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Abstract

Grouping problems aim to partition a set of items into multiple mutually dis-
joint subsets according to some specific criterion and constraints. Grouping
problems cover a large class of computational problems including clustering and
classification that frequently appear in expert and intelligent systems as well
as many real applications. This paper focuses on developing a general-purpose
solution approach for grouping problems, i.e., reinforcement learning based lo-
cal search (RLS), which combines reinforcement learning techniques with local
search. This paper makes the following contributions: we show that (1) re-
inforcement learning can help obtain useful information from discovered local
optimum solutions; (2) the learned information can be advantageously used
to guide the search algorithm towards promising regions. To the best of our
knowledge, this is the first attempt to propose a formal model that combines
reinforcement learning and local search for solving grouping problems. The
proposed approach is verified on a well-known representative grouping problem
(graph coloring). The generality of the approach makes it applicable to other
grouping problems.

Keywords: Grouping problems; Reinforcement learning; Heuristics; Learning-
based optimization.

1. Introduction

Grouping problems aim to partition a set of items into a collection of mutu-
ally disjoint subsets according to some specific criterion and constraints. Group-
ing problems naturally arise in numerous domains. Well-known grouping prob-
lems include, for instance, the graph coloring problem (GCP) (Garey & Johnson,
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1979; Galinier & Hao, 1999; Lewis, 2009; Elhag & Özcan, 2015) and its vari-
ants like selective graph coloring (Demange, Monnot, Pop & Ries, 2012, 2014),
partition graph coloring (Fidanova & Pop, 2016; Pop, Hu & Raidl, 2013), sum
coloring (Jin, Hamiez & Hao, 2012) and bandwidth coloring (Lai, Hao, Lü &
Glover, 2016), timetabling (Lewis & Paechter, 2007; Elhag & Özcan, 2015),
bin packing (Falkenauer, 1998; Quiroz-Castellanos, Cruz-Reyes, Torres-Jiménez
et al., 2015), scheduling (Kashan, Kashan & Karimiyan, 2013) and clustering
(Agustn-Blas, Salcedo-Sanz, Jiménez-Fernández, et al., 2012). Formally, given
a set V of n distinct items, the task of a grouping problem is to partition the
items of set V into k different groups gi (i = 1, . . . , k) (k can be fixed or vari-
able), such that ∪k

i=1gi = V and gi ∩ gj = ∅, i 6= j while taking into account
some specific constraints and optimization objective. For instance, the graph
coloring problem is to partition the vertices of a given graph into a minimum
number of k color classes such that adjacent vertices must be put into different
color classes.

According to whether the number of groups k is fixed in advance, grouping
problems can be divided into constant grouping problems or variable grouping
problems (Kashan, Kashan & Karimiyan, 2013). In some contexts, the number
of groups k is a fixed value of the problem, such as identical or non-identical
parallel-machines scheduling problem, while in other settings, k is variable and
the goal is to find a feasible grouping with a minimum number of groups, such as
bin packing and graph coloring. Grouping problems can also be classified accord-
ing to the types of the groups. A grouping problem with identical groups means
that all groups have similar characteristics, thus naming of the groups is irrele-
vant. Aforementioned examples such as identical parallel-machines scheduling,
bin-packing and graph coloring belong to this category. Another category of
grouping problems have non-identical groups where the groups are of different
characteristics. Hence, swapping items between two groups will result in a new
grouping, such as the non-identical parallel-machines scheduling problem.

Many grouping problems, including the examples mentioned above are NP-
hard, thus computationally challenging. Consequently, exponential times are
expected for any algorithm to solve such a problem exactly. On the other
hand, heuristic and meta-heuristic methods are often employed to find satisfac-
tory sub-optimal solutions in acceptable computing time, but without ensuring
the optimality of the attained solutions. A number of heuristic approaches
for grouping problems, in particular based on genetic algorithms, have been
proposed in the literature with varying degrees of success (Falkenauer, 1998;
Galinier & Hao, 1999; Quiroz-Castellanos, Cruz-Reyes, Torres-Jiménez et al.,
2015). These approaches are rather complex since they are population-based
and often hybridized with other search methods like local optimization.

In this work, we are interested in investigating a general-purpose local search
methodology for grouping problems which employs machine learning techniques
to process information collected from the search process with the purpose of
improving the performance of heuristic algorithms. Indeed, previous work has
demonstrated that machine learning can contribute to improve optimization
methods (Baluja, Barto, Boese, et al., 2000; Battiti & Brunato, 2014; Hafiz &

2



Abdennour, 2016). The studies in these areas have pursued different objectives,
illustrated as follows.

• Algorithm selection and analysis. For instance, Hutter et al. used machine
learning techniques such as random forests and approximate Gaussian
process to model algorithm’s runtime as a function of problem-specific in-
stance features. This model can predict algorithm runtime for the propo-
sitional satisfiability problem, traveling salesperson problem and mixed
integer programming problem (Hutter, Xu, Hoos & Leyton-Brown, 2014).

• Learning generative models of solutions. For example, Ceberio, Mendiburu
& Lozano (2013) introduced the Plackett-Luce probability model to the
framework of estimation of distribution algorithms and applied it to solve
the linear order problem and the flow-shop scheduling problem.

• Learning evaluation functions. For instance, Boyan & Moore (2001) pro-
posed the STAGE algorithm to learn an evaluation function which pre-
dicts the outcome of a local search algorithm as a function of state features
along its search trajectories. The learned evaluation function is used to
bias future search trajectories towards better solutions.

• Understanding the search space. For example, Porumbel, Hao & Kuntz
(2010a) used multidimensional scaling techniques to explore the spatial
distribution of the local optimal solutions visited by tabu search, thus
improving local search algorithms for the graph coloring problem. For the
same problem, Hamiez & Hao (1993) used the results of an analysis of
legal k-colorings to help finding solutions with fewer colors.

In this paper, we present the reinforcement learning based local search (RLS)
approach for grouping problems, which combines reinforcement learning tech-
niques with a descent-based local search procedure (Section 3). Our proposed
RLS approach belongs to the above-mentioned category of learning generative
models of solutions. For a grouping problem with its k groups, we associate
to an item a probability vector with respect to each possible group and deter-
mine the group of the item according to the probability vector (Sections 3.1 and
3.2). Once all items are assigned to their groups, a grouping solution is gen-
erated. Then, the descent-based local search procedure is invoked to improve
this solution until a local optimum is attained (Section 3.3). At this point, the
probability vector of each item is updated by comparing the item’s groups in the
starting solution and in the attained local optimum solution (Section 3.4). If an
item does not change its group, then we reward the selected group of the item,
otherwise we penalize the original group and compensate the new group (i.e.,
expected group). There are two key issues that need to be considered, i.e., how
do we select a suitable group for each item according to the probability vector,
and how do we smooth the probabilities to avoid potential search traps. To
handle these issues, we design two strategies: a hybrid group selection strategy
that uses a noise probability to switch between random selection and greedy
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selection (Section 3.2); and a probability smoothing mechanism to forget old
decisions (Section 3.5).

