithm 2, each generation of the OBMAa [0, 100] uniform distribution. The sources of the generator
algorithm is composed of four components: parents seleand input files to replicate this data set can be found at: http
tion, backbone-based crossover, tabu search and ran#-baseww.proin.ktu.lt~gintaras/mdgp.html.



TABLE | In these tables, columns 1 and 2 respectively show for each

8O LARGE BENCHMARK INSTANCES USED IN THE EXPERIMENTS instance its name (Instance) and the current best objective
value(fprev) JOintly reported in recent studies [35], [17], [53],
Data set| n m #instance  time limit (s)  #run [51]. Columns 3-7 report the results of tkBBMA algorithm:
MDG-a | 2000 200 20 20 30 the difference betweey,,.., and the best objective valykg,:
MDG-b | 2000 200 20 600 15 (i.e., Afpest = fprev — foest), the difference betweerf,,..,
MDG-c | 2000 300-600 20 600 15 and average objective valye,, (i.€., Afuuy = forev — favg):
b2500 | 2500 1000 10 300 30 the standard deviation of objective valués), the average
p3000 ‘ 3000 1500 5 600 15 CPU time to attain the best objective valués,..;) and
p5000 | 5000 2500 5 1800 15 the success raté#succ) over 30 or 15 independent runs.

Columns 8-12 present the same information of the OBMA

algorithm. The best values among the results of the two
B. Experimental Settings compared algorithms are indicated in bold. At the last roa, w
dalso provide the average number of instances for which one

Our algorithnt was implemented in C++, and Comp“eoalgorithm outperforms the other algorithm. 0.5 is assigteed

using GNU gcc 4.1.2 with -O3’ option on an Intel E5-267 ) ach compared alaorithm in case of ties
with 2.5GHz and 2GB RAM under Linux. Without using P g ’

any compiler flag, running the DIMACS machine benchmark To analyze these results, we resort to a widely-used statis-

program dfmaX on our machine requires 0.19, 1.17 and 4.5t cal methodology known aswo-tailed sign tesf12]. This

seconds to solve graphs r300.5, r400.5 and r500.5 resqa@ctivteSt is a popular way to compare the overall performance

. . : of algorithms by counting the number of winning instances
To obtain our experimental results, each instance was d;olvq[ ; . .

: . . ; . - of each compared algorithm and thus to identify the overall
according to the settings (including time limit and numberinner algorithm. The test makes the null hypothesis that th
of runs) provided in Tables | and Il. Notice that, like mos@l 9 . yp

reference algorithms of Section IV-D, we used a cutoff timeompared algorithms are equivalent. The null hypothesis is

o : . . ol 9CC€ ted if each algorithm wins on approximat&ly2 out of
limit (instead of fitness evaluations) as the stopping : ingtances Othe?wise the test rejZF():ts the nuxl/l2 hypothesis
This choice is suitable in the context of MDP given tha{( . . ' .
o S : suggesting a difference between the compared algorithms.
its fithess evaluation is computationally cheap enough; COR o critical Values (CV) for the two-tailed sign test at a
trary to expensive-to-evaluate problems like many enginge

optimization problems where using fitness evaluations isSi nificance level of 0.05 are respectivalyljd; = 15 for
str;ndard pracl:atice 25] g = 20 instances and’V'9; = 9 for X = 10 instances. In

other words, algorithm A is significantly better than al¢jom
B if A performs better than B for at leagtV;% . instances for
a data set ofX instances.
From Table Il which shows the results 6dBMA, and
OBMA for the 20 MDG-a instances, we first observe that

TABLE Il
THE PARAMETER SETTING OF THEOBMA ALGORITHM.

Parameters  Description Value Section . . .

P both algorithms attain the best-known results reporteche t
p population size 10 -C —Jiterature. However, OBMA performs better th@BMA, in
MazlIter  allowable number of iterations of TS 50,000  1lI-D ; ’ . .p 0 .
a tabu tenure management factor 15 n-p terms of the average obj_ectlve value and success rate, ausd wi
0 scale coefficient 4 l-D 14.5 instances and 13.5 instances respectively. We alsovabs
B weighting coefficient 0.6 I-F

that the standard deviation of the best objective valuegis s
nificantly smaller for OBMA, and OBMA wins 14.5 instances,
which is very close to the critical valU€ V), = 15). Finally,
. . compared toOBMA,, OBMA needs less average CPU time
C. Benefit of OBL for Memetic Search to find the best-known solutions for all instances except MDG
To verify the benefit of OBL for memetic search, we comg_26 and wins 13.5 instances in terms of the success rate.
pare OBMA with its alternative algorithhrOBMA, without Table IV shows the results ddBMA, and OBMA for the
OBL. To obtainOBMA,, two modifications have been made20 MDG-b instances. The best-known objective valygs.()
on OBMA: 1) for the population initialization phase, weof this data set were obtained by a scatter search algorithm
randomly generate two initial solutions at a time (instefd o (G_SS) [17] with a time limit of 2h on an Intel Core 2 Quad
random solution and an opposite solution); 2) for the cresso CPU 8300 with 6GB of RAM running Ubuntu 9.04 [35]. This
phase, we perform twice the crossover operation to genergible indicates that both OBMA andBMA, find improved
two offspring solutions (instead of one offspring solutiand best-known solutions for 14 out of 20 instances and attain
an opposite solution). To make a fair comparison betweetie best objective values for the remaining 6 instances. On
OBMA and OBMA,, we ran both algorithms under the samenhe other hand, compared to tkE3MA, algorithm, OBMA
conditions, as shown in Tables | and Il. The comparativsbtains a better average objective value and higher sucatess
results for the five data sets are summarized in Tables IlI-Vfor 13.5 and 13 instances. It is worth noting that OBMA has
2The best solution certificates and our program will be maddadla at a steady performance, and qchleves these results with%
http:/Awww.info.univ-angers.fr/pub/hao/OBMA.html. success rate on almost all instances except for MD&4b
3dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique MDG-b_32 and MDG-b33. To summarize, OBMA performs




