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Abstract

This paper presents an improved probability learning based local search algorithm
for the well-known graph coloring problem. The algorithm iterates through three
distinct phases: a starting coloring generation phase based on a probability matrix,
a heuristic coloring improvement phase and a learning based probability updating
phase. The method maintains a dynamically updated probability matrix which spec-
ifies the chance for a vertex to belong to each color group. To explore the specific
feature of the graph coloring problem where color groups are interchangeable and
to avoid the difficulty posed by symmetric solutions, a group matching procedure is
used to find the group-to-group correspondence between a starting coloring and its
improved coloring. Additionally, by considering the optimization phase as a black
box, we adopt the popular tabu search coloring procedure for the coloring improve-
ment phase. We show extensive computational results on the well-known DIMACS
benchmark instances and comparisons with state-of-the-art coloring algorithms.
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1 Introduction

Given an undirected graph G = (V,E) with vertex set V and edge set E, a
(legal) k-coloring of G is a function g : V → {1, 2, . . . , k} such that g(u) 6= g(v)
for all edges (u, v) ∈ E. In other words, two adjacent vertices (i.e., linked by
an edge) must be colored with two different colors. Given a vertex u, g(u) is
called the color or the color group of u. The graph coloring problem (GCP)
involves finding a k-coloring of G with k minimum. The minimum number of
colors required to color G is known as the chromatic number of G and denoted
by χ(G) or χ.

Let gi denote the group of vertices receiving color i. Then a k-coloring S can
also be considered as a partition of V into k color groups (called indepen-
dent sets) S = {g1, . . . , gk} such that no two adjacent vertices belong to the
same color group. It is important to note that GCP has the following prop-
erty concerning symmetric solutions. Let π : {1, 2, . . . , k} → {1, 2, . . . , k} be
an arbitrary permutation of the set of colors and let S = {g1, . . . , gk} be a
k-coloring. Then S ′ = {gπ(1), . . . , gπ(k)} is also a k-coloring which is strictly
equivalent to S. In other words, S and S ′ are two symmetric solutions repre-
senting exactly the same k-coloring. This property implies that the names of
the color groups in a coloring are irrelevant and interchangeable.

GCP is a very popular NP-hard combinatorial optimization problem in graph
theory [18] and has attracted much attention in the literature. GCP arises
naturally in a wide variety of real-world applications, such as register allo-
cation [8], timetabling [5,9], frequency assignment [17,21,23], and scheduling
[29,54]. It was one of the three target problems of several International Compe-
titions including the well-known Second DIMACS Implementation Challenge
on Maximum Clique, Graph Coloring, and Satisfiability.

In recent years, research on combining learning techniques and heuristic al-
gorithms has received increasing attention from the research community [48].
For example, Boyan and Moore [3] proposed the STAGE algorithm to learn
an evaluation function which predicts the outcome of a local search algorithm.
Hutter et al. [27] used machine learning techniques (random forests and ap-
proximate Gaussian process) to build a prediction model of the algorithm’s
runtime as a function of problem-specific instance features. Wang and Tang
[47] combined clustering technique and statistical learning within a memetic
algorithm for a multi-objective flowshop scheduling problem. Zhou et al. [52]
proposed an opposition-based memetic algorithm for solving the maximum
diversity problem, which integrates the concept of opposition-based learning
into the memetic search framework.

Recently, Zhou et al. [51] introduced a general-purpose local search method-
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ology called Reinforcement learning based Local Search (RLS) for solving
grouping problems. RLS employs a dynamically updated probability matrix
to generate starting solutions for a descent-based local search procedure. How-
ever, as indicated in Section 3, applying the original RLS per se to the graph
coloring problem leads to two important limitations. First, as a specific group-
ing problem, GCP has the particularity that the color groups of a solution
are interchangeable and the naming of the groups is irrelevant. Second, the
descent-based search proposed in the initial RLS is quite limited, compared
to a number of powerful graph coloring algorithms in the literature [13,15,34]
(See Section 2). These two observations constitute the main motivations of
this work. We aim to propose an enhanced probability learning based local
search algorithm for graph coloring, by reinforcing the original RLS, which
remains an innovative and appealing approach due to its learning feature and
simplicity.

We summarize the main contributions of this work as follows.

• The proposed probability learning based local search algorithm (PLSCOL)
proposed in this work considers the specific feature of the graph coloring
problem and brings two enhancements to the RLS approach. First, to avoid
the difficulty posed by symmetric solutions, PLSCOL uses a group match-
ing procedure to identify the group-to-group relation between the starting
solution and its improved solution regardless of the numbering of the groups
in both solutions (Section 4.2). Second, to ensure an effective coloring im-
provement, we adopt a popular coloring algorithm based on tabu search
(Section 4.3) to replace the (basic) descent-based local search of the RLS
method. By following the general RLS approach (Section 3), PLSCOL uses
a learning based probability matrix to generate starting solutions for the
tabu coloring algorithm.
• We assess the performance of the proposed PLSCOL approach on the bench-

mark instances of the well-known second DIMACS Implementation Chal-
lenge. The computational results indicate that PLSCOL performs remark-
ably well compared to state-of-the-art local search coloring algorithms like
[1,7,26]. PLSCOL also proves to be competitive even when it is compared to
more complex and sophisticated hybrid algorithms [14,16,30,32,35,38,44,45],
which reported most of the current best-known results for the most difficult
DIMACS benchmark instances.
• The availability of the code of our PLSCOL algorithm (see Section 5.2) con-

tributes favorably to future research on GCP and related problems. Specif-
ically, the code can be used to perform comparative studies or solve other
problems that can be formulated as GCP. This can also help to promote
more research on learning based optimization methods, which constitutes a
promising, yet immature domain.

The rest of the paper is organized as follows. In the next section, we conduct
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a brief review of some representative heuristic algorithms for GCP. In Section
3, we review the general framework of the RLS method for grouping problems.
Section 4 presents our improved PLSCOL algorithm for GCP. Section 5 shows
extensive computational results and comparisons on the DIMACS challenge
benchmark instances. In Section 6, we analyze and discuss several important
features of the proposed alorithm. Finally, conclusions and future work are
provided in Section 7.

2 Literature review on heuristic approaches for GCP

In this section, we provide a brief review of the existing heuristic algorithms
for GCP. Some of the best-performing and most representative algorithms
are used as reference algorithms in our comparative study. As indicated in
[13], due to significant structure differences of these instances, none of the
existing GCP approaches can be considered as the most effective method for
all DIMACS benchmark instances.

Given the NP-hardness of GCP, exact algorithms are usually effective only for
solving small graphs or graphs of specific classes. In fact, some graphs with as
few as 150 vertices cannot be solved optimally by any exact algorithm [33,53].
To deal with large and difficult graphs, heuristic algorithms are preferred to
solve the problem approximately. Comprehensive reviews of the graph coloring
algorithms can be found in [13,15,34]. In what follows, we focus on some
representative heuristic-based coloring algorithms.

