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Abstract—As a usual model for a variety of practical ap-
plications, the maximum diversity problem (MDP) is computa-
tional challenging. In this paper, we present an opposition-based
memetic algorithm (OBMA) for solving MDP, which integrates
the concept of opposition-based learning (OBL) into the well-
known memetic search framework. OBMA explores both candi-
date solutions and their opposite solutions during its initialization
and evolution processes. Combined with a powerful local opti-
mization procedure and a rank-based quality-and-distance pool
updating strategy, OBMA establishes a suitable balance between
exploration and exploitation of its search process. Computational
results on 80 popular MDP benchmark instances show that the
proposed algorithm matches the best-known solutions for most of
instances, and finds improved best solutions (new lower bounds)
for 22 instances. We provide experimental evidences to highlight
the beneficial effect of opposition-based learning for solving MDP.

Index Terms—Maximum diversity, learning-based optimiza-
tion, opposition-based learning, memetic search, tabu search.

I. I NTRODUCTION

G IVEN a setN of n elements where any pair of elements
are separated by a distance, themaximum diversity

problem (MDP) aims to select a subsetS of m (m is given
and m < n) elements fromN in such a way that the
sum of pairwise distances between any two elements inS
is maximized. LetN = {e1, e2, . . . , en} be the given set of
elements anddij ∈ R be the distance betweenei and ej
(dij = dji). Formally, MDP can be formulated as the following
quadratic binary problem [28].

max f(x) =
1

2

n
∑

i=1

n
∑

j=1

dijxixj (1)

s.t.
n
∑

i=1

xi = m (2)

x ∈ {0, 1}n (3)

where the binary variablexk = 1 (k = 1, . . . , n) if element
ek ∈ N is selected; andxk = 0 otherwise. Equation (2)
ensures that a feasible solutionx exactly containsm elements.

MDP belongs to a large family of diversity or dispersion
problems whose purpose is to identify a subsetS from a set
N of elements while optimizing an objective function defined
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over the distances between the elements inS [39]. Over the
past three decades, MDP has been widely studied under dif-
ferent names, such as max-avg dispersion [46], edge-weighted
clique [32], densek-subgraph [15], maximum edge-weighted
subgraph [33] and equitable dispersion [39]. In addition, MDP
also proves to be a useful model to formulate a variety of
practical applications including facility location, molecular
structure design, agricultural breeding stocks, composing jury
panels and product design [22], [35]. In terms of computational
complexity, MDP is known to be NP-hard [18].

Given the interest of MDP, a large number of solution
methods for MDP have been investigated. These methods can
be divided into two main categories: exact algorithms and
heuristic algorithms. In particular, exact algorithms like [3],
[34] are usually effective on small instances withn < 150. To
handle larger instances, heuristic algorithms are often preferred
to find sub-optimal solutions in an acceptable time frame.
Existing heuristic algorithms for MDP include construction
methods [18], [22], greedy randomized adaptive search pro-
cedure (GRASP)[2], [13], [47], iterative tabu search (ITS)
[38], variable neighborhood search (VNS) [4], [8], fine-tuning
iterated greedy algorithm (TIG) [30], memetic and hybrid evo-
lutionary algorithms (MSES [11], GSS [17], MAMDP [53]
and TS/MA [52]). Comprehensive surveys and comparisons
of some important heuristic algorithms prior to 2012 for MDP
can be found in [4], [35].

Recently, research into enhancing search algorithms via
machine learning techniques has gained increasing interest
in artificial intelligence and operations research. Machine
learning is one of the most promising and salient research
areas in artificial intelligence, which has experienced a rapid
development and has become a powerful tool for a wide range
of applications. Researchers have made much effort on using
machine learning techniques to design, analyze, and select
heuristics to solve large-scale combinatorial search problems
[6], [26], [29], [45], [55]. Among the existing heuristics for
MDP, two methods involve hybridization of heuristics and ma-
chine learning techniques. In [47], the proposed GRASPDM
algorithm combines GRASP with data mining technique (i.e.,
frequent itemset mining). After each GRASP phase, the data
mining process extracts useful patterns from recorded elite
solutions to guide the following GRASP iterations. These
patterns correspond to items that are shared by a significant
number of elite solutions. Another learning-based heuristic
is LTS EDA [51], which uses data mining techniques (k-
means clustering and estimation of distribution algorithms)
to extract useful information from the search history of tabu
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search in order to guide the search procedure to promising
search regions. These learning-based methods have reported
competitive results when they were published.

In this paper, we propose a new learning-based optimiza-
tion method for solving MDP. The proposed “opposition-
based memetic algorithm (OBMA)” integrates the concept of
opposition-based learning into the popular memetic algorithm
(MA) framework. OBMA brings several improvements into
the original MA framework. First, we employ opposition-
based learning (OBL) to reinforce population initialization as
well as the evolutionary search process, by simultaneously
considering a candidate solution and its corresponding oppo-
site solution. Second, we apply a tabu search procedure for
local optimization which relies on an improved parametric
constrained neighborhood. Third, we propose a rank-based
quality-and-distance pool updating strategy to maintain a
healthy population diversity. We identify the main contribu-
tions of this work as follows.

• From an algorithmic perspective, we explore for the
first time the usefulness of opposition-based learning to
enhance a popular method (i.e., MA) for combinatorial
optimization. We investigate how OBL can be bene-
ficially integrated into the MA framework and show
the effectiveness of the approach within the context of
solving the maximum diversity problem.

• From a computational perspective, we compare the pro-
posed OBMA algorithm with state-of-the-art results on
several sets of 80 large size MDP benchmark instances
with 2, 000 to 5, 000 elements. Our results indicate that
OBMA matches most of the best-known results and
in particular finds improved best solutions (new lower
bounds) for 22 instances. These new bounds are valu-
able for the assessment of new MDP algorithms. These
computational results demonstrate the competitiveness
of OBMA and the benefit of using OBL to enhance a
memetic algorithm.

The reminder of the paper is organized as follows. After a
brief introduction of opposition-based learning and memetic
search in Section II, we present in Section III the proposed
opposition-based memetic algorithm. Sections IV and V show
computational results and comparisons as well as an ex-
perimental study of key issues of the proposed algorithm.
Conclusions and perspective are provided in Section VI.

II. BACKGROUND

This section introduces the concept of opposition-based
learning and the general memetic search framework, which
are then combined in the proposed approach.

A. Opposition-based Learning

Opposition-based learning (OBL) was originally proposed
as a machine intelligence scheme for reinforcement learning
[49]. The main idea behind OBL is the simultaneous consid-
eration of a candidate solution and its corresponding opposite
solution. To explain the concept of opposition, we considera
real numberx ∈ [a, b], then the opposite numberx is defined
asx = a+ b−x. For the case of MDP, we define the concept

of opposite solution in Section III. OBL is a fast growing
research field in which a variety of new theoretical models
and technical methods have been studied to deal with complex
and significant problems [1], [40], [50], [54]. Recently, the
idea of OBL has also been used to reinforce severalglobal
optimization methods such as differential evolution, particle
swarm optimization, biogeography-based optimization, artifi-
cial neural network, bee and ant colony optimization [54], [5].

To apply OBL to solve an optimization problem, one needs
to answer a fundamental question: given a solution from the
search space, why is it more advantageous to consider an
opposite solution of the current solution than a second pure
random solution? For one dimensional search space, a proof
and an empirical evidence confirmed how much an opposite
solution is better than a uniformly generated random solution
[41]. This result was further generalized to the N-dimensional
search spaces for black-box (continuous) problems in [42].

We observe that existing studies on OBL-based optimiza-
tion concerns only global optimization with two exceptions.
In 2008, Ventresca and Tizhoosh [50] proposed a diversity
maintaining population-based incremental learning algorithm
for solving the traveling salesman problem (TSP), where the
concept of opposition was used to control the amount of
diversity within a given sample population. In 2011, Ergezer
and Simon [14] hybridized open-path opposition and circular
opposition with biogeography-based optimization for solving
the graph coloring problem and TSP. The main difficulty
of these applications is how to define and evaluate opposite
solutions in a discrete space. OBL being a generally applicable
technique, its efficiency depends on the matching degree
between the definition of OBL and the solution space of the
considered problem, as well as the rationality justifying a
combination of OBL with a search algorithm [54].

B. Memetic Algorithm

The memetic algorithm framework (MA) [36], [27] is a
well-known hybrid search approach combining population-
based search and local optimization. MA has been successfully
applied to tackle numerous classical NP-hard problems [9],
[24], such as graph coloring [31], graph partitioning [7], [16]
and generalized quadratic multiple knapsack [10] as well as
the maximum diversity problem [11], [53].

A typical MA algorithm (Algorithm 1) begins with a set of
random or constructed solutions (initial population). At each
generation, MA selects two or more parent solutions from
the population, and performs a recombination or crossover
operation to generate one or more offspring solutions. Then
a local optimization procedure is invoked to improve the off-
spring solution(s). Finally, a population management strategy
is applied to decide if each improved offspring solution is
accepted to join the population. The process repeats until a
stopping condition is satisfied. We show below how OBL and
MA can be combined to obtain a powerful search algorithm
for the highly combinatorial maximum diversity problem.