TABLE Il
COMPARISON OF THE RESULTS OBTAINED BYOBMAy AND OBMA ON THE DATA SETMDG-A.

OBMA( OBMA
Instance Sfprev \ Afpest  Afavg o tlpest  Hsucc Afpest  Afavg o tpest  #succ
MDG-a 21 114271 0 45 106 9.3 22/30 0 5.2 10.8 7.4 20/30
MDG-a 22 114327 0 42 226 9.2 29/30 0 0.1 0.5 7.2 29/30
MDG-a 23 114195 0 10.9 15.2 11.5 15/30 0 15.2 15.1 7.0 11/30
MDG-a 24 114093 0 253 21.0 11.3 4/30 0 11.2 121 8.2 7130
MDG-a 25 114196 0 55.9 327 13.3 1/30 0 415 30.7 8.8 5/30
MDG-a 26 114265 0 7.3 10.2 9.9 17/30 0 10.2 11.5 11.6  14/30
MDG-a 27 114361 0 0.0 0.0 4.8 30/30 0 0.2 0.9 4.1  29/30
MDG-a 28 114327 0 57.1 538 15.2 12/30 0 189 39.2 7.9 23/30
MDG-a 29 114199 0 11.2 16.0 14.6 8/30 0 4.4 8.4 9.0 14/30
MDG-a 30 114229 0 12.8 16.3 10.5 14/30 0 8.1 105 7.2 14/30
MDG-a 31 114214 0 304 227 16.2 5/30 0 16.7 13.6 11.9 9/30
MDG-a 32 114214 0 28,5 199 10.4  4/30 0 237 17.1 6.0 3/30
MDG-a 33 114233 0 6.1 10.5 12.8 15/30 0 2.0 5.6 8.8 23/30
MDG-a 34 114216 0 25.4 438 11.6 15/30 0 2.4 7.0 6.6 26/30
MDG-a 35 114240 0 1.6 22 122 9/30 0 1.6 24 10.7 11/30
MDG-a 36 114335 0 75 117 12.4  19/30 0 5.7 9.5 10.5 21/30
MDG-a 37 114255 0 4.2 8.2 12.2 18/30 0 5.2 8.6 7.8 18/30
MDG-a 38 114408 0 1.2 3.1 10.6  19/30 0 0.5 1.1 7.6 25/30
MDG-a 39 114201 0 2.2 6.0 9.7 26/30 0 2.0 6.0 4.9 27/30
MDG-a 40 114349 0 28.1 37.7 9.9 18/30 0 23.0 315 9.1 19/30
wins | 10 55 5.5 1 6.5 10 145 145 19 135
The f,rev Values were obtained by several algorithms including LTS-EDA [51] @dVDP [53].
TABLE IV
COMPARISON OF THE RESULTS OBTAINED BYOBMAy AND OBMA ON THE DATA SETMDG-B.
OBMA( OBMA
Instance Sforev \Afbest A favg o tpest HsSUCC A fpest A favg o tpest  H#HsSUCC
MDG-b_21 11299895 0 0.2 0.0 378.6 15/15 0 0.2 0.0 325.1 15/15
MDG-b_22 11286776| -5622 -5622.2 0.0 336.5 15/15 -5622 -5622.2 0.80.8 15/15
MDG-b_23 11299941 0 0.5 0.0 300.5 15/15 0 0.5 0.0 2834 15/15
MDG-b_24 11290874 -245 -229.1 61.2 3455 14/15 -245 -220.5 67.2 323.4 13/15
MDG-b_25 11296067 -1960 -1959.9 0.0 271.2 15/15 -1960 -1959.9 0.813.9 15/15
MDG-b_26 11292296 -6134 -5216.0 1836.9 276.8 12/15 -6134 -6134.4 0.0 336.0 15/15
MDG-b_27 11305677 0 0.2 0.0 330.0 15/15 0 0.2 0.0 256.0 15/15
MDG-b_28 11279916| -2995 -2994.6 0.5 3295 10/15 -2995 -2994.7 0.4 351.1 12/15
MDG-b_ 29 11297188 -151 -151.5 0.0 323.0 15/15 -151 -151.5 0.0 288.3 15/15
MDG-b_30 11296415 -1650 -1649.6 0.0 311.2 15/15 -1650 -1649.6 0.0 2749 15/15
MDG-b_31 11288901 0 -0.2 0.0 313.9 15/15 0 -0.2 0.0 308.0 15/15
MDG-b_32 11279820 -3719 -3669.3 25.0 1775 3/15 -3719 -3694.3 30.6 283.0 9/15
MDG-b_33 11296298 -1740  -1381.7 216.1 112.2  4/15 -1740 -1675.0 166.1 277.5 13/15
MDG-b_34 11281245| -9238 -8881.8 435.8 325.7 9/15 -9238 -9237.6 0.0 355.4 15/15
MDG-b_35 11307424 0 -0.1 0.0 343.6 15/15 0 -0.1 0.0 331.0 15/15
MDG-b_36  11289469| -13423 -13174.5 929.8 251.7 14/15 -13423  -13423.0 0.0 329.4 15/15
MDG-b_37 11290545 -5229 -5099.5 329.7 2175 13/15 -5229 -5228.8 0.0 291.2 15/15
MDG-b_38 11288571| -7965 -7964.5 0.0 2425 15/15 -7965 -7964.5 0.297.6 15/15
MDG-b_39 11295054 0 -0.2 0.0 3745 15/15 0 -0.2 0.0 289.7 15/15
MDG-b_40 11307105 -2058 -2057.6 0.0 301.1 15/15 -2058 -2057.6 0.0 266.5 15/15
wins \ 10 6.5 8 10 7 10 135 12 10 13