To evaluate the viability of the proposed RLS method, we use the well-known
graph coloring problem as a case study (Section 4). GCP is one representative
grouping problem which has been object of intensive studies in the past decades
(Section 4.1). GCP and its variants like bandwidth coloring have numerous
applications including those arising in expert and intelligent decision systems
including school timetabling (Ahmed, Özcan & Kheiri, 2012), frequency assign-
ment in mobile networks (Lai & Hao, 2015) and structural analysis of complex
networks (Xin, Xie & Yang, 2013). Popular problems like Sudoku and geo-
graphical maps of countries are two other application examples of GCP. For our
experimental assessment of the proposed method, we test our approach on the
popular DIMACS and COLOR02 benchmarks which cover both randomly gen-
erated graphs and graphs from real applications (Section 4.2). The experimental
results demonstrate that the proposed approach, despite its simplicity, achieves
competitive performances on most tested instances compared to many exist-
ing algorithms (Section 4.4). With an analysis of three important issues of RLS
(Section 4.3), we show the effectiveness of combining reinforcement learning and
descent-based local search. We also assess the contribution of the probability
smoothing technique to the performance of RLS. We draw useful conclusions
based on the computational outcomes (Section 5).

2. Reinforcement learning and heuristic search

In this section, we briefly introduce the principles of reinforcement learning
(RL) and provide a review of some representative examples of using reinforce-
ment learning to solve combinatorial optimization problems.

2.1. Reinforcement learning

Reinforcement learning is a learning pattern, which aims to learn optimal
actions from a finite set of available actions through continuously interacting
with an unknown environment. In contrast to supervised learning techniques,
reinforcement learning does not need an experienced agent to show the correct
way, but adjusts its future actions based on the obtained feedback signal from
the environment (Gosavi, 2009).

There are three key elements in a RL agent, i.e., states, actions and rewards.
At each instant a RL agent observes the current state, and takes an action from
the set of its available actions for the current state. Once an action is performed,
the RL agent changes to a new state, based on transition probabilities. Corre-
spondingly, a feedback signal is returned to the RL agent to inform it about the
quality of its performed action.

2.2. Reinforcement learning for heuristic search

There are a number of studies in the literature where reinforcement learning
techniques are put at the service of heuristic algorithms for solving combina-
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torial problems. Reinforcement learning techniques in these studies have been
explored at three different levels.

Heuristic level where RL is directly used as a heuristic to solve optimization
problems. In this case, RL techniques are used to learn and directly assign
values to the variables. For example, Miagkikh & Punch (1999) proposed to
solve combinatorial optimization problems based on a population of RL agents.
Pairs of variable and value are considered as the RL states, and the branching
strategies as the actions. Each RL agent is assigned a specific area of the search
space where it has to learn and find good local solutions. Another example is
presented in (Torkestani & Meybodi, 2011) where reinforcement learning was
used to update the states of cellular automata applied to the graph coloring
problem.

Meta-heuristic level where RL is integrated into a meta-heuristic. There are
two types of these algorithms. Firstly, RL is used to learn properties of good
initial solutions or an evaluation function that guides a meta-heuristic toward
high quality solutions. For example, RL is employed to learn a new evaluation
function over multiple search trajectories of the same problem instance and
alternates between using the learned and the original evaluation function (Boyan
& Moore, 2001). Secondly, RL learns the best neighborhoods or heuristics to
build or change a solution during the search, so that a good solution can be
obtained at the end. For instance, Xu, Stern & Samulowitz (2009) proposed
a formulation of constraint satisfaction problems as a RL task. A number of
different variable ordering heuristics are available, and RL learns which one to
use, and when to use it.

Hyper-heuristic level where RL is used as a component of a hyper-heuristic.
Specifically, RL is integrated into selection mechanisms and acceptance mech-
anisms in order to select a suitable low-level heuristic and determine when to
accept a move respectively. For example, Burke, Kendall & Soubeiga (2003)
presented a hyper-heuristic in which the selection of low-level heuristics makes
use of basic reinforcement learning principles combined with a tabu search mech-
anism. The algorithm increases or decreases the rank of the low-level heuristics
when the objective function value is improving or deteriorating. Two other ex-
amples can be found in (Guo, Goncalves & Hsu, 2013; Sghir, Hao, Jaafar &
Ghédira, 2015) where RL is used to schedule several search operators under the
genetic and multi-agent based optimization frameworks.

Both meta-heuristic level and hyper-heuristic level approaches attempt to
replace the random component of an algorithm with a RL component to obtain
an informed decision mechanism. In our case, RLS uses reinforcement learning
techniques to generate promising initial solutions for descent-based local search.

3. Reinforcement learning based local search for grouping problems

Grouping problems aim to partition a set of items into k disjoint groups
according to some imperative constraints and an optimization criterion. For
our RLS approach, we suppose that the number of groups k is given in advance.
Note that such an assumption is not necessarily restrictive. In fact, to handle a

5



grouping problem with variable k, one can repetitively run RLS with different
k values. We will illustrate this approach on the graph coloring problem in
Section 4.

3.1. Main scheme

By combining reinforcement learning techniques with a solution improve-
ment procedure, our proposed RLS approach is composed of four keys com-
ponents: a descent-based local search procedure, a group selection strategy, a
probability updating mechanism, and a probability smoothing technique.

We define a probability matrix P of size n × k (n is the number of items
and k is the number of groups, see Figure 1 for an example). An element pij
denotes the probability that the i-th item vi selects the j-th group gj as its
group. Therefore, the i-th row of the probability matrix defines the probability
vector of the i-th item and is denoted by pi. At the beginning, all the probability
values in the probability matrix are set as 1/k. It means that all items select a
group from the available k groups with equal probability.
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Figure 1: Probability matrix P

At instant t, each item vi, i ∈ {1, 2, ..., n} selects one suitable group gj ,
j ∈ {1, 2, ..., k} by applying a group selection strategy (Section 3.2) based on
its probability vector pi(t). Once all the items are assigned to their groups, a
grouping solution St is obtained. Then, this solution is improved by a descent-
based local search procedure to attain a local optimum denoted by Ŝt (Section
3.3). By comparing the solution St and the improved solution Ŝt, we update
the probability vector of each item based on the following rules (Section 3.4):

(a) If the item stays in its original group, then we reward the selected group.

(b) If the item is moved to a new group, then we penalize the selected group
and compensate its new group (i.e., expected group).