III. O PPOSITION-BASED MEMETIC ALGORITHM FORMDP

We describe in this section the proposed opposition-based
memetic algorithm for MDP. We start with the issues of so-
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Algorithm 1 The general memetic algorithm framework
1: Input: a problem instance and population size p
2: Output: the best solution S∗ found

// Build an initial population
3: P = {S1, S2, . . . , Sp} ← PoolInitialization ()

// We suppose it is a maximization problem, record the best
solution found so far

4: S∗ = argmax{f(Si)|i = 1, 2, . . . , p}
5: while a stopping condition is not reached do
6: (Si, . . . , Sj)← ParentsSelection (P )

// Generate an offspring solution
7: So ← CrossoverOperator(Si, . . . , Sj)

// Improve the offspring solution
8: So ← LocalImprovement(So)

// Accept or discard the improved solution
9: P ← UpdatePopulation (P, So)

// Update the best solution found
10: if f(So) > f(S∗) then
11: S∗ ← So

12: end if
13: end while

lution representation and search space, followed by a detailed
presentation of the ingredients of the proposed approach.

A. Solution Representation and Search Space

Given a MDP instance with setN = {e1, e2, . . . , en}
and integerm, any subsetS ⊂ N of size m is a feasible
solution. A candidate solutionS can then be represented by
S = {eS(1), eS(2), . . . , eS(m)} such thatS(i) is the index of
elementi in N or equivalently by a binary vector of size of
n such that exactlym variables receive the value of 1 and the
othern −m variables receive the value of 0. The quality of
a candidate solutionS is assessed by the objective functionf
of Equation (1).

Given a MDP instance, the search spaceΩ is composed of
all them-element subsets ofN , i.e.,Ω = {S ⊂ N : |S| = m}.
The size ofΩ is given by

(

n
m

)

= n!
m!(n−m)! and increases

extremely fast withn andm.

B. Main Scheme

The proposed OBMA algorithm for MDP is based on op-
position learning, which relies on the key concept of opposite
solution in the context of MDP, which is defined as follows.

Definition 1 (Opposite solution):Given a MDP instance
with set N and integerm, let S be a feasible solution of
Ω represented by its binaryn-vectorx, an opposite solutionS
corresponds to a feasible binary vectorx whose components
match the complement1 of x as closely as possible.

According to this definition, ifm < n
2 , S corresponds to

any subset of elements of size ofm from N \S. If m = n
2 , the

unique opposite solution is given byS = N \ S. If m > n
2 ,

S is any subset ofn−m elements fromN \S, completed by
other2m− n elements fromS.

We observe that a diversification framework introduced in
[21] also yields the type of opposite solution provided by
our definition and applies to constraints more general than

1Let x ∈ {0, 1}n, its complementx is ann-vector such thatx[i] = 1 if
x[i] = 0; x[i] = 0 if x[i] = 1.

the constraint defined by Equation (2). We make two related
comments. First, as we observe in Section IV, the MDP
benchmark instances in the literature correspond to the case
m 6

n
2 . Second, in practice, when an opposite solution

is required while there are multiple opposite solutions, we
can just select one solution at random among the candidate
opposite solutions.

Algorithm 2 Opposition-based memetic algorithm for MDP
1: Input: a n× n distance matrix (dij), and an integer m < n
2: Output: the best solution S∗ found

// Build an initial population, Section III-C
3: P = {S1, S2, . . . , Sp} ← OppositionBasedPoolInitialize()
4: S∗ ← argmax{f(Si) : i = 1, 2, . . . , p}
5: while a stopping condition is not reached do
6: Randomly select two parent solutions Si and Sj from P

// Generate an offspring solution and its opposite solution
by crossover, Section III-E

7: So, So ← BackboneBasedCrossover(Si, Sj)
// Perform a double trajectory search, Section III-D

8: So ← TabuSearch(So)/∗trajectory 1: search around So ∗/
9: if f(So) > f(S∗) then

10: S∗ = So

11: end if
// Insert or discard the improved solution, Section III-F

12: P ← RankBasedPoolUpdating (P, So)
13: So ← TabuSearch(So)/∗trajectory 2: search around So ∗/
14: if f(So) > f(S∗) then
15: S∗ = So

16: end if
// Insert or discard the improved solution, Section III-F

17: P ← RankBasedPoolUpdating (P, So)
18: end while

The proposed OBMA algorithm consists of four key compo-
nents: an opposition-based population initialization procedure,
a backbone-based crossover operator, an opposition-based
double trajectory search procedure and a rank-based quality-
and-distance pool updating strategy. OBMA starts from a
collection of diverse elite solutions which are obtained bythe
opposition-based initialization procedure (Section III-C). At
each generation, two parent solutions are selected at random
from the population, and then the backbone-based crossover
operator (Section III-E) is applied to the selected parentsto
generate an offspring solution and a corresponding opposite
solution. Subsequently, the opposition-based double trajectory
search procedure (Section III-D) is invoked to search simulta-
neously from the offspring solution and its opposite solution.
Finally, the rank-based pool updating strategy (Section III-F)
decides whether these two improved offspring solutions should
be inserted into the population. This process repeats untila
stopping condition (e.g., a time limit) is satisfied. The general
framework of the OBMA algorithm is shown in Algorithm 2
while its components are described in the following sections.

C. Opposition-based Population Initialization

The initial populationP is composed ofp diverse and high
quality solutions. Unlike traditional population initialization,
our population initialization procedure integrates the concept
of OBL. As shown in Algorithm 3, the OBL-based initializa-
tion procedure considers not only a random candidate solution
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but also a corresponding opposite solution. Specifically, we
first generate a pair of solutions, i.e., a random solution
Sr ∈ Ω and a corresponding opposite solutionSr according to
Definition (1) of Section III-B (if multiple opposite solutions
exist, one of them is taken at random). These two solutions
are then improved by the tabu search procedure described in
Section III-D. Finally, the better one of the two improved
solutionsS′ is inserted into the population ifS′ is not the
same as any existing individual of the population. Otherwise,
we modify S′ with the swap operation (see Section III-D1)
until S′ becomes different from all individuals inP before
inserting it into the population. This procedure is repeated until
the population is filled up withp solutions. With the help of
this initialization procedure, the initial solutions ofP are not
only of good quality, but also of high diversity.

Algorithm 3 Opposition-based population initialization
1: Input: population size p
2: Output: an initial population P = {S1, S2, . . . , Sp}
3: count = 0
4: while count < p do
5: /∗ Generate a random solution Sr and its opposite solu-

tion Sr ∗/
6: Sr ← TabuSearch (Sr)
7: Sr ← TabuSearch (Sr)
8: /∗ Identify the better solution between Sr and Sr ∗/
9: S′ ← argmax{f(Sr), f(Sr)}

10: /∗ Insert S′ into the population P or modify it ∗/
11: if S′ is different from any solutions in the P then
12: Add S′ into the population P directly
13: else
14: Modify S′ and add it into the population P
15: count← count+ 1
16: end if
17: end while

D. Opposition-based Double Trajectory Search Procedure

In the proposed OBMA algorithm, we use an opposition-
based double trajectory search procedure (ODTS) for local op-
timization. ODTS simultaneously searches around an offspring
solutionSo and one opposite solutionSo. The local optimiza-
tion procedure used here is an improved constrained neighbor-
hood tabu search. Tabu search is a well-known metaheuristic
that guides a local search heuristic to explore the solution
space beyond local optimality [20]. The original constrained
neighborhood tabu search algorithm was proposed in [53],
which is specifically designed for MDP by using a constrained
neighborhood and a dynamic tabu tenure management mecha-
nism. Compared with this tabu search algorithm, our improved
tabu search procedure (see Algorithm 4) distinguishes itself
by its parametric constrained neighborhood which allows the
search process to explore more promising candidate solutions.
In the following, we present the key ingredients of this local
optimization procedure including the parametric constrained
neighborhood, the fast neighborhood evaluation techniqueand
the dynamic tabu tenure management scheme.

1) Parametric constrained neighborhood:In general, local
search for MDP starts from an initial solutionS and sub-
sequently swaps an element ofS and an element ofN \ S

Algorithm 4 Parametric constrained neighborhood tabu search
1: Input: a starting solution S, the maximum allowed iterations

MaxIter
2: Output: the best solution S∗ found
3: S∗ ← S
4: iter ← 0
5: Initialize the tabu list
6: Calculate the gain(ei) for each element ei ∈ N according to

Eq. (4)
7: while iter < MaxIter do
8: minGain← min{gain(ei) : ei ∈ S}
9: Determine subset Uc

S according to Eq. (6)
10: maxGain← max{gain(ei) : ei ∈ N \ S}
11: Determine subset Uc

N\S according to Eq. (7)
12: Choose a best eligible swap(eu, ev) (see Sect. III-D3)
13: S ← S \ {eu} ∪ {ev}
14: Update the tabu list and gain(ei) for each element ei ∈ N

according to Eq. (8)
15: if f(S) > f(S∗) then
16: S∗ ← S
17: end if
18: iter ← iter + 1
19: end while

according to some specific transition rule (e.g., accepting
the first or the best improving transition). Clearly, the size
of this neighborhood is bound byO(m(n − m)) and an
exhaustive exploration of all the possible swap moves is too
time-consuming for the large values ofn. To reduce the size of
the swap neighborhood, we employ an extension of a candidate
list strategy sometimes called a neighborhood decomposition
strategy [19] or a successive filtration strategy [44], and which
we refer to as a constrained swap strategy [53]. As it is
shown in the experimental analysis of Section V-A, although
this constrained swap strategy accelerates the search process,
it imposes a too strong restriction and may exclude some
promising swap moves for the tabu search procedure. In this
work, we introduce theparametric constrained neighborhood
which adopts the idea of the constrained neighborhood, but
weakens the imposed constraint by introducing a parameter
ρ (ρ > 1) to control the size of the explored neighborhood.
Both constrained neighborhoods rely on the notion of move
gain of each elementei with respect to the objective value of
the current solutionS defined as follows.

gain(ei) =
∑

ej∈S

dij , i = 1, 2, . . . ,m (4)

Let swap(eu, ev) denote the swap operation which ex-
changes an elementeu ∈ S against an elementev ∈ N \ S.