The best-known valueg,,.., were obtained by a scatter search algorithm&S) [17] with a time limit of 2 hours,
which are available at http://www.optsicom.es/mdp/.

better thanOBMA|, for this data set, but the differences ar@f RAM running Ubuntu 9.04 [35]. We observe that both
not very significant at a significance level of 0.05. OBMA and OBMA, obtain improved best-known solutions

Table V presents the results ©BMA, and OBMA for the for 8 instances and match the best-known solutions for 4
20 instances of the MDG-c instances. All best-known resuff@stances. In fact, OBMA improves all best-known solutions
(forev) Were achieved by iterative tabu search (ITS) [38] debtained by VNS, but it fails to attain 8 best-known solu-
variable neighborhood search (VNS) [8] under a time limfions found by ITS. Compared tOBMA,, OBMA obtains
of 2 hours on an Intel Core 2 Quad CPU 8300 with 6GB improved best solutions for MDG-t7 and MDG-c19.



TABLE V
COMPARISON OF THE RESULTS OBTAINED BYOBMAy AND OBMA ON THE DATA SETMDG-C.

OBMAg OBMA

Instance prev ‘ Afbest Afavg 4 thest #succ Afbest Afavg o Lhest #succ
MDG-c_1 24924685| -1659 -493.5 852.7 1655  5/15 -1659 -1262.4 749.0 251.3 11/15
MDG-c_2 24909199| -3347 140.3 25146 946 4/15 -3347 -3346.3 25 286.6 14/15
MDG-c_3 24900820| -4398 -299.2  4040.7 225 7/15 -4398 -2805.2 2717.9 239.4 11/15
MDG-c_4 24904964 | -4746 -1890.5 1999.4 106.5  4/15 -4746 -3917.2 1657.6 276.2 12/15
MDG-c_5 24899703 3999 4767.8 1025.0 8.7 9/15 3999 4047.3 180.6 212.5 14/15
MDG-c_6 43465087 20139 22534.4 25123 77.4 6/15 20139 210545 1190.4290.8 6/15
MDG-c_7 43477267 0 277.5 1038.2 6.1 14/15 0 126.9 314.7 111.7 12/15
MDG-c_8 43458007| -7565 -4644.3 1833.2 589  3/15 -7565 -7546.7 68.6 163.6 14/15
MDG-c_9 43448137 0 142.2 116.1 82.1 6/15 0 0.0 0.0 725 15/15
MDG-c_10 43476251| 10690 10690.0 0.0 27.1 15/15 10690 10690.0 0.0415.1 15/15
MDG-c_11  67009114| -12018 -113453 2110.0 90.8 13/15 -12018 -11776.3 522.3335.0 10/15
MDG-c_12 67021888 7718 12209.1  5502.4 9.3 7115 7718 10179.7 3250.5 302.8  9/15
MDG-c_13 67024373 0 2082.0 29448 106.4 10/15 0 839.4 2140.1 380.1 13/15
MDG-c_14 67024804| -5386 -4667.9 18309 11.3 13/15 -5386 -5118.7  1000.3 276.3 14/15
MDG-c_15 67056334 0 1846.5 1353.5 31.0 5/15 0 1021.2 1122.0 269.0 5/15
MDG-c_16  95637733| -1196 5861.5 8193.7 318.8 2/15 -1196 -1116.3 298.3  270.8 14/15
MDG-c_17 95645826| 75241 86848.9 8727.7 291.8  2/15 74713 74981.7 373.3 312.8 8/15
MDG-c_18 95629207| 97066 100609.9 3526.8 90.5 7115 97066 99767.0 2972.8 292.1  8/15
MDG-c_19 95633549 35131 39027.5 5420.3 236.5 7/15 34385  35121.3 816.2343.7 4/15
MDG-c_20  95643586| 59104 59133.2 109.3 111.0 14/15 59104  59133.2 109209.9 14/15

wins | 9 1 1 18 5 11 19 19 2 15

* Results are obtained by ITS with 2 hours CPU time [35].
* Results are obtained by VNS with 2 hours CPU time [35].

