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Abstract

The generalized independent set problem (GIS) is a generalization of the classical
maximum independent set problem and has various practical applications, such
as forest harvesting and image/video processing. In this work, we present highly
effective exact and heuristic algorithms for the GIS. In the proposed exact algorithm,
a new upper bound on the maximum net benefit of an independent set in a subgraph
is derived using a Lagrangian relaxation of a linear integer programming formulation
of the GIS problem. This bound is then employed in a combinatorial branch-
and-bound (B&B) algorithm. To solve larger instances, we propose an adaptive
local search procedure which jointly considers several neighborhoods and selects a
neighborhood to explore in an adaptive manner at each iteration. Our proposed
exact and heuristic algorithms are evaluated on a set of 216 GIS benchmark
instances and compared with several state-of-the-art algorithms. Computational
results indicate that our proposed algorithm competes favorably with the best
existing approaches for the GIS. In particular, the exact algorithm is able to attain
all known optimal solutions and to solve 26 more instances to optimality for the
first time.
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1 Introduction

Given an undirected graph G = (V,E,E ′) with two disjoint sets of edges E
and E ′ (i.e., E ∩ E ′ = ∅), each vertex v ∈ V is associated with a positive
revenue wv, and each removable edge u, v ∈ E ′ is associated with a positive
cost cuv. The objective of the generalized independent set (GIS) problem is to
find an independent set I ⊆ V such that no two vertices in I are connected
by an edge in E, while maximizing the net benefit of I, which is defined
as the difference between the revenues of the vertices in I and the costs of
the removable edges with both endpoints in I. An example of the GIS is
given in Fig. 1, where the dashed edges indicate the removable edges E ′ with
their costs, and the set of red vertices (with the revenues shown next to the
vertices) represents a candidate solution of the instance. The net benefit of
the candidate solution is computed as wb +wc +we − cce = 3 + 2 + 6− 2 = 9.
In Section 3.2, a mathematical model of the GIS derived from Colombi et al.
(2017) is presented.
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Fig. 1. An illustration of the generalized independent set problem

When E ′ is an empty set and each vertex has a unit weight, the GIS problem
degenerates to the NP-hard maximum independent set (MIS) problem which
involves finding an independent set of maximum cardinality. Therefore, the
GIS problem is at least as difficult as the MIS problem. The GIS is equivalent
to the NP-hard maximum weight independent set problem (Wu et al. 2012)
when E ′ is an empty set. Moreover, the GIS is closely related to several other
combinatorial optimization problems, such as the maximum edge weighted
clique problem (Pullan 2008), the minimum weighted vertex cover (Singh
& Gupta 2006), and the knapsack problem with conflicts (Coniglio et al.
2021). In addition to its theoretical significance, the GIS is a useful model
for many applications. A typical application concerns the problem of forest
management and harvesting (Hochbaum & Pathria 1997), where a forest is
partitioned into a number of cells and one needs to determine which cells to
harvest. More specifically, harvesting a cell can result in a revenue brought
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by the timber harvested in that cell, while harvesting two adjacent cells
can incur a penalty due to the consideration of wildlife habitat protection.
Furthermore, two adjacent cells with a combined area exceeding a stipulated
threshold are considered incompatible. The objective of the problem is decide
which cells to harvest so as to maximize the net profits. The problem can be
formulated by constructing a GIS instance where a vertex corresponds to a
cell, a permanent (non-removable) edge corresponds to a pair of incompatible
cells, and a removable edge associated with a penalty is created for two
compatible adjacent cells. Other applications of GIS can be found in facility
location (Hochbaum 2004), cartographic label placement (Mauri et al. 2010),
and handling geographic uncertainty in spatial information (Wei & Murray
2012).

While numerous methods are available for the classic MIS problem and its
equivalent maximum clique problem (see review of Wu & Hao (2015)), only
a few exact and heuristic approaches have been proposed in the literature for
the GIS as reviewed in Section 2. Given the wide application and NP-hard
nature of the problem, powerful exact and heuristic algorithms are needed to
increase our capability of solving this challenging problem. The contributions
of this work can be summarized as follows.

- We develop an effective exact algorithm based on the branch-and-bound
(B&B) framework, which has several novelties. First, to get a tight upper
bound on the maximum net benefit of an independent set in the subgraph,
we employ a Lagrangian relaxation method inspired by the basic idea
of Hosseinian et al. (2020), which explores a linear integer programming
formulation of the problem. Second, we devise an adaptive local search to
generate a tight initial lower bound on the optimal objective value of this
problem, which helps the exact algorithm to prune more effectively during
its search. Third, to efficiently prune the search tree, we employ an effective
branching rule by presenting the vertices to the algorithm in a descending
revenue order. By incorporating the Lagrangian relaxation upper bound,
the tight initial lower bound and the descending revenue order branching
rule into the B&B framework, we obtain an effective exact algorithm for the
GIS.

- To obtain high-quality approximate solutions for large instances, we devise
an adaptive local search procedure. Our proposed local search is character-
ized by its neighborhood exploring strategy, which jointly explores several
neighborhoods induced by different types of moves and adaptively selects the
most promising neighborhood capable of generating high quality solutions.

- To verify the effectiveness of our proposed exact and heuristic algorithms,
we compare them with the currently best-performing algorithms by carrying
out experiments on a set of 216 well-known GIS benchmark instances.
Computational results exhibit that our algorithms compete well with
the best existing exact and heuristic algorithms. In particular, our exact
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algorithm is able to attain all known optimal solutions reported in the
literature, and solve 26 more instances to optimality for the first time.
Besides, we generate a new set of 47 larger and more challenging instances
to further validate the performance of our proposed heuristic approach.

The rest of the paper is organized as follows. Section 2 presents a literature
review on exact and heuristic solution approaches for the GIS problem.
Section 3 presents in detail the main components of the proposed branch-
and-bound algorithm for the GIS problem, whereas Section 4 provides the
main components of the proposed heuristic approach. Computational results
and comparisons with the currently best-performing algorithms are given
in Section 5. Section 6 investigates some key ingredients of the proposed
algorithms, followed by concluding remarks directions in Section 7.

2 Literature review

Due to the relevance of the GIS, several attempts have been devoted to solving
this problem. Table 1 summarizes the exact and heuristic solution approaches
for the GIS discussed in this section.

To find optimal solutions for the GIS, several exact solution approaches
have been proposed in literature. For instance, Hochbaum & Pathria (1997)
developed an integer programming formulation for the GIS in the context of
solving forest harvesting optimization problems arising in forest management.
For special cases of graphs such as bipartite graphs, they also proposed
polynomial-time algorithms to find optimal solutions to the GIS. Colombi
et al. (2017) provided the first polyhedral analysis of the problem and studied
several classes of valid inequalities. By introducing some of the derived valid
inequalities into a 0-1 linear programming formulation, they developed a
branch-and-cut algorithm to exactly solve the GIS. Along with the proposed

Table 1

Representative exact and heuristic algorithms for the GIS

Literature Framework

Exact algorithms

Hochbaum & Pathria (1997) Integer programming formulation

Colombi et al. (2017) Branch and cut

Hosseinian & Butenko (2019) Branch and bound

Heuristic approaches

Kochenberger et al. (2007) Tabu search

Colombi et al. (2017) Tabu search

Nogueira et al. (2021) Local search
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exact algorithm, they also proposed a large set of 216 randomly generated
instances by extending the classic DIMACS instances, which is widely adopted
nowadays to test different GIS approaches in the literature. Their proposed
branch-and-cut algorithm solved 94 out of the 216 instances to optimality.
Hosseinian & Butenko (2019) proposed an exact algorithm for the GIS by
taking advantage of a quadratic formulation of the GIS. An upper bound
was obtained by solving a quadratic relaxation of this formulation. By
incorporating the upper bound into the branch-and-bound (B&B) framework,
an exact method denoted by CB&B for the GIS was developed. The algorithm
was tested on the same set of 216 instances proposed by Colombi et al. (2017),
and was able to solve 118 out of the 216 instances to optimality.

Though exact algorithms are valuable for finding the optimal solutions, their
computation time becomes prohibitive when the size of the instance is large.
For large sized instances, heuristic approaches are indispensable alternatives
for obtaining high-quality near-optimal solutions. Several effective heuristic
approaches have been proposed in the literature for the GIS. Kochenberger et
al. (2007) developed an unconstrained binary quadratic programming formu-
lation for the problem, which has the advantage of requiring only variables
associated with the vertices (no variables associated with the removable
edges), leading thus to a nonlinear formulation typically much smaller than
its linear counterpart in terms of the number of variables. Based on the
nonlinear model, they also developed a tabu search approach and shown its
effectiveness by computational experiments. Colombi et al. (2017) developed
linear programming (LP) based heuristics for the GIS by introducing some of
their derived valid inequalities into a 0-1 linear programming formulation. In
addition, inspired by the probabilistic GRASP-tabu search algorithm proposed
by Wang et al. (2013), they also proposed a meta-heuristic method exploiting
the binary quadratic programming formulation of the problem proposed by
Kochenberger et al. (2007). Recently, Nogueira et al. (2021) proposed a
highly effective variable neighborhood descent based iterated local search
heuristic (ILS-VND) to solve the GIS by extending their previous iterated
local search (ILS) heuristic originally proposed for the maximum weight
independent set (MWIS) problem. The ILS-VND heuristic jointly relies on two
new neighborhoods, which are explored using a variable neighborhood descent
procedure. They reported experiments on the set of 216 benchmark instances
proposed by Colombi et al. (2017), indicating that the ILS-VND algorithm is
very competitive with the best existing heuristics for the problem.