Once a swapS
swap(eu,ev)
−−−−−−−−→ S′ is made, it provides a new

solutionS′ = S \ {eu}∪ {ev} and the move gain∆uv of this
swap can be calculated according to the following formula.

∆uv = f(S′)− f(S) = gain(ev)− gain(eu)− duv (5)

Equation (5) suggests that in order to maximize the move
gain, it is a good strategy to consider swap moves that replaces
in the current solutionS an elementeu with a small gain by
an elementev out of S with a large gain. In other words,
the search process can only consider swap moves that involve
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an elementeu∗ from S with the minimal gain value and an
elementev∗ in N \S with a maximal gain value. However the
move gain also depends on the distancedu∗v∗ betweeneu∗

and ev∗ . These remarks lead to the following definition for
the parametric constrained neighborhood.

For a current solutionS, let minGain = min{gain(ei) :
ei ∈ S} and maxGain = max{gain(ei) : ei ∈ N \ S}
and dmax = max{dij : 1 6 i < j 6 n}. The parametric
constrained neighborhood relies on the two following sets.

U c
S = {ei ∈ S : gain(ei) 6 minGain+

ρ

2
dmax} (6)

and

U c
N\S = {ei ∈ N \ S : gain(ei) > maxGain−

ρ

2
dmax}

(7)
Therefore, a constrained neighbor solutionS′ can be ob-

tained fromS by swapping one elementeu ∈ U c
S and another

elementev ∈ U c
N\S . Clearly, the evaluation of all constrained

neighboring solutions can be achieved inO(|U c
S | × |U

c
N\S |).

Conveniently, we can adjust the value of parameterρ (ρ > 1)
to control the size of the constrained neighborhood.

One notices that the neighborhood of [53] is a special case
of the above neighborhood whenρ = 2. In general, a larger
ρ value leads to a less constrained neighborhood compared to
the neighborhood of [53], allowing thus additional promising
candidate solutions to be considered by the tabu search proce-
dure. The experimental analysis of Section V-A confirms the
effectiveness of this parametric constrained neighborhood.

2) Fast neighborhood evaluation technique:Once a
swap(eu, ev) move is performed, we need to update the gains
gain(ei) affected by the move. To rapidly determine the
gain of each elementei, we resort to the fast neighborhood
evaluation technique used in [2], [4], [53].

gain(ei) =











gain(ei) + div if ei = eu

gain(ei)− diu if ei = ev

gain(ei) + div − diu if ei 6= eu andei 6= ev.
(8)

Updating the gains ofn elements requiresO(n) time. There-
fore, the time to update the parametric constrained neighbor-
hood at each iteration is bounded byO(n)+O(|U c

S |×|U
c
N\S |).

3) Dynamic tabu tenure management scheme:Starting with
a solutionS, tabu search iteratively visits a series of neigh-
boring solutions generated by the swap operator. At each
iteration, a best swap(i.e., with the maximum move gain
∆uv) is chosen among the eligible swap moves to transform
the current solution even if the resulting solution is worse
than the current solution. To prevent the search from cycling
among visited solutions, tabu search typically incorporates a
short-term history memoryH, known as the tabu list [20].

Initially, all elements are eligible for a swap operation. Once
a swap(eu, ev) is performed, we record it in the tabu listH to
mark elementeu as tabu, meaning that elementeu is forbidden
to join again solutionS during the nextTu iterations (Tu is
called the tabu tenure). Similarly, elementev is also marked
as tabu for the nextTv iterations and thus cannot be removed

from S during this period. The tabu status of an element is
disabled if the swap operation with this element leads to a
solution better than any already visited solution (this rule is
called theaspiration criterionin tabu search). An eligible swap
move involves only elements that are not forbidden by the tabu
list or satisfy the aspiration criterion.

It is important to determine a suitable tabu tenure for the
elements of a swap. Yet, there does not exist a universally
applicable tabu tenure management scheme. In this paper, we
adopt a dynamic tabu list management technique which was
proposed in [16] and proved to work well for MDP [53]. The
tabu tenureTx of an elementex taking part in a swap operation
is determined according to a periodic step functionT (iter),
where iter is the number of iterations. Specifically,T (iter)
takes the value ofα (a parameter set to 15 in this work),2×α,
4×α and8×α according to the value ofiter, and eachT (iter)
value is kept for 100 consecutive iterations (see [16], [53]for
more details). Following [53], we setTu = T (iter) for the
elementeu dropped from the solution andTv = 0.7 ∗T (iter)
for the elementev added to the solution.

To implement the tabu list, we use an integer vectorH of
size n whose components are initially set to 0 (i.e.,H[i] =
0, ∀i ∈ [1, . . . , n]). After eachswap(eu, ev) operation, we set
H[u] (resp.H[v]) to iter+Tu (resp.iter+Tv), whereiter is
the current number of iterations andTu (resp.Tv) is the tabu
tenure explained above. With this implementation, it is very
easy to know whether an elementei is forbidden by the tabu
list as follows. Ifiter ≤ H[i], thenei is forbidden by the tabu
list; otherwise,ei is not forbidden by the tabu list.

E. Backbone-based Crossover Operator

The crossover operator plays a critical role in memetic
search and defines the way information is transmitted from
parents to offspring [24]. A meaningful crossover operator
should preserve good properties of parent solutions through
the recombination process. In our case, we adopt a backbone-
based crossover operator which generates an offspring solution
in the same way as in [53] while introducing additionally an
opposite solution. For MDP, the backbone is a good property
that is to be transmitted from parents to offspring, as shownin
Definition 2. Specially, the backbone-based crossover operator
not only produces an offspring solution, but also creates a
corresponding opposite solution.

Definition 2 (backbone [24], [53]):Let Su andSv be two
solutions of MDP, the backbone ofSu andSv is defined as
the set of common elements shared by these two solutions,
i.e., Su ∩ Sv.

Given a populationP = {S1, S2, . . . , Sp} of p individuals,
an offspring solution is constructed in two phases. The first
phase randomly selects two parentsSu and Sv in P and
identifies the backbone which is used to form the partial
offspring So, i.e., So = Su ∩ Sv. If |So| < m, then
the second phase successively extendsSo with m − |So|
other elements in a greedy way. Specifically, we alternatively
consider each parent and select an unassigned element with
maximum gain with respect toSo until So reaches the size
of m. Once the offspring solutionSo is obtained, we generate
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its corresponding opposite solutionSo according to Definition
1. Consequently, we obtain two different and distant offspring
solutionsSo andSo which are further improved by the tabu
search procedure of Section III-D.

F. Rank-based Pool Updating Strategy

To maintain a healthy diversity of the population, we use
a rank-based pool updating strategy to decide whether the
improved solutions (So and So) should be inserted into the
population or discarded. This pool updating strategy simul-
taneously considers the solution quality and the distance be-
tween individuals in the population to guarantee the population
diversity. Similar quality-and-distance pool updating strategies
have been used in memetic algorithms in [10], [31], [48], [53].

For two solutionsSu andSv, we use the well-known set-
theoretic partition distance [23] to measure their distance.

D(Su, Sv) = m− Sim(Su, Sv) (9)

where Sim(Su, Sv) = |Su ∩ Sv| denotes the number of
common elements shared bySu andSv.

Given a populationP = {S1, S2, . . . , Sp} and one solution
Si in P , the average distance betweenSi and the remaining
individuals inP is computed by [10].

AD(Si, P ) =
1

p

∑

Sj∈P,j 6=i

D(Si, Sj) (10)

To update the population with an improved offspring so-
lution (So or So), let us consider the case ofSo (the same
procedure is applied toSo). We first tentatively insertSo into
the populationP , i.e., P ′ ← P ∪ {So}. Then all individuals
in P ′ are assessed based on the following function.

Score(Si, P ′) = β ∗RF (f(Si))+(1−β)∗RF (AD(Si, P ′))
(11)

where RF (f(Si)) and RF (AD(Si, P ′)) represent respec-
tively the rank of solutionSi with respect to its objective value
and the average distance to the population. Specifically,RF (·)
ranks the solutions ofP in decreasing order according to their
objective values or their average distances to the population. In
case of ties, the solution with the smallest index is preferred.
β is the weighting coefficient between the objective value of
the solution and its average distance to the population, which
is empirically set toβ = 0.6.

Based on this scoring function, we identify the worst
solutionSw with the largest score value from the population
P ′. If the worst solutionSw is not the improved offspring
So, then the population is updated by replacingSw by So;
otherwise,So is simply discarded.

G. Computational Complexity of OBMA

To analyze the computational complexity of the proposed
OBMA algorithm, we consider the main steps in one genera-
tion in the main loop of Algorithm 2.

As shown in Algorithm 2, each generation of the OBMA
algorithm is composed of four components: parents selec-
tion, backbone-based crossover, tabu search and rank-based

pool updating strategy. The step of parents selection is
bounded byO(1). The backbone-based crossover operation
can be achieved inO(nm2). The computational complexity
of the parametric constrained neighborhood search procedure
is O((n+|U c

S |×|U
c
N\S |)MaxIter), where|U c

S | is the number
of elements that can be swapped out fromS, |U c

N\S | is
the number of elements inN \ S that can be swapped
into S, and MaxIter is the allowable maximum number
of iterations in tabu search. The computational complexity
for the pool updating strategy isO(p(m2 + p)), wherep is
the population size. To summarize, the total computational
complexity of the proposed OBMA within one generation is
O(nm2 + (n+ |U c

S | × |U
c
N\S |)MaxIter).