Moreover, OBMA performs significantly better th@BMA, ing 75 instances. In addition, OBMA also achieves a better

in terms of the average best solutiond > CVZ), = 15), performance in terms of the average best value, the success

success ratél5 >= CV@); = 15) and standard deviationrate and the standard deviation, wini@BMA, on most

(19 > CVi#ds = 15) at a significance level of 0.05. benchmark instances. Therefore, we conclude that oppositi
Table VI reports the results cDBMA, and OBMA for based learning can beneficially gnhance the popular memetic

the 10 instances of the b2500 data set. From this table, #&rch framework to achieve an improved performance.

observe that both algorithms reach the best-known values

for all the instances. Meanwhile, the average value of best = STATISTI;—ﬁLB:ES\(JIII_!I'S(OBMA | OBMA) oN ALL

objective values of OBMA is better than that OBM A, and 0

g . X DATA SETS.

the difference of this measure between these two algorithms

weakly significant §.5 < CV{ 9, = 9). Even though there is

no significant difference on the success rate, OBMA obtaing s set | Afvest Afung o thest #SUCC
a higher success rate for 8.5 instances, while th_e reverse i 10/10 55)145 55145 119 65| 135
true only for 1.5 instances. In addition, OBMA achieves #es ypg-b 1010 6.5|135 8|12 10|10 7113
results more steadily tha®BMA,, wining 8.5 out of 10 EADG-C 9| lll l|| 19 1|\ 19 18} 2 5|| 15
; ; - 2500 5|5 15|85 15|85 4/6 15|85
instances in terms of the standard deviation. p3000-5000| 3|7 0|10 2|8 416 05|95

Table VII displays the results dDBMA, and OBMA for
the 10 largest instances (p3000 and p5000 instances). For
these very large instances, OBMA matches all the best-known
objective values without exception whil@BMA,, fails to do D. Comparison with State-of-the-Art Algorithms
so for 4 instances. In addition, OBMA performs significantly \ne turn now our attention to a comparison of our OBMA
better tharOBMA,, and wins 10, 9.5 instances in terms of thggorithm with state-of-the-art algorithms, includingriated
average best objective v_alue and success rate, respgclinel 5, search (ITS) [38], scatter search 8%) [17], variable
performance of OBMA is also more stable th@BMAo by pejghborhood search (VNS) [8], fine-tuning iterated greedy
wining 8 out of 10 instances in term of the standard deviatiog|gorithm (TIG) [30], tabu search with estimation of dis-
Finally, Table VIII provides a summary of the comparativéribution algorithm (LTS-EDA) [51] and memetic algorithm
results for the five data sets between OBMA (OBL enhancéflAMDP) [53]. We omit the tabu search/memetic algo-
memetic algorithm) an@BMA, (memetic algorithm without rithm (TS/MA) [52] and the memetic self-adaptive evolution
OBL). As we observe from the table, OBMA achieves a bettstrategies (MSES) [11] since TS/MA performs quite similar
performance tha®WBMA,, i.e., achieving improved solutionsto MAMDP of [53] while MSES does not report detailed
for 6 instances and matching the best solutions on the remaiesults. Among these reference algorithm, only the program
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TABLE VI
COMPARISON OF THE RESULTS OBTAINED BYOBMA(y AND OBMA ON THE DATA SET B2500.

OBMA( OBMA

Instance Sforev \ Afvest  Afavg o tpest  HSUCC Afvest  Afavg o tpest  HsSUCC
b2500-1 1153068 0 193.1 429.2 154.1 23/30 0 0.0 0.0 100.3 30/30
b2500-2 1129310 0 106.0 163.1 149.2 21/30 0 37.9 73.2 1474 22/30
b2500-3 1115538 0 303.2 347.2 1055 17/30 0 0.4 2.2 95.3 29/30
b2500-4 1147840 0 549.7 4619 191.2 8/30 0 65.8 118.5 98.9 20/30
b2500-5 1144756 0 50.9 129.3 117.6 24/30 0 5.3 28.4 86.3 29/30
b2500-6 1133572 0 88.9 210.9 89.4 22/30 0 0.0 0.0 66.8 30/30
b2500-7 1149064 0 106.2 1119 114.8 13/30 0 14.1 31.0 128.3 23/30
b2500-8 1142762 0 113.7 349.0 98.4 22/30 0 15 5.5 1054 28/30
b2500-9 1138866 0 0.2 1.1 1357 29/30 0 1.3 29 139.8 25/30
b2500-10 1153936 0 0.0 0.0 81.4 30/30 0 0.0 0.0 107.5 30/30

wins | 5 15 15 4 15 5 8.5 8.5 6 8.5

The f,rev Values were compiled from the results reported by ITS [38], LTS-EBH fnd MAMDP [53].

TABLE VI
COMPARISON OF THE RESULTS OBTAINED BYOBMAy AND OBMA ON THE DATA SETS BO00AND P5000.