Our review indicates that the CB&B algorithm proposed by Hosseinian &
Butenko (2019) and the ILS-VND algorithm proposed by Nogueira et al.
(2021) showed an overall best performance when exactly and approximately
solving the GIS. Thus, these two algorithms are used as the reference
approaches for our comparative study.
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3 The branch-and-bound algorithm for GIS

3.1 The basic procedure

Our exact algorithm for the GIS (called LA-B&B) relies on the standard
B&B framework, which proves to be one of the most successful paradigms
for devising exact algorithms for the independent set problem, its equivalent
maximum clique problem, and its weighted case (i.e., the maximum weight
independent set problem). The success of a B&B method for these problems
mainly depends on the refined techniques used to derive lower and upper
bounds on the size (or weight) of the independent set (clique), and the proper
pruning strategies.

LA-B&B implicitly enumerates the independent sets in the graph by excluding
from consideration through a pruning strategy any independent set which
can never lead to the maximum net benefit. Basically, the enumeration of
independent sets in our B&B method relies on two global vertex sets: the
current independent set I to be expended (also called solution) and a set P
of candidate vertices to expand the incumbent independent set. By reference
to I, set P , also called candidate list, is a subset of V \ I such that any vertex
v ∈ P can be inserted to I to reach a larger independent set I = I ∪ {v}.
To maintain the feasibility of I, each vertex of P cannot be connected to
any vertex in I by any permanent edge in E. This property constitutes a key
foundation to our B&B method.

The general scheme of our LA-B&B algorithm is summarized in Algorithm
1. At the beginning of the search, we use an adaptive local search procedure
to find a feasible solution Imax for the GIS (see Section 4), whose net benefit
Wmax serves as an initial lower bound for the problem. Then our B&B starts
with an empty independent set I = ∅ and a candidate list P = V (see lines 2
and 4 in Alg. 1), and continues by examining all independent sets in V until
an independent set with the maximum net benefit is found. To achieve this,
the algorithm calls the function MaxGIS in a recursive manner, and at each
recursion of MaxGIS, a vertex v ∈ P is selected to expand the independent
set I. On backtracking, v is removed from P and I, and a new vertex in P is
selected to append to I by calling again MaxGIS (see lines 24-26 in Alg. 1).

Without considering the pruning strategy (line 18 in Alg. 1), the algorithm
will traverse each independent set in the graph in such a way that it first
finds the independent set I1 with the maximum net benefit containing the
first vertex appearing in P . Then it finds the independent set I2 with the
maximum net benefit in G \ {v1} that contains the second vertex appearing
in P and so on. During the search process, each time an independent set I
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Algorithm 1 The branch-and-bound algorithm for GISP

Require: A graph G = (V,E,E ′)
Ensure: The maximum generalized independent set Imax and its weight Wmax

1: function Main
2: Imax ← φ
3: W ← 0
4: P ← V /*P is the candidate set containing the vertices that can be

added to I*/
5: Imax,Wmax ← ALS(G) /* Get an initial lower bound by ALS */
6: V ertexSort(P ) /* Sort vertices by revenue in descending order */
7: Imax,Wmax ←MaxGIS(P )
8: return Imax,Wmax

9: end function
10:
11: function MaxGIS(P )
12: if P = ∅ and W > Wmax then
13: Imax ← I
14: Wmax ← W
15: end if
16: while P 6= ∅ do
17: Compute the upper bound UB(GP ) for GP (Section 3.2)
18: if W + UB(GP ) > Wmax

19: Select the first vertex v in P /* branching rule (Section 3.3) */
20: I ← I ∪ {v}
21: W ← W + wv −

∑
u∈I,{u,v}∈E′ cuv

22: P
′ ← P \ N(v) /* N(v) is the subset of vertices in P that are

connected to v by a permanent edge in E*/
23: MaxGISP (P

′
)/* go to the next level of recursion */

24: I ← I \ {v} /* end of branching step for vertex v */
25: W ← W − wv +

∑
u∈I,{u,v}∈E′ cuv

26: P ← P \ {v} /* continue to try the next vertex in P */
27: end if
28: end while
29: return Imax,Wmax

30: end function

with its net benefit W larger than that of Imax is found, Imax and Wmax are
updated by I and W , which can serve as a tight lower bound employed in the
pruning strategy to better prune some branches of the search tree during the
subsequent search. The pruning strategy operates as follows: given the current
independent set I and its corresponding candidate list P , an upper bound on
the maximum net benefit of the independent set in GP is calculated using the
Lagrangian relaxation method (see Section 3.2), where GP is the subgraph
induced by P . If this upper bound is not larger than the current lower bound
Wmax found so far, I cannot lead to an independent set with a net benefit
larger than Wmax, and as a result, the associated node in the search tree can
be safely pruned by excluding from further consideration of the corresponding
subgraph. Otherwise, the node in the search tree rooted at I and P needs to
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be further explored. In this case, a branching rule is applied to determine the
next vertex v to be selected from P to append to the current independent I
(line 19 in Alg. 1). In our B&B algorithm, we employ a simple branching rule
where the vertices in P are sorted in the decreasing order with respect to their
revenue and the vertices in P are selected in that order (Section 3.3). After
each branching step, we update P by removing from P all vertices connected
to v by a permanent edge in E in order to ensure the required property of P .

3.2 A Lagrangian relaxation upper-bounding method

Given an undirected graph G = (V,E,E ′) with E and E ′ respectively denoting
the two disjoint sets of permanent (non-removable) edges and removable edges.
For the convenience of presenting the Lagrangian relaxation upper-bounding
method, we introduce a removable edge with a cost cij = 0 for each pair of
vertices i, j ∈ V which are neither connected by a permanent edge nor by
a removable edge (i.e., {i, j} /∈ E ∪ E ′). The optimal solution of the given
graph remains unchanged despite the introduction of these removable edges
with a cost of 0. Then the problem can be formulated as the following integer
programming model (Colombi et al. 2017):

W ∗ = max
∑
i∈V

wixi −
∑
{i,j}/∈E

cijyij (1)

s.t. xi + xj ≤ 1 {i, j} ∈ E (2)

xi + xj − yij ≤ 1 {i, j} /∈ E (3)

xi ∈ {0, 1} i ∈ V (4)

yij ∈ {0, 1} {i, j} /∈ E. (5)

In the above formulation, each vertex i ∈ V is associated with a binary variable
xi indicating whether vertex i is selected to be a member of the independent
set, and each removable edge {i, j} ∈ E ′ (equivalent to {i, j} /∈ E) is associated
with a binary variable yij indicating whether a removable edge {i, j} ∈ E ′ is in
the independent set. The objective (1) is to maximize the net benefit, defined
by the difference between the sum of the revenues of the selected vertices and
the costs of those removable edges with both endpoints in the independent
set. Constraints (2) ensure that two vertices connected by a permanent edge
cannot appear in the independent set together. Constraints (3) ensure that a
removable edge {i, j} ∈ E ′ is selected if both of the vertices corresponding to
its endpoints are included in the independent set.

Inspired by the work of Hosseinian et al. (2020), we can obtain the following
Lagrangian relaxation of the integer programming formulation defined by
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Equations (1)-(3), with the exception of the integrality of the variables,

LR(λ1, λ2) = max
x,y

∑
i∈V

wixi −
∑
{i,j}/∈E

cijyij +
∑
{i,j}∈E

λ1ij(1− xi − xj)

+
∑
{i,j}/∈E

λ2ij(1− xi − xj + yij) (6)

s.t. xi ∈ {0, 1} i ∈ V (7)

yij ∈ {0, 1} {i, j} /∈ E. (8)

where λ1, λ2 > 0 denote the Lagrange multiplier vectors corresponding to
constraints (2) and (3). Let the Lagrange multipliers in Equation (6) take the
same values, we obtain a simpler problem as follows,

LR(λ) = max
x,y

∑
i∈V

wixi −
∑
{i,j}/∈E

cijyij +
∑
{i,j}∈E

λ(1− xi − xj)

+
∑
{i,j}/∈E

λ(1− xi − xj + yij)

s.t. xi ∈ {0, 1} i ∈ V
yij ∈ {0, 1} {i, j} /∈ E.

(9)

Let n be the number of vertices in the considered graph, |E| be the number of
permanent edges, and |E ′| be the number of removable edges. Then we write
LR(λ) as follows:

LR(λ) = max
x,y

∑
i∈V

wixi −
∑
{i,j}/∈E

cijyij +
∑
{i,j}∈E

λ(1− xi − xj)

+
∑
{i,j}/∈E

λ(1− xi − xj + yij)

= max
x,y

∑
i∈V

wixi +
∑
{i,j}/∈E

(λ− cij)yij + λ[
∑
{i,j}∈E

(1− xi − xj)

+
∑
{i,j}/∈E

(1− xi − xj)]

= max
x,y

∑
i∈V

wixi +
∑
{i,j}/∈E

(λ− cij)yij + λ[|E|+ |E ′|

−
∑
{i,j}∈E

(xi + xj)−
∑
{i,j}/∈E

(xi + xj)]

= max
x,y

∑
i∈V

wixi +
∑
{i,j}/∈E

(λ− cij)yij + λ[|E|+ |E ′|

−
∑
i∈V

dixi −
∑
i∈V

(n− 1− di)xi]

= max
x,y

∑
i∈V

[wi − λ(n− 1)]xi +
∑
{i,j}/∈E

(λ− cij)yij + λ(n2 ) (10)

where di denotes the degree of the vertex i ∈ V in the graph considering
only permanent edges, and (n2 ) equals the number of edges in the complete
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graph with n vertices, i.e., (n2 ) = n(n−1)
2

. With Equation (10), the restricted
Lagrangian relaxation problem of Equation (9) can be written as,

LR(λ) = max
x,y

∑
i∈V

[wi − λ(n− 1)]xi +
∑
{i,j}/∈E

(λ− cij)yij + λ(n2 )

s.t. xi ∈ {0, 1} i ∈ V
yij ∈ {0, 1} {i, j} /∈ E.