IV. COMPUTATIONAL RESULTS

This section presents computational experiments to test the
efficiency of our OBMA algorithm. We aim to 1) demonstrate
the added value of OBMA (with OBL) compared to the
memetic search framework (without OBL), and 2) evaluate the
performance of OBMA with respect to the best-known results
ever reported by state-of-the-art algorithms in the literature.

A. Benchmark Instances

Our computational assessment were based on 80 large
instances with 2000 to 5000 elements which are classified into
the following sets.

Set I contains three data sets: MDG-a (also known as
Type1 22), MDG-b and MDG-c. They are available at http:
//www.optsicom.es/mdp/.

• MDG-a: This data set consists of 20 instances with
n = 2000, m = 200. The distancedij between any two
elementsi andj is an integer number which is randomly
selected between 0 and 10 from a uniform distribution.

• MDG-b: This data set includes 20 instances withn =
2000, m = 200. The distancedij between any two
elementsi and j is a real number which is randomly
selected between 0 and 1000 from a uniform distribution.

• MDG-c: This data set is composed of 20 instances with
n = 2000, m = 300, 400, 500, 600. The distancedij
between any two elementsi and j is an integer number
which is randomly selected between 0 and 1000 from a
uniform distribution.

Set II (b2500) contains 10 instances withn = 2500,
m = 1000, where the distancedij between any two elements
ei andej is an integer randomly generated from[−100, 100].
This data set was originally derived from the unconstrained
binary quadratic programming problem by ignoring the diag-
onal elements and is part of ORLIB: http://people.brunel.ac.
uk/∼mastjjb/jeb/orlib/files/.

Set III (p3000 and p5000) contains 5 very large instances
with n = 3000 and m = 1500, and 5 instances withn =
5000 andm = 2500, wheredij are integers generated from
a [0, 100] uniform distribution. The sources of the generator
and input files to replicate this data set can be found at: http:
//www.proin.ktu.lt/∼gintaras/mdgp.html.



7

TABLE I
80 LARGE BENCHMARK INSTANCES USED IN THE EXPERIMENTS.

Data set n m #instance time limit (s) #run

MDG-a 2000 200 20 20 30
MDG-b 2000 200 20 600 15
MDG-c 2000 300-600 20 600 15

b2500 2500 1000 10 300 30

p3000 3000 1500 5 600 15
p5000 5000 2500 5 1800 15

B. Experimental Settings

Our algorithm2 was implemented in C++, and complied
using GNU gcc 4.1.2 with ‘-O3’ option on an Intel E5-2670
with 2.5GHz and 2GB RAM under Linux. Without using
any compiler flag, running the DIMACS machine benchmark
program dfmax3 on our machine requires 0.19, 1.17 and 4.54
seconds to solve graphs r300.5, r400.5 and r500.5 respectively.
To obtain our experimental results, each instance was solved
according to the settings (including time limit and number
of runs) provided in Tables I and II. Notice that, like most
reference algorithms of Section IV-D, we used a cutoff time
limit (instead of fitness evaluations) as the stopping condition.
This choice is suitable in the context of MDP given that
its fitness evaluation is computationally cheap enough, con-
trary to expensive-to-evaluate problems like many engineering
optimization problems where using fitness evaluations is a
standard practice [25].

TABLE II
THE PARAMETER SETTING OF THEOBMA ALGORITHM .

Parameters Description Value Section

p population size 10 III-C
MaxIter allowable number of iterations of TS 50,000 III-D
α tabu tenure management factor 15 III-D
ρ scale coefficient 4 III-D
β weighting coefficient 0.6 III-F

C. Benefit of OBL for Memetic Search

To verify the benefit of OBL for memetic search, we com-
pare OBMA with its alternative algorithmOBMA0 without
OBL. To obtainOBMA0, two modifications have been made
on OBMA: 1) for the population initialization phase, we
randomly generate two initial solutions at a time (instead of a
random solution and an opposite solution); 2) for the crossover
phase, we perform twice the crossover operation to generate
two offspring solutions (instead of one offspring solutionand
an opposite solution). To make a fair comparison between
OBMA andOBMA0, we ran both algorithms under the same
conditions, as shown in Tables I and II. The comparative
results for the five data sets are summarized in Tables III-VII.

2The best solution certificates and our program will be made available at
http://www.info.univ-angers.fr/pub/hao/OBMA.html.

3dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique

In these tables, columns 1 and 2 respectively show for each
instance its name (Instance) and the current best objective
value(fprev) jointly reported in recent studies [35], [17], [53],
[51]. Columns 3-7 report the results of theOBMA0 algorithm:
the difference betweenfprev and the best objective valuefbest
(i.e., ∆fbest = fprev − fbest), the difference betweenfprev
and average objective valuefavg (i.e.,∆favg = fprev−favg),
the standard deviation of objective values(σ), the average
CPU time to attain the best objective values(tbest) and
the success rate(#succ) over 30 or 15 independent runs.
Columns 8-12 present the same information of the OBMA
algorithm. The best values among the results of the two
compared algorithms are indicated in bold. At the last row, we
also provide the average number of instances for which one
algorithm outperforms the other algorithm. 0.5 is assignedto
each compared algorithm in case of ties.

To analyze these results, we resort to a widely-used statis-
tical methodology known astwo-tailed sign test[12]. This
test is a popular way to compare the overall performance
of algorithms by counting the number of winning instances
of each compared algorithm and thus to identify the overall
winner algorithm. The test makes the null hypothesis that the
compared algorithms are equivalent. The null hypothesis is
accepted if each algorithm wins on approximatelyX/2 out of
X instances. Otherwise, the test rejects the null hypothesis,
suggesting a difference between the compared algorithms.
The Critical Values (CV ) for the two-tailed sign test at a
significance level of 0.05 are respectivelyCV 20

0.05 = 15 for
X = 20 instances andCV 10

0.05 = 9 for X = 10 instances. In
other words, algorithm A is significantly better than algorithm
B if A performs better than B for at leastCV X

0.05 instances for
a data set ofX instances.

From Table III which shows the results ofOBMA0 and
OBMA for the 20 MDG-a instances, we first observe that
both algorithms attain the best-known results reported in the
literature. However, OBMA performs better thanOBMA0 in
terms of the average objective value and success rate, and wins
14.5 instances and 13.5 instances respectively. We also observe
that the standard deviation of the best objective values is sig-
nificantly smaller for OBMA, and OBMA wins 14.5 instances,
which is very close to the critical value(CV 20

0.05 = 15). Finally,
compared toOBMA0, OBMA needs less average CPU time
to find the best-known solutions for all instances except MDG-
a 26 and wins 13.5 instances in terms of the success rate.

Table IV shows the results ofOBMA0 and OBMA for the
20 MDG-b instances. The best-known objective values (fprev)
of this data set were obtained by a scatter search algorithm
(G SS) [17] with a time limit of 2h on an Intel Core 2 Quad
CPU 8300 with 6GB of RAM running Ubuntu 9.04 [35]. This
table indicates that both OBMA andOBMA0 find improved
best-known solutions for 14 out of 20 instances and attain
the best objective values for the remaining 6 instances. On
the other hand, compared to theOBMA0 algorithm, OBMA
obtains a better average objective value and higher successrate
for 13.5 and 13 instances. It is worth noting that OBMA has
a steady performance, and achieves these results with a100%
success rate on almost all instances except for MDG-b24,
MDG-b 32 and MDG-b33. To summarize, OBMA performs
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TABLE III
COMPARISON OF THE RESULTS OBTAINED BYOBMA0 AND OBMA ON THE DATA SET MDG-A .

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-a 21 114271 0 4.5 10.6 9.3 22/30 0 5.2 10.8 7.4 20/30
MDG-a 22 114327 0 4.2 22.6 9.2 29/30 0 0.1 0.5 7.2 29/30
MDG-a 23 114195 0 10.9 15.2 11.5 15/30 0 15.2 15.1 7.0 11/30
MDG-a 24 114093 0 25.3 21.0 11.3 4/30 0 11.2 12.1 8.2 7/30
MDG-a 25 114196 0 55.9 32.7 13.3 1/30 0 41.5 30.7 8.8 5/30
MDG-a 26 114265 0 7.3 10.2 9.9 17/30 0 10.2 11.5 11.6 14/30
MDG-a 27 114361 0 0.0 0.0 4.8 30/30 0 0.2 0.9 4.1 29/30
MDG-a 28 114327 0 57.1 53.8 15.2 12/30 0 18.9 39.2 7.9 23/30
MDG-a 29 114199 0 11.2 16.0 14.6 8/30 0 4.4 8.4 9.0 14/30
MDG-a 30 114229 0 12.8 16.3 10.5 14/30 0 8.1 10.5 7.2 14/30
MDG-a 31 114214 0 30.4 22.7 16.2 5/30 0 16.7 13.6 11.9 9/30
MDG-a 32 114214 0 28.5 19.9 10.4 4/30 0 23.7 17.1 6.0 3/30
MDG-a 33 114233 0 6.1 10.5 12.8 15/30 0 2.0 5.6 8.8 23/30
MDG-a 34 114216 0 25.4 43.8 11.6 15/30 0 2.4 7.0 6.6 26/30
MDG-a 35 114240 0 1.6 2.2 12.2 9/30 0 1.6 2.4 10.7 11/30
MDG-a 36 114335 0 7.5 11.7 12.4 19/30 0 5.7 9.5 10.5 21/30
MDG-a 37 114255 0 4.2 8.2 12.2 18/30 0 5.2 8.6 7.8 18/30
MDG-a 38 114408 0 1.2 3.1 10.6 19/30 0 0.5 1.1 7.6 25/30
MDG-a 39 114201 0 2.2 6.0 9.7 26/30 0 2.0 6.0 4.9 27/30
MDG-a 40 114349 0 28.1 37.7 9.9 18/30 0 23.0 31.5 9.1 19/30

wins 10 5.5 5.5 1 6.5 10 14.5 14.5 19 13.5

The fprev values were obtained by several algorithms including LTS-EDA [51] andMAMDP [53].