OBMA, OBMA
Instance fp'r'ev ‘ Afbest Afavg o thest #succ Afbest Afavg o thest #succ

p3000.1 6502330 0 84.1 28.0 1726 1/15 244 358 275.6  9/15

p30002 18272568 0 152.8 151.1 151.5 7/15 0.0 0.0 89.3 15/15
p30003 29867138 0 544.5 344.2 244.0 4/15 0.0 0.0 26.2 15/15
0
0

p30004 46915044 715.0 531.0 250.1 2/15 1.2 19.3 336.9 14/15
p30005 58095467 209.9 198.2 180.0 6/15 0.0 0.0 65.4 15/15

p50001 17509369 0 168.9 176.5 518.7 7/15 128.2 181.8 1053.9 13/15
p50002 50103092 70 819.1 4943 2425 1/15 22.8 8.0 3708 1/15
p50003 82040316 176  3450.3 1671.3 333.1 1/15 209.3 1413 217.1 2/15

p50004 129413710 598  1460.1 661.6 1019.1 1/15 97.8 122.1 625.7 7/15
p50005 160598156 344 669.6 323.6 1348.7 1/15 102.9 52.3 843.2 5/15

wins | 3 0 2 4 0.5 7 10 8 6 9.5
The best-known valueg,,.., were extracted from [53].

OOOOOOOOOO

of the memetic algorithm (MAMDP) [53] is available. Foravailable for the TIG and LTS-EDA algorithms for these data
our comparative study, we report the results of the MAMDBets. The results of our OBMA algorithm (and MAMDP) are
algorithm by running its code on our platform with its detaulobtained with a time limit of 10 minutes. Table X indicates
parameter values reported in [53]. For the other referentteat both OBMA and MAMDP improve the best-known results
algorithms, we use their results presented in the correipgn for the majority of the 40 instances. Moreover, compared to
references. The detailed comparative results in terndsfpf,, MAMDP, our OBMA algorithm obtains an improved best
and A f,.4 are reported in Tables IX and X. objective value for 1 MDG-b instance and 3 MDG-c instances,
Table IX presents the comparative results on the 40 imhile matching the best objective values for the remaining
stances of the data sets MDG-a, b2500, p3000-p5000 fostances. Finally, OBMA dominates MAMDP in terms of
which the detailed results of reference algorithms ardaivis. the average objective value, wining 18 out of the 20 MDG-b
At the last row of the table, we also indicate the numbénstances and all 20 MDG-c instances.
of wining instances relative to our OBMA algorithm both in  To summarize, compared to the state-of-the-art results, ou
terms of the best objective value and average objectiveevaldBMA algorithm finds improved best-known solutions (new
(recall that a tied result counts 0.5 for each algorithmpnfrr lower bounds) for 22 out of the 80 benchmark instances,
this table, we observe that OBMA dominates all the referenceatches the best-known solutions for 50 instances, b fail
algorithms. Importantly, OBMA is the only algorithm whichto attain the best-known results for 8 instances. Such a
obtains the best-known values and the largest averagetiobjecperformance indicates that the proposed algorithm corapete
values for all 40 instances. favorably with state-of-the-art MDP algorithms and enesh
Table X displays the comparative results on the data sée existing solution arsenal for solving MDP.
MDG-b and MDG-c. The best-known objective valugs..
for the MDG-b instances are obtained by §5 [17] while V. EXPERIMENTAL ANALYSIS
the f,.., values of the MDG-c instances are obtained by ITS In this section, we perform additional experiments to gain
and VNS [35], both with a time limit of 2 hours. No result issome understanding of the proposed algorithm including the
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TABLE IX
COMPARISON OFOBMA WITH OTHER ALGORITHMS ON THE DATA SETSMDG-A, 82500,P3000AND P5000.