(11)

Obviously, the optimal solution to Equation (11) only depends on the signs
of the coefficients of the binary decision variables xi and yij. To achieve the
optimal solution, we only need to set the binary decision variables xi and yij
with non-negative coefficient to 1 while setting those with negative coefficient
to 0. Therefore, for each λ > 0, LR(λ) can be computed according to Equation
(12),

LR(λ) =
∑
i∈V +

[wi − λ(n− 1)] +
∑

{i,j}∈E+

(λ− cij) + λ(n2 ) (12)

where V + ⊆ V and E+ ⊆ E respectively denote the set of vertices with
non-negative coefficient and the set of removable edges with non-negative
coefficient,

V + = {v ∈ V |wi > λ(n− 1)} (13)

E+ = {(i, j) /∈ E|cij 6 λ} (14)

Both V + and E+ depend on their revenues (costs) and the Lagrangian
multiplier λ. Then for a given value λ > 0, LR(λ) in Equation (12) provides
an upper bound to the optimal value of GIS. To obtain an upper bound as
tight as possible, we need to identify a value for λ that minimizes LR(λ) as
much as possible.

In Equation (12), its left part
∑
i∈V +

[wi − λ(n − 1)] decreases with λ whereas

its right part
∑

{i,j}∈E+
(λ − cij) + λ(n2 ) increases with λ, and it is difficult to

determine the best value for λ that minimizes Equation (12). Then we try to
identify an appropriate value for λ which could lead to as smaller value for
LR(λ) as possible. Let wmax be the maximum revenue of the vertices in the
considered graph, i.e., wmax = max{wv : v ∈ V }. For λ > wmax

n−1 , V + becomes
empty and

∑
i∈V +

[wi − λ(n − 1)] = 0, then LR(λ) in Equation (12) increases

for λ ∈ (wmax

n−1 ,+∞). As a result, we can restrict the optimization interval for
λ to [0, wmax

n−1 ]. When 0 6 λ 6 wmax

n−1 , the monotonicity of LR(λ) is not clear
as it depends on both the revenues of the vertices and the cost of the edges
in the considered graph. Then we test different values for λ ∈ [0, wmax

n−1 ], and
experimental results indicate that λ = wmax

n−1 is a good choice which can lead to
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a smaller value for LR(λ). With the analysis above, we can obtain an upper
bound for the GIS defined by LR(λ) with λ = wmax

n−1 , that is,

W ∗ ≤ LR(
wmax
n− 1

) =
∑

{i,j}∈E+

(
wmax
n− 1

− cij) +
n

2
wmax (15)

where E+ = {(i, j) /∈ E|cij ≤ wmax

n−1 }.

Then given the current independent set I and its corresponding expending
candidate list P , the following pruning strategy is employed in our B&B
algorithm. Precisely, let GP be the subgraph induced by P , and UB(GP ) be
the Lagrangian relaxation upper bound calculated by Equation (15) on GP .
In the case that UB(GP ) ≥ ∑

i∈P wi, UB(GP ) is simply set to be
∑
i∈P wi.

For any independent set I0 in G, let W (I0) =
∑
i∈I0 wi −

∑
i,j∈I0,{i,j}∈E′ cij

be the net benefit of I0. Then given an arbitrary independent set I ′ in GP ,
we have W (I ∪ I ′) = W (I) + W (I ′) −∑

i∈I,j∈I′,{i,j}∈E′ cij ≤ W (I) + W (I ′) ≤
W (I)+UB(GP ). Therefore, the search subtree rooted at I and P can be safely
pruned if the following pruning condition is satisfied,

W (I) + UB(GP ) ≤ Wmax (16)

where Wmax is the maximum net benefit of the independent set found so far.

3.3 The branching strategy

At each branching step, a branching rule is applied to determine the next
vertex v to be selected from P to append to the current independent I. A
simple branching strategy is employed in our B&B algorithm. Initially, vertices
in the original graph G are sorted in a descending order with respect to their
revenues, and then copied back to P according to that sorting order. Then
at each level of recursion, the vertices in the candidate set P are always kept
in the same order as they initially appear in P , and the first vertex in P is
always selected with priority to be added to the current independent set I.

4 An adaptive local search for GIS

To solve larger instances for GIS, we propose an adaptive local search for GIS,
which is also used in our proposed branch and bound algorithm to produce a
tight initial lower bound. Our proposed adaptive local search (ALS) is based
on the tabu search framework which has been successfully applied in a wide
range of combinatorial optimization problems (Glover & Laguna 1998). As
shown in Algorithm 2, ALS starts with an initial solution S (line 1 in Alg.
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2) generated by the randomized procedure presented in Section 4.1. Then it
repeats the main ‘while’ loop after initializing the best solution Sbest found
so far with S (line 2 in Alg. 2). For each iteration of the main loop, ALS
jointly explores four neighborhoods and selects a best admissible neighboring
solution from the neighborhood that is chosen in an adaptive manner (lines
5–6 in Alg. 2). Whenever an improved solution S is found during the search,
Sbest is updated with S (lines 8-10 in Alg. 2). The ALS algorithm continues
this process until the given stopping condition (typically a cutoff time limit)
is verified.

Algorithm 2 The adaptive local search for GIS

Require: An initial solution Sinitial, time limit tmax
Ensure: The best solution found Sbest
1: S ← Sinitial /* Apply a randomized procedure to generate an initial

solution */
2: Sbest ← Sinitial
3: Iter ← 0
4: while Time()<tmax do
5: Construct neighborhoods N1, N2, N3 and N1 ∪N2 ∪N3 from S
6: Choose a candidate solution S ′ according to the neighborhood

exploration rule as described in Section 4.2
7: S ← S ′

8: if f(S) > f(Sbest) then
9: Sbest ← S

10: end if
11: Iter ← Iter + 1
12: end while
13: return Sbest

4.1 Randomized procedure for initial solutions

Our ALS procedure begins with an initial solution I and then improves I by
maximizing its net benefit W (I). The initial solution I is constructed using the
following randomized procedure. A seeding vertex i is first randomly selected
from V and the current independent set I is set to be composed of only
this single vertex. Then at each step, among the candidate set of vertices
P = {u : u ∈ V \I, {u, i} /∈ E,∀i ∈ I}, (i.e., a vertex u ∈ P is never connected
to any vertex in I by a permanent edge), a vertex v is selected randomly and
put in I. The above process is repeated until the candidate set P becomes
empty.
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4.2 Neighborhood structures

The ALS procedure jointly explores three neighborhoods induced by three
basic move operators. The definition of these three move operators are based
on two vertex subsets: PA and OM relative to the current independent set I.

PA consists of all vertices which are excluded from I and connected to none
of the vertices in I by a permanent edge, i.e., PA = {v : v ∈ V \ I, {v, i} /∈
E,∀i ∈ I}. We can append any vertex v ∈ PA to I such that the resulting
solution is still a feasible independent set.

OM is composed of all vertices which are excluded from I and connected
to only one vertex in I by a permanent edge, i.e., OM = {v : v ∈ V \ I, |
N(v) ∩ I |= 1} where N(v) = {u : {v, u} ∈ E} denotes the set of vertices
connected to v by permanent edges. We can swap a vertex u ∈ OM with the
only vertex v ∈ I connected to u such that the resulting solution remains to
be a feasible independent set.

Based on the subsets PA and OM, the three move operators employed in our
ALS procedure are defined as follows.

-ADD(i): This move operator is applied only when PA is not empty and
consists in appending a vertex i ∈ PA to the current solution I. The
neighborhood defined by the ADD move operator is denoted by N1. One key
concept related to a move is the move gain, which measures how much the net
benefit of the current solution I is changed when a move is applied to I. For
a fast calculation of the move gain, a n-dimensional (n = |V |) vector B then
is used where Bi = wi −

∑
{u,i}∈E′,u∈I cui denotes the potential contribution of

a vertex i to the net benefit of the current independent set. With the vector
B, the move gain of appending a vertex u ∈ PA can be fast computed by the
following expression:

∆i = Bi (17)

Obviously, the calculation of the move gain value for an add move can be
achieved with a complexity of O(1). After an ADD(i) move is performed, the
vector B can be fast updated by the following expression:

Bu = Bu − cui, ∀{u, i} ∈ E ′ (18)

Therefore, for each performed add move, the vector B is updated in O(n).

-DROP (i): This move operator consists in dropping a vertex i ∈ I from the
current solution I. The neighborhood defined by the DROP move operator
is denoted by N2. With the vector B, the move gain value of dropping a
vertex i ∈ I (i.e., denoted by ∆i) can be quickly calculated using the following

13



equation:

∆i = −Bi (19)

After performing a drop move denoted by DROP (i), the vector B can be
quickly updated in the following manner:

Bu = Bu + cui,∀{u, i} ∈ E ′ (20)

Therefore, the vector B after a drop move is also updated in O(n).