TABLE IV
COMPARISON OF THE RESULTS OBTAINED BYOBMA0 AND OBMA ON THE DATA SET MDG-B.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-b 21 11299895 0 0.2 0.0 378.6 15/15 0 0.2 0.0 325.1 15/15
MDG-b 22 11286776 -5622 -5622.2 0.0 336.5 15/15 -5622 -5622.2 0.0380.8 15/15
MDG-b 23 11299941 0 0.5 0.0 300.5 15/15 0 0.5 0.0 283.4 15/15
MDG-b 24 11290874 -245 -229.1 61.2 345.5 14/15 -245 -220.5 67.2 323.4 13/15
MDG-b 25 11296067 -1960 -1959.9 0.0 271.2 15/15 -1960 -1959.9 0.0313.9 15/15
MDG-b 26 11292296 -6134 -5216.0 1836.9 276.8 12/15 -6134 -6134.4 0.0 336.0 15/15
MDG-b 27 11305677 0 0.2 0.0 330.0 15/15 0 0.2 0.0 256.0 15/15
MDG-b 28 11279916 -2995 -2994.6 0.5 329.5 10/15 -2995 -2994.7 0.4 351.1 12/15
MDG-b 29 11297188 -151 -151.5 0.0 323.0 15/15 -151 -151.5 0.0 288.3 15/15
MDG-b 30 11296415 -1650 -1649.6 0.0 311.2 15/15 -1650 -1649.6 0.0 274.9 15/15
MDG-b 31 11288901 0 -0.2 0.0 313.9 15/15 0 -0.2 0.0 308.0 15/15
MDG-b 32 11279820 -3719 -3669.3 25.0 177.5 3/15 -3719 -3694.3 30.6 283.0 9/15
MDG-b 33 11296298 -1740 -1381.7 216.1 112.2 4/15 -1740 -1675.0 166.1 277.5 13/15
MDG-b 34 11281245 -9238 -8881.8 435.8 325.7 9/15 -9238 -9237.6 0.0 355.4 15/15
MDG-b 35 11307424 0 -0.1 0.0 343.6 15/15 0 -0.1 0.0 331.0 15/15
MDG-b 36 11289469 -13423 -13174.5 929.8 251.7 14/15 -13423 -13423.0 0.0 329.4 15/15
MDG-b 37 11290545 -5229 -5099.5 329.7 217.5 13/15 -5229 -5228.8 0.0 291.2 15/15
MDG-b 38 11288571 -7965 -7964.5 0.0 242.5 15/15 -7965 -7964.5 0.0297.6 15/15
MDG-b 39 11295054 0 -0.2 0.0 374.5 15/15 0 -0.2 0.0 289.7 15/15
MDG-b 40 11307105 -2058 -2057.6 0.0 301.1 15/15 -2058 -2057.6 0.0 266.5 15/15

wins 10 6.5 8 10 7 10 13.5 12 10 13

The best-known valuesfprev were obtained by a scatter search algorithm (GSS) [17] with a time limit of 2 hours,
which are available at http://www.optsicom.es/mdp/.

better thanOBMA0 for this data set, but the differences are
not very significant at a significance level of 0.05.

Table V presents the results ofOBMA0 and OBMA for the
20 instances of the MDG-c instances. All best-known results
(fprev) were achieved by iterative tabu search (ITS) [38] or
variable neighborhood search (VNS) [8] under a time limit
of 2 hours on an Intel Core 2 Quad CPU 8300 with 6GB

of RAM running Ubuntu 9.04 [35]. We observe that both
OBMA and OBMA0 obtain improved best-known solutions
for 8 instances and match the best-known solutions for 4
instances. In fact, OBMA improves all best-known solutions
obtained by VNS, but it fails to attain 8 best-known solu-
tions found by ITS. Compared toOBMA0, OBMA obtains
2 improved best solutions for MDG-c17 and MDG-c19.
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TABLE V
COMPARISON OF THE RESULTS OBTAINED BYOBMA0 AND OBMA ON THE DATA SET MDG-C.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

MDG-c 1 24924685⋆ -1659 -493.5 852.7 165.5 5/15 -1659 -1262.4 749.0 251.3 11/15
MDG-c 2 24909199⋆ -3347 140.3 2514.6 94.6 4/15 -3347 -3346.3 2.5 286.6 14/15
MDG-c 3 24900820∗ -4398 -299.2 4040.7 22.5 7/15 -4398 -2805.2 2717.9 239.4 11/15
MDG-c 4 24904964⋆ -4746 -1890.5 1999.4 106.5 4/15 -4746 -3917.2 1657.6 276.2 12/15
MDG-c 5 24899703∗ 3999 4767.8 1025.0 8.7 9/15 3999 4047.3 180.6 212.5 14/15
MDG-c 6 43465087∗ 20139 22534.4 2512.3 77.4 6/15 20139 21054.5 1190.4 290.8 6/15
MDG-c 7 43477267⋆ 0 277.5 1038.2 6.1 14/15 0 126.9 314.7 111.7 12/15
MDG-c 8 43458007⋆ -7565 -4644.3 1833.2 58.9 3/15 -7565 -7546.7 68.6 163.6 14/15
MDG-c 9 43448137⋆ 0 142.2 116.1 82.1 6/15 0 0.0 0.0 72.5 15/15
MDG-c 10 43476251∗ 10690 10690.0 0.0 27.1 15/15 10690 10690.0 0.0115.1 15/15
MDG-c 11 67009114⋆ -12018 -11345.3 2110.0 90.8 13/15 -12018 -11776.3 522.3 335.0 10/15
MDG-c 12 67021888∗ 7718 12209.1 5502.4 9.3 7/15 7718 10179.7 3250.5 302.8 9/15
MDG-c 13 67024373⋆ 0 2082.0 2944.8 106.4 10/15 0 839.4 2140.1 380.1 13/15
MDG-c 14 67024804⋆ -5386 -4667.9 1830.9 11.3 13/15 -5386 -5118.7 1000.3 276.3 14/15
MDG-c 15 67056334⋆ 0 1846.5 1353.5 31.0 5/15 0 1021.2 1122.0 269.0 5/15
MDG-c 16 95637733⋆ -1196 5861.5 8193.7 318.8 2/15 -1196 -1116.3 298.3 270.8 14/15
MDG-c 17 95645826∗ 75241 86848.9 8727.7 291.8 2/15 74713 74981.7 373.3 312.8 8/15
MDG-c 18 95629207∗ 97066 100609.9 3526.8 90.5 7/15 97066 99767.0 2972.8 292.1 8/15
MDG-c 19 95633549∗ 35131 39027.5 5420.3 236.5 7/15 34385 35121.3 816.2 343.7 4/15
MDG-c 20 95643586∗ 59104 59133.2 109.3 111.0 14/15 59104 59133.2 109.3299.9 14/15

wins 9 1 1 18 5 11 19 19 2 15

∗ Results are obtained by ITS with 2 hours CPU time [35].
⋆ Results are obtained by VNS with 2 hours CPU time [35].

Moreover, OBMA performs significantly better thanOBMA0

in terms of the average best solution(19 > CV 20
0.05 = 15),

success rate(15 >= CV 20
0.05 = 15) and standard deviation

(19 > CV 20
0.05 = 15) at a significance level of 0.05.

Table VI reports the results ofOBMA0 and OBMA for
the 10 instances of the b2500 data set. From this table, we
observe that both algorithms reach the best-known values
for all the instances. Meanwhile, the average value of best
objective values of OBMA is better than that ofOBMA0, and
the difference of this measure between these two algorithmsis
weakly significant (8.5 < CV 10

0.05 = 9). Even though there is
no significant difference on the success rate, OBMA obtains
a higher success rate for 8.5 instances, while the reverse is
true only for 1.5 instances. In addition, OBMA achieves these
results more steadily thanOBMA0, wining 8.5 out of 10
instances in terms of the standard deviation.

Table VII displays the results ofOBMA0 and OBMA for
the 10 largest instances (p3000 and p5000 instances). For
these very large instances, OBMA matches all the best-known
objective values without exception whileOBMA0 fails to do
so for 4 instances. In addition, OBMA performs significantly
better thanOBMA0, and wins 10, 9.5 instances in terms of the
average best objective value and success rate, respectively. The
performance of OBMA is also more stable thanOBMA0 by
wining 8 out of 10 instances in term of the standard deviation.

Finally, Table VIII provides a summary of the comparative
results for the five data sets between OBMA (OBL enhanced
memetic algorithm) andOBMA0 (memetic algorithm without
OBL). As we observe from the table, OBMA achieves a better
performance thanOBMA0, i.e., achieving improved solutions
for 6 instances and matching the best solutions on the remain-

ing 75 instances. In addition, OBMA also achieves a better
performance in terms of the average best value, the success
rate and the standard deviation, winingOBMA0 on most
benchmark instances. Therefore, we conclude that opposition-
based learning can beneficially enhance the popular memetic
search framework to achieve an improved performance.

TABLE VIII
A SUMMARY OF WIN STATISTICAL RESULTS(OBMA0 | OBMA) ON ALL

DATA SETS.