• Constructive approaches generally construct the color groups by itera-
tively adding a vertex at one time to a color group until a complete coloring
is reached. At each iteration, there are two steps: the next vertex to be
colored is chosen at first, and then this vertex is assigned to a color group.
DSATUR [4] and RLF [29] are two well-known greedy algorithms which em-
ploy refined rules to dynamically determine the next vertex to color. These
greedy heuristic algorithms are usually fast, but they tend to need much
more colors than the chromatic number to color a graph. Consequently,
they are often used as initialization procedures in hybrid algorithms.
• Local search approaches start from an initial solution and try to improve

the coloring by performing local changes. In particular, tabu search is known
as one of the most popular local search method for GCP [25]. It is often
used as a subroutine in hybrid algorithms, such as the hybrid evolution-
ary algorithm [12,14,30,35,38]. However, local search algorithms are often
substantially limited by the fact that they do not exploit enough global in-
formation (e.g., solution symmetry), and do not compete well with hybrid
population-based algorithms. A thorough survey of local search algorithms
for graph coloring can be found in [15].
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• Population-based hybrid approaches work with multiple solutions that
can be manipulated by some selection and recombination operators. To
maintain the population diversity which is critical to avoid a premature
convergence, population-based algorithms usually integrate dedicated di-
versity preservation mechanisms which require the computation of a suit-
able distance metric between solutions [22]. For example, hybrid algorithms
[30,35,38,44] are among the most effective approaches for graph coloring,
which have reported the best solutions on most of the difficult DIMACS
instances. Nevertheless, population-based hybrid algorithms have the dis-
advantage of being more complex in design and more sophisticated in im-
plementation. Moreover, their success greatly depends on the use of a mean-
ingful recombination operator, an effective local optimization procedure and
a mechanism for maintaining population diversity.
• “Reduce and solve” approaches combines a preprocessing phase and a

coloring phase. The preprocessing phase identifies and extracts some vertices
(typically independent sets) from the original graph to obtain a reduced
graph, while the subsequent coloring phase determines a proper coloring
for the reduced graph. Empirical results showed that “reduce-and-solve”
approaches achieve a remarkable performance on some large graphs [24,49].
“Reduce and solve” approaches are designed for solving large graphs and
are less suitable for small and medium-scale graphs. Moreover, their success
depends on the vertices extraction procedure and the underlying coloring
algorithm.
• Other approaches which cannot be classified into the previous categories

include for instance a method that encodes GCP as a boolean satisfiability
problem [2], a modified cuckoo algorithm [31], a grouping hyper-heuristic
algorithm [11] and a multi-agent based distributed algorithm [41].

3 The RLS method for grouping problems [51]

The RLS method proposed in [51] is a general framework designed for solving
grouping problems. Generally, a grouping problem aims to group a set of
given items into a fixed or variable number of groups while respecting some
specific requirements. Typical examples of grouping problems include bin-
packing, data clustering and graph coloring. The basic idea of RLS is to iterate
through a group selection phase (to generate a starting solution S according
to a probability matrix P that indicates for each item its chance to belong
to each group), a descent-based local search (DB-LS) phase (to obtain an
improved solution S ′ from S), and a probability learning phase 1 . During the
probability learning phase, RLS compares the starting solution S and the

1 Instead of the term “reinforcement learning” initially used in [51], we adopt in
this work the more explicit and appropriate term “probability learning”.

5



improved solution S ′ to check whether each item moved from its original group
to a new group in S ′ or stayed in its original group of S. Then RLS adjusts
the probability matrix accordingly by the following rule. If an item stayed in
its original group, the selected group (called correct group) is rewarded for
the item; if the item moved to a new group in S ′, the discarded group (called
incorrect group) is penalized and the new group (called expected group) for
the item is compensated.

Algorithm 1 General RLS framework for grouping problem
1: Input: instance G and number of available groups k;
2: Output: the best solution found so far;
3: P ← P0 /∗ Initialise the probability matrix ∗/
4: while stopping condition not reached do
5: S ← GroupSelection(P ); /∗ generate a starting solution ∗/
6: S′ ← DB-LS(S); /∗ find a local optimal solution ∗/

/∗ Probability learning phase ∗/
7: P ← ProbabilityUpdating(S, S′, P ); /∗ learn a new probability matrix ∗/
8: P ← ProbabilitySmoothing(P ); /∗ conduct a probability smoothing

∗/
9: end while

Algorithm 1 shows the general RLS framework. To apply RLS to a grouping
problem, three procedures need to be specified. TheGroupSelection procedure
(line 5) generates a starting solution S. The DB-LS procedure (line 6) aims
to obtain a local optimum S ′ from the starting solution S. During the proba-
bility learning phase (lines 7-8), ProbabilityUpdating updates the probability
matrix P by comparing the starting solution S and its improved solution S ′,
while ProbabilitySmoothing erases old decisions that become useless and may
even mislead the search. The modifications of the probability matrix rely on
information about group changes of the items. Using the updated probabil-
ity matrix, a new starting solution is built for the next round of the DB-LS
procedure (this is also called a generation). A schematic diagram of the whole
RLS process is provided in Figure 1.

The probability matrix P of size n×k (n and k being the number of items and
the number of available groups respectively) defines the chance for an item
to select a given group. In other words, element pij denotes the probability
that the item vi should select the group gj. Therefore, the i-th row of the
probability matrix P (denoted as pi) defines the probability vector of the i-th
item with respect to each available group. Initially, all items uniformly select
each group, i.e., pij = 1/k, ∀i ∈ {1, 2, ..., n},∀j ∈ {1, 2, ..., k}. This matrix
evolves at each generation of the RLS method.

At generation t, each item vi selects one suitable group gj according to a
hybrid group selection strategy which combines greedy selection and random
selection. Specifically, with a small noise probability ω, item vi selects its group
at random; with probability (1−ω), item vi selects the group gm such that m =
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Fig. 1. A schematic diagram of the RLS framework introduced in [51].

arg maxj∈{1,...,k}{pij}, i.e., the group with the maximum associated probability
for vi. As shown in Section 4.3.3 of [51], this hybrid selection strategy has the
advantage of being flexible by switching back and forth between greediness
and randomness, and allows the algorithm to occasionally move away from
being too greedy. This hybrid selection strategy is motivated by the following
consideration. Probability based selection is a greedy strategy (item i selects
group j with probability pij maximum). However, since the probability values
are learned progressively and convey heuristic information, applying such a
strategy all the time could be too greedy and misguide the search to wrong
directions. So we occasionally apply a random selection (item i selects group
j with equal probability) to alleviate the greedy selection.

Once a new starting solution S is obtained from the group selection phase, the
DB−LS procedure is invoked. DB−LS iteratively makes transitions from the
current solution to a neighboring solution according to a given neighborhood
relation such that each transition leads to a better solution [37]. This iterative
local search improvement process stops when no improved solution exists in
the neighborhood in which case the current solution corresponds to a local
optimum S ′ with respect to the neighborhood.

After the local search phase, the probability learning procedure is applied to
update the probability matrix. Specifically, for each item vi, if it stayed in
its original group (say gu), we reward the selected group gu and update its
probability vector pi with the award factor α, as shown in Eq. (1) (t is the
current generation number).

pij(t+ 1) =

α + (1− α)pij(t) j = u

(1− α)pij(t) otherwise.
(1)

If the item vi moved from its original group gu of solution S to a new group
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gv(v 6= u) of the improved solution S ′, we penalize the former group gu, com-
pensate the new group gv, and update its probability vector pi with the pe-
nalization factor β and the compensation factor γ, as shown in Eq. (2).

pij(t+ 1) =


(1− γ)(1− β)pij(t) j = u

γ + (1− γ) β
k−1

+ (1− γ)(1− β)pij(t) j = v

(1− γ) β
k−1

+ (1− γ)(1− β)pij(t) otherwise.

(2)

Our probability updating scheme is inspired by learning automata (LA) [36],
which is a kind of policy iteration method where the optimal policy is directly
determined in the space of candidate policies [42]. In LA, an action probability
vector is maintained and updated according to a specific probability learning
technique or reinforcement scheme. Well-known reinforcement schemes include
linear reward-penalty and linear reward-inaction and aim to increase the prob-
ability of selecting an action in the event of success and decrease it in the case
of failure [48].