-SWAP (i, j): This move operator is applied only when the subset OM is not
empty and consists in exchanging a vertex i ∈ OM with the only vertex j ∈ I
which is connected to i in I. The neighborhood defined by the SWAP move
operator is denoted by N3. With the vector B, the move gain of a swap move,
denoted by ∆ij, can be fast calculated as follows.

∆ij = Bi −Bj (21)

It is noted that a swap move SWAP (i, j) can be decomposed into a drop
move DROP (j) followed by an add move ADD(i). Thus in order to update
the vector B after a swap move SWAP (i, j), we could first apply Equation
(20) to update the change induced by DROP (j), then use Equation (18) to
update the change induced by ADD(i). It is clear that the update of vector
B after a swap move can also be implemented in O(n).

When several neighborhoods are available, the method to combine these
neighborhoods so as to enhance the search ability of the algorithm becomes
essential. There are several methods to effectively explore the neighborhoods in
the literature, such as neighborhood union, probabilistic neighborhood union,
and token-ring search (Hao 2012). For instance in Wu et al. (2012), the union
of the basic neighborhoods induced by the ADD, SWAP , and DROP moves
is explored for solving the maximum weight clique problem. The motivation
for combining multiple neighborhoods is to allow the algorithm to examine
candidate solutions with different structures and characteristics, increasing
its chance to discover high-quality optima. After testing different methods
for combining the basic neighborhoods induced by the ADD, SWAP , and
DROP moves, the following adaptive rule is adopted in our ALS procedure.

The ALS algorithm jointly considers four neighborhoods denoted by N1, N2,
N3 and N1 ∪ N2 ∪ N3 (i.e., the union of N1, N2 and N3), and selects one of
these four neighborhoods to explore in a probabilistic way at each iteration.
Specifically, we employ four counters σ1, σ2, σ3, and σ4 to respectively record
the number of times each neighborhood improves the recorded best solution.
At the start of the search, we set the probability of choosing the four
neighborhoods to be σi∑4

j=1
σj

with σi = 1 (i = 1, 2, 3, 4). At each iteration

of the local search, one of the four neighborhoods is selected according to the
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given probability, and the best admissible solution is selected from this chosen
neighborhood to replace the current solution. Ties are broken randomly when
multiple moves have the same gain. During the search process, each time the
selected neighborhood produces an updated best solution, its probability is
updated by increasing the corresponding σ value by 1. In such a manner,
the chance to apply the neighborhood generating high-quality solutions is
increased. We mention that compared with the neighborhood union strategy
proposed by Wu et al. (2012), which only explores the union of the three
neighborhoods, and ensures an intensified and aggressive examination of the
search space, our adaptive selection strategy offers more search diversification,
and favors a better search balance between intensification and diversification.

Finally, a simple tabu mechanism is adopted to prevent the search from short-
term cycles, which forbids a vertex moved by the ADD, SWAP , and DROP
operators to be moved again for the next tl iterations, where tl is a parameter
called tabu tenure (Glover & Laguna 1998).

5 Computational experiments

This section is dedicated to an extensive evaluation of the proposed exact
and heuristic approaches. For this purpose, we present experimental results
achieved by our exact and heuristic approaches on a large set of benchmark
instances and compare them with other state-of-the-art exact and heuristic
methods for the GIS proposed in the literature.

5.1 Test instances and parameter settings

The proposed LA-B&B and ALS approaches are both tested on a set of 216
benchmark instances which were first introduced by Colombi et al. (2017). The
generation of these instances is based on 12 DIMACS graphs (Johnson & Trick
1996) with 125 to 400 vertices and 6963 to 71820 edges. The DIMACS graph
set includes randomly generated graphs, graphs where the optimal solution has
been hidden by incorporating low-degree vertices, as well as graphs constructed
from various applications, such as coding theory, fault diagnosis problems,
Keller’s conjecture on tilings using hypercubes, and the Steiner triple problem.
Each of these 12 graphs is associated with three different sets of removable
edges and six different values for the revenue and cost, leading thus to a total
of 216 instances 1 . In these benchmark instances, each edge of the graph is

1 The benchmark instances are available at https://or-
dii.unibs.it/index.php?page=gisp.
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randomly marked as a removable edge with a probability pr, such that three
classes of instances were produced by considering pr = 0.25, 0.50 and 0.75.
For each instance class generated with a fixed pr value, the following two sets
of instances were generated by imposing different values for the revenue and
cost.

- SET1: for each vertex i, its revenue value is set to an integer randomly taken
in {1, ..., 100}, while for each removable edge {i, j} ∈ E ′, its associated
cost is set to three different values cij = [ 1

100
(wi + wj)], [ 1

50
(wi + wj)], and

[ 1
25

(wi + wj)], where [.] denotes the closest rounded integer.
- SET2: for each vertex i, its revenue value is set to three different values wi =

100, 50, and 25, while for each removable edge {i, j} ∈ E ′, its associated
cost is set to cij = 1.

The instances generated with the three different pr values in both sets are
marked with A, B, and C in their names, respectively.

In addition to these 216 standard instances, and to further evaluate the
performance of our ALS approach on larger instances, we randomly selected 15
graphs from the OpenStreetMap 2 files of North America and 15 graphs from
the PACE 2019 Challenge (Dzulfikar et al. 2019). The OpenStreetMap graphs
are vertex-weighted, generated by associating map labels with vertices and
assigning each vertex a weight based on the importance of the corresponding
map label. The graphs from the PACE 2019 Challenge are from various
domains and have been gathered from eight different sources. 3 These 30
selected graphs have a larger number of vertices, ranging from 786 to 17,903,
and a greater number of edges, ranging from 1,948 to 604,867. These instances
have been previously used in the literature to test the minimum vertex
cover problem and the maximum weight independent set problem (Cai et
al. 2018; Lamm et al. 2019). Since the density of the graphs from the PACE
2019 Challenge and OpenStreetMap is very low (generally below 0.1), we
additionally include all the 17 graphs with at least 700 (up to 4000) vertices
and 6480 to 3997732 edges from the DIMACS benchmark, and use the
inverted versions of these original graphs by transforming them into their
complementary graphs. In total, we obtain 47 diverse large GIS instances.
In these 47 large graphs, each edge of the graph is randomly marked as a
removable edge with a random probability pr = 0.25, 0.50 and 0.75, and the
cost of each removable edge is set in the same way as for the SET1-C instances.
The revenue value of each vertex in the graphs from the DIMACS benchmark
and PACE 2019 Challenge is set in the same way as for the SET1-C instances,
while for the OpenStreetMap graphs, we retain the original vertex weights as
the vertex revenues, given that these graphs are already vertex-weighted. As

2 https://www.openstreetmap.org.
3 https://github.com/daajoe/pace2019 vc instances.
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a result, these graphs produce a total of 47 instances for the GIS problem 4 .

We set the parameter required by our ALS algorithm as follows: the tabu
tenure tl = 7. The setting of this parameter is tuned using the general IRACE
automatic parameter configuration tool (López-Ibáñez et al. 2016). For this
parameter tuning task, we used a different set of 20 instances with 100 to 400
vertices 5 , which are randomly generated as follows. Each pair of vertices is
randomly marked as a permanent edge with a random probability p1 from the
range [0.1, 0.9]. For each pair of vertices not connected by a permanent edge,
it is randomly marked as a removable edge with a random probability p2 from
the range [0.3, 0.7]. The revenue value of each vertex is set to a random integer
value from [10, 100], while for each removable edge, its cost is set to a random
integer value from [1, 5].

5.2 Experimental protocol and reference algorithms

To show the effectiveness of our proposed LA-B&B and ALS algorithms,
we compare them respectively with the currently best-performing exact
and heuristic approaches for the GIS. As shown in the most recent study
(Hosseinian & Butenko 2019; Nogueira et al. 2021), the following two reference
algorithms are among the best exact and heuristic methods for the GIS, and
thus constitute the reference approaches to evaluate the performance of our
LA-B&B and ALS algorithms.

• CB&B: A combinatorial B&B (CB&B) method (Hosseinian & Butenko
2019), which also relies on the branch and bound framework similar to our
LA-B&B algorithm, but uses different bounding and branching strategies.
Specifically, CB&B takes advantage of a nonlinear formulation of the GIS
problem and employs a spherical relaxation of a quadratic function over
a hypersphere in its bounding subroutine. Additionally, CB&B employs a
branching strategy where the vertices in the graph G = (V,E) (E denotes
the set of permanent edges) are sorted in a descending order of their degrees,
and the vertices are selected in that order at each branching step.
• ILS-VND: A variable neighborhood descent based iterated local search

heuristic approach (Nogueira et al. 2021), which relies on two neighbor-
hoods, one involving the addition of a single vertex to the solution, and the
other involving the addition of two vertices. These two neighborhoods are
explored using a variable neighborhood descent procedure. ILS-VND differs

4 These benchmark instances are available at https://github.com/m2-
Zheng/GISP/tree/main/large instance.
5 The instances for parameter setting are available at https://github.com/m2-
Zheng/GISP/tree/main/instance for parameter setting.

17



from our ALS algorithm mainly in its neighborhoods and the manner in
which it explores the neighborhoods.

Moreover, the above reference approaches are tested very recently by Nogueira
et al. (2021) under the same platform (an Intel i7 processor with 3.6 GHz and
16 GB of memory). The source codes of CB&B and ILS-VND were made
available by the authors. To make the comparison as fair as possible, we run
the source codes of these reference algorithms on our computing platform
under the same time limit as adopted by Hosseinian & Butenko (2019) and
Nogueira et al. (2021), which is set to be 3 hours for CB&B and LA-B&B,
and 30 seconds for ILS-VND and ALS on the SET1 and SET2 instances. In
addition, for the 47 larger instances generated in this work, we set the time
limit to be 5 minutes.