Data set ∆fbest ∆favg σ tbest #succ

MDG-a 10 | 10 5.5 | 14.5 5.5| 14.5 1 | 19 6.5 | 13.5
MDG-b 10 | 10 6.5 | 13.5 8 | 12 10 | 10 7 | 13
MDG-c 9 | 11 1 | 19 1 | 19 18 | 2 5 | 15
b2500 5 | 5 1.5 | 8.5 1.5| 8.5 4 | 6 1.5 | 8.5
p3000-5000 3 | 7 0 | 10 2 | 8 4 | 6 0.5 | 9.5

D. Comparison with State-of-the-Art Algorithms

We turn now our attention to a comparison of our OBMA
algorithm with state-of-the-art algorithms, including iterated
tabu search (ITS) [38], scatter search (GSS) [17], variable
neighborhood search (VNS) [8], fine-tuning iterated greedy
algorithm (TIG) [30], tabu search with estimation of dis-
tribution algorithm (LTS-EDA) [51] and memetic algorithm
(MAMDP) [53]. We omit the tabu search/memetic algo-
rithm (TS/MA) [52] and the memetic self-adaptive evolution
strategies (MSES) [11] since TS/MA performs quite similar
to MAMDP of [53] while MSES does not report detailed
results. Among these reference algorithm, only the program
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TABLE VI
COMPARISON OF THE RESULTS OBTAINED BYOBMA0 AND OBMA ON THE DATA SET B2500.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

b2500-1 1153068 0 193.1 429.2 154.1 23/30 0 0.0 0.0 100.3 30/30
b2500-2 1129310 0 106.0 163.1 149.2 21/30 0 37.9 73.2 147.4 22/30
b2500-3 1115538 0 303.2 347.2 105.5 17/30 0 0.4 2.2 95.3 29/30
b2500-4 1147840 0 549.7 461.9 191.2 8/30 0 65.8 118.5 98.9 20/30
b2500-5 1144756 0 50.9 129.3 117.6 24/30 0 5.3 28.4 86.3 29/30
b2500-6 1133572 0 88.9 210.9 89.4 22/30 0 0.0 0.0 66.8 30/30
b2500-7 1149064 0 106.2 111.9 114.8 13/30 0 14.1 31.0 128.3 23/30
b2500-8 1142762 0 113.7 349.0 98.4 22/30 0 1.5 5.5 105.4 28/30
b2500-9 1138866 0 0.2 1.1 135.7 29/30 0 1.3 2.9 139.8 25/30
b2500-10 1153936 0 0.0 0.0 81.4 30/30 0 0.0 0.0 107.5 30/30

wins 5 1.5 1.5 4 1.5 5 8.5 8.5 6 8.5

The fprev values were compiled from the results reported by ITS [38], LTS-EDA [51] and MAMDP [53].

TABLE VII
COMPARISON OF THE RESULTS OBTAINED BYOBMA0 AND OBMA ON THE DATA SETS P3000AND P5000.

OBMA0 OBMA

Instance fprev ∆fbest ∆favg σ tbest #succ ∆fbest ∆favg σ tbest #succ

p3000 1 6502330 0 84.1 28.0 172.6 1/15 0 24.4 35.8 275.6 9/15
p3000 2 18272568 0 152.8 151.1 151.5 7/15 0 0.0 0.0 89.3 15/15
p3000 3 29867138 0 544.5 344.2 244.0 4/15 0 0.0 0.0 26.2 15/15
p3000 4 46915044 0 715.0 531.0 250.1 2/15 0 1.2 19.3 336.9 14/15
p3000 5 58095467 0 209.9 198.2 180.0 6/15 0 0.0 0.0 65.4 15/15
p5000 1 17509369 0 168.9 176.5 518.7 7/15 0 128.2 181.8 1053.9 13/15
p5000 2 50103092 70 819.1 494.3 242.5 1/15 0 22.8 8.0 370.8 1/15
p5000 3 82040316 176 3450.3 1671.3 333.1 1/15 0 209.3 141.3 217.1 2/15
p5000 4 129413710 598 1460.1 661.6 1019.1 1/15 0 97.8 122.1 625.7 7/15
p5000 5 160598156 344 669.6 323.6 1348.7 1/15 0 102.9 52.3 843.2 5/15

wins 3 0 2 4 0.5 7 10 8 6 9.5

The best-known valuesfprev were extracted from [53].

of the memetic algorithm (MAMDP) [53] is available. For
our comparative study, we report the results of the MAMDP
algorithm by running its code on our platform with its default
parameter values reported in [53]. For the other reference
algorithms, we use their results presented in the corresponding
references. The detailed comparative results in terms of∆fbest
and∆favg are reported in Tables IX and X.

Table IX presents the comparative results on the 40 in-
stances of the data sets MDG-a, b2500, p3000-p5000 for
which the detailed results of reference algorithms are available.
At the last row of the table, we also indicate the number
of wining instances relative to our OBMA algorithm both in
terms of the best objective value and average objective value
(recall that a tied result counts 0.5 for each algorithm). From
this table, we observe that OBMA dominates all the reference
algorithms. Importantly, OBMA is the only algorithm which
obtains the best-known values and the largest average objective
values for all 40 instances.

Table X displays the comparative results on the data sets
MDG-b and MDG-c. The best-known objective valuesfprev
for the MDG-b instances are obtained by GSS [17] while
the fprev values of the MDG-c instances are obtained by ITS
and VNS [35], both with a time limit of 2 hours. No result is

available for the TIG and LTS-EDA algorithms for these data
sets. The results of our OBMA algorithm (and MAMDP) are
obtained with a time limit of 10 minutes. Table X indicates
that both OBMA and MAMDP improve the best-known results
for the majority of the 40 instances. Moreover, compared to
MAMDP, our OBMA algorithm obtains an improved best
objective value for 1 MDG-b instance and 3 MDG-c instances,
while matching the best objective values for the remaining
instances. Finally, OBMA dominates MAMDP in terms of
the average objective value, wining 18 out of the 20 MDG-b
instances and all 20 MDG-c instances.

To summarize, compared to the state-of-the-art results, our
OBMA algorithm finds improved best-known solutions (new
lower bounds) for 22 out of the 80 benchmark instances,
matches the best-known solutions for 50 instances, but fails
to attain the best-known results for 8 instances. Such a
performance indicates that the proposed algorithm competes
favorably with state-of-the-art MDP algorithms and enriches
the existing solution arsenal for solving MDP.

V. EXPERIMENTAL ANALYSIS

In this section, we perform additional experiments to gain
some understanding of the proposed algorithm including the
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TABLE IX
COMPARISON OFOBMA WITH OTHER ALGORITHMS ON THE DATA SETSMDG-A , B2500,P3000AND P5000.

ITS [38] VNS [8] TIG [30] LTS-EDA [51] MAMDP [53] OBMA

Instance fprev ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg ∆fbest ∆favg

MDG-a 21 114271 65 209.9 48 150.6 48 101.6 5 60.7 0 8.1 0 5.2
MDG-a 22 114327 29 262.3 0 168.9 0 69.9 0 89.9 0 8.8 0 0.1
MDG-a 23 114195 69 201.4 19 110.8 5 117.8 0 99.0 0 15.2 0 15.2
MDG-a 24 114093 22 200.5 70 188.1 58 141.9 0 79.9 0 15.7 0 11.2
MDG-a 25 114196 95 273.3 87 184.1 99 194.7 51 134.5 0 42.1 0 41.5
MDG-a 26 114265 41 168.2 30 99.3 9 96.2 0 40.2 0 10.8 0 10.2
MDG-a 27 114361 12 167.5 0 56.3 0 71.3 0 18.2 0 0.0 0 0.2
MDG-a 28 114327 25 256.4 0 163.3 0 193.6 0 159.1 0 20.9 0 18.9
MDG-a 29 114199 9 139.8 16 78.5 16 80.4 0 71.0 0 7.6 0 4.4
MDG-a 30 114229 24 204.9 7 139.3 35 121.4 0 56.2 0 9.3 0 8.1
MDG-a 31 114214 74 237.8 42 145.1 59 139.6 3 69.9 0 17.8 0 16.7
MDG-a 32 114214 55 249.5 95 143.3 88 156.0 15 84.9 0 26.8 0 23.7
MDG-a 33 114233 93 279.9 22 168.1 42 167.4 6 85.3 0 3.6 0 2.0
MDG-a 34 114216 92 248.5 117 194.3 64 202.8 0 81.0 0 3.4 0 2.4
MDG-a 35 114240 11 117.5 1 62.9 6 80.5 0 22.0 0 1.2 0 1.6
MDG-a 36 114335 11 225.4 42 215.4 35 167.9 0 36.5 0 8.6 0 5.7
MDG-a 37 114255 56 217.5 0 170.0 18 144.5 6 57.1 0 6.5 0 5.2
MDG-a 38 114408 46 170.0 0 57.1 2 117.4 2 22.8 0 0.7 0 0.5
MDG-a 39 114201 34 243.2 0 124.6 0 144.4 0 35.9 0 3.4 0 2.0
MDG-a 40 114349 151 270.7 65 159.4 45 187.2 0 95.4 0 24.1 0 23.0
b2500-1 1153068 624 3677.3 96 1911.9 42 1960.3 0 369.2 0 72.1 0 0.0
b2500-2 1129310 128 1855.3 88 1034.3 1096 1958.5 154 454.5 0 143.7 0 37.9
b2500-3 1115538 316 3281.9 332 1503.7 34 2647.9 0 290.4 0 184.5 0 0.4
b2500-4 1147840 870 2547.9 436 1521.1 910 1937.1 0 461.7 0 152.3 0 65.8
b2500-5 1144756 356 1800.3 0 749.4 674 1655.9 0 286.1 0 10.5 0 5.3
b2500-6 1133572 250 2173.5 0 1283.5 964 1807.6 80 218.0 0 80.5 0 0.0
b2500-7 1149064 306 1512.6 116 775.5 76 1338.7 44 264.6 0 45.0 0 14.1
b2500-8 1142762 0 2467.7 96 862.5 588 1421.5 22 146.5 0 1.7 0 1.5
b2500-9 1138866 642 2944.7 54 837.1 658 1020.6 6 206.3 0 3.7 0 1.3
b2500-10 1153936 598 2024.6 278 1069.4 448 1808.7 94 305.3 0 0.0 0 0.0
p3000-1 6502330 466 1487.5 273 909.8 136 714.7 96 294.1 0 76.7 0 24.4
p3000-2 18272568 0 1321.6 0 924.2 0 991.1 140 387.0 0 146.1 0 0.0
p3000-3 29867138 1442 2214.7 328 963.5 820 1166.1 0 304.3 0 527.9 0 0.0
p3000-4 46915044 1311 2243.9 254 1068.5 426 2482.2 130 317.1 0 399.5 0 1.2
p3000-5 58095467 423 1521.6 0 663.0 278 1353.3 0 370.4 0 210.7 0 0.0
p5000-1 17509369 2200 3564.9 1002 1971.3 1154 2545.8 191 571.0 0 165.1 0 128.2
p5000-2 50103092 2931 4807.8 1499 2640.0 549 2532.7 547 913.8 21 475.5 0 22.8
p5000-3 82040316 5452 8242.3 1914 3694.4 2156 6007.1 704 1458.5 176 1419.0 0 209.3
p5000-4 129413710 1630 5076.9 1513 2965.9 1696 3874.8 858 1275.2 279 800.9 0 97.8
p5000-5 160598156 2057 4433.9 1191 2278.3 1289 2128.9 579 1017.9 136 411.9 0 102.9