ITS [38] VNS [8] TIG [30] LTS-EDA [51] MAMDP [53] OBMA

Instance fprev ‘ Afbest Afa’ug Afbest Afavg Afbest Afavg Afbest Afavg Afbest Afavg Afbest Afavg
MDG-a_21 114271 65 209.9 48 150.6 48 101.6 5 60.7 0 8.1 0 5.2
MDG-a_22 114327 29 262.3 0 168.9 0 69.9 0 89.9 0 8.8 0 0.1
MDG-a_23 114195 69 201.4 19 110.8 5 117.8 0 99.0 0 15.2 0 15.2
MDG-a_24 114093 22 200.5 70 188.1 58 141.9 0 79.9 0 15.7 0 11.2
MDG-a_25 114196 95 273.3 87 184.1 99 194.7 51 134.5 0 42.1 0 41.5
MDG-a_26 114265 41 168.2 30 99.3 9 96.2 0 40.2 0 10.8 0 102
MDG-a_27 114361 12 167.5 0 56.3 0 71.3 0 18.2 0 0.0 0 0.2
MDG-a_28 114327 25 256.4 0 163.3 0 193.6 0 159.1 0 20.9 0 18.9
MDG-a_29 114199 9 139.8 16 78.5 16 80.4 0 71.0 0 7.6 0 4.4
MDG-a_30 114229 24 204.9 7 139.3 35 121.4 0 56.2 0 9.3 0 8.1
MDG-a_31 114214 74 237.8 42 145.1 59 139.6 3 69.9 0 17.8 0 16.7
MDG-a_32 114214 55 2495 95 143.3 88 156.0 15 84.9 0 26.8 0 23.7
MDG-a_33 114233 93 279.9 22 168.1 42 167.4 6 85.3 0 3.6 0 2.0
MDG-a_34 114216 92 248.5 117 194.3 64 202.8 0 81.0 0 3.4 0 2.4
MDG-a_35 114240 11 117.5 1 62.9 6 80.5 0 22.0 0 1.2 0 1.6
MDG-a_36 114335 11 225.4 42 215.4 35 167.9 0 36.5 0 8.6 0 5.7
MDG-a_37 114255 56 2175 0 170.0 18 144.5 6 57.1 0 6.5 0 5.2
MDG-a_38 114408 46 170.0 0 57.1 2 117.4 2 22.8 0 0.7 0 0.5
MDG-a_39 114201 34 243.2 0 124.6 0 144.4 0 35.9 0 3.4 0 2.0
MDG-a_40 114349 151 270.7 65 159.4 45 187.2 0 95.4 0 24.1 0 23.0
b2500-1 1153068 624  3677.3 96 1911.9 42 1960.3 0 369.2 0 72.1 0 0.0
b2500-2 1129310 128 1855.3 88 1034.3 1096 1958.5 154 454.5 0 143.7 0 37.9
b2500-3 1115538 316 32819 332  1503.7 34  2647.9 0 290.4 0 184.5 0 0.4
b2500-4 1147840 870 25479 436 1521.1 910 1937.1 0 461.7 0 152.3 0 65.8
b2500-5 1144756 356  1800.3 0 749.4 674  1655.9 0 286.1 0 10.5 0 5.3
b2500-6 1133572 250 21735 0 12835 964  1807.6 80 218.0 0 80.5 0 0.0
b2500-7 1149064 306 1512.6 116 775.5 76 1338.7 44 264.6 0 45.0 0 141
b2500-8 1142762 0 2467.7 96 862.5 588 14215 22 146.5 0 1.7 0 15
b2500-9 1138866 642  2944.7 54 837.1 658  1020.6 6 206.3 0 3.7 0 1.3
b2500-10 1153936 598 2024.6 278 1069.4 448 1808.7 94 305.3 0 0.0 0 0.0
p3000-1 6502330 466 14875 273 909.8 136 714.7 96 294.1 0 76.7 0 24.4
p3000-2 18272568 0 13216 0 924.2 0 991.1 140 387.0 0 146.1 0 0.0
p3000-3 29867138 1442 2214.7 328 963.5 820 1166.1 0 304.3 0 527.9 0 0.0
p3000-4 46915044 1311 2243.9 254 1068.5 426 24822 130 317.1 0 399.5 0 1.2
p3000-5 58095467 423 1521.6 0 663.0 278 1353.3 0 370.4 0 210.7 0 0.0
p5000-1 17509369 2200  3564.9 1002  1971.3 1154  2545.8 191 571.0 0 165.1 0 128.2
p5000-2 50103092 2931  4807.8 1499  2640.0 549  2532.7 547 913.8 21 4755 0 22.8
p5000-3 82040316 5452  8242.3 1914 3694.4 2156  6007.1 704  1458.5 176 14190 O 209.3
p5000-4 12941371Q 1630 5076.9 1513  2965.9 1696  3874.8 858  1275.2 279 8009 O 97.8
p5000-5 160598156 2057 44339 1191  2278.3 1289  2128.9 579  1017.9 136 4119 O 102.9
wins | 1 0 5 0 25 0 9.5 0 18 2

The fprew Values were compiled from the results reported by the reference nsef8f [8], [30], [51], [53]. The results of MAMDP are
those we obtained by running its program on our computer, which arelglgjfferent from the results reported in [53] due to the stochastic
nature of the algorithm.

parametric constrained neighborhood, the rank-basedtyjual As we see from Figure 1 (left), the average objective value

and-distance pool management and the benefit of OBL foas a drastic rise when we incregsefrom 1 to 3. Then,

population diversity. it slowly increases if we continue to increageto 10. On
Figure 1 (right), the average CPU time of tabu search needed

_ _ _ to finish MaxIter iterations continuously increases when
A. Study of the Parametric Constrained Neighborhood p increases from 1 to 10. Ag increases, the size of the

Our tabu search procedure relies on the parametric c&fnstrained neighborhood also increases, thus the digorit
strained neighborhood whose size is controlled by the parafff€ds more time to examine the candidate solutions. To make
eterp. To highlight the effect of this parameter and determin@ COMPromise between neighborhood size and solution gualit
a proper value, we ran the tabu search procedure to solve fffe Set the scale coefficieptto 4 in our experiments.
first 10 instances of MDG-a (i.e., MDG-31 ~ MDG-a_30) ) .
with p € [1,10]. Each instance was independently solved unfd- Effectiveness of the Pool Updating Strategy
the number of iterations reachédaxIter. Figure 1 shows the  To validate the effectiveness of the rank-based quality-an
average objective values achieved (left) and the averagé C#istance (RBQD) pool updating strategy, we compare it with
times consumed (right) by tabu search on these 10 instandbg general quality-and-distance (GQD) pool updatingetna
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TABLE X
CoMPARISON OFOBMA wiTH MAMDP [53] ON THE DATA SETSMDG-B AND MDG-C, THE BESFKNOWN RESULTS ARE OBTAINED BYG_SS [17],
ITS AND VNS [35].

