
Breakout Local Search for Heaviest Subgraph
Problem?

He Zheng and Jin-Kao Hao∗

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
hzzheng65@gmail.com, jin-kao.hao@univ-angers.fr

Abstract. This paper presents a breakout local search (BLS) heuristic
algorithm for solving the heaviest k-subgraph problem - a combinatorial
optimization graph problem with various practical applications. BLS ex-
plores the search space by alternating iteratively between local search
phase and dedicated perturbation strategies. Focusing on the perturba-
tion phase, the algorithm determines its jump magnitude and perturba-
tion type according to the search history to obtain the most appropriate
degree of diversification. Computational experiments are performed on
a number of large random graphs. The experimental evaluations show
that the results obtained by BLS are comparable to, and in most cases
superior to, those of the current state-of-the-art approaches.

Keywords: Iterated local search · heaviest subgraph problem · adaptive
perturbation.

1 Introduction

Given an edge-weighted undirected graph G(V,E), where V is a set of vertices
with |V | = n and E is a set of edges, the Heaviest k-Subgraph Problem (HSP) is
to determine a subset U of k vertices (k is given) such that the total edge weight
of the subgraph induced by U is maximized. The NP-hard Densest k-Subgraph
Problem (DSP), also known as the k-Cluster Problem [4], is a special case of
HSP when the edge weight equals one. HSP is a relevant model for many im-
portant applications in areas such as social networks, protein interaction graphs,
and the world wide web, etc. However, solving the problem is computationally
challenging since it generalizes the NP-hard DSP.

Several exact approaches have been proposed to solve the problem [5], but
they can only deal with small and sparse graphs with a small range of k. To solve
large instances, heuristics and metaheuristics have been used to find approximate
solutions in a reasonable time. Macambira proposed a tabu-based heuristic for
solving HSP [6], which is based on three construction strategies and a neighbor-
hood search strategy. Brimberg et al. presented a basic variable neighborhood
search (BVNS) and some variants of the heuristic for the problem, using the
swap neighborhood [3]. Saarinen et al. introduced an opportunistic version of

? We would like to thank the reviewers for their insightful comments. The first author
is supported by a CSC scholarship (No. 202306290083).

2 H. Zheng and J.-K. Hao

Algorithm 1 The BLS algorithm for HSP

1: Input: Edge-weighted graph G(V,E), integer k
2: Output: The best solution S∗ found
3: S ← Initializing(G)
4: S∗ ← S and f(S∗)← f(S)
5: L← Lmin /* Set initial jump magnitude */
6: ω ← 0 /* Set the number for consecutive non-improving local optima */
7: prev ← f(S) /* Set the best objective value of the last descent phase */
8: while stopping condition is not met do
9: S ← LocalSearch(S,H) /* H is a vector with historical search information */

10: if f(S) > f(S∗) then
11: S∗ ← S and f(S∗) = f(S)
12: ω ← 0
13: else if f(S) 6= prev then
14: ω ← ω + 1
15: end if
16: L← DetermineJumpMagnitude(L, S, ω, prev)
17: T ← DeterminePerturbationType(S, ω)
18: prev ← f(S)
19: S ← Perturb(S,L, T, ω,H)
20: end while
21: return S∗

the VNS heuristic (OVNS) [7], which exploits the characteristics of the problem
instance during the search process. These algorithms have improved the state
of the art in solving HSP. However, their performance often depends on the in-
stances studied. The VNS algorithms lack stability in their results. BVNS mainly
performs well on sparse graphs, while OVNS is more suitable for dense graphs.
In this work, we present an effective algorithm for HSP based on breakout local
search (BLS).

2 Breakout Local Search for HSP

2.1 General Framework

Breakout local search [1,2] follows the basic scheme of the iterated local search
(ILS) approach. In general, BLS repeats a descent-based local search phase to
perform an intensive search in a given region, and an adaptive perturbation phase
to discover new promising regions. Special attention is paid to the design of the
perturbation, which aims to introduce an appropriate degree of diversification
according to the search stage. This is achieved by dynamically and adaptively
determining the number of perturbation moves (the jump magnitude) and the
type of the perturbation moves based on the search information.

The BLS algorithm for HSP (Algorithm 1) starts from an initial solution
S given by the Initializing procedure and then uses the best-improvement de-
scent LocalSearch procedure to attain a local optimum. At this point, BLS

Breakout Local Search for Heaviest Subgraph Problem 3

tries to escape from the current optimum by setting the jump magnitude L
to an appropriate value and choosing a suitable perturbation type T of a cer-
tain intensity, where L and T are determined by DetermineJumpMagnitude
and DeterminePerturbationType, respectively, based on the search history. The
perturbed solution becomes the new starting point for the next search round of
the algorithm. This process is repeated until the stopping condition (e.g., time
limit, maximum number of iterations...) is met.

2.2 Initial Solution

For a given graph G(V,E) and an integer k, a candidate solution S is represented
by a vector of length n, S = {x1, x2, ..., xn}, where xv = 1 (1 ≤ v ≤ n) if vertex
v is among the k selected vertices in the current solution; xv = 0 otherwise.