Our LA-B&B and ALS approaches 6 are programmed in Java and compiled on
an Intel i5 processor with 2.8 GHz CPU and 16G RAM. Our platform requires
respectively 0.31, 1.93 and 7.35 CPU seconds for the graphs r300.5, r400.5
and r500.5 when running the DIMACS MC Machine Benchmark program
(available at http://archive.dimacs.rutgers.edu/pub/dsj/clique/).

5.3 Computational results of LA-B&B

We assess the performance of the LA-B&B algorithm by comparing it with
the reference algorithm CB&B introduced in Section 5.2. In this comparison,
the reference CB&B algorithm did not include a procedure to generate a
tight initial lower bound for its pruning subroutine. Therefore, our LA-B&B
algorithm excludes the ALS procedure from its branch and bound framework
to ensure a fair comparison with the reference method. Table 2 summarizes the
comparative results between LA-B&B and CB&B on the whole set of the 216
instances while Tables 5-7 in the Appendix present the detailed results for each
instance. Columns 1-2 in Table 2 respectively give the name of each instance
set and the number of instances in each set. Columns 3-8 summarize the results
obtained by the two compared algorithms on each instance set, including
the number of instances solved to optimality, the required computation time
averaged on the instances solved to optimality, and the number of better
results in terms of lower bounds on instances where both algorithms fail to
obtain the optimal solution. Finally, the summarized results for each column
are presented in the last row of the table.

When comparing CB&B with our LA-B&B algorithm, one observes that LA-
B&B is able to solve 143 instances (66%) to optimality within the given

6 The source code of the algorithms are available at https://github.com/m2-
Zheng/GISP.
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Table 2
Summary of comparative results on the 216 standard GIS benchmark instances
between LA-B&B and CB&B

Set Total
LA-B&B CB&B

#Optimality Avg. time(s) #Better lower bound #Optimality Avg. time(s) #Better lower bound

pr = 0.25

SET1 36 33 54.68 3 33 586.50 0

SET2 36 33 843.52 3 33 979.79 0

pr = 0.5

SET1 36 30 64.60 6 26 4092.37 0

SET2 36 30 207.29 3 20 5314.38 3

pr = 0.75

SET1 36 10 2508.35 26 3 7698.81 0

SET2 36 7 3503.61 28 3 6515.30 0

Summary 216 143 1197.01 69 118 4197.86 3

time limit of 3 hours, while CB&B can only solve 118 instances (54%) to
optimality. For the 73 instances where both exact algorithms fail to reach
the optimal solutions within the given time limit, our LA-B&B algorithm is
able to achieve better lower bounds on 69 instances but worse lower bounds
on 3 instances. In terms of the computational efficiency, LA-B&B requires
a significantly shorter average time on the instances solved to optimality.
Especially, as shown by the detailed results in Tables 5-7, our LA-B&B
algorithm is 10 times faster than the CB&B method to solve 112 out of
the 118 instances solved by both algorithms. The advantage of our LA-B&B
algorithm in terms of the computational efficiency becomes even more evident
when the removable-edge density of the graphs decreases. For 96 out of the 112
instances with the removable-edge density ρ2 ≤ 0.5, our LA-B&B algorithm
is 100 times faster than the CB&B method to reach the optimal solution.
For 12 out of the 67 instances with the removable-edge density ρ2 ≤ 0.25,
our LA-B&B algorithm is even 1000 times faster than the CB&B method.
These observations demonstrate that our proposed LA-B&B algorithm is
highly efficient for the GIS compared to the currently best-performing exact
approach.

By incorporating the tight initial lower bound produced by the adaptive local
search procedure ALS, the performance of the LA-B&B algorithm can be
further improved. Columns 9-10 in Tables 5-7 provide the detailed results of
LA-B&B with the initial lower bound (denoted by LA-B&B+ALS) on the 216
instances. As shown by columns 9-10 in Tables 5-7, LA-B&B+ALS is able to
solve one more instance to optimality within the given time limit. In terms
of the average computation time for the instances solved to optimality by
both algorithms, LA-B&B+ALS requires less time than LA-B&B. Finally, for
these instances where both algorithms fail to attain the optimal solution, LA-
B&B+ALS is able to produce better lower bounds on much more instances
than LA-B&B. These comparative results clearly demonstrate the improved
performance of LA-B&B when incorporating the tight initial lower bound
produced by ALS.
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Table 3
Summary of comparative results on the 216 standard GIS benchmark instances
between ALS and ILS-VND

Set Total
Indicator:fbest Indicator:favg Indicator:time(s)

#Wins #Ties #Losses Avg. Imp #Wins #Ties #Losses Avg. Imp #Wins #Ties #Losses

pr = 0.25

SET1 36 0 36 0 0 0 36 0 0 35 0 1

SET2 36 0 36 0 0 0 36 0 0 36 0 0

pr = 0.5

SET1 36 0 36 0 0 0 36 0 0 36 0 0

SET2 36 0 36 0 0 6 30 0 0.10 36 0 0

pr = 0.75

SET1 36 0 36 0 0 0 36 0 0 36 0 0

SET2 36 1 35 0 <0.01 10 26 0 0.44 36 0 0

Summary 216 1 215 0 16 200 0 215 0 1

5.4 Computational results of ALS

To demonstrate the effectiveness of our heuristic approach ALS in terms of
producing highly competitive results (lower bound), we compare it with the
currently best-performing heuristic approach ILS-VND. Given the stochastic
nature of the two compared algorithms, each instance is solved 10 times
independently with different random seeds by each algorithm under the same
experimental protocol as described in Section 5.2. Table 3 summarizes the
comparative results between ALS and ILS-VND on the whole set of the 216
instances while Tables 8-10 in the Appendix present the detailed results per
instance. Columns 1-2 in Table 3 respectively show the name of each instance
set and the number of instances in each set. The remaining columns give
the number of instances where our ALS algorithm achieves better (#Wins),
equal (#Ties) or worse (#Losses) results compared to ILS-VNS in terms of
the best objective value (fbest), the average objective value (favg), and the
average running time in seconds (time(s)) to reach the best result across the
10 independent runs. We also present the average percentage improvement
(Avg. Imp) of ALS over ILS-VND in terms of the best or average objective
value across the 36 instances in each set. For each instance set, the average
percentage improvement of the best and the average objective value are

computed as
∑36

i=1
(f iALS−f

i
ILS−V ND)/f iALS

36
× 100, where f iALS (f iILS−V ND) is the

best or the average objective value obtained by the given algorithm on the i-
th instance in the set. The summarized results for each column are presented
in the last row of Table 3.

From Table 3, one can observe in terms of the best objective value fbest, our
ALS is able to obtain respectively 1 better, 215 equal, and 0 worse results
compared to ILS-VND, while in terms of the average objective value favg,
our ALS is capable of achieving respectively 16 better, 200 equal, and 0 worse
results. In terms of the computation time, our ALS algorithm requires a shorter
time than ILS-VND to find equal or better solutions for 215 out of the 216
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instances. Furthermore, as shown by the detailed results in Tables 8-10 in
Appendix, our ALS approach is able to improve the previous best known result
(new lower bound) for one instance (gen400 p0.9 75 B 75), and it reaches its
best solutions with a success ratio of 100% for all the 216 tested instances,
while this is done by ILS-VND only for 200 cases within the given time limit,
further confirming the robustness of the proposed ALS. We can conclude that
ALS is highly efficient for the GIS compared to the currently best-performing
heuristic approach proposed in the literature.

5.5 Computational results of ALS on large instances

To further evaluate the performance of the proposed ALS algorithm, this
section experimentally compares ALS with the reference algorithm ILS-VND
on the 47 large instances. The comparison is carried out under the same
experimental protocol described in Section 5.2. Table 4 summarizes the
comparative results. The first six columns in Table 4 respectively indicate
the instance name (Instance), the number of vertices (|V |), the number of
permanent edges (|E|), the number of removable edges (|E ′|), the permanent-

edge density ρ1 (computed as 2|E|
|V |(|V |−1)), and the removable-edge density ρ2

(computed as 2|E′|
|V |(|V |−1)). Columns 7-14 report the results obtained by the two

compared heuristic approaches, including the best solution (fbest), the average
result (favg), the success rate (success) to achieve the best result, and the
average running time (time(s)) in seconds needed to reach the best result.
For each instance where ALS and ILS-VND reach different best or average
values, we also indicate in parentheses the percentage improvement of ALS
over ILS-VND, which is calculated as (fALS − fILS−V ND)/fALS × 100, where
fALS and fILS−V ND respectively represent the best or average result obtained
by the two compared methods. Additionally, in the last four rows, we present
the summarized results between the two compared algorithms, including the
number of instances where each algorithm performed better in terms of the
best and average results, the average running time to reach the best result,
and the p-value from the Wilcoxon signed-rank test.

Table 4 shows that our ALS algorithm achieves highly competitive results
compared to ILS-VND. In terms of the best objective value, ALS is able to find
a better, equal and worse result on 22, 21, 4 instances respectively compared
to ILS-VND, while in terms of the average objective value, ALS is able to find
a better, equal and worse result on 30, 11, 6 instances respectively. Regarding
the computation time required by both algorithms to reach their best objective
value, ALS is faster than ILS-VND on 16 out of the 21 instances where both
algorithms reach the same best result. Finally, the p-values (< 0.05) of the
Wilcoxon signed-rank test indicates a significant difference between ALS and
ILS-VND in terms of the best result, average result and computation time.
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6 Analysis

In this section, we focus our attention on the analysis of the main components
of our proposed LA-B&B algorithm in order to show their important roles to
the performance of LA-B&B.