Next, we apply a probability smoothing technique to smooth each item’s
probability vector (Section 3.5). Hereafter, RLS iteratively runs until a pre-
defined stopping condition is reached (e.g., a legal solution is found or the
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Figure 2: A schematic diagram of RLS for grouping problems. From a starting solution
generated according to the probability matrix, RLS iteratively runs until it meets its stopping
condition (see Sections 3.2 to 3.5 for more details)

number of iterations without improvement attains a given maximum value).
The schematic diagram of RLS for grouping problems is depicted in Figure 2
while its algorithmic pseudo-code is provided in Algorithm 1. In the following
subsections, the four key components of our RLS approach are presented.

Algorithm 1 Pseudo-code of our RLS for grouping problems.

1: Input:
G: a grouping problem instance;
k: the number of available groups;

2: Output: the best solution S∗ found so far;
3: for all vi, i = 1, 2, ..., n do

4: P0 = [pij = 1/k]j=1,2,...,k;
5: end for

6: repeat

7: St ← groupSelecting(Pt−1, ω); /∗ Section 3.2 ∗/
8: Ŝt ← DB − LS(St); /∗ Section 3.3 ∗/
9: Pt ← probabilityUpdating(Pt−1, St, Ŝt, α, β, γ); /∗ Section 3.4 ∗/

10: Pt ← probabilitySmoothing(Pt, p0, ρ); /∗ Section 3.5 ∗/
11: until Stopping condition met

3.2. Group selection

At each iteration of RLS, each item vi needs to select a group gj from the k
available groups according to its probability vector pi. We consider four possible
group selection strategies:

• Random selection: the item selects its group at random (regardless of
its probability vector). As this selection strategy does not use any use-
ful information collected from the search history, it is expected that this
strategy would not perform well.
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• Greedy selection: the item always selects the group gj such that the asso-
ciated probability pij has the maximum value. This strategy is intuitively
reasonable, but may cause the algorithm to be trapped rapidly.

• Roulette wheel selection: the item selects its group based on its probability
vector and the chance for the item to select group gj is proportional to the
probability pij . Thus a group with a large (small) probability has more
(less) chance to be selected.

• Hybrid selection: this strategy combines the random selection and greedy
selection strategies in a probabilistic way; with a noise probability ω, ran-
dom selection is applied; with probability 1−ω, greedy selection is applied.

As we show in Section 4.3.3, the group selection strategy greatly affects the
performance of the RLS approach. After experimenting the above strategies, we
adopted the hybrid selection strategy which combines randomness and greed-
iness and is controlled by the noise probability ω. The purpose of selecting
a group with maximum probability (greedy selection) is to make an attempt
to correctly select the group for an item that is most often falsified at a local
optimum. Selecting such a group for this item may help the search to escape
from the current trap. On the other hand, using the noise probability has the
advantage of flexibility by switching back and forth between greediness and ran-
domness. Also, this allows the algorithm to occasionally move away from being
too greedy. This hybrid group selection strategy proves to be better than the
roulette wheel selection strategy, as confirmed by the experiments of Section
4.3.3.

3.3. Descent-based local search for solution improvement

Even if any optimization procedure can be used to improve a given starting
grouping solution, for the reason of simplicity, we employ a simple and fast
descent-based local search (DB-LS) procedure in this work. To explore the
search space, DB-LS iteratively makes transitions from the incumbent solution
to a neighboring solution according to a given neighborhood relation such that
each transition leads to a better solution. This iterative improvement process
continues until no improved solution exists in the neighborhood in which case
the incumbent solution corresponds to a local optimum with respect to the
neighborhood.

Let Ω denote the search space of the given grouping problem. Let N : Ω →
2Ω be the neighborhood relation which associates to each solution S ∈ Ω a
subset of solutions N(S) ⊂ Ω (i.e., N(S) is the set of neighboring solutions of
S). Typically, given a solution S, a neighboring solution can be obtained by
moving an item of S from its current group to another group. Let f : Ω → R

be the evaluation (or cost) function which measures the quality or cost of each
grouping solution. The pseudo code of Algorithm 2 displays the general DB-LS
procedure.

Descent-based local search can find a local optimum quickly. However, the
local optimal solution discovered is generally of poor quality. It is fully possible
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Algorithm 2 Pseudo-code of descent-based local search procedure

1: Input: S - an initial candidate grouping solution;
2: Output: S∗ - the local optimum solution attained;
3: f(S∗) = f(S);
4: repeat

5: choose a best neighbor S
′′

of S such that
6: S

′′

= argmin
S
′
∈N(S) f(S);

7: S∗ = S
′′

;
8: f(S∗) = f(S

′′

)
9: S = S∗;

10: until f(S
′′

) > f(S∗)

to improve the performance of RLS by replacing descent-based local search with
a more advanced improvement algorithm. In RLS, we make the assumption that,
if the item stays in its original group after the descent-based local search, then
the item has selected the right group in the original solution, otherwise its new
group in the improved solution would be the right group. This assumption can
be considered to be reasonable because the descent-based local search procedure
is driven by its cost function and each transition from the current solution to
a new (neighboring) solution is performed only when the transition leads to an
improvement.

3.4. Reinforcement learning - probability updating

Reinforcement learning is defined as how an agent should take actions in an
environment so to maximize some notion of cumulative reward. Reinforcement
learning acts optimally through trial-and-error interactions with an unknown
environment. Actions may affect not only the immediate reward but also the
next situation and all subsequent rewards. The intuition underlying reinforce-
ment learning is that actions that lead to large rewards should be made more
likely to recur. In RLS, the problem of selecting the most appropriate group
for each item is viewed as a reinforcement learning problem. Through the in-
teractions with the unknown environment, RLS evolves and gradually finds the
optimal or a suboptimal solution of the problem.

At instant t, we first generate a grouping solution St based on the current
probability matrix Pt (see Section 3.1). In other words, each item selects one
suitable group from the k available groups based on its probability vector (with
the group selection strategy of Section 3.2). Then solution St is improved by
the descent-based local search procedure, leading to an improved solution Ŝt.
Now, for each item vi, we compare its groups in St and Ŝt. If the item stays
in its original group (say gu), we reward the selected group gu (called correct
group) and update its probability vector pi according to Eq. (1):

pij(t+ 1) =

{

α+ (1− α)pij(t) j = u

(1− α)pij(t) otherwise.
(1)
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where α (0 < α < 1) is a reward factor. When item vi moves from its original
group gu of solution St to a new group (say gv, v 6= u) of the improved solution
Ŝt, we penalize the discarded group gu (called incorrect group), compensate the
new group gv (called expected group) and finally update its probability vector
pi according to Eq. (2):

pij(t+ 1) =











(1− γ)(1− β)pij(t) j = u

γ + (1− γ) β
k−1 + (1− γ)(1− β)pij(t) j = v

(1− γ) β
k−1 + (1− γ)(1− β)pij(t) otherwise.