wins 1 0 5 0 2.5 0 9.5 0 18 2

The fprev values were compiled from the results reported by the reference methods [38], [8], [30], [51], [53]. The results of MAMDP are
those we obtained by running its program on our computer, which are slightly different from the results reported in [53] due to the stochastic
nature of the algorithm.

parametric constrained neighborhood, the rank-based quality-
and-distance pool management and the benefit of OBL for
population diversity.

A. Study of the Parametric Constrained Neighborhood

Our tabu search procedure relies on the parametric con-
strained neighborhood whose size is controlled by the param-
eterρ. To highlight the effect of this parameter and determine
a proper value, we ran the tabu search procedure to solve the
first 10 instances of MDG-a (i.e., MDG-a21 ∼ MDG-a 30)
with ρ ∈ [1, 10]. Each instance was independently solved until
the number of iterations reachedMaxIter. Figure 1 shows the
average objective values achieved (left) and the average CPU
times consumed (right) by tabu search on these 10 instances.

As we see from Figure 1 (left), the average objective value
has a drastic rise when we increaseρ from 1 to 3. Then,
it slowly increases if we continue to increaseρ to 10. On
Figure 1 (right), the average CPU time of tabu search needed
to finish MaxIter iterations continuously increases when
ρ increases from 1 to 10. Asρ increases, the size of the
constrained neighborhood also increases, thus the algorithm
needs more time to examine the candidate solutions. To make
a compromise between neighborhood size and solution quality,
we set the scale coefficientρ to 4 in our experiments.

B. Effectiveness of the Pool Updating Strategy

To validate the effectiveness of the rank-based quality-and-
distance (RBQD) pool updating strategy, we compare it with
the general quality-and-distance (GQD) pool updating strategy
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TABLE X
COMPARISON OFOBMA WITH MAMDP [53] ON THE DATA SETSMDG-B AND MDG-C, THE BEST-KNOWN RESULTS ARE OBTAINED BYG SS [17],

ITS AND VNS [35].

MAMDP [53] OBMA MAMDP [53] OBMA

Instance fprev ∆fbest ∆favg ∆fbest ∆favg Instance fprev ∆fbest ∆favg ∆fbest ∆favg

MDG-b 21 11299895 0 225.8 0 0.2 MDG-c 1 24924685 -1659 3481.7 -1659 -1262.4
MDG-b 22 11286776 -5622 -3472.1 -5622 -5622.2 MDG-c 2 24909199 0 4938.7 -3347 -3346.3
MDG-b 23 11299941 0 0.5 0 0.5 MDG-c 3 24900820 -4398 5206.1 -4398 -2805.2
MDG-b 24 11290874 -245 226.0 -245 -220.5 MDG-c 4 24904964 -4746 -411.2 -4746 -3917.2
MDG-b 25 11296067 -1960 -1888.9 -1960 -1959.9 MDG-c 5 24899703 3999 7500.3 3999 4047.3
MDG-b 26 11292296 -6134 -2530.6 -6134 -6134.4 MDG-c 6 43465087 20139 25023.7 20139 21054.5
MDG-b 27 11305677 0 0.2 0 0.2 MDG-c 7 43477267 0 1020.8 0 126.9
MDG-b 28 11279916 -2994 -2634.6 -2995 -2994.7 MDG-c 8 43458007 -4568 -1329.9 -7565 -7546.7
MDG-b 29 11297188 -151 451.8 -151 -151.5 MDG-c 9 43448137 237 1207.3 0 0.0
MDG-b 30 11296415 -1650 -1649.6 -1650 -1649.6 MDG-c 10 43476251 10690 11060.9 10690 10690.0
MDG-b 31 11288901 0 375.7 0 -0.2 MDG-c 11 67009114 -12018 -6942.7 -12018 -11776.3
MDG-b 32 11279820 -3719 -3632.3 -3719 -3694.3 MDG-c 12 67021888 7718 17470.0 7718 10179.7
MDG-b 33 11296298 -1740 -878.7 -1740 -1675.0 MDG-c 13 67024373 0 6673.1 0 839.4
MDG-b 34 11281245 -9238 -8191.3 -9238 -9237.6 MDG-c 14 67024804 -5386 -1050.9 -5386 -5118.7
MDG-b 35 11307424 0 -0.1 0 -0.1 MDG-c 15 67056334 0 3716.2 0 1021.2
MDG-b 36 11289469 -13423 -10792.5 -13423 -13423.0 MDG-c 16 95637733 -1196 1495.2 -1196 -1116.3
MDG-b 37 11290545 -5229 -4372.1 -5229 -5228.8 MDG-c 17 95645826 74713 79061.1 74713 74981.7
MDG-b 38 11288571 -7965 -5896.0 -7965 -7964.5 MDG-c 18 95629207 97066 106806.6 97066 99767.0
MDG-b 39 11295054 0 472.4 0 -0.2 MDG-c 19 95633549 34385 36189.1 34385 35121.3
MDG-b 40 11307105 -2058 -517.5 -2058 -2057.6 MDG-c 20 95643586 59104 61961.2 59104 59133.2

wins 9.5 2 10.5 18 wins 8.5 0 11.5 20

The fprev values for the MDG-b instances are reported by GSS [17], while thefprev values for the MDG-c instances are from
[35] with a time limit of 2 hours, all available at http://www.optsicom.es/mdp/. The results of MAMDP were obtained by running the
program on our computer (results of MAMDP for these instances are not reported in [53]).
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Fig. 1. Average objective values and average CPU times spent on 10 MDG-
a instances obtained by executing TS with different values of the scale
coefficientρ.

used in [53]. GQD evaluates each individual by a weighted
sum of the quality and the distance to the population. In
this experiment, we compared the performance of the OBMA
algorithm under these two pool updating strategies (the two
OBMA variants are called OBMARBQD and OBMAGQD).
The experiment was performed on the largest data set, i.e.,
p3000 and p5000. We performed 20 runs of each algorithm
to solve each instance, and recorded the best objective value
(fbest), the difference between the average objective value and
the best objective value (∆favg), the standard deviation of
objective value over each run (σ), the average time of one
run (tavg), the average time over the runs which attainedfbest

(tbest), and the success rate (#succ).
Table XI shows the comparison of the results obtained

by OBMA under the rank-based quality-and-distance strategy
(OBMARBQD) and the general quality-and-distance strategy
(OBMAGQD). From the table, we observe that OBMARBQD

achieves the same best objective values for all tested instances
compared with OBMAGQD. However, for the five metrics,
OBMARBQD performs better than OBMAGQD for much
more instances, and respectively winning 8, 8, 6, 6 and 8 out
of 10 tested instances. These results confirm the effectiveness
of our proposed rank-based quality-and-distance pool updating
strategy.

C. Opposition-based Learning over Population Diversity

In this section, we further verify the benefit brought by
OBL in maintaining the population diversity of the OBMA
algorithm. To assess the diversity of a population, a suitable
metric is necessary. In this experiment, we resort tominimum
distanceandaverage distanceof individuals in the population
to measure the population diversity. The minimum distance is
defined as the minimum distance between any two individuals
in the population, i.e.,MD = mini6=j∈{1,2,...,p} D(Si, Sj).
Correspondingly, theAD is the average distance between all
individuals in the population, as defined by Equation (10).

Using the data sets MDG-a and b2500, we compared the di-
versity of the population with or without OBL. The population
initialization (PI0) procedure without OBL first generates two
random solutions, which are then respectively improved by the
tabu search procedure. The best of two improved solutions is
inserted into the population if it does not duplicate any existing
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TABLE XI
COMPARISON OF THE RESULTS OBTAINED BYOBMA UNDER THE RANK-BASED QUALITY-AND-DISTANCE POOL UPDATING STRATEGY(OBMARBQD )

AND THE GENERAL QUALITY-AND-DISTANCE (GQD) POOL UPDATING STRATEGY(OBMAGQD ).