Unlike these general schemes, our probability updating scheme not only re-
wards the correct group (by factor α) and penalizes the incorrect group (by
factor β), but also compensates the expected group (by factor γ). With the
help of learning scheme (1) and (2), the probability of correct groups will
increase, and other probabilities will decrease.

Additionally, a probability smoothing technique is employed to reduce the
group probabilities periodically. Once the probability of a group in a proba-
bility vector achieves a given threshold (i.e., p0), it is reduced by multiplying
a smoothing coefficient (i.e., ρ < 1) to forget some earlier decisions. Specifi-
cally, we suppose pim > p0, 1 6 m 6 k, then we have p′im = ρ ∗ pim, and the
probabilities of selecting other groups are kept constant, i.e., p′ij = pij, j 6= m
and 1 6 j 6 k. To make sure that the probability vector pi has the sum value
of one after probability smoothing, we scale all k probabilities p′ij(1 6 j 6 k)
by dividing them with a coefficient 1− (1−ρ)∗pim. More details can be found
in [51].

4 Improving probability learning based local search for GCP

Following many coloring algorithms [13–15,25,30,32,38], we approximate GCP
by solving a series of k-coloring problems. For a given graph and a fixed number
of k colors, we try to find a legal k-coloring. If a legal k-coloring is found, we
set k = k − 1 and try to solve the new k-coloring problem. We repeat this
process until no legal k-coloring can be found, in which case we return k + 1
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(for which a legal coloring has been found) as an approximation (upper bound)
of the chromatic number of the given graph.

4.1 Main scheme

We first define the search space and the evaluation function used by the
PLSCOL algorithm. For a given graph G = (V,E) with k available colors,
the search space Ω contains all possible (both legal or illegal) k-colorings
(candidate solutions). A candidate solution in Ω can be represented by S =
{g1, g2, . . . , gk} such that gi is the group of vertices receiving color i. The
evaluation function f(S) is used to count the conflicting edges induced by S.

f(S) =
∑

{u,v}∈E
δ(u, v) (3)

where δ(u, v) = 1, if u ∈ gi, v ∈ gj and i = j, and otherwise δ(u, v) = 0. Thus,
a candidate solution S is a legal k-coloring when f(S) = 0. The objective of
PLSCOL is to minimize f , i.e., the number of conflicting edges to find a legal
k-coloring in the search space.

Algorithm 2 presents the PLSCOL algorithm. Initially, by setting the probabil-
ity pij = 1/k, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, each group is selected uniformly by
each item (lines 3-7). A starting solution S is produced by the hybrid selection
strategy based on the current probability matrix P (line 9). The tabu search
procedure is used to improve the starting solution S to a new solution S ′ (line
10, see Section 4.3). The GroupMatching procedure is then applied to find a
maximum weight matching between the starting solution S and its improved
solution S ′ (line 14, see Section 4.2), followed by the ProbabilityUpdating pro-
cedure (to update the probability matrix P according to the matching results),
and the ProbabilitySmoothing procedure (to forget some earlier decisions).

PLSCOL uses probability learning to generate starting solutions for tabu
search. Compared to the original probability learning based local search ap-
proach RLS [51], PLSCOL introduces two improvements. Considering the spe-
cific feature of GCP where color groups are interchangeable, we introduce a
group matching procedure to establish a group-to-group correspondence be-
tween a starting solution and its improved solution (Section 4.2). Also, to
seek a legal coloring, we replace the basic descent-based local search of RLS
by tabu search based coloring algorithm (Section 4.3). Finally, we notice that
probability learning has also been used to learn evaluation function of a local
search algorithm [3], select search operators of a genetic algorithm [20] and a
multi-agent optimization approach [40].
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Algorithm 2 Pseudo-code of PLSCOL for k-coloring
1: Input: instance G = (V, E) and number of available colors k;
2: Output: the best k-coloring S∗ found so far;

/∗ Initialise the probability matrix Pn×k ∗/
3: for i = 1, . . . , n do
4: for j = 1, . . . , k do
5: pij = 1/k
6: end for
7: end for
8: while stopping condition not reached do
9: S ← GroupSelection(P ); /∗ generate a starting solution ∗/

10: S′ ← TabuSearch(S); /∗ find a local optimal solution ∗/
11: if f(S′) < f(S∗) then
12: S∗ = S′

13: end if
14: feedback ← GroupMatching(S, S′) /∗ make a maximum matching ∗/
15: P ← ProbabilityUpdating(feedback, P ); /∗ learn a new probability matrix ∗/
16: P ← ProbabilitySmoothing(P ); /∗ conduct a probability smoothing ∗/
17: end while

4.2 Group matching

As a particular grouping problem, the graph coloring problem is characterized
by the fact that the numberings of the groups in a solution are irrelevant.
For instance, for a graph with five vertices {a,b,c,d,e}, suppose that we are
given a solution (coloring) that assigns a color to {a,b,c} and another color
to {d,e}. It should be clear that what really characterizes this coloring is not
the naming/numbering of the colors used, but is the fact that some vertices
belong to the same group and some other vertices cannot belong to the same
group due to the coloring constraints. As such, we can name {a,b,c} by ‘group
1’ and {d,e} by ‘group 2’ or reversely name {a,b,c} by ‘group 2’ and {d,e} by
‘group 1’, these two different group namings represent the same coloring. This
symmetric feature of colorings is known to represent a real difficulty for many
coloring algorithms [14,38].

In the original RLS approach, the learning phase was based on a direct com-
parison of the groups between the starting solution and its improved solution,
by checking for each vertice its starting group number and the new group
number. This approach has the advantage of easy implementation and re-
mains meaningful within the RLS method. Indeed, RLS does not assume any
particular feature (e.g., symmetry of solutions in the case of GCP) of the given
grouping problem. Moreover, when a strict descent-based local search is used
to obtain an improved solution (i.e., local optimum), only a small portion
of the vertices change their groups. It suffices to compare the groups of the
two solutions to identify the vertices that changed their group. However, the
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situation is considerably different when tabu search (or another optimization
algorithm) is used to obtain an improved coloring, since many vertices can
change their groups during the search process. This difficulty is further accen-
tuated for GCP due to its symmetric feature of colorings, making it irrelevant
to compare the group numbers between the starting and improved solutions.

To illustrate this point, consider the example of Fig. 2. From the same starting
8-coloring S with f(S) = 568, the descent-based local search ends with an
improved (but always illegal) 8-coloring S ′ds with f(S ′) = 10, while the tabu
search procedure successfully obtains an improved 8-coloring S ′ts with f(S ′) =
0. In this figure, the new groups in the two improved solutions are marked by
red color and underlined.

� 
 � 
 � � � � �� � � � � � � � � �  � � � � 

� � � � � � �  � � � � � � � � � � � � � � � �

 � � � � � � � � � �� � � � � � � � � � � � � �

� �  � 
 � � � � � � �� � � � � � � � �� �   �

� 
  � � � �  � � � � �� � � � � �  
 � � � �

 �  � � �  � � � � � � �� � � � 
  � 
 �� 
 �

� 
 
 � 	 � 	 � � � � � � � �
 � � � 
 � � � �� 


�� �� �� �� 
 � � � � � � � � � � �	 � �� �� � � � � ��

��� ��� ���

���� �����	 
������ �����	

� �

Fig. 2. Distribution of vertices of solutions on instance DSJC250.1. The value on i-th
row and j-th column represents the number of vertices whose color have changed
from color i to color j. (a) an improved solution S′ts (with f(S′ts) = 0) obtained
by tabu search, (b) a starting solution S (with f(S) = 568), and (c) an improved
solution S′ds with f(S′ds) = 10 obtained by descent-based local search.