(2)

where β (0 < β < 1) and γ (0 < γ < 1) are a penalization factor and compen-
sation factor respectively. This process is repeated until each item can select its
group correctly. The update of the complete probability matrix P is bounded
by O(n× k) in terms of time complexity.

Note that our learning scheme is different from general reinforcement learn-
ing schemes such as linear reward-penalty, linear reward-inaction and linear
reward-ǫ-penalty. The philosophy of these schemes is to increase the probabil-
ity of selecting an action in the event of success and decrease the probability in
the case of a failed signal. Unlike these general schemes, our learning scheme
not only rewards the correct group and penalizes the incorrect group, but also
compensates the expected group.

3.5. Reinforcement learning - probability smoothing

The intuition behind the probability smoothing technique is that old de-
cisions that were made long ago are no longer helpful and may mislead the
current search. Therefore, these aged decisions should be considered less im-
portant than the recent ones. In addition, all items are required to correctly
select their suitable groups in order to produce a legal grouping solution. It is
not enough that only a part of items can correctly select their groups. Based
on these two considerations, we introduce a probability smoothing technique to
reduce the group probabilities periodically.

Our probability smoothing strategy is inspired by forgetting mechanisms in
smoothing techniques in clause weighting local search algorithms for satisfia-
bility (SAT) (Hutter, Tompkins & Hoos, 2002; Ishtaiwi, Thornton, Sattar &
Pham, 2005). Based on the way that weights are smoothed or forgotten, there
are four available forgetting or smoothing techniques for minimum vertex cover
(MVC) and SAT:

• Decrease one from all clause weights which are greater than one like in
PAWS (Thornton, Duc, Stuart & Valnir, 2004).

• Pull all clause weights toward their mean value using the formula wi =
ρ ·wi + (1− ρ) ·wi like in ESG (Schuurmans, Southey & Holte, 2001) and
SAPS (Hutter, Tompkins & Hoos, 2002).
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• Transfer weights from neighboring satisfied clauses to unsatisfied ones like
in DDWF (Ishtaiwi, Thornton, Sattar & Pham, 2005).

• Reduce all edge weights using the formula wi = ⌊ρ ·wi⌋ when the average
weight achieves a threshold like in NuMVC (Cai, Su, Luo & Sattar, 2013).

The probability smoothing strategy adopted in our RLS approach works
as follows (see Algorithm 3). For an item, each possible group is associated
with a value between 0 and 1 as its probability, and each group probability is
initialized as 1/k. At each iteration, we adjust the probability vector based
on the obtained feedback information (i.e., reward, penalize or compensate a
group). Once the probability of a group in a probability vector achieves a
given threshold (i.e., p0), it is reduced by multiplying a smoothing coefficient
(i.e., ρ < 1) to forget some earlier decisions. It is obvious that the smoothing
technique used in RLS is different from the above-mentioned four techniques.
To the best of our knowledge, this is the first time a smoothing technique is
introduced into local search algorithms for grouping problems.

Algorithm 3 Pseudo-code of the probability smoothing procedure

1: Input:
Pt: probability matrix at instant t;
p0: smoothing probability;
ρ: smoothing coefficient;

2: Output: new probability matrix Pt after smoothing;
3: for i = 1 to n do

4: piw = max{pij , j = 1, 2, ..., k};
5: if piw > p0 then

6: for j = 1 to k do

7: if j = w then

8: pij(t) = ρ · pij(t− 1);
9: else

10: pij(t) =
1−ρ

k−1
· piw(t− 1) + pij(t− 1);

11: end if

12: end for

13: end if

14: end for

4. RLS applied to graph coloring: a case study

This section presents an application of the proposed RLS method to the
well-known graph coloring problem which is a typical grouping problem. Af-
ter presenting the descent-based local search procedure for the problem, we
first conduct an experimental analysis of the RLS approach by investigating
the influence of its three important components, i.e., the reinforcement learn-
ing mechanism, the probability smoothing technique and the group selection
strategy. Then we present computational results attained by the proposed RLS
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method in comparison with a number of existing local search algorithms over
well-known DIMACS and COLOR02 benchmark instances.

4.1. Graph coloring and local search coloring algorithm

GCP is one of the most studied combinatorial optimization problems (Garey
& Johnson, 1979). GCP is also a relevant representative of grouping problems.
Given an undirected graph G = (V,E), where V is the set of |V | = n vertices
and E is the set of |E| = m edges, a legal k-coloring of G is a partition of V into
k mutually disjoint groups (called color classes) such that two vertices linked
by an edge must belong to two different color classes. GCP is to determine
the smallest k for a graph G such that a legal k-coloring exists. This minimum
number of groups (i.e., colors) required for a legal coloring is the chromatic

number χ(G). When the number of color classes k is fixed, the problem is
called k-coloring problem (k-GCP for short). As a grouping problem, items in
GCP correspond to vertices and groups correspond to color classes.

GCP can be approximated by solving a series of k-GCP (with decreasing
k) as follows (Galinier, Hamiez, Hao & Porumbel, 2013). For a given G and a
given k, we use our RLS approach to solve k-GCP by seeking a legal k-coloring.
If such a coloring is successfully found, we decrease k and solve the new k-
GCP again. We repeat this process until no legal k-coloring can be reached.
In this case, the last k for which a legal k-coloring has been found represents
an approximation (upper bound) of the chromatic number of G. This general
solution approach has been used in many coloring algorithms including most of
those reviewed below, and is also adopted in our work.

Given the theoretical and practical interest of GCP, a huge number of color-
ing algorithms have been proposed in the past decades (Galinier, Hamiez, Hao &
Porumbel, 2013; Johnson & Trick, 1996; Malaguti & Toth, 2009). Among them,
algorithms based on local search are certainly the most popular approaches, like
simulated annealing (SA) (Johnson, Aragon, McGeoch & Schevon, 1991), tabu
search (TS) (Hertz & de Werra, 1987; Galinier & Hao, 1999), guided local search
(GLS) (Chiarandini, 2005), iterated local search (ILS) (Chiarandini & Stützle,
2002), quantum annealing algorithms (Titiloye & Crispin, 2011) and focused
walk based local search (FWLS) (Wu, Luo & Su, 2013). Population-based hy-
brid algorithms represent another class of complex approaches which typically
combine local search and dedicated recombination crossover operators (Fleurent
& Ferland, 1996; Galinier & Hao, 1999; Lü & Hao, 2010; Malaguti, Monaci &
Toth, 2008; Porumbel, Hao & Kuntz, 2010b). Recent surveys of algorithms for
GCP can be found in (Galinier, Hamiez, Hao & Porumbel, 2013; Malaguti &
Toth, 2009).