For each vertex v, the total weight of the edges from v to all the selected
vertices is recorded in αv =

∑
u∈{i∈V |xi=1} wvu, where wvu denotes the weight of

edge joining vertices v and u. The vector α is created when constructing an initial
solution and is updated each time a move is performed. We get an initial solution
of reasonable quality using the drop operator. We start by setting xv = 1 for
v = 1, 2, ..., n and compute the αv value for each vertex v. Then we iteratively
drop (n − k) vertices to obtain a solution with k selected vertices, each drop
involving the vertex with the smallest α value. We then update the α vector in
constant time.

2.3 Local Search

To move from one solution S to another in the search space, BLS uses the popular
move operator Swap(v, u), which exchanges a selected vertex v in the solution
(xv = 1) against a non-selected vertex u (xu = 0). Let S ⊕ Swap(v, u) denote
the neighboring solution obtained by applying Swap(v, u) to solution S, then
the corresponding neighborhood can be defined as N(S) = {S ⊕ Swap(v, u) :
xv = 1, xu = 0, 1 ≤ v, u ≤ n}. We use δvu = αu − αv − wvu to compute the
move gain, i.e., the change in the objective function value if vertex v is replaced
by u in the solution. Each step of the local search with the best improvement
strategy selects, among all neighboring solutions in N(S), the one with the best
(largest) move gain δvu.

2.4 Adaptive Perturbation

Jump magnitude The basic idea of BLS adaptive perturbation is to increase
the number of perturbation moves (jump magnitude L) to redirect the search
to a new and sufficiently distant area when the search seems to have stalled,
as shown in Algorithm 2. The number of perturbation moves is usually set to a
small value Lmin at the beginning of the algorithm or when a new local optimum
is found. If L is not large enough to escape the basin of attraction of the current
local optimum, L is increased. Otherwise, it is reduced to its initial value Lmin.
If the best solution is not improved for MI successive search rounds, the jump
magnitude is set to a large number Lmax to allow for strong perturbations.

4 H. Zheng and J.-K. Hao

Algorithm 2 DetermineJumpMagnitude(L, S, ω, prev)

1: Input: Current jump magnitude L, local optimum S, history information ω, prev
2: Output: The jump magnitude L for the next perturbation
3: if ω > MI then
4: L← Lmax

5: ω ← 0
6: else if f(S) = prev then
7: L← L + 1
8: else
9: L← Lmin

10: end if
11: return L

Algorithm 3 DeterminePerturbationType(S, ω)

1: Input: Current local optimum S, constant in (0,1) Q, counter of successive non-
improving search rounds ω

2: Output: The perturbation type T
3: Determine probability P of directed perturbation considering ω
4: With probability P , T ← DirectedPerturbation
5: With probability (1− P) ·Q, T ← RecencyBasedPerturbation
6: With probability (1− P) · (1−Q), T ← RandomPerturbation
7: return T

Three types of perturbation moves To introduce different perturbation
intensities, the BLS algorithm adopts three types of perturbations.

- Directed Perturbation. The directed perturbation applies a selection rule
similar to tabu search, which favors swap moves that cause the least decrease
in the objective value, with the constraint that the moves are not forbidden
at the current search stage. A forbidden move involves a vertex v such that v
has been removed from the solution during the last γ iterations (tabu tenure)
(γ takes a random value from a given range related to k).

- Recency Perturbation. It relies only on the historical information stored in
a vector H that counts the number of times each vertex has been moved
during the search. The recency perturbation focuses on the least recently
moved vertices, regardless of the objective degradation of the perturbation
moves performed.

- Random Perturbation. The random perturbation introduces the greatest de-
gree of diversification. It selects the two vertices to be swapped uniformly at
random regardless of the objective degradation of the perturbation move.

These three types of perturbations are selected with different probabilities
depending on the stage of the search (as shown in Algorithm 3). The number
ω of successive non-improving search rounds is used to determine the current
search state, which is reset to zero each time the best solution is improved or
when ω reaches the maximum bound. Precisely, when ω is small, the search can

Breakout Local Search for Heaviest Subgraph Problem 5

go back to the basin of attraction of the current local optimum solution. To
avoid this, the directed perturbation is applied with a higher probability. If an
increasing ω fails to help the algorithm to escape from the current search region,
BLS applies the Recency-based perturbation or the Random perturbation to
introduce a strong degree of diversification. According to [1], the probability
P of applying the directed perturbation is determined by P = e−ω/MI . Given
P , the probability of applying the recency-based perturbation and the random
perturbation is (1− P) ·Q and (1− P) · (1−Q) with the constant Q in (0,1).

3 Experimental Results

3.1 Test Instances

We used two sets of 129 instances generated from 43 random graphs according
to [3] with integer edge weights uniformly taken in the range [100...1000].