By comparing the distributions of vertices of the two improved solutions from
descent-based search and tabu search, we observe a clear one-to-one correspon-
dence between the starting solution S and its improved solution S ′ds obtained
by descent-based search, i.e., g1 ↔ g′1, g2 ↔ g′2, g3 ↔ g′3, g4 ↔ g′4, g5 ↔ g′5, g6 ↔
g′6, g7 ↔ g′7, g8 ↔ g′8. However, it is difficult to find such a relationship between
S and S ′ts obtained by tabu search. Indeed, from the same starting solution,
much more changes have been made by tabu search. For example, there are
21 vertices colored by color 1 in the starting solution S; after improving to S ′ds
by descent-based search, 7 vertices keep their original color, the remaining 2,
3, 1, 1, 2, 2, 3 vertices respectively changed to new colors 2,3,4,5,6,7,8. When
S is improved to S ′ts by tabu search, only 1 vertex of these 21 vertices keeps
its original color, the remaining 4, 1, 4, 2, 1, 6, 2 vertices have moved to color
groups 2,3,4,5,6,7,8.

Now if we examine the groups of vertices in S and S ′ts regardless of the num-
bering of the groups, we can identify the following group-to-group correspon-
dence between S and S ′ts: g1 ↔ g′7, g2 ↔ g′3, g3 ↔ g′8, g4 ↔ g′6, g5 ↔ g′1, g6 ↔
g′4, g7 ↔ g′5, g8 ↔ g′2. Indeed, this correspondence can be achieved by finding
a maximum weight matching between the two compared solutions as follows.
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Fig. 3. (a) A complete bipartite graph with the weights between two groups
ωgi,g′j = |gi ∩ g′j | and (b) The corresponding maximum weight complete matching

with the maximum weight of 6).

Specifically, to identify such a relationship between a starting solution S and
its improved solution S ′, we sequentially match each group of S with each
group of S ′. Then we build a complete bipartite graph G = (V1, V2, E), where
V1 and V2 represent respectively the k groups of solution S and S ′. Each edge
(gi, g

′
j) ∈ E is associated with a weight wgi,g′j = |gi ∩ g′j|, which is defined

as the number of common vertices in group gi of S and g′j of S ′. Based on
the bipartite graph, we can find a maximum weight matching with the well-
known Hungarian algorithm [28] in O(k3). Fig. 3 shows an illustrative example
of matching two solutions S = {(v1, v3, v7, v8), (v2, v4, v5), (v6, v9)} and S ′ =
{(v5, v6, v9), (v2, v3, v7, v8), (v1, v4)}. The group matching procedure finds the
following one-to-one group relation between these two solutions: g1 ↔ g′2,
g2 ↔ g′3 and g3 ↔ g′1.

Finally, note that the group matching procedure just requires a starting solu-
tion S and an improved solution S ′. This procedure is thus generally applica-
ble in combination with other graph coloring algorithms rather than TabuCol.
This possibility provides interesting perspectives which are worthy of further
investigations.

4.3 Tabu search coloring algorithm

The original RLS method uses a descent-based local search (DB − LS) pro-
cedure to improve each starting solution built by the hybrid group selection
strategy. Starting from an arbitrary k-coloring solution, DB − LS iteratively
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improves the current solution, by changing the color of a conflicting vertex
(i.e., which has the same color as at least one neighbor vertex). At each it-
eration, if the color change leads to a better solution (i.e., with a reduced
number of conflicting edges), this solution becomes the new current solution.
This process is repeated until the current solution cannot be further improved.
This descent procedure is fast, but it is unable to escape the first local opti-
mum encountered which may be of poor quality. The hybrid group selection
strategy of RLS helps to introduce some degree of diversification. However,
RLS can still be trapped into poor local optima. To overcome this problem,
we replace DB − LS by an improved version of the original tabu search col-
oring procedure of [25]. As described in [10,14] and summarized in the next
paragraph, our improved tabu coloring procedure (TabuCol) integrates three
enhancements (see more details below). First, instead of considering a sample
of neighboring colorings, it considers all neighboring colorings induced by the
set of conflicting vertices. Second, it adopts a dynamic tabu tenure which is
defined as a function of the number of conflicting vertices and a random num-
ber. Third, TabuCol employs dedicated data structures to ensure a fast and
incremental evaluation of neighboring solutions.

Given a conflicting k-coloring S, the “one-move” neighborhood N(S) consists
of all solutions produced by moving a conflicting vertex vi from its original
group gu to a new group gv (u 6= v). TabuCol picks at each iteration a best
neighbor Ŝ ∈ N(S) according to the evaluation function f given by Eq. (3)
such that either Ŝ is a best solution not forbidden by the tabu list or is better
than the best solution found so far S∗ (i.e., f(Ŝ) < f(S∗)). Ties are broken
at random. Once a move is made, e.g., a conflicting vertex vi is moved from
group gu to group gv, the vertex vi is forbidden to go back to group gu in the
following l iterations (l is called tabu tenure). The tabu tenure l is dynamically
determined by l = µ×f(S) +Random(A), where Random(A) returns a random
integer in {0, . . . , A−1} [10,14]. In our algorithm, we set µ = 1.2 and A = 10.
The TabuCol process stops when the number of iterations without improving
S∗ reaches a predefined value Imax, which is set to be 105.

For an efficient implementation of the TabuCol procedure, we use an incremen-
tal technique [12,14] to maintain and update the move gains ∆f = γi,u − γi,v
for each possible candidate move (i.e., displacing vertex vi from group gv to
group gu).
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5 Experimental results

5.1 Benchmark instances

This section is dedicated to an extensive experimental evaluation of the PLSCOL
algorithm using the well-known DIMACS challenge benchmark instances 2 .
These instances have been widely used in the literature for assessing the per-
formances of graph coloring algorithms. They belong to the following six types:

• Standard random graphs denoted as “DSJCn.x”, where n is the number of
vertices and 0.x is the density. They are generated in such a way that the
probability of an edge being present between two given vertices equals the
density.
• Geometric random graphs named as “DSJRn.x ” and “Rn.x”. They are pro-

duced by choosing randomly n points in the unit square, which define the
vertices of the graph, by joining two vertices with an edge, if the two re-
lated points at a distance less than x from each other. Graphs with letter c
denotes the complement of a geometric random graph.
• Leighton graphs named as “len χx”, are of density below 0.25, where n is

the number of vertices, χ is the chromatic number, and x ∈ {a, b, c, d} is a
letter to indicate different graphs with the similar parameter settings.
• “Quasi-random” flat graphs denoted as “flatn χ δ”, where n is the number

of vertices, χ is the chromatic number, and δ is a flatness parameter giving
the maximal allowed difference between the degrees of two vertices.
• Scheduling graphs include two scheduling graphs school1 and school1 nsh.
• Latin square graph represents a latin square graph latin square 10.

These instances can be roughly divided into two categories: easy graphs and
difficult graphs according to the classification in [13,16]. Let k∗ be χ(G) (if
known) or the smallest number of colors for which a legal coloring has been
found by at least one coloring algorithm. Then easy graphs G are those that
can be colored with k∗ colors by a basic coloring algorithm like DSATUR
[4] (thus by numerous algorithms). Otherwise, if a k∗-coloring can only be
achieved by a few advanced coloring algorithms, the graph will be qualified as
difficult. Since easy graphs do not represent any challenge for PLSCOL (and
many reference algorithms), we mainly focus our tests on difficult graphs.