To apply the proposed RLS approach to k-GCP, we need to specify three
important ingredients of the descent-based local search in RLS, i.e., the search
space, the neighborhood and the evaluation function. First, a legal or illegal
k-coloring can be represented by S = {g1, g2, ..., gk} such that gi is the group
of vertices receiving color i. Therefore, the search space Ω is composed of all
possible legal and illegal k-colorings. The evaluation function f(S) counts the
number of conflicting edges inducted by S such that:
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f(S) =
∑

{u,v}∈E

δ(u, v) (3)

where δ(u, v) = 1, if u ∈ gi, v ∈ gj and i = j, and otherwise δ(u, v) = 0.
Accordingly, a candidate solution S is a legal k-coloring S if f(S) = 0.

The neighborhood of a given k-coloring is constructed by moving a conflicting
vertex v from its original group gi to another group gj(i 6= j) (Galinier & Hao,
1999). Therefore, for a k-coloring S with cost f(S), the size of the neighborhood
is bounded by O(f(S) × k). To evaluate each neighboring solution efficiently,
our descent-based local search adopts the fast incremental evaluation technique
introduced in (Fleurent & Ferland, 1996; Galinier & Hao, 1999). The principle
is to maintain a gain matrix which records the variation ∆ = f(S′) − f(S)
between the incumbent solution S and every neighboring solution S′. After
each solution transition from S to S′, only the affected elements of the gain
matrix are updated accordingly.

The descent-based local search procedure starts with a random solution
taken from the search space Ω and iteratively improves this solution by a
neighboring solution of better quality according to the evaluation function f .
This process stops either when a legal k-coloring is found (i.e., a solution with
f(S) = 0), or no better solution exists among the neighboring solutions (in this
later case, a local optimum is reached).

4.2. Benchmark instances and experimental settings

We show extensive computational results on two sets of the well-known DI-
MACS1 and COLOR022 coloring benchmark instances. These instances are the
most widely used benchmark instances for assessing the performance of graph
coloring algorithms.

The used DIMACS graphs can be divided into six types:

• Standard random graphs are denoted as DSJCn.d, where n and d indicate
respectively the number of vertices and the edge density of the graph.

• Random geometric graphs are composed of R125.x, R250.x, DSJR500.x
and R1000.x, graphs with letter c in x being complements of geometric
graphs.

• Flat graphs are structured graphs generated from an equi-partitioning of
vertices into k sets. These graphs are denoted as flatn k 0, where n and
k are the number of vertices and the chromatic number respectively.

• Leighton graphs are random graphs of density below 0.25. These graphs
are denoted as le450 kx, where 450 is the number of vertices, k ∈ {15, 25}
is the chromatic number of the graph, x ∈ {a, b, c, d} is a letter to indicate
different graph instances with the same characteristics.

1Available at: ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2Available at: http://mat.gsia.cmu.edu/COLOR02/
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• Scheduling graphs, i.e., school1 and school1 nsh come from school timetabling
problems.

• Latin square graph, i.e., latin square 10.

The used COLOR02 graphs are of three types:

• Queen graphs are highly structured instances and their edge density de-
creases with their size. The graphs are denoted as queenx x, where x ∈
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, with an exception, i.e., queen8 12.

• Mycile graphs are denoted as mycilek, where k ∈ {3, 4, 5, 6, 7}. These
graphs are based on the Mycielski transformation.

• Miles Graphs (milesx, with x ∈ {250, 500, 750, 1000, 1500}) are similar
to geometric graphs in that vertices are placed in space with two vertices
connected if they are close enough.

Table 1: Parameters of Algorithm RLS

Parameters Section Description Values

ω 3.2 noise probability 0.200
α 3.4 reward factor for correct group 0.100
β 3.4 penalization factor for incorrect group (0, 0.45]
γ 3.4 compensation factor for expected group 0.300
ρ 3.5 smoothing coefficient 0.500
p0 3.5 smoothing threshold 0.995

Our RLS algorithm was coded in C and compiled using GNU g++ on a
computer with an Intel E5440 processor with 2.83 GHZ and 2G RAM under
Linux. To obtain our experimental results, each instance was solved 20 times
independently with different random seeds. Each execution was terminated
when a legal k-coloring is found or the number of iterations without improvement
reaches its maximum allowable value (Imax = 106). In our experiments, all
parameters were fixed except for the penalization factor β that varies between
0 and 0.45. Table 1 shows the descriptions and setting of the parameters used
for our experiments.

4.3. Analysis of key components of the RLS approach

We first show an analysis of the main ingredients of the RLS approach:
reinforcement learning mechanism, probability smoothing technique and group
selection strategies. This study allows us to better understand the behavior of
the proposed RLS approach and shed light on its inner functioning.
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Table 2: Comparative results of RLS (with reinforcement learning) and RLS0 (without rein-
forcement learning) on the DIMACS graphs. Smaller k values are better

RLS0 RLS

Instance χ/k∗ k1 #hit time(s) k2 #hit time(s) ∆k

DSJC125.1 5/5 6 12/20 8.71 5 20/20 5.68 -1
DSJC125.5 17/17 22 17/20 42.03 17 15/20 38.40 -5
DSJC125.9 44/44 51 05/20 155.21 44 20/20 9.56 -7
DSJC250.1 ?/8 11 20/20 42.91 8 20/20 53.11 -3
DSJC250.5 ?/28 40 04/20 238.92 29 20/20 91.41 -11
DSJC250.9 ?/72 94 20/20 572.20 75 01/20 181.36 -19
DSJC500.1 ?/12 18 02/20 747.64 13 20/20 16.70 -5
DSJC500.5 ?/47 74 04/20 3768.51 50 09/20 1713.95 -24
DSJC1000.1 ?/20 32 18/20 8730.46 21 20/20 1223.18 -11
DSJR500.1 12/12 13 05/20 281.48 12 20/20 1.91 -1
DSJR500.1c 85/85 97 01/20 662.43 85 02/20 699.63 -12
flat300 20 0 20/20 44 02/20 887.89 20 10/20 99.06 -24
flat300 26 0 26/26 45 02/20 359.32 26 19/20 450.28 -19
flat300 28 0 28/28 45 02/20 1035.29 32 19/20 173.32 -13
flat1000 76 0 76/81 135 01/20 2779.32 89 02/20 11608.95 -46
le450 15a 15/15 21 09/20 296.46 15 19/20 103.00 -6
le450 15b 15/15 21 20/20 217.78 15 09/20 326.27 -6
le450 15c 15/15 30 01/20 640.65 15 16/20 307.91 -15
le450 15d 15/15 31 19/20 464.74 15 14/20 210.90 -16
le450 25a 25/25 28 18/20 171.98 26 20/20 14.29 -2
le450 25b 25/25 26 01/20 346.29 25 01/20 90.37 -1
le450 25c 25/25 37 14/20 720.34 26 13/20 181.39 -11
le450 25d 25/25 36 03/20 935.19 26 07/20 438.22 -10
R125.1 5/5 5 20/20 < 0.01 5 20/20 < 0.01 0
R125.1c 46/46 46 15/20 166.58 46 20/20 0.28 0
R125.5 ?/36 42 07/20 80.26 38 01/20 28.66 -4
R250.1 8/8 8 20/20 0.04 8 20/20 < 0.01 0
R250.1c 64/64 67 03/20 767.12 64 20/20 14.40 -3
R1000.1 20/20 24 20/20 300.60 21 20/20 261.90 -3
school1 14/14 39 05/20 742.21 14 18/20 17.65 -25
school1 nsh 14/14 36 02/20 674.86 14 19/20 1.83 -22
latin square 10 ?/97 169 02/20 3961.96 99 10/20 12946.53 -70
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4.3.1. Effectiveness of the reinforcement learning mechanism