OBMARBQD OBMAGQD

Instance fbest ∆favg σ tavg tbest #succ fbest ∆favg σ tavg tbest #succ

p3000 1 6502330 -23.0 35.3 176.9 118.8 14/20 6502330 -27.3 37.4 158.3 81.4 13/20
p3000 2 18272568 0.0 0.0 75.8 75.8 20/20 18272568 -10.5 45.8 54.7 57.1 19/20
p3000 3 29867138 0.0 0.0 37.7 37.7 20/20 29867138 0.0 0.0 55.4 55.4 20/20
p3000 4 46915044 0.0 0.0 113.7 113.7 20/20 46915044 -0.9 3.9 147.5 146.4 19/20
p3000 5 58095467 0.0 0.0 22.9 22.9 20/20 58095467 0.0 0.0 92.8 92.8 20/20
p5000 1 17509369 -13.8 60.4 621.9 624.3 19/20 17509369 -27.8 83.1 674.3 646.1 17/20
p5000 2 50103071 -23.4 4.8 561.1 594.3 16/20 50103071 -26.4 6.0 584.3 464.0 11/20
p5000 3 82040316 -305.8 304.2 791.1 527.5 01/20 82040316 -241.0 176.8 642.2 718.4 01/20
p5000 4 129413710 -116.4 143.9 756.5 802.8 12/20 129413710 -174.3 176.2 662.5 705.2 09/20
p5000 5 160598156 -161.8 99.4 511.7 471.6 02/20 160598156 -182.6 112.7 745.5 1081.3 02/20

wins 5 8 8 6 6 8 5 2 2 4 4 2

individual in the population. We repeat this process untilp
different solutions are generated. In contrast, the population
initialization with OBL (PIOBL) is the procedure described in
Section III-C, which considers both a random solution and its
corresponding opposite solution. We solved each instance 20
times and recorded the minimum distance and average distance
of each population initialization procedure on each instance.
The comparative results of the population constructed with
or without OBL are shown in Figure 2, where the X-axis
shows the instances in each benchmark and Y-axis indicates
the average distance and minimum distance.
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Fig. 2. Comparative results of the populations built by population initialization
with OBL (PIOBL) or without OBL (PI0).

From Figure 2, we observe that the population built by
PIOBL has a relatively larger average distance and minimum
distance. This is particularly true for all instances of the
MDG-a data set except for MDG-a31. Also, the population
produced byPIOBL has a larger minimum distance than that
of PI0 for 18 out of 20 instances of the MDG-a data set.
Equal or better results are found for the b2500 data set, since
the population generated byPIOBL dominates the population
produced byPI0 in terms of the average and minimum
distances. This experiment shows that OBL helps the OBMA

algorithm to start its search with a population of high diversity,
which is maintained by the rank-based quality-and-distance
strategy during the search.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an opposition-based memetic algorithm
(OBMA) which uses opposition-based learning to improve a
memetic algorithm for solving MDP. The OBMA algorithm
employs OBL to reinforce population diversity and improve
evolutionary search. OBMA distinguishes itself from existing
memetic algorithms by three aspects: a double trajectory
search procedure which simultaneously both a candidate so-
lution and a corresponding opposite solution, a parametric
constrained neighborhood for effective local optimization, and
a rank-based quality-and-distance pool updating strategy.

Extensive comparative experiments on 80 large benchmark
instances (with 2000 to 5000 items) from the literature have
demonstrated the competitiveness of the OBMA algorithm.
OBMA matches the best-known results for most of instances
and in particular finds improved best results (new lower
bounds) for 22 instances which are useful for the assessment
of other MDP algorithms. Our experimental analysis has
also confirmed that integrating OBL into the memetic search
framework does improve the search efficiency of the classical
memetic search.

As future work, several potential research lines can be
followed. First, to further improve OBMA, it is worth studying
alternative strategies for tuning tabu tenure, generatinginitial
solutions, and managing population diversity. Second, it would
be interesting to study the behavior of the OBMA algorithm
on much larger instances (e.g., with tens of thousands items)
and investigate whether techniques developed for large scale
continuous optimization ([37], [43]) could be helpful in this
setting. Third, OBL being a general technique, it is worth
studying its usefulness within other heuristic algorithms. Fi-
nally, it would be interesting to investigate the opposition-
based optimization approach for solving additional combi-
natorial problems including those with other diversity and
dispersion criteria.



14

ACKNOWLEDGMENT

We are grateful to the anonymous referees for their insight-
ful comments and suggestions which helped us to significantly
improve the paper. We would like to thank Dr. Qinghua Wu
for kindly sharing the source code of the MAMDP algorithm
described in [53]. Support for Yangming Zhou from the China
Scholarship Council (2014-2018) is also acknowledged.

REFERENCES

[1] F. S. Al-Qunaieer, H. R. Tizhoosh, S. Rahnamayan, “Opposition based
computing - A survey,” in:Proceedings of International Joint Conference
on Neural Networks (IJCNN-2010), pp. 1–7, 2010.

[2] R. Aringhieri, R. Cordone, Y. Melzani, “Tabu search versus GRASP for
the maximum diversity problem,”A Quarterly Journal of Operations
Research, vol. 6, no. 1, pp. 45–60, 2008.

[3] R. Aringhieri, M. Bruglieri, R. Cordone, “Optimal results and tight
bounds for the maximum diversity problem,”Foundation of Computing
and Decision Sciences, vol. 34, no. 2, pp. 73–85, 2009.

[4] R. Aringhieri, R. Cordone, “Comparing local search metaheuristics for
the maximum diversity problem,”Journal of the Operational Research
Society, vol. 62, no. 2, pp. 266–280, 2011.

[5] M. Aziz, M.-H. Tayarani-N., “Opposition-based magneticoptimization
algorithm with parameter adaptation strategy,”Swarm and Evolutionary
Computation, vol. 26, pp. 97–119, 2016.

[6] R. Bellio, L. Di Gaspero, A. Schaerf, “Design and statistical analysis
of a hybrid local search algorithm for course timetabling,”Journal of
Scheduling, vol. 15, no. 1, pp. 49–61, 2012.

[7] U. Benlic, J.K. Hao, “A multilevel memetic approach for improving graph
k-partitions,” IEEE Transactions Evolutionary Computation, vol. 15, no.
5, pp. 624–642, 2011.
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“Memetic self-adaptive evolution strategies applied to themaximum
diversity problem,”Optimization Letters, vol. 8, no. 2, pp. 705–714, 2014.

[12] J. Dem̌sar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[13] A. Duarte, R. Mart́ı, “Tabu search and GRASP for the maximum
diversity problem,”European Journal of Operational Research, vol. 178,
no. 1, pp. 71–84, 2007.

[14] M. Ergezer, D. Simon, “Oppositional biogeography-based optimization
for combinatorial problems,” in:Proceedings of Congress on Evolutionary
Computation (CEC-2011), pp. 1496–1503, 2011.

[15] U. Feige, D. Peleg, G. Kortsarz, “The dense k-subgraph problem,”
Algorithmica, vol. 29, no. 3, pp. 410–421, 2001.

[16] P. Galinier, Z. Boujbel, M. C. Fernandes, “An efficient memetic algo-
rithm for the graph partitioning problem,”Annals of Operations Research,
vol. 191, no. 1, pp. 1–22, 2011.

[17] M. Gallego, A. Duarte, M. Laguna, R. Martı́, “Hybrid heuristics for the
maximum diversity problem,”Computational Optimization and Applica-
tions, vol. 44, no. 3, pp. 411–426, 2009.

[18] J. B. Ghosh, “Computational aspects of the maximum diversity prob-
lem,” Operations Research Letters, vol. 19, no. 4, pp. 175–181, 1996.

[19] F. Glover, E. Taillard and D. de Werra, “A Users Guide to Tabu Search,”
Annals of Operations Research, vol. 41, pp. 12–37, 1993.

[20] F. Glover, M. Laguna, “Tabu search,” Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[21] F. Glover, “A Template for Scatter Search and Path Relinking,” in
Artificial Evolution, Lecture Notes in Computer Science, 1363, J.K. Hao,
E. Lutton, E. Ronald, M. Schoenauer and D. Snyers, Eds. Springer, pp.
13–54, 1997.

[22] F. Glover, C.-C. Kuo, K. S. Dhir, “Heuristic algorithms for the maximum
diversity problem,”Journal of Information and Optimization Sciences,
vol. 19, no. 1, pp. 109–132, 1998.

[23] D. Gusfield, “Partition-distance: A problem and class of perfect graphs
arising in clustering,”Information Processing Letters, vol. 82, no. 3, pp.
159–164, 2002.

[24] J.K. Hao, “Memetic algorithms in discrete optimization,”in: F. Neri, C.
Cotta, P. Moscato (Eds.),Handbook of Memetic Algorithms, Studies in
Computational Intelligence 379, Chapter 6, pp. 73–94, 2012,Springer.

[25] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,”Swarm and Evolutionary Computation, vol 1, no.
2, pp. 61–70, 2011.

[26] L. Kotthoff, I. P. Gent, I. Miguel, “An evaluation of machine learning
in algorithm selection for search problems,”AI Communications, vol. 25,
no. 3, pp. 257–270, 2012.

[27] N. Krasnogor, J. Smith, “A tutorial for competent memetic algorithms:
model, taxonomy, and design issues,”IEEE Transactions Evolutionary
Computation, vol. 9, no. 5, pp. 474–488, 2005.

[28] C. C. Kuo, F. Glover, K. S. Dhir, “Analyzing and modeling the maximum
diversity problem by zero-one programming,”Decision Sciences, vol. 24,
no. 6, pp. 1171–1185, 1993.

[29] K. Leyton-Brown, H. H. Hoos, F. Hutter, L. Xu, “Understanding the
empirical hardness of NP-complete problems,”Communications of the
ACM, vol. 57, no. 5, pp. 98–107, 2014.
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