2 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

14



5.2 Experimental settings

The PLSCOL algorithm 3 was implemented in C++, and complied using GNU
g++ on an Intel E5-2760 with 2.8 GHz and 2GB RAM under Linux operating
system. For our experiments, each instance was solved 10 times independently.
Each execution was terminated when the maximum allowable run time of 5
CPU hour is reached or a legal k-coloring is found. We used the same param-
eters setting to solve all tested instances except for the penalization factor β.
Parameter β is sensitive to the structures of GCP instances, and it mainly
affects the run time to find the best k-coloring (see Section 6.3 for an analysis
of this parameter). Accordingly, we adopted values for β from [0.05, 0.45] to
obtain the reported results on the set of 20 difficult instances. Table 1 gives
the description and setting of each parameter.

Table 1
Parameter setting of PLSCOL

Parameter Description Value

ω noise probability 0.200

α reward factor for correct group 0.100

β penalization factor for incorrect group [0.05, 0.45]

γ compensation factor for expected group 0.300

ρ smoothing coefficient 0.500

p0 smoothing threshold 0.995

5.3 Comparison with the original RLS approach

We first assess the performance of the proposed PLSCOL algorithm with re-
spect to the original RLS approach [51]. This experiment aims to demonstrate
the usefulness of the two enhancements, i.e., the probability learning scheme
using group matching and the tabu coloring procedure. Both algorithms were
run 10 times on each instance, each run being given a CPU time of 5 hours.

The comparative results between PLSCOL and RLS are summarized in Table
2. Columns 1-2 indicate the instance name, its chromatic number χ when it
is known or the best-known result reported in the literature (k∗). For each
algorithm, we report the smallest number of colors (k) used by the algorithm,
the rate of successful runs out of 10 runs (#succ), the average number of
moves (#iter) and the average run time in seconds (time(s)). Better results
(with a smaller k) between the two algorithms are indicated in bold. When
both algorithms achieve the same result in terms of number of colors used, we
underline the better results in terms of number of iterations.

3 The code of the PLSCOL algorithm is available upon request.
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Table 2
Comparative results of PLSCOL and RLS on the difficult DIMACS graphs.

PLSCOL RLS

Instance χ/k∗ k #succ #iter time(s) k #succ #iter time(s)

DSJC250.5 ?/28 28 10/10 4.0× 105 4 29 10/10 2.8× 106 91

DSJC500.1 ?/12 12 07/10 7.5× 106 43 13 10/10 5.6× 105 17

DSJC500.5 ?/47 48 03/10 7.9× 107 1786 50 05/10 1.9× 107 1714

DSJC500.9 ?/126 126 10/10 2.4× 107 747 129 03/10 5.0× 108 9859

DSJC1000.1 ?/20 20 01/10 2.9× 108 3694 21 10/10 1.4× 107 1223

DSJC1000.5 ?/83 87 10/10 2.7× 107 1419 94 07/10 3.8× 108 9455

DSJC1000.9 ?/222 223 05/10 3.1× 108 12094 233 03/10 2.5× 108 12602

DSJR500.1c ?/85 85 10/10 3.2× 107 386 85 01/10 4.6× 106 700

DSJR500.5 ?/122 126 08/10 7.3× 107 1860 126 01/10 1.8× 108 3428

le450 15c 15/15 15 07/10 2.8× 108 1718 15 07/10 9.5× 106 308

le450 15d 15/15 15 03/10 2.8× 108 2499 15 04/10 5.8× 108 211

le450 25c 25/25 25 10/10 2.0× 108 1296 26 07/10 4.7× 106 181

le450 25d 25/25 25 10/10 2.2× 108 1704 26 04/10 1.1× 107 438

flat300 26 0 26/26 26 10/10 4.9× 106 195 26 09/10 9.4× 106 450

flat300 28 0 28/28 30 10/10 1.5× 107 233 32 09/10 4.4× 106 173

flat1000 76 0 76/81 86 01/10 1.1× 108 5301 89 01/10 4.5× 107 11609

R250.5 ?/65 66 10/10 1.1× 108 705 66 04/10 7.0× 108 6603

R1000.1c ?/98 98 10/10 9.1× 106 256 100 02/10 5.3× 108 16139

R1000.5 ?/234 254 04/10 3.7× 107 7818 261 02/10 3.7× 107 9015

latin square 10 ?/97 99 08/10 6.7× 107 2005 99 02/10 3.3× 107 12947

Table 2 indicates that PLSCOL significantly outperforms RLS, achieving bet-
ter solutions for 13 out of 20 instances and equal solutions on the remaining
instances. Among the 7 instances where both algorithms reach the same re-
sults, PLSCOL performs better in terms of success rate and average run time
in 5 cases. This study shows that the group matching procedure and the tabu
coloring procedure of PLSCOL significantly boosts the performance of the
original RLS approach for solving the graph coloring problem.

5.4 Comparison with other state-of-the-art algorithms

This section shows a comparison of PLSCOL with 10 state-of-the-art coloring
algorithms in the literature. For this comparison, we focus on the criterion of
solution quality in terms of the smallest number of colors used to find a legal
coloring. In fact, despite the extremely vast literature on graph coloring, there
is no uniform experimental condition to assess a coloring algorithm. This is
mainly because the difficult DIMACS instances are really challenging. Indeed,
the best-known solutions for these instances can be found only by few most
powerful algorithms which were implemented with different programming lan-
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guages and executed under various computing platforms and different stopping
conditions (maximum allowed generations, maximum allowed fitness evalua-
tions, maximum allowed iterations or still maximum allowed cut off time). In
most cases, a run time of several hours or even several days was typically ap-
plied (see e.g., [30,32,35,38,44,45]). For this reason, it would be quite difficult
to compare CPU times of the compared algorithms. Following the common
practice of reporting comparative results in the coloring literature, we use the
best solution (i.e., the smallest number of used colors) for this comparative
study. Since the experimental conditions of the compared algorithms are not
equivalent, the comparison is just intended to show the relative performance
of the proposed algorithm, which should be interpreted with caution.

5.4.1 Comparative results on difficult instances

This comparative study is based on two state-of-the-art algorithms, including
three local search algorithms and seven hybrid population-based algorithms.
For indicative purposes, we show the CPU frequency of the computer and the
stopping condition used by each reference algorithm. As one can observe, the
majority of the reference algorithms allowed large run time limits of at least
of 5 hours (the cut off limit for our experiments).

(1) Iterated local search algorithm (IGrAl) [7] (a 2.8 GHz Pentium 4 proces-
sor and a cut off time of 1 hour).

(2) Variable space search algorithm (VSS) [26] (a 2.0 GHz Pentium 4 pro-
cessor and a cut off time of 10 hours).

(3) Local search algorithm using partial solutions (Partial) [1] (a 2.0 GHz
Pentium 4 and a time limit of 10 hours together with a limit of 2 ∗ 109

iterations without improvement).
(4) Hybrid evolutionary algorithm (HEA) [14] (the processor used is not

available for this oldest algorithm and the results were obtained with
different parameter settings).

(5) Adaptive memory algorithm (AMA) [16] (the processor applied is not
available and the results were obtained with different parameter settings).

(6) Two-phase evolutionary algorithm (MMT) [32] (a 2.4 GHz Pentium pro-
cessor and a cut off time of 6000 or 40000 seconds).

(7) Evolutionary algorithm with diversity guarantee (Evo-Div) [38] (a 2.8
GHz Xeon processor and a cut off time of 12 hours).

(8) Memetic algorithm (MACOL or MA) [30] (a 3.4 GHz processor and a cut
off time of 5 hours).

(9) Distributed quantum annealing algorithm (QACOL or QA) [44,45] (a 3.0
GHz Intel processor with 12 cores and a cut off time of 5 hours).