MAMDP [53] OBMA MAMDP [53] OBMA
Instance fp're'u ‘ Afbest Afavg Afbest Afa'ug Instance fp're'u ‘ A.fbest Afﬂ/ug Afbest Afcl/ug
MDG-b_21 11299895 0 225.8 0 0.2 MDG-c_1 24924685 -1659 3481.7 -1659 -1262.4
MDG-b_22 11286776 -5622 -3472.1 -5622 -5622.2 MDG-c_2 24909199 0 4938.7 -3347 -3346.3
MDG-b_23 11299941 0 0.5 0 0.5 MDG-c_3 24900820 -4398 5206.1 -4398 -2805.2
MDG-b_24 11290874 -245 226.0 -245 -220.5 MDG-c_4 24904964 -4746 -411.2 -4746 -3917.2

MDG-b_25 11296067| -1960 -1888.9 -1960 -1959.9 MDG-c_5 24899703 3999 7500.3 3999 4047.3
MDG-b_26  11292296| -6134  -2530.6 -6134 -6134.4 MDG-c_6 43465087| 20139  25023.7 20139  21054.5
0

MDG-b_27 11305677 0 0.2 0 0.2 MDG-c_7 43477267 0 1020.8 126.9
MDG-b_28  11279916| -2994 -2634.6  -2995 -2994.7 MDG-c_8 43458007| -4568 -1329.9  -7565 -7546.7
MDG-b_29 11297188 -151 451.8 -151 -151.5 MDG-c_9 43448137 237 1207.3 0 0.0
MDG-b_30 11296415 -1650 -1649.6 -1650 -1649.6 MDG-c_10 43476251 10690 11060.9 10690 10690.0
MDG-b_31 11288901 0 375.7 0 -0.2 MDG-c_11  67009114| -12018 -6942.7 -12018 -11776.3

MDG-b_32 11279820, -3719  -3632.3 -3719 -3694.3 MDG-c_12 67021888 7718 17470.0 7718 10179.7
MDG-b_33 11296298 -1740 -878.7 -1740 -1675.0 MDG-c_13 67024373 0 6673.1 0 839.4

MDG-b_34  11281245| -9238  -8191.3 -9238 -9237.6 MDG-c_14 67024804| -5386 -1050.9 -5386 -5118.7
MDG-b_35 11307424 0 -0.1 0 -0.1 MDG-c_15 67056334 0 3716.2 0 1021.2

MDG-b_36  11289469| -13423 -10792.5 -13423 -13423.0 MDG-c_16 95637733 -1196 1495.2 -1196 -1116.3
MDG-b_37  11290545| -5229  -4372.1 -5229 -5228.8 MDG-c_17 95645826 74713  79061.1 74713 74981.7
MDG-b_38 11288571 -7965  -5896.0 -7965 -7964.5 MDG-c_18 95629207| 97066 106806.6 97066 99767.0

MDG-b_39 11295054 0 472.4 0 -0.2 MDG-c_19 95633549| 34385 36189.1 34385 35121.3
MDG-b_40 11307105 -2058 -517.5 -2058 -2057.6 MDG-c_20 95643586 59104 61961.2 59104 59133.2
wins | 9.5 2 10.5 18 wins | 8.5 0 115 20

The fprev Values for the MDG-b instances are reported bySS [17], while thef,,.., values for the MDG-c instances are from
[35] with a time limit of 2 hours, all available at http://www.optsicom.es/mdp/e Tesults of MAMDP were obtained by running the
program on our computer (results of MAMDP for these instances areeported in [53]).

114250

(tpest), and the success raté:fucc).

Table Xl shows the comparison of the results obtained
by OBMA under the rank-based quality-and-distance styateg
(OBMARpop) and the general quality-and-distance strategy
(OBMA¢@p). From the table, we observe that OBMAg b
achieves the same best objective values for all testechicesa
compared with OBMAqp. However, for the five metrics,
OBMARrpgop performs better than OBMAyp for much
more instances, and respectively winning 8, 8, 6, 6 and 8 out
of 10 tested instances. These results confirm the effeesgen
of our proposed rank-based quality-and-distance pooltiqgia
L . L strategy.

L T
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
scale coefficient scale coefficient

114050

113850

113650

average objective on 10 instances
average cpu time on 10 instances (in seconds)

113450

Fig. 1. Average objective values and average CPU times spehOMDG- C. Opposmon-based Learning over POpUIatlon Diversity
a instances obtained by executing TS with different valughe scale In this section, we further verify the benefit brought by
coefficient p. OBL in maintaining the population diversity of the OBMA
algorithm. To assess the diversity of a population, a slétab
metric is necessary. In this experiment, we resonioimum
used in [53]. GQD evaluates each individual by a weightedistanceand average distancef individuals in the population
sum of the quality and the distance to the population. o measure the population diversity. The minimum distasce i
this experiment, we compared the performance of the OBMdefined as the minimum distance between any two individuals
algorithm under these two pool updating strategies (the tv the population, i.e.MD = min;zjc(12,.. p} D(S%,87).
OBMA variants are called OBMAgop and OBMA;op). Correspondingly, thedD is the average distance between all
The experiment was performed on the largest data set, iiadividuals in the population, as defined by Equation (10).
p3000 and p5000. We performed 20 runs of each algorithmUsing the data sets MDG-a and b2500, we compared the di-
to solve each instance, and recorded the best objective vakersity of the population with or without OBL. The populatio
(frest), the difference between the average objective value aimitialization (P1,) procedure without OBL first generates two
the best objective valueXf,.,), the standard deviation of random solutions, which are then respectively improvecey t
objective value over each ruw), the average time of onetabu search procedure. The best of two improved solutions is
run (q.4), the average time over the runs which attairfed, inserted into the population if it does not duplicate anystng
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TABLE XI
COMPARISON OF THE RESULTS OBTAINED BYOBMA UNDER THE RANK-BASED QUALITY-AND-DISTANCE POOL UPDATING STRATEGY(OBMARpgD)
AND THE GENERAL QUALITY-AND-DISTANCE (GQD) POOL UPDATING STRATEGY(OBMAGp).