6.1 Impact of the Lagrange multiplier in the upper bound

In Section 3.2, we derived an upper bound on the Lagrange multiplier λ.
Our analysis revealed that the optimal value for λ falls within the interval
[0, α], where α = wmax

n−1 . To determine a suitable value for λ in the interval
[0, α], we evaluated the LA-B&B algorithm using four different values for the
Lagrange multiplier. These four values were chosen as λi = 0.25× i× α (i =
1, 2, 3, 4). To conduct this comparison, we executed the LA-B&B algorithm
with the four chosen values for λ. We then compared the computational time
required by the LA-B&B algorithm with the four chosen λ values to reach the
optimal solution. We excluded the initial lower bound and followed the same
experimental protocol described in Section 5.2. The evaluation was performed
on 36 instances which were randomly selected from the 216 instances.

Fig. 2(a) summarizes the normalized running time required by the LA-B&B
algorithm with the four chosen values for λ. The horizontal axis in Fig. 2(a)
indicates the names of the instances, while the vertical axis indicates the
normalized running time required by the LA-B&B with the four chosen values
for λ, respectively. Due to significant variations in running time across different
instances, we normalize the running time required by the LA-B&B with the
chosen λ values using the running time required by LA-B&B with λ4 as a
baseline. Specifically, for a given instance, the running time required by LA-
B&B with λi (i = 1, 2, 3, 4) is normalized by ti

t4
, where ti is the runtime required

by LA-B&B with λi to reach the optimal solution on that instance. If the
instance can not be solved to optimality with the given time of 10800 seconds
by LA-B&B with λi, ti is set to be 10800 seconds. As shown by Fig. 2(a),
LA-B&B with λ4 shows an overall best performance among the four compared
variants. For the 29 instances where LA-B&B with all λi can reach the optimal
solution, LA-B&B with λ4 is able to reach the optimal solution within the
shortest running time on 22 cases. Additionally, Fig. 2(a) reveals that the
running time required by the four variants typically falls within the range
of [0.8t4, 1.4t4] across most of the 36 instances, indicating the differences in
running time between the four compared variants are relatively small.

To further investigate the influence of Lagrange multipliers on the tightness of
the bound, we present in Fig. 2(b) the ratio of the best upper bound achieved
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by employing the Lagrangian relaxation method with the four selected values
for the Lagrange multiplier. Specifically, for a given instance, we calculate
the Lagrangian relaxation upper bound UB(GP ) at each bounding step using
the four chosen values for the Lagrange multiplier, where GP represents the
subgraph induced by P . We then track the number of times each chosen value
for the Lagrange multiplier produces the best Lagrangian relaxation upper
bound during the LA-B&B search, denoted as n1, n2, n3, and n4 respectively.
Afterward, we compute the ratio of the best upper bound achieved by each
chosen value λi as ni∑4

j=1
nj
× 100. From Fig. 2(b), we can observe that λi = α

shows a slightly overall better performance by achieving the largest ratio on
18 out of the 36 instances. Especially, for several instances where the revenues
of the vertices are very evenly distributed, λ4 = α is able to produce the best
Lagrangian relaxation upper bound with a ratio of nearly 100%. Intuitively,
when the revenues of the vertices are evenly distributed, the revenues of all
vertices are close to wmax. This results in the first part of Equation 12 (i.e.,∑
i∈V +

[wi − λ(n − 1)]), used for calculating the Lagrangian relaxation upper

bound, approaching 0 when λ is set to α = wmax

n−1 . This can potentially lead to
a significantly better upper bound. However, on instances where the revenues
of the vertices exhibit a wider range of variation, other values for λ enable
the LA-B&B algorithm to perform much better compared to λ = α. We
conclude that no single λ dominates the others on all these 36 instances, and
the performance of the Lagrangian relaxation method with each Lagrange
multiplier varies with the specific instance, making it difficult to determine
the best value for λ.

6.2 Effectiveness of the Lagrangian relaxation upper bound

As shown in Section 3.2, the LA-B&B algorithm employs two upper bounding
strategies for its pruning subroutine. The first strategy is the Lagrangian
relaxation upper bounding strategy (LUB), while the second strategy is a
simple upper bounding strategy (SUB) that relies on the revenues of the
vertices in P (i.e.,

∑
i∈P wi) to compute an upper bound on the net benefit

of the subgraph GP . In this section, we analyze the frequency that the two
bounding strategies are used for pruning to demonstrate their contributions
to the LA-B&B algorithm. The evaluation was performed on the same 36
instances used in Section 6.1.

Fig. 3 summarizes the frequency that the two bounding strategies are used
for pruning on the 36 instances. The horizontal axis in Fig. 3 indicates the
the names of the instances, while the vertical axis represents the frequency of
application for the two strategies, which is defined as n1

n1+n2
(or n2

n1+n2
) where

n1 and n2 respectively denotes the number of times that LUB and SUB are

25



brock400 2 A
25

p hat300-3
A

25

C125.9
B 25

gen200 p0.9
55 B 25

C125.9
C 25

MANN
a27 C 25

hamming8-4
A

25

p hat300-3
A

25

brock200 2 B 25

p hat300-3
B 25

C250.9
C 25

hamming8-4
C 25

brock400 2 A
50

gen400 p0.9
75 A

50

C125.9
B 50

MANN
a27 B 50

gen200 p0.9
55 C 50

gen400 p0.9
75 C 50

C250.9
A

50

kelle
r4

A
50

brock400 2 B 50

hamming8-4
B 50

MANN
a27 C 50

p hat300-3
C 50

C250.9
A

75

MANN
a27 A

75

C125.9
B 75

p hat300-1
B 75

gen400 p0.9
75 C 75

MANN
a27 C 75

brock200 2 A
75

gen200 p0.9
55 A

75

hamming8-4
B 75

kelle
r4

B 75

brock200 2 C 75

C125.9
C 75

Instance

0.8

1.0

1.2

1.4

1.6
R

u
n

n
in

g
ti

m
e

ra
ti

o

λ1=0.25α

λ2=0.5α

λ3=0.75α

λ4=α

(a) The normalized running time required by the LA-B&B algorithm using four
different values for the Lagrange multiplier
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Fig. 2. Comparisons of LA-B&B algorithms with four different values of the
Lagrange multiplier.

used for bounding during the search.

From Fig. 3, we can observe that both bounding strategies positively
contribute to the performance of the LA-B&B algorithm. However, LUB is
generally applied with a higher frequency on many more instances. Especially,
for several instances where the revenues of the vertices are very evenly
distributed, LUB is applied with a frequency of 100%, indicating that LUB
can always produce better upper bound than SUB throughout the search
process on these instances. As discussed in Section 6.1, when the revenues of
the vertices are evenly distributed, the revenues of all vertices are very close
to wmax, allowing the LUB produce very tight upper bound on these instance.
Further, LUB is more effective than SUB on instances with higher cost of
the removable edges, since on these instances, SUB does not take the cost of
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the removable edges into account. On the other hand, SUB works better than
LUB on instances where the revenues of the vertices exhibit a wider range of
variation, since on these instances, LUB considers the revenues of all vertices
to be wmax (the maximum revenue) when bounding, leading to a less tighter
bound on the revenues of all vertices. The above observation further confirms
that LUB plays an important role to the performance of LA-B&B.
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Fig. 3. The frequency of LUB and SUB used for bounding

6.3 Impact of the branching strategy

As shown in Section 3.3, the LA-B&B algorithm employs a branching strategy
where the vertices in the candidate list P are sorted in decreasing order with
respect to their revenue, and the vertices in P are selected in that order. To
verify the effectiveness of this branching strategy, we compare it with two other
branching strategies widely used in the context of solving the independent set
and clique problems. The first branching strategy selects the vertices in P in
an ascending order with respect to their revenue, while the second branching
strategy selects the vertices in P in an descending order with respective to
the degree of the vertices, where the degree of a vertex i in P is defined
by the number of permanent edges connected to i in P . By replacing our
adopted branching strategy with these two branching strategies, we obtain
two LA-B&B variants, which are respectively denoted by Ascend-B&B and
Degree-B&B. To make a fair comparison, we run all three approaches without
a initial lower bound under the same experimental protocol as described in
Section 5.2 on the same 36 instances which are used in Section 6.1.

Fig. 4(a) and 4(b) illustrate the comparative performance of LA-B&B, Ascend-
B&B, and Degree-B&B on 36 instances. In Fig. 4(a), the horizontal axis
represents the names of the instances, while the vertical axis indicates the
percentage gap of the solution obtained by each method compared to the best
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(a) Comparative results between LA-B&B and its two variants in terms of best results
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Fig. 4. Comparisons of LA-B&B with its two variants.

solution achieved with all three compared methods. For each instance, the
percentage gaps of the results are calculated as (f − fb)/fb × 100, where f
represents the result obtained by each respective method, and fb represents
the best solution achieved with all three methods. In Fig. 4(a), we present
the normalized running time required by each compared algorithm using the
running time required by LA-B&B as a baseline.