(10) The newest parallel memetic algorithm (HEAD) [35] (a 3.1 GHz Intel
Xeon processor with 4 cores used to run in parallel the search processes
with a cut off time of at least 3 hours).
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Table 3 presents the comparative results of PLSCOL (from Table 2) with
these state-of-the-art algorithms. In this table, column 2 recalls the chromatic
number or best-known value χ/k∗ in the literature. Column 3 shows the best
results of PLSCOL (kbest). The following columns are the best results obtained
by the reference algorithms, which are extracted from the literature.

As we observe from Table 3, PLSCOL competes very favorably with the three
reference local search algorithms except for instance flat300 28 0. The best
result for this instance was reached only by one algorithm [1]. To the best of
our knowledge, for difficult instances le450 25c and le450 25d, PLSCOL is
the first local search algorithm which achieves the optimal 25-coloring within
1 hour. A more detailed comparison on these two instances is shown in Table
4, including two additional advanced tabu search algorithms (TS-Div and TS-
Int with long run times of 50 hours [39]). Although these three local search
algorithms can also obtain the optimal 25-coloring, they need much more run
times and more iterations with a lower success rate. It is important to mention
that no other local search method was able to find the optimal solution of
le450 25c and le450 25d more efficiently than PLSCOL.

When comparing with the seven complex population-based hybrid algorithms,
we observe that PLSCOL also remains competitive. In order to facilitate com-
parisons, we divide these seven reference algorithms into two groups. PLSCOL
achieves at least three better solutions compared to the first three algorithms
(HEA, AMA and MMT). For example, PLSCOL saves at least one color for
DSJC1000.9, flat300 28 0 and latin square 10. Compared to the last four
algorithms (Evo-Div, MACOL, QACOL and HEA), PLSCOL competes fa-
vorably for some instances. For example, though PLSCOL and the last four
algorithms reach the same 126-coloring for DSJC500.9, PLSCOL uses less
time and iterations to achieve this result (even if timing information was
not shown in the table). The same observation applies for other instances,
such as DSJR500.1c and R1000.1c. Moreover, compared to Evo-Div and QA-
COL, PLSCOL also saves one color and finds the 30-coloring for instance
flat300 28 0 even if MACOL achieves a better performance for this instance.

On the other hand, PLSCOL performs worse than the population-based algo-
rithms for several instances, such as DSJC1000.5, flat1000 76 0 and R1000.5.
However, this is not a real surprise given that the coloring procedure of
PLSCOL (i.e., TabuCol) is extremely simple compared to these highly complex
population-based algorithms which integrate various search strategies (solu-
tion recombination, advanced population management, local optimization). In
this sense, the results achieved by PLSCOL are remarkable and demonstrates
that its probability learning scheme greatly boosts the performance of the
rather simple tabu coloring algorithm.
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Table 4
Comparative results of PLSCOL and other local search algorithms to find optimal
25-coloring on instance le450 25c and le450 25d.

le450 25c le450 25d

Instance #succ #iter time(h) #succ #iter time(h)

PLSCOL 10/10 2.0× 108 < 1 10/10 2.2× 108 < 1

VSS 9/10 1.6× 109 5 6/10 2.2× 109 6

Partial 2/5 2.0× 109 10 3/5 2.0× 109 10

TS-Div 4/10 7.7× 108 11 2/10 1.2× 109 19

TS-Int 10/10 3.4× 109 10 10/10 6.5× 109 25

5.4.2 Comparative results on easy instances

Finally, we show that for easy instances, PLSCOL can attain the best-known
solution more quickly. We illustrate this by comparing PLSCOL with MACOL
[30] which is one of the most powerful population-based coloring algorithms
in the literature on 19 easy DIMACS instances (see Table 5). The results of
MACOL were obtained on a PC with 3.4 GHz CPU and 2G RAM (which is
slightly faster than our PC with 2.8 GHz and 2G RAM). Table 5 indicates that
both PLSCOL and MACOL can easily find the best-known results k∗ with a
100% success rate. However, PLSCOL uses less time (at most 1 minute) to find
its best results while MACOL needs 1 to 5 minutes to achieve the same results.
Moreoevr, PLSCOL needs much less iterations (as underlined) compared to
MACOL on all instances except DSJC125.5, R125.5 and R250.1c for which
PLSCOL still requires a shorter run time.

6 Analysis and discussion

In this section, we investigate the usefulness of the main components of PLSCOL.
We first study the benefit of probability learning. We have conducted a similar
experiment in [51], but as the tabu search algorithm of PLSCOL is more effi-
cient than the descent search of RLS, it is interesting to evaluate the impact of
the learning component on the results. Then we study the benefit of the group
matching procedure. We also analyze the impact of the penalization factor β
over the performance of PLSCOL.

6.1 Benefit of the probability learning scheme

We compared the performance of the PLSCOL algorithm with a variant (de-
noted by PLSCOL0) where the probability learning component is disabled. At
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Table 5
Comparative results of PLSCOL and MACOL on easy DIMACS graphs.

MACOL PLSCOL

Instance χ/k∗ k #succ #iter time(m) k #succ #iter time(m)

DSJC125.1 ?/5 5 10/10 1.4× 105 1 5 10/10 4.8× 103 < 1

DSJC125.5 ?/17 17 10/10 4.8× 104 3 17 10/10 6.3× 104 < 1

DSJC125.9 ?/44 44 10/10 2.4× 106 4 44 10/10 3.0× 103 < 1

DSJC250.1 ?/8 8 10/10 6.9× 105 2 8 10/10 6.4× 105 < 1

DSJC250.9 ?/72 72 10/10 5.5× 106 3 72 10/10 2.6× 105 < 1

R125.1 ?/5 5 10/10 3.7× 105 2 5 10/10 3.6× 101 < 1

R125.1c ?/46 46 10/10 2.8× 106 5 46 10/10 1.6× 106 < 1

R125.5 ?/36 36 10/10 3.2× 104 1 36 10/10 8.0× 105 < 1

R250.1 ?/8 8 10/10 1.5× 106 5 8 10/10 1.7× 103 < 1

R250.1c ?/64 64 10/10 2.8× 106 4 64 10/10 8.9× 106 1

DSJR500.1 ?/12 12 10/10 3.3× 105 4 12 10/10 1.6× 103 < 1

R1000.1 ?/20 20 10/10 2.9× 105 2 20 10/10 1.9× 103 < 1

le450 15a 15/15 15 10/10 2.7× 105 2 15 10/10 1.3× 105 < 1

le450 15b 15/15 15 10/10 3.5× 105 2 15 10/10 7.4× 104 < 1

le450 25a 25/25 25 10/10 1.8× 105 4 25 10/10 4.4× 102 < 1

le450 25b 25/25 25 10/10 2.8× 106 3 25 10/10 3.5× 102 < 1

school1 ?/14 14 10/10 8.8× 105 6 14 10/10 9.3× 102 < 1

school1 nsh ?/14 14 10/10 7.3× 105 1 14 10/10 5.6× 103 < 1

flat300 20 0 20/20 20 10/10 1.7× 106 4 20 10/10 1.6× 103 < 1

each generation, instead of generating a new initial solution with the prob-
ability matrix, PLSCOL0 generates a new solution at random (i.e., line 9 of
Algorithm 2 is replaced by the random generation procedure) and then uses
the tabu search procedure to improve the initial solution. In other words,
PLSCOL0 repetitively restarts the TabuCol procedure. We ran PLSCOL0 un-
der the same stopping condition as before – PLSCOL0 stops if a legal k-
coloring is found or the maximum allowed run time of 5 CPU hours is reached.
Each instance was solved 10 times.