OBMAREBOD OBMA¢coD

Instance \ frest  Afavg o tavg  lpest  #succ frest  Afavg o tavg tpest  HsSUCC
p3000 1 6502330 -23.0 353 1769 1188 14/20 6502330 -27.3 37.4 3158. 81.4 13/20
p3000 2 18272568 0.0 0.0 75.8 75.8  20/20 18272568 -10.5 45.8 54.7 1 5719/20
p3000 3 29867138 0.0 0.0 37.7 37.7 20/20 29867138 0.0 0.0 55.4 55.4/2020
p3000 4 46915044 0.0 0.0 113.7 113.7 20/20 46915044 -0.9 3.9 147.5 6.414 19/20
p30005 58095467 0.0 0.0 22.9 229 20/20 58095467 0.0 0.0 92.8 92.8/2020
p5000 1 17509369 -13.8 60.4 6219 624.3 19/20 17509369 -27.8 83.14.367 646.1 17/20
p5000Q 2 50103071 -23.4 48 561.1 5943 16/20 50103071 -26.4 6.0 3584.464.0 11/20
p5000 3 82040316 -305.8 304.2 791.1 5275 01/20 82040316 -241.0 .817642.2 718.4 01/20
p50004 | 129413710 -116.4 1439 756.5 802.8 12/20 129413710 -174.36.21 662.5 705.2  09/20
p50005 | 160598156 -161.8 99.4 511.7 4716 02/20 160598156 -182.62.711 7455 1081.3 02/20

wins | 5 8 8 6 6 8 5 2 2 4 4 2

individual in the population. We repeat this process uptil algorithm to start its search with a population of high déis,
different solutions are generated. In contrast, the pajpma which is maintained by the rank-based quality-and-distanc
initialization with OBL (PIppgy) is the procedure described instrategy during the search.

Section 11I-C, which considers both a random solution asd it
corresponding opposite solution. We solved each instafice 2
times and recorded the minimum distance and average déstanc

of each pOpUlation initialization procedure on each instan We have proposed an Opposition-based memetic a|gorithm
The comparative results of the population constructed withBMA) which uses opposition-based learning to improve a
or without OBL are shown in Figure 2, where the X-axigsnemetic algorithm for solving MDP. The OBMA algorithm
shows the instances in each benchmark and Y-axis indica&ﬁpk)ys OBL to reinforce popu|ation diversity and improve
the average distance and minimum distance. evolutionary search. OBMA distinguishes itself from eixigt
memetic algorithms by three aspects: a double trajectory
. search procedure which simultaneously both a candidate so-
lution and a corresponding opposite solution, a parametric
constrained neighborhood for effective local optimizatiand
a rank-based quality-and-distance pool updating strategy

Extensive comparative experiments on 80 large benchmark
instances (with 2000 to 5000 items) from the literature have
demonstrated the competitiveness of the OBMA algorithm.
OBMA matches the best-known results for most of instances
and in particular finds improved best results (new lower
bounds) for 22 instances which are useful for the assessment
of other MDP algorithms. Our experimental analysis has
also confirmed that integrating OBL into the memetic search
framework does improve the search efficiency of the claksica
memetic search.

As future work, several potential research lines can be
followed. First, to further improve OBMA, it is worth studyg
alternative strategies for tuning tabu tenure, generatifgl
solutions, and managing population diversity. Secondpite

From Figure 2, we observe that the population built blge interesting to study the behavior of the OBMA algorithm
Plopr, has a relatively larger average distance and minimuom much larger instances (e.g., with tens of thousands jtems
distance. This is particularly true for all instances of thand investigate whether techniques developed for large sca
MDG-a data set except for MDG-81. Also, the population continuous optimization ([37], [43]) could be helpful inigh
produced byPIop has a larger minimum distance than thasetting. Third, OBL being a general technique, it is worth
of PIy for 18 out of 20 instances of the MDG-a data sestudying its usefulness within other heuristic algorithris
Equal or better results are found for the b2500 data setesimally, it would be interesting to investigate the oppositio
the population generated Wyl g, dominates the population based optimization approach for solving additional combi-
produced by PI, in terms of the average and minimumnatorial problems including those with other diversity and
distances. This experiment shows that OBL helps the OBM#ispersion criteria.

VI. CONCLUSIONS AND FUTURE WORK

MDG-a
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Fig. 2. Comparative results of the populations built by pagiah initialization
with OBL (PIpp1,) or without OBL (PIp).
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