From Fig. 4(a), it can be observed that within the given time limit,
LA-B&B achieves the best results for 35 instances, compared to 32 and
31 for Ascend-B&B and Degree-B&B, respectively. Moreover, in terms of
computational time, Fig. 4(b) discloses that LA-B&B is able to reach the
optimal solution in a shorter average computational time compared to Ascend-
B&B and Degree-B&B. Overall, the p-values from the Wilcoxon signed-rank
test demonstrate statistically significant difference between both LA-B&B and
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the two compared methods in terms of solution quality (4.31E-02 for LA-
B&B vs Ascend-B&B and 4.64E-02 for LA-B&B vs Degree-B&B). In terms
of computational time, there is a statistically significant difference between
LA-B&B and Ascend-B&B (2.45E-02 for LA-B&B vs Ascend-B&B), while no
statistically significant difference is observed between LA-B&B and Degree-
B&B (6.13E-02 for LA-B&B vs Degree-B&B).

6.4 Effectiveness of the adaptive neighborhood exploration strategy

When multiple neighborhoods are available, a crucial issue arises regarding
how to effectively combine these neighborhoods to explore the search space
efficiently. In our work, we proposed an adaptive neighborhood exploration
strategy that dynamically selects the most promising neighborhood capable
of generating high-quality solutions. To demonstrate the effectiveness of our
proposed adaptive neighborhood exploration strategy, we compared it with a
widely used method from the literature called the neighborhood union method,
which jointly considers all neighborhoods and selects the best non-tabu
neighboring solution from all considered neighborhoods. The neighborhood
union method allows for an aggressive exploration of the search space, and
has been proven to be effective in the context of local search for the maximum
weight clique problem (Wu et al. 2012).

By keeping other ingredients unchanged, we conducted experiments on both
strategies within our local search method under the same experimental
protocol described in Section 5.2 on the 47 large instances. We refer to
the variant using the neighborhood union strategy as ULS. In Fig. 5, the
horizontal axis represents the serial number of the instances, while the
vertical axis indicates the percentage gap of the solution obtained by each
method compared to the best solution achieved by both methods. For each
instance, the percentage gaps of the best and average results are calculated
as |f − fb|/fb × 100, where f represents the best or average result obtained
by the respective method, and fb represents the best solution achieved by
both methods. From Fig. 5, we can observe that in terms of best results, our
ALS algorithm achieves better, equal, and worse results respectively for 17,
21 and 9 instances. In terms of average results, ALS achieves better, equal,
and worse results for 14, 18, 15 instances. Overall, ALS shows a slightly better
stability in achieving high quality solutions compared to ULS and also shows
superiority in finding improved solutions, validating the effectiveness of our
adaptive neighborhood exploration strategy for exploring the solution space.
These findings highlight the potential of ALS in enhancing the performance
of local searches.
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Fig. 5. Comparisons of ALS with its variant ULS.

7 Conclusion

In this work, we studied the generalized independent set problem, which
is an important generalization of the classical maximum independent set
problem with various practical applications. To effectively solve the problem,
we proposed highly effective exact and heuristic solution approaches. The
exact method derives a new upper bound for the problem using a Lagrangian
relaxation method, and a tight lower bound employing our proposed adap-
tive local search heuristic. By incorporating these lower and upper bound
techniques into the general B&B framework, we obtained an effective exact
method for this challenging problem.

We assessed the performance of the proposed methods on a set of 216
benchmark instances in the literature and compared our results with those
from the currently best-performing exact and heuristic approaches. The
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comparative studies showed that our algorithms are highly competitive with
the best reference algorithms. In particular, our exact algorithm was able to
solve 26 more instances to optimality for the first time. We also carried out
additional experiments to confirm the effectiveness of the proposed heuristic
approach ALS on 47 new generated large instances, which is shown to be
competitive with the currently best heuristic approach for generating high-
quality lower bounds for our studied problem.
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Appendix: Detailed computational results

Detailed comparative results between our exact LA-B&B algorithm and the
reference exact algorithm CB&B on the whole set of the 216 benchmark
instances are provided in Tables 5-7. The first six columns in Tables 5-7
respectively indicate the instance name (Instance), the number of vertices
(|V |), the number of permanent edges (|E|), the number of removable edges

(|E ′|), the permanent-edge density ρ1 (computed as 2|E|
|V |(|V |−1)), and the

removable-edge density ρ2 (computed as 2|E′|
|V |(|V |−1)). Columns 7-10 present the

results obtained by the two compared exact approaches under a time limit of
3 hours, including the best solution fbest achieved by the algorithms (marked
with an asterisk ‘∗’ if the instance is solved to optimality by the corresponding
algorithm), and the time required by the algorithm to solve the instance
to optimality (denoted by 10800 seconds if the algorithm fails to attain the
optimal solutions within the given time limit).

Detailed comparative results between the proposed heuristic algorithm ALS
and the reference heuristic algorithm ILS-VND are presented in Tables 8-10.
Column 2 reports the previously best-known results reported in the literature
(marked with an asterisk ‘∗’ if the optimal solution for the instance is known).
Columns 3-8 report for each algorithm the best result (fbest), the average
result (favg), the success rate (success) to achieve the best result, and the
average running time (time(s)) in seconds to reach the best result across the
10 independent runs.

The best results found by the proposed algorithm ALS and the reference
algorithm ILS-VND are marked in bold text.
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Table 8: Computational results of the heuristic algorithms for the instances with pr = 0.25

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

SET1

brock200 2 A 25 986* 986 986 10 <0.01 986 986 10 <0.01

brock400 2 A 25 765* 765 765 10 0.07 765 765 10 <0.01

C125.9 A 25 454* 454 454 10 <0.01 454 454 10 <0.01

C250.9 A 25 581* 581 581 10 0.03 581 581 10 <0.01

gen200 p0.9 55 A 25 535* 535 535 10 <0.01 535 535 10 <0.01

gen400 p0.9 75 A 25 628* 628 628 10 3.10 628 628 10 <0.01

hamming8-4 A 25 1094* 1094 1094 10 0.05 1094 1094 10 <0.01

keller4 A 25 941* 941 941 10 0.01 941 941 10 <0.01

MANN a27 A 25 533* 533 533 10 0.26 533 533 10 <0.01

p hat300-1 A 25 2744 2744 2744 10 0.20 2744 2744 10 <0.01

p hat300-2 A 25 2076* 2076 2076 10 <0.01 2076 2076 10 <0.01

p hat300-3 A 25 739* 739 739 10 0.07 739 739 10 <0.01

brock200 2 B 25 962* 962 962 10 0.03 962 962 10 <0.01

brock400 2 B 25 741* 741 741 10 0.09 741 741 10 <0.01

C125.9 B 25 437* 437 437 10 <0.01 437 437 10 <0.01

C250.9 B 25 549* 549 549 10 0.03 549 549 10 <0.01

gen200 p0.9 55 B 25 510* 510 510 10 0.01 510 510 10 <0.01

gen400 p0.9 75 B 25 595* 595 595 10 0.71 595 595 10 <0.01

hamming8-4 B 25 1094* 1094 1094 10 0.14 1094 1094 10 <0.01

keller4 B 25 941* 941 941 10 0.03 941 941 10 <0.01

MANN a27 B 25 503* 503 503 10 0.05 503 503 10 0.08

p hat300-1 B 25 2712 2712 2712 10 0.44 2712 2712 10 <0.01

p hat300-2 B 25 2062* 2062 2062 10 <0.01 2062 2062 10 <0.01

p hat300-3 B 25 713* 713 713 10 0.04 713 713 10 <0.01

brock200 2 C 25 932* 932 932 10 0.04 932 932 10 <0.01

brock400 2 C 25 698* 698 698 10 0.06 698 698 10 <0.01

C125.9 C 25 403* 403 403 10 <0.01 403 403 10 <0.01

C250.9 C 25 502* 502 502 10 0.08 502 502 10 <0.01

gen200 p0.9 55 C 25 467* 467 467 10 0.02 467 467 10 <0.01

gen400 p0.9 75 C 25 533* 533 533 10 0.59 533 533 10 <0.01

hamming8-4 C 25 1094* 1094 1094 10 0.06 1094 1094 10 <0.01

keller4 C 25 941* 941 941 10 0.03 941 941 10 <0.01

MANN a27 C 25 443* 443 443 10 0.15 443 443 10 <0.01

p hat300-1 C 25 2649 2649 2649 10 0.28 2649 2649 10 <0.01

p hat300-2 C 25 2033* 2033 2033 10 <0.01 2033 2033 10 <0.01

p hat300-3 C 25 688* 688 688 10 0.04 688 688 10 <0.01

SET 2

brock200 2 A 25 1489* 1489 1489 10 0.12 1489 1489 10 <0.01

brock400 2 A 25 1084* 1084 1084 10 1.79 1084 1084 10 0.02

C125.9 A 25 685* 685 685 10 0.21 685 685 10 <0.01

C250.9 A 25 785* 785 785 10 0.12 785 785 10 <0.01

gen200 p0.9 55 A 25 778* 778 778 10 0.15 778 778 10 <0.01

gen400 p0.9 75 A 25 882* 882 882 10 0.83 882 882 10 <0.01

hamming8-4 A 25 1790* 1790 1790 10 0.62 1790 1790 10 0.02

keller4 A 25 1500* 1500 1500 10 <0.01 1500 1500 10 <0.01

MANN a27 A 25 683* 683 683 10 0.04 683 683 10 <0.01

p hat300-1 A 25 4674 4674 4674 10 1.21 4674 4674 10 <0.01

p hat300-2 A 25 2994* 2994 2994 10 0.03 2994 2994 10 <0.01

Continued on next page
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Continued