To verify the effectiveness of the reinforcement learning mechanism used in
RLS, we made a comparison between RLS and its variant RLS0 where we re-
moved the reinforcement learning mechanism from RLS and randomly restarted
the search each time the DB-LS procedure attains a local optimum.

The investigation was conducted on the 32 DIMACS instances and each al-
gorithm was run 20 times to solve each instance. The comparative results of
RLS and RLS0 are provided in Table 2. For each graph, we list the known
chromatic number χ (‘?’ if χ is still unknown) and the best k∗ (upper bound
of χ) reported in the literature. For each algorithm, we indicate the best (the
smallest) k value for which the algorithm attains a legal k-coloring, the number
of such successful runs over 20 executions (#hit), and the time in seconds to
hit the reported k-coloring averaged over the successful runs (time(s)). The dif-
ferences between the best k of RLS and the best k of RLS0 are provided in the
last column (∆k). The results show that RLS significantly outperforms RLS0
in terms of the best k value for 29 out of 32 instances (indicated in bold). For
example, on instance flat300 26 0, RLS attains the chromatic number k (i.e.,
χ = 26) while RLS0 needs 45 colors to color it legally. Specially, we observe
that RLS has a larger improvement on hard instances than on easy instances.
For example, latin square 10 and flat1000 76 0 are two well-known hard
instances, RLS achieves the two largest improvements, i.e., using 70 and 46
fewer colors than RLS0. In summary, RLS attains better results on 29 out of
32 instances compared to its variant with the reinforcement learning mecha-
nism disabled. This experiment confirms the effectiveness of the reinforcement
learning mechanism to help the descent-based local search to attain much better
results.

4.3.2. Effectiveness of the probability smoothing technique

To study the effectiveness of the probability smoothing technique used in
RLS, we compare RLS with its alternative algorithm RLS1, which is obtained
from RLS by adjusting the probability updating scheme. More specifically, RLS1
works in the same way as RLS, but it does not use the probability smoothing
strategy, that is, line 10 in Algorithm 1 is removed. For this experiment, by
following (Galinier & Hao, 1999), we use running profiles to observe the change
of evaluation function f over the number of iterations. Running profiles provide
interesting information about the convergence of the studied algorithms.

The running profiles of RLS and RLS1 are shown in Figure 3 on two selected
instances: Fig. 3(a) for flat300 28 0 (k = 32), and Fig.3(b) for latin square 10

(k = 101). We observe that though both algorithms successfully obtain a legal
k-coloring, RLS converges to the best solution more quickly than RLS1, i.e.,
the objective value f of RLS decreases more quickly than that of RLS1. Con-
sequently, RLS needs less iterations to attain a legal solution. This experiment
demonstrates the benefit of using probability smoothing technique in RLS.

16



 0

 5

 10

 15

 20

 25

 30

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

ob
je

ct
iv

e 
va

lu
e 

f

number of iterations

(a) flat300_28_0

with smoothing
without smoothing

 0

 5

 10

 15

 20

 25

 30

 0

 4
00

00

 8
00

00

 1
20

00
0

 1
60

00
0

 2
00

00
0

 2
40

00
0

 2
80

00
0

 3
20

00
0

ob
je

ct
iv

e 
va

lu
e 

f

number of iterations

(b) latin_square_10

with smoothing
without smoothing

Figure 3: Running profile of RLS (with smoothing) and RLS1 (without smoothing) on instance
flat300 28 0 and latin square 10

4.3.3. Comparison of different group selection strategies

The group selection strategy plays an important role in RLS. At each itera-
tion, each vertex selects a suitable group based on the group selection strategy to
produce a new solution for the next round of the descent-based local search op-
timization. In this section, we show an analysis of the group selection strategies
to confirm the interest of the adopted hybrid strategy which combines random
and greedy strategies.

The investigation was carried out between RLS and its variant RLS2, ob-
tained from RLS by means of replacing the hybrid group selection strategy
with the roulette wheel selection strategy. In the experiment, each instance
was tested 20 times independently with different random seeds. The number of
successful runs, the average number of iterations and the average running time
of successful runs are reported.

Table 3 reports the comparative results of this experiment on four chosen
instances. The results indicate that RLS significantly outperforms RLS2 in
terms of the best k value and the number of successful running times (or the
number of iterations). For example, on instance DSJR500.1c, RLS colors this
graph with 85 colors, while RLS2 needs two more colors (k = 87) to color it. A
similar observation can be found on instance le450 25c, for which RLS obtains
a legal 26-coloring, while RLS2 only obtains a 27-coloring. Furthermore, when
they need the same number of colors to color a graph, RLS typically achieves
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Table 3: Comparative performance of RLS (with its hybrid group selection strategy) and
RLS2 (with the roulette wheel selection strategy). Smaller k and larger #hit are better

RLS2 RLS

Instance k1(#hit) #iter time(s) k2(#hit) #iter time(s)

le450 25c 26(0/20) - - 26(13/20) 4.7 × 106 181.39
27(20/20) 7.0 × 105 26.86 27(20/20) 1.5 × 106 61.13

DSJR500.1 12(0/20) - - 12(20/20) 7.8 × 104 1.91
13(20/20) 2.0 × 106 50.42 13(20/20) 3.0 × 103 0.10

DSJR500.1c 85(0/20) - - 85(02/20) 4.6 × 106 699.63
86(0/20) - - 86(20/20) 3.6 × 106 529.47

87(20/20) 3.2 × 106 361.97 87(20/20) 6.9 × 105 108.12
DSJC1000.1 21(09/20) 2.0 × 107 1508.48 21(20/20) 1.4 × 107 1223.18

22(20/20) 6.0 × 105 41.82 22(20/20) 8.0 × 105 64.77

the result with a smaller number of iterations. This experiment confirms the
interest of the adopted hybrid selection strategy.