Table 6 summarizes the computational statistics of PLSCOL and PLSCOL0.
Columns 1-2 indicates the name of each instance, its chromatic number χ
when it is known or the best-known result reported in the literature (k∗). For
each algorithm, we report the following information: the smallest number of
colors (k) used by the algorithm, the frequency of successful runs out of 10
runs (#succ), the average number of generations (#gen), the average number
of tabu search iterations (or moves) (#iter) and the average run time in
seconds. The lowest k values between the two algorithms are in bold (a smaller
value indicates a better performance in terms of solution quality). When the
two algorithms achieve the same result in terms of number of colors used,
we underline the smallest number of iterations iterations (which indicates a
better performance in terms of computational efficiency).
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Table 6
Comparative results of PLSCOL and PLSCOL0 on the difficult DIMACS graphs.

PLSCOL PLSCOL0

Instance χ/k∗ k #succ #gen #iter time(s) k #succ #gen #iter time(s)

DSJC250.5 ?/28 28 10/10 3 4.0× 105 4 28 10/10 58 1.1× 107 102

DSJC500.1 ?/12 12 07/10 69 7.5× 106 43 12 10/10 8936 1.9× 109 12808

DSJC500.5 ?/47 48 03/10 761 7.9× 107 1786 49 06/10 1122 2.5× 108 5543

DSJC500.9 ?/126 126 10/10 187 2.4× 107 747 127 10/10 362 9.2× 107 2704

DSJC1000.1 ?/20 20 01/10 369 2.9× 108 3694 21 10/10 2 3.7× 105 4

DSJC1000.5 ?/83 87 10/10 203 2.7× 107 1419 89 02/10 492 1.4× 108 7031

DSJC1000.9 ?/222 223 05/10 2886 3.1× 108 12094 229 05/10 270 1.0× 108 9237

DSJR500.1c ?/85 85 10/10 317 3.2× 107 386 85 10/10 554 8.3× 107 1825

DSJR500.5 ?/122 126 08/10 464 7.3× 107 1860 127 01/10 2,701 4.3× 108 8592

le450 15c 15/15 15 07/10 2883 2.8× 108 1718 15 10/10 155 2.1× 107 238

le450 15d 15/15 15 03/10 2787 2.8× 108 2499 15 10/10 766 1.1× 108 1314

le450 25c 25/25 25 10/10 1968 2.0× 108 1296 26 10/10 1 8.1× 104 1

le450 25d 25/25 25 10/10 2110 2.2× 108 1704 26 10/10 1 1.1× 105 2

flat300 26 0 26/26 26 10/10 49 4.9× 106 195 26 10/10 31 5.1× 106 254

flat300 28 0 28/28 30 10/10 147 1.5× 107 233 31 10/10 95 1.9× 107 242

flat1000 76 0 76/81 86 01/10 908 1.1× 108 5301 89 02/10 339 9.1× 107 3709

R250.5 ?/65 66 10/10 865 1.1× 108 705 66 01/10 1793 2.3× 108 2038

R1000.1c ?/98 98 10/10 88 9.1× 106 256 98 10/10 110 2.0× 107 702

R1000.5 ?/234 254 04/10 189 3.7× 107 7818 260 10/10 1 3.1× 105 124

latin square 10 ?/97 99 08/10 666 6.7× 107 2005 103 10/10 444 9.7× 107 7769

From Table 6, it can be seen that for the 20 instances, PLSCOL obtains
a better solution for 12 instances and an equal solution for the 8 remain-
ing instances. With the help of the learning scheme, the improvement of
PLSCOL over PLSCOL0 is quite significant for several very difficult graphs 4

like DSJC1000.9 (-6 colors), at flat1000 76 0 (-3 colors), R1000.5 (-6 colors)
and latin square 10 (-4 colors). Finally, we observe that for the 8 instances
where both algorithms achieve an equal result in terms of colors used, PLSCOL
requires less iterations and shorter computing times than PLSCOL0 in 6 cases.
This study demonstrates the effectiveness of the probability learning scheme
used in our PLSCOL algorithm.

6.2 Benefit of group matching procedure

We now investigate the usefulness of the group matching procedure (Section
4.2), which is used to provide feedback information to the probability learning

4 For these instances, even gaining one color could be difficult, since when k is close
to χ, finding a legal coloring is usually much harder for k than for k + 1.

22



component. For this study, we replace the group matching procedure by the
group comparison procedure of the original RLS approach described in Section
3. For this purpose, we create PLSCOL1, which is a PLSCOL variant where we
replace line 14 of Algorithm 2 with the group comparison procedure of RLS.
We ran PLSCOL1 under the same stopping condition as before – PLSCOL1

stops if a legal k-coloring is found or the maximum allowed run time of 5 CPU
hours is reached. Each tested instance was solved 10 times.

Table 7
Comparative results of PLSCOL and PLSCOL1 on the difficult DIMACS graphs.

PLSCOL PLSCOL1

Instance χ/k∗ k #succ #gen #iter time(s) k #succ #gen #iter time(s)

DSJC250.5 ?/28 28 10/10 3 4.0× 105 4 28 10/10 103 6.7× 107 1026

DSJC500.1 ?/12 12 07/10 69 7.5× 106 43 12 10/10 5 5.5× 106 59

DSJC500.5 ?/47 48 03/10 761 7.9× 107 1786 50 10/10 15 6.2× 106 154

DSJC500.9 ?/126 126 10/10 187 2.4× 107 747 126 06/10 931 2.7× 108 9314

DSJC1000.1 ?/20 20 01/10 369 2.9× 108 3694 21 10/10 0 8.9× 104 1

DSJC1000.5 ?/83 87 10/10 203 2.7× 107 1419 89 09/10 407 6.9× 107 4070

DSJC1000.9 ?/222 223 05/10 2886 3.1× 108 12094 224 02/10 826 1.0× 108 8265

DSJR500.1c ?/85 85 10/10 317 3.2× 107 386 85 10/10 60 5.5× 107 600

DSJR500.5 ?/122 126 08/10 464 7.3× 107 1860 126 07/10 753 3.9× 108 7534

le450 15c 15/15 15 07/10 2883 2.8× 108 1718 15 02/10 874 1.5× 109 8744

le450 15d 15/15 15 03/10 2787 2.8× 108 2499 16 10/10 0 3.3× 105 3

le450 25c 25/25 25 10/10 1968 2.0× 108 1296 26 10/10 0 1.2× 105 1

le450 25d 25/25 25 10/10 2110 2.2× 108 1704 26 10/10 1 1.3× 105 2

flat300 26 0 26/26 26 10/10 49 4.9× 106 195 26 07/10 603 1.4× 108 6034

flat300 28 0 28/28 30 10/10 147 1.5× 107 233 31 10/10 410 2.4× 108 4101

flat1000 76 0 76/81 86 01/10 908 1.1× 108 5301 87 01/10 321 3.9× 107 3212

R250.5 ?/65 66 10/10 865 1.1× 108 705 66 10/10 151 2.0× 108 1516

R1000.1c ?/98 98 10/10 88 9.1× 106 256 98 10/10 18 3.8× 106 181

R1000.5 ?/234 254 04/10 189 3.7× 107 7818 255 05/10 241 1.6× 107 2425

latin square 10 ?/97 99 08/10 666 6.7× 107 2005 100 06/10 648 2.4× 108 6480

Table 7 displays the comparative results between PLSCOL and PLSCOL1,
based on the same indicators adopted in Table 6. From this table, we observe
that PLSCOL significantly outperforms PLSCOL1, achieving better objective
values for 11 out of 20 instances and equal results for the remaining instances.
Moreover, for the 9 instances where both algorithms achieve the same best
objective values, PLSCOL needs less iterations and shorter computing times
than PLSCOL1 for 7 instances (underlined entries in Table 7). These observa-
tions confirm the usefulness of the group matching procedure for probability
learning within the PLSCOL algorithm.
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6.3 Effect of the penalization factor β

The penalization factor β is used to determine the new probability vector
when an item selects an incorrect group. Preliminary results suggest that the
performance of PLSCOL is more sensitive to β than the other two parameters
α and γ. In the following, we report a detailed analysis of β on six selected in-
stances. To avoid the influence caused by random numbers, we set the random
seed to 1 in the experiments. For each parameter setting and each instance,
we conduct an independent experiment with a maximum allowed time limit
of 5 CPU hours. We set other parameters to their default values (as shown in
Table 1) and only vary the parameter β.