- SET I (81 instances). This set contains 81 instances generated from 27 graphs
with |V | = 1000 vertices, including 16 sparse graphs with an average vertex
degree of 10 to 40, incremented by 2, and 11 dense graphs with an average
vertex degree of 200 to 400, incremented by 20. k is set to 300, 400, 500,
giving 81 instances (27 graphs × 3 k values).

- SET II (48 instances). This set has 16 random sparse graphs with |V | = 3000
vertices and an average vertex degree of 10 to 40. For each graph, k is set to
900, 1200, 1500, giving a total of 16× 3 = 48 instances.

3.2 Results

We ran our algorithm and the two best-performing algorithms BVNS [3] and
OVNS [7] to solve each instance 5 times (3600s per run). We also ran the Branch
and Bound (BB) algorithm of the CPLEX solver once on each instance with a
cut-off time of 3600s. Table 1 summarizes the comparison results between BLS
and the reference algorithms. #win, #ties, and #losses respectively denote
the number of instances where our BLS algorithm achieves better, equal and
worse values compared to the reference algorithms in terms of the best objective
values. We also give the deviation dev of each algorithm’s average objective
value favg from the best objective value f∗ found by all algorithms, defined as
%dev = (f∗ − favg)/f∗. The results show that BLS always achieves equal or
better results compared to BVNS and OVNS, with a clear dominance on sparse
graphs. BLS outperforms BVNS on 102 out of the 129 instances, and its results
are better than those of OVNS on 87 instances, resulting in the smallest average
deviation of 0.02% over all instances against 12.44% for BB, 0.16% for BVNS
and 0.11% for OVNS. To check whether the proposed algorithm is statistically
better than the reference algorithms, we applied the Wilcoxon signed-rank test
with a significance level of 0.05 to the best results of the compared algorithms.
The small p-value (� 0.05) confirms that the difference between the results of
BLS and those of each reference algorithm is statistically significant.

6 H. Zheng and J.-K. Hao

Table 1. Comparison between BLS and the reference algorithms BB, BVNS and OVNS

Type k
BLS vs BVNS [3] BLS vs OVNS [7] %dev

#win #ties #losses p-value #win #ties #losses p-value BB BVNS OVNS BLS

SET I - sparse
300 14 2 0 - 11 5 0 - 6.27 0.24 0.12 0.01
400 15 1 0 - 13 3 0 - 3.15 0.13 0.08 0.01
500 15 1 0 - 13 3 0 - 1.65 0.08 0.05 0.00

SET I - dense
300 2 9 0 - 0 11 0 - 18.17 0.05 0.01 0.00
400 8 3 0 - 3 8 0 - 13.56 0.02 0.01 0.01
500 0 11 0 - 1 10 0 - 10.18 0.01 0.00 0.00

SET II - sparse
900 16 0 0 - 14 2 0 - 26.71 0.53 0.34 0.07
1200 16 0 0 - 16 0 0 - 18.95 0.22 0.26 0.04
1500 16 0 0 - 16 0 0 - 13.29 0.12 0.16 0.02

Total 102 27 0 1.85e-18 87 42 0 2.48e-15

Average 12.44 0.16 0.11 0.02

4 Conclusion

A heuristic approach based on breakout local search is developed to solve the NP-
hard heaviest k-subgraph problem. The proposed method is characterized by its
informed perturbation mechanism, which adaptively chooses between directed,
recency-based, and random perturbations to introduce an appropriate degree of
diversification at different search stages. Computational results on different types
of instances demonstrate the effectiveness of the proposed algorithm. However,
in some cases it is still time consuming for the algorithm to obtain high quality
solutions. Additional strategies in combination with learning techniques can be
explored to improve the method.

References

1. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignment problem.
Applied Mathematics and Computation 219(9), 4800–4815 (2013)

2. Benlic, U., Hao, J.K.: Breakout local search for the vertex separator problem. In:
Proceedings of the Twenty-Third International Joint Conference on Artificial Intel-
ligence. pp. 461–467. AAAI Press (2013)

3. Brimberg, J., Mladenović, N., Urošević, D., Ngai, E.: Variable neighborhood search
for the heaviest k-subgraph. Computers & Operations Research 36(11), 2885–2891
(2009)

4. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Ap-
plied Mathematics 9(1), 27–39 (1984)

5. Letsios, M., Balalau, O.D., Danisch, M., Orsini, E., Sozio, M.: Finding heaviest k-
subgraphs and events in social media. In: 2016 IEEE 16th International Conference
on Data Mining Workshops. pp. 113–120. IEEE (2016)

6. Macambira, E.M.: An application of tabu search heuristic for the maximum edge-
weighted subgraph problem. Annals of Operations Research 117, 175–190 (2002)

7. Saarinen, V.P., Chen, T.H.Y., Kivelä, M.: Ovns: Opportunistic variable neigh-
borhood search for heaviest subgraph problem in social networks. arXiv preprint
arXiv:2305.19729 (2023)

	Breakout Local Search for Heaviest Subgraph Problem