4.4. Computational results of RLS and comparisons

We now turn our attention to a comparative study of the proposed RLS
approach with respect to some well-known coloring algorithms in the literature.
The five reference algorithms are all based on advanced local search methods
including the prominent simulating annealing (SA) algorithm (Johnson, Aragon,
McGeoch & Schevon, 1991), the improved tabu search (TS) algorithm (Galinier
& Hao, 1999), the guided local search (GLS) algorithm (Chiarandini, 2005),
the iterative local search (ILS) algorithm (Chiarandini & Stützle, 2002) and
the focused walk based local search (FWLS) algorithm (Wu, Luo & Su, 2013).
Following the literature, we focus on the quality of the solutions found, i.e., the
smallest number of colors k needed for an algorithm to find a legal k-coloring
for a given graph. Indeed, given that the compared algorithms were tested on
different computing platforms with various stopping conditions, it seems difficult
to exactly compare the computing times. For indicative purposes, we include
the running times of the proposed RLS approach, which remain comparable
with those of the compared algorithms (ranging from seconds to hours). This
comparison is not exhaustive, yet it allows us to assess the interest of using the
adopated learning mechanism to boost a very simple descent procedure.

We present in Tables 4 and 5 the results of RLS together with the best solu-
tions of the reference algorithms. We list the number of vertices (n) and edges
(m) of each graph, the known chromatic number χ (‘?’ if χ is unknown) and
the best k∗ (upper bound of χ) reported in the literature. For each algorithm,
we list the best (the smallest) k for which a legal k-coloring is attained. For
the proposed RLS algorithm, we additionally give the number of successful runs
over 20 executions (#hit) and the average time in seconds to hit the reported
k-coloring over the successful runs (time(s)). A summary of the comparisons
between our RLS algorithm and each reference algorithm is provided at the
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Table 4: Comparative results of RLS and five advanced local search algorithms on DIMACS
graphs

RLS TS SA GLS ILS FWLS

Instance n m χ/k∗ k #hit time(s) k k k k k

DSJC125.1 125 736 5/5 5 20/20 5.68 5 6 5 5 5
DSJC125.5 125 3,891 17/17 17 15/20 38.40 17 18 18 17 17
DSJC125.9 125 6,961 44/44 44 20/20 9.56 44 44 44 44 45
DSJC250.1 250 3,218 ?/8 8 20/20 53.11 8 9 8 8 8
DSJC250.5 250 15,668 ?/28 29 20/20 91.41 29 29 29 28 29
DSJC250.9 250 27,897 ?/72 75 01/20 181.36 72 72 72 72 73
DSJC500.1 500 12,458 ?/12 13 20/20 16.70 13 14 13 13 13
DSJC500.5 500 62,624 ?/47 50 09/20 1713.95 50 51 52 50 51
DSJC1000.1 1,000 49,629 ?/20 21 20/20 1223.18 21 23 21 21 21
DSJR500.1 500 3,555 12/12 12 20/20 1.91 12 - - 12 -
DSJR500.1c 500 121,275 85/85 85 02/20 699.63 94 89 85 - -
flat300 20 0 300 21,375 20/20 20 10/20 99.06 20 20 20 20 -
flat300 26 0 300 21,633 26/26 26 19/20 450.28 26 32 33 26 26
flat300 28 0 300 21,695 28/28 32 19/20 173.32 32 33 33 31 28
flat1000 76 0 1,000 246,708 76/81 89 02/20 11608.95 91 89 92 89 90
le450 15a 450 8,168 15/15 15 19/20 103.00 15 16 15 15 15
le450 15b 450 8,169 15/15 15 09/20 326.27 15 16 15 15 15
le450 15c 450 16,680 15/15 15 16/20 307.91 16 23 15 15 15
le450 15d 450 16,750 15/15 15 14/20 210.90 16 22 15 15 15
le450 25a 450 8,260 25/25 26 20/20 14.29 25 - - - 25
le450 25b 450 8,263 25/25 25 01/20 90.37 25 - - - 25
le450 25c 450 17,343 25/25 26 13/20 181.39 26 27 26 26 26
le450 25d 450 17,425 25/25 26 07/20 438.22 26 28 26 26 26
R125.1 125 209 5/5 5 20/20 < 0.01 5 - - - -
R125.1c 125 7,501 46/46 46 20/20 0.28 47 - - - -
R125.5 125 3,838 ?/36 38 01/20 28.66 36 - - - -
R250.1 250 867 8/8 8 20/20 < 0.01 8 - - - -
R250.1c 250 30,227 64/64 64 20/20 14.40 72 - - - -
R1000.1 1,000 14,348 20/20 21 20/20 261.90 20 - - - -
school1 385 19,095 14/14 14 18/20 17.65 14 14 14 - 14
school1 nsh 352 14,612 14/14 14 19/20 1.83 14 14 14 - 14
latin square 10 900 307,350 ?/97 99 04/20 12946.53 105 101 102 103 -

better 0/32 - - - 7/32 16/23 5/22 1/21 3/22
equal 18/32 - - - 21/32 6/23 16/22 17/21 17/22
worse 14/32 - - - 4/32 1/23 1/22 3/21 2/22
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bottom of these tables. The rows ‘better’, ‘equal’, and ‘worse’ respectively indi-
cate the number of instances for which our RLS algorithm achieves a better, an
equal, and a worse result compared to each reference algorithm over the total
number of instances for which the reference algorithm reported its results. The
results of the reference algorithms are extracted from the literature except for
TS which was run on the same computing platform as RLS. In these tables, ‘−’
indicates that the result of the algorithm on this instance is unavailable in the
literature. When a result of RLS is no worse than any result of the competing
algorithms, the result is marked in bold.