Table 8
Effect of penalization factor β on the run time (s) of PLSCOL.

β DSJC250.5 DSJC500.9 DSJR500.1c R1000.1c DSJC1000.9 flat1000 76 0

0.45 13.10 2055.03 128.40 88.50 * *

0.40 17.65 367.57 139.73 229.88 5884.32 7474.21

0.35 13.10 1096.23 471.30 34.25 1158.67 3154.03

0.30 17.57 2467.98 242.40 2644.97 6133.87 7519.52

0.25 13.28 903.89 6120.46 8383.67 7122.16 1035.84

0.20 13.26 10149.23 1412.54 164.01 3008.86 *

0.15 17.66 8765.75 1519.88 55.96 4015.04 7163.64

0.10 11.48 316.26 1232.88 113.23 2815.88 1244.57

0.05 17.14 * 5753.18 181.73 4349.16 995.73

∆max 6.18 9832.97 5992.06 8349.42 4975.20 6523.79

Table 8 shows the impact of β on the performance of PLSCOL with nine
different values for β, β ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}. In
this table, we report the run time (the best values are in bold and the worst
values are in italic) needed to find the given best k-coloring for each parameter
value and each instance. “∗” indicates that PLSCOL cannot find a k-coloring
with this parameter setting. At the last row of the table, we also give the
maximum run time difference of PLSCOL under two different β values. Table
8 indicates that PLSCOL can find a legal coloring with the given best k
in the majority of cases except for DSJC500.9 with β = 0.05, DSJC1000.9
with β = 0.45 and flat1000 76 0 with β = 0.45 and β = 0.20 respectively.
This parameter mainly affects the run time of PLSCOL to find the given
k-coloring. Taking the instance DSJC500.9 as an example, with β = 0.10,
PLSCOL finds the best 126-coloring within 316.26 seconds while it needs
much more time (10149.23 seconds) to find the 126-coloring when β = 0.20.
The maximum difference of run time with different β values is 9832.97 seconds.
We also observe that the optimal setting of β depends to a large extent on the
structures of the instances which greatly vary for different graphs. Although
the run time required by PLSCOL to find a legal coloring is sensitive to the
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β values, PLSCOL can successfully find the solutions with many β values.

7 Conclusion

In this paper, we presented an enhanced probability learning based local search
approach for the well-known graph coloring problem, which improves the gen-
eral RLS approach of [51]. The first enhancement improves the probability
learning scheme of the original RLS by using a group matching procedure to
find the group-to-group relation between a starting solution and its improved
solution. This matching procedure copes with the difficulty raised by symmet-
ric solutions of GCP. The second enhancement concerns the coloring algorithm
based on tabu search, which is both more powerful than the descent-based al-
gorithm used in RLS, and still remains simple compared to more complex
hybrid algorithms.

Experimental evaluations on popular DIMACS challenge benchmark graphs
showed that PLSCOL competes favorably with all existing local search color-
ing algorithms. Compared with the most effective hybrid evolutionary algo-
rithms which are much more sophisticated in their design, PLSCOL remains
competitive in spite of the simplicity of its underlying coloring algorithm.

As future work, we could explore the following possibilities, First, the opti-
mization component of PLSCOL can be considered as a black box. As such,
it would be interesting to investigate whether using a more powerful color-
ing algorithm instead of the TabuCol algorithm leads to still better results.
Second, PLSCOL with the group matching procedure is able to avoid the dif-
ficulty related to symmetric solutions of grouping problems with interchange-
able groups. It would be interesting to adapt this approach to other grouping
problems with this feature (e.g., identical parallel-machine scheduling, data
clustering and bin-packing). Third, this work shows that learning techniques
can help coloring algorithms to find better solutions. More investigation in
this direction is thus desirable to make additional innovations.

Finally, reinforcement learning techniques [6,42,43,46,50] could be promising
to be used in combination with heuristic search algorithms. For instance, they
can be employed to improve local search by predicting sequential searching
actions. More generally, reinforcement learning can help a search algorithm
to take right search decisions and to make the search more informed and
adaptive [48]. Reinforcement learning should be considered as a valuable tool
for optimization that deserves more research effort and that could lead to new
powerful optimization methods for solving hard combinatorial problems.
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[11] A. Elhag, E. Özcan, A grouping hyper-heuristic framework: Application on
graph colouring, Expert Systems with Applications 42 (13) (2015) 5491–5507.

[12] C. Fleurent, J. A. Ferland, Genetic and hybrid algorithms for graph coloring,
Annals of Operations Research 63 (3) (1996) 437–461.

26



[13] P. Galinier, J. Hamiez, J. K. Hao, D. C. Porumbel, Recent advances in graph
vertex coloring, in: Handbook of Optimization - From Classical to Modern
Approach, 2013, pp. 505–528.

[14] P. Galinier, J. K. Hao, Hybrid evolutionary algorithms for graph coloring,
Journal of Combinatorial Optimization 3 (4) (1999) 379–397.

[15] P. Galinier, A. Hertz, A survey of local search methods for graph coloring,
Computers & Operation Research 33 (2006) 2547–2562.

[16] P. Galinier, A. Hertz, N. Zufferey, An adaptive memory algorithm for the k-
coloring problem, Discrete Applied Mathematics 156 (2) (2008) 267–279.

[17] A. Gamst, Some lower bounds for a class of frequency assignment problems,
IEEE Transactions on Vehicular Technology 35 (1) (1986) 8–14.

[18] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979.

[19] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[20] Y. Guo, G. Goncalves, T. Hsu, A multi-agent based self-adaptive genetic
algorithm for the long-term car pooling problem, Journal of Mathematical
Modelling and Algorithms in Operations Research 12(1) (2013) 45–66.

[21] W. K. Hale, Frequency assignment: Theory and applications, Proceedings of
the IEEE 68 (12) (1980) 1497–1514.

[22] J. K. Hao, Memetic Algorithms in Discrete Optimization. In F. Neri, C. Cotta,
P. Moscato (Eds.) Handbook of Memetic Algorithms. Studies in Computational
Intelligence 379, Chapter 6, pages 73-94, 2012.

[23] J. K. Hao, R. Dorne, P. Galinier, Tabu search for frequency assignment in
mobile radio networks, Journal of Heuristics 4 (1) (1998) 47–62.

[24] J. K. Hao, Q. Wu, Improving the extraction and expansion method for large
graph coloring, Discrete Applied Mathematics 160 (16-17) (2012) 2397–2407.

[25] A. Hertz, D. de Werra, Using tabu search techniques for graph coloring,
Computing 39 (4) (1987) 345–351.

[26] A. Hertz, M. Plumettaz, N. Zufferey, Variable space search for graph coloring,
Discrete Applied Mathematics 156 (13) (2008) 2551–2560.

[27] F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown, Algorithm runtime prediction:
Methods & evaluation, Artificial Intelligence 206 (2014) 79 – 111.

[28] H. W. Kuhn, The hungarian method for the assignment problem, Naval
Research Logistics Quarterly 2 (1-2) (1955) 83–97.

[29] F. T. Leighton, A graph coloring algorithm for large scheduling problems,
Journal of Research of the National Bureau of Standards 84 (6) (1979) 489–506.

27
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