Table 5: Comparative results of RLS and five advanced local search algorithms on COLOR02
graphs

RLS TS SA GLS ILS FWLS

Instance n m χ/k∗ k #hit time(s) k k k k k

miles250 128 387 8/8 8 20/20 < 0.01 8 - - - -
miles500 128 1,170 20/20 20 20/20 0.02 20 - - - -
miles750 128 2,113 31/31 31 20/20 0.09 31 - - - -
miles1000 128 3,216 42/42 42 20/20 5.83 42 - - - -
miles1500 128 5,189 73/73 73 20/20 0.47 73 - - - -
myciel3 11 20 4/4 4 20/20 < 0.01 4 - - - 4
myciel4 23 71 5/5 5 20/20 < 0.01 5 - - - 5
myciel5 47 236 6/6 6 20/20 < 0.01 6 - - - 6
myciel6 95 755 7/7 7 20/20 < 0.01 7 - - - 7
myciel7 191 2,360 8/8 8 20/20 < 0.01 8 - - - 8
queen5 5 25 160 5/5 5 20/20 < 0.01 5 - - - 5
queen6 6 36 290 7/7 7 20/20 0.07 7 7 7 7 7
queen7 7 49 476 7/7 7 20/20 0.31 7 7 7 7 7
queen8 8 64 728 9/9 9 20/20 0.09 9 9 9 9 9
queen8 12 96 1,368 12/12 12 20/20 0.83 12 12 12 12 12
queen9 9 81 2,112 10/10 10 20/20 1.18 10 10 10 10 10
queen10 10 100 2,940 ?/11 11 20/20 7.96 11 11 11 11 11
queen11 11 121 3,960 ?/11 12 20/20 11.71 12 12 12 12 12
queen12 12 144 5,192 ?/12 13 20/20 25.46 13 14 13 13 13
queen13 13 169 6,656 ?/13 14 20/20 17.60 14 15 15 14 14
queen14 14 196 8,372 ?/14 15 14/20 36.66 15 16 16 15 15
queen15 15 225 10,360 ?/15 16 11/20 39.49 16 17 17 16 16
queen16 16 256 12,640 ?/16 17 11/20 266.02 18 17 18 18 18

better 0/23 - - - 1/23 4/12 4/12 1/12 1/18
equal 17/23 - - - 22/23 8/12 8/12 11/12 17/18
worse 6/23 - - - 0/23 0/12 0/12 0/12 0/18

From Table 4 which concerns the DIMACS graphs, we observe that RLS
is competitive and even achieves a better performance on some graphs. For
instance, compared to SA, RLS finds 16 better solutions out of the 23 instances
tested by SA. The comparison with TS is more informative and meaningful given
that RLS and TS share the same data structures, both were programmed in C
and were run on the same computer. We observe that despite the simplicity
of its descent-based coloring procedure, RLS attains 7 better results (v.s. 4
worse results) compared to TS. Additionally, we observe that RLS achieves more
‘better’ results than ‘worse’ results compared to the reference algorithms except
for ILS. Nevertheless, since the results of ILS for 9 instances are unavailable, it
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is difficult to draw a clear conclusion.
When we compare our RLS algorithm with the five reference algorithms on

the COLOR02 graph instances (Table 5), we observe that RLS dominates these
algorithms. Specifically, RLS achieves no worse results on these instances than
any of the reference algorithms, and obtains 4 better solutions than SA and
GLS, 1 better solution than TS, ILS, and FWLS respectively.

We also find that the proposed RLS method even achieves competitive per-
formances compared to some complex population algorithms proposed in re-
cent years, such as ant-based algorithm (Bui, Nguyen, Patel & Phan, 2008)
(2008), and modified cuckoo optimization algorithm (Mahmoudi & Lotfi, 2015)
(2015). Meanwhile, given the very simplicity of its underlying local search pro-
cedure, it is no surprise that RLS alone cannot compete with the most powerful
population-based coloring algorithms like (Galinier & Hao, 1999; Lü & Hao,
2010; Malaguti, Monaci & Toth, 2008; Porumbel, Hao & Kuntz, 2010b; Titiloye
& Crispin, 2011; Wu & Hao, 2012). Indeed, these algorithms are typically com-
plex hybrid algorithms mixing several approaches like evolutionary computing
and local optimization. On the other hand, given the way the proposed RLS ap-
proach is composed, it would be interesting to replace the simple descent-based
local search by any of these advanced coloring algorithms and investigate the
proposed reinforcement learning mechanism in comparison with these advanced
coloring algorithms.

5. Conclusion and discussion

In this paper, we proposed a reinforcement learning based optimization ap-
proach for solving the class of grouping problems. The proposed RLS approach
combines reinforcement learning techniques with a descent-based local search
procedure. Reinforcement learning is used to maintain and update a set of
probability vectors, each probability vector specifying the probability that an
item belongs to a particular group. At each iteration, RLS builds a starting
grouping solution according to the probability vectors and with the help of a
group selection strategy. RLS then applies a descent-based local search proce-
dure to improve the given grouping solution until a local optimum is reached.
By comparing the starting solution and the ending local optimum solution, the
probability vector of each item is updated accordingly with the help of a reward-
penalty-compensation strategy. To the best of our knowledge, this is the first
attempt to propose a formal model that combines reinforcement learning and
local search for solving grouping problems.

The viability of the proposed approach is verified on the well-known graph
coloring problem (a representative grouping problem). Our experimental out-
comes indicated that RLS, despite the simplicity of its basic coloring procedure,
competes favorably in comparison with five popular local search algorithms.
Meanwhile, given the competitiveness of the graph coloring problem, RLS can-
not really competes with the most advanced coloring algorithms which are based
on population-based complex hybrid schemes. It would be interesting to inves-
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tigate the benefit of combining the proposed reinforcement learning techniques
with these approaches, which constitutes our ongoing research.

The current work can be improved according to two directions. First, the
proposed RLS approach relies on a pure descent-based local search procedure for
its local improvement phase. Even if a descent procedure can quickly converge to
local optimal solutions, it is not reasonable to expect very high quality solutions
from such a basic search procedure. Fortunately, since the local improvement
phase in RLS can be considered as a black-box, one can replace the descent
search by any advanced optimization procedure to reinforce the performance of
the whole RLS framework. Second, the learning phase of the proposed approach
is based on a probability matrix which needs to be updated upon the discovery
of a new local optimal solution, which induces an extra-computational cost. To
lower this cost, it would be interesting to develop streamlining techniques that
can ensure fast and incremental probability updates.

To conclude, this work demonstrates that reinforcement learning constitutes
a valuable means to increase the performance of an optimization algorithm by
learning useful information from discovered local optimum solutions. Given that
the proposed reinforcement learning based local search is a general-purpose ap-
proach, it is expected that this approach will be adapted to solve other relevant
grouping problems including those arising from expert and intelligent systems
like bin packing and data clustering.
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Lai, X.J., Hao, J.K., Lü, Z.P., & Glover, F. (2016). A learning-based path relink-
ing algorithm for the bandwidth coloring problem. Engineering Applications
of Artificial Intelligence, 52, 81-91.

Lewis, R. (2009). A general-purpose hill-climbing method for order indepen-
dent minimum grouping problems: A case study in graph colouring and bin
packing, Computers & Operations Research, 36(7), 2295-2310.

Lewis, R., & Paechter, B. (2007). Finding feasible timetables using group-based
operators, IEEE Transactions on Evolutionary Computation, 11(3), 397-413.
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