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

p hat300-3 A 25 1180* 1180 1180 10 0.78 1180 1180 10 <0.01

brock200 2 B 25 739* 739 739 10 0.07 739 739 10 <0.01

brock400 2 B 25 534* 534 534 10 2.10 534 534 10 0.02

C125.9 B 25 335* 335 335 10 0.18 335 335 10 <0.01

C250.9 B 25 385* 385 385 10 0.18 385 385 10 <0.01

gen200 p0.9 55 B 25 378* 378 378 10 0.11 378 378 10 <0.01

gen400 p0.9 75 B 25 432* 432 432 10 0.89 432 432 10 <0.01

hamming8-4 B 25 890* 890 890 10 0.65 890 890 10 <0.01

keller4 B 25 750* 750 750 10 <0.01 750 750 10 <0.01

MANN a27 B 25 333* 333 333 10 0.05 333 333 10 <0.01

p hat300-1 B 25 2324 2324 2324 10 1.70 2324 2324 10 <0.01

p hat300-2 B 25 1494* 1494 1494 10 0.04 1494 1494 10 <0.01

p hat300-3 B 25 580* 580 580 10 1.30 580 580 10 <0.01

brock200 2 C 25 364* 364 364 10 0.11 364 364 10 <0.01

brock400 2 C 25 259* 259 259 10 1.31 259 259 10 0.02

C125.9 C 25 160* 160 160 10 0.17 160 160 10 <0.01

C250.9 C 25 185* 185 185 10 0.14 185 185 10 <0.01

gen200 p0.9 55 C 25 178* 178 178 10 0.15 178 178 10 <0.01

gen400 p0.9 75 C 25 207* 207 207 10 0.74 207 207 10 <0.01

hamming8-4 C 25 440* 440 440 10 0.63 440 440 10 <0.01

keller4 C 25 375* 375 375 10 <0.01 375 375 10 <0.01

MANN a27 C 25 158* 158 158 10 0.05 158 158 10 <0.01

p hat300-1 C 25 1149 1149 1149 10 1.27 1149 1149 10 <0.01

p hat300-2 C 25 744* 744 744 10 0.03 744 744 10 <0.01

p hat300-3 C 25 280* 280 280 10 0.83 280 280 10 <0.01

# of best 72 72

# of best Mean 72 72

Avg. time(s) 0.353 <0.01

p-value 1.00 1.00 4.99E-11

Table 9: Computational results of the heuristic algorithms for the instances with pr = 0.5

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

SET1

brock200 2 A 50 1298* 1298 1298 10 0.04 1298 1298 10 <0.01

brock400 2 A 50 1123 1123 1123 10 0.25 1123 1123 10 <0.01

C125.9 A 50 627* 627 627 10 0.01 627 627 10 <0.01

C250.9 A 50 817* 817 817 10 0.45 817 817 10 <0.01

gen200 p0.9 55 A 50 785* 785 785 10 0.04 785 785 10 <0.01

gen400 p0.9 75 A 50 895* 895 895 10 0.66 895 895 10 <0.01

hamming8-4 A 50 1301* 1301 1301 10 0.04 1301 1301 10 <0.01

keller4 A 50 1118* 1118 1118 10 0.02 1118 1118 10 <0.01

MANN a27 A 50 812* 812 812 10 0.24 812 812 10 <0.01

p hat300-1 A 50 3129 3129 3129 10 0.86 3129 3129 10 0.20

p hat300-2 A 50 2477 2477 2477 10 0.01 2477 2477 10 <0.01

p hat300-3 A 50 1029* 1029 1029 10 0.26 1029 1029 10 <0.01

Continued on next page
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Continued

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

brock200 2 B 50 1224* 1224 1224 10 0.04 1224 1224 10 <0.01

brock400 2 B 50 1035 1035 1035 10 0.13 1035 1035 10 <0.01

C125.9 B 50 582* 582 582 10 <0.01 582 582 10 <0.01

C250.9 B 50 744* 744 744 10 0.32 744 744 10 <0.01

gen200 p0.9 55 B 50 716* 716 716 10 0.08 716 716 10 <0.01

gen400 p0.9 75 B 50 805* 805 805 10 0.49 805 805 10 <0.01

hamming8-4 B 50 1255* 1255 1255 10 0.03 1255 1255 10 <0.01

keller4 B 50 1094* 1094 1094 10 0.03 1094 1094 10 <0.01

MANN a27 B 50 707* 707 707 10 1.32 707 707 10 <0.01

p hat300-1 B 50 3023 3023 3023 10 0.89 3023 3023 10 0.05

p hat300-2 B 50 2405 2405 2405 10 0.02 2405 2405 10 <0.01

p hat300-3 B 50 967* 967 967 10 0.17 967 967 10 <0.01

brock200 2 C 50 1101* 1101 1101 10 0.02 1101 1101 10 <0.01

brock400 2 C 50 892 892 892 10 0.12 892 892 10 <0.01

C125.9 C 50 506* 506 506 10 <0.01 506 506 10 <0.01

C250.9 C 50 623* 623 623 10 0.15 623 623 10 <0.01

gen200 p0.9 55 C 50 597* 597 597 10 0.04 597 597 10 <0.01

gen400 p0.9 75 C 50 651* 651 651 10 0.19 651 651 10 <0.01

hamming8-4 C 50 1184* 1184 1184 10 0.09 1184 1184 10 <0.01

keller4 C 50 1049* 1049 1049 10 0.04 1049 1049 10 <0.01

MANN a27 C 50 552* 552 552 10 1.44 552 552 10 <0.01

p hat300-1 C 50 2897 2897 2897 10 0.05 2897 2897 10 <0.01

p hat300-2 C 50 2263 2263 2263 10 0.03 2263 2263 10 <0.01

p hat300-3 C 50 851* 851 851 10 0.16 851 851 10 <0.01

SET 2

brock200 2 A 50 2034* 2034 2034 10 0.80 2034 2034 10 <0.01

brock400 2 A 50 1630 1630 1629.6 9 11.24 1630 1630 10 0.07

C125.9 A 50 1152* 1152 1152 10 0.03 1152 1152 10 <0.01

C250.9 A 50 1236* 1236 1236 10 3.17 1236 1236 10 0.01

gen200 p0.9 55 A 50 1151* 1151 1151 10 2.76 1151 1151 10 <0.01

gen400 p0.9 75 A 50 1335* 1335 1335 10 2.10 1335 1335 10 0.02

hamming8-4 A 50 2155* 2155 2155 10 0.94 2155 2155 10 <0.01

keller4 A 50 1759* 1759 1759 10 0.27 1759 1759 10 <0.01

MANN a27 A 50 1226* 1226 1208.8 8 11.64 1226 1226 10 0.02

p hat300-1 A 50 5637 5637 5637 10 0.64 5637 5637 10 <0.01

p hat300-2 A 50 3943 3943 3943 10 0.33 3943 3943 10 <0.01

p hat300-3 A 50 1658* 1658 1658 10 0.14 1658 1658 10 <0.01

brock200 2 B 50 984* 984 984 10 0.71 984 984 10 <0.01

brock400 2 B 50 780 780 779.2 8 9.88 780 780 10 0.07

C125.9 B 50 552* 552 552 10 0.02 552 552 10 <0.01

C250.9 B 50 586* 586 586 10 4.39 586 586 10 <0.01

gen200 p0.9 55 B 50 551* 551 551 10 1.38 551 551 10 <0.01

gen400 p0.9 75 B 50 635* 635 635 10 0.69 635 635 10 0.01

hamming8-4 B 50 1055* 1055 1055 10 0.86 1055 1055 10 <0.01

keller4 B 50 859* 859 859 10 0.41 859 859 10 <0.01

MANN a27 B 50 576* 576 568.8 8 13.49 576 576 10 0.02

p hat300-1 B 50 2787 2787 2787 10 0.78 2787 2787 10 <0.01

p hat300-2 B 50 1943 1943 1943 10 0.47 1943 1943 10 <0.01

p hat300-3 B 50 808* 808 808 10 0.20 808 808 10 <0.01

brock200 2 C 50 459 459 459 10 0.83 459 459 10 <0.01

Continued on next page
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Continued

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

brock400 2 C 50 355 355 354.8 9 11.97 355 355 10 0.04

C125.9 C 50 252* 252 252 10 0.03 252 252 10 <0.01

C250.9 C 50 261* 261 261 10 3.32 261 261 10 <0.01

gen200 p0.9 55 C 50 251* 251 251 10 2.23 251 251 10 <0.01

gen400 p0.9 75 C 50 285* 285 285 10 1.79 285 285 10 <0.01

hamming8-4 C 50 505* 505 505 10 0.40 505 505 10 <0.01

keller4 C 50 409* 409 409 10 0.10 409 409 10 <0.01

MANN a27 C 50 251* 251 248.8 8 9.99 251 251 10 0.02

p hat300-1 C 50 1362 1362 1362 10 0.58 1362 1362 10 <0.01

p hat300-2 C 50 943 943 943 10 0.21 943 943 10 <0.01

p hat300-3 C 50 383* 383 383 10 0.13 383 383 10 <0.01

# of best 72 72

# of best Mean 66 72

Avg. time(s) 1.49 <0.01

p-value 1 2.77E-02 1.96E-13

Table 10: Computational results of the heuristic algorithms for the instances with pr = 0.75

Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

SET1

brock200 2 A 75 1885 1885 1885 10 0.47 1885 1885 10 <0.01

brock400 2 A 75 1728 1728 1728 10 4.74 1728 1728 10 0.04

C125.9 A 75 1023* 1023 1023 10 0.02 1023 1023 10 <0.01

C250.9 A 75 1236 1236 1236 10 1.74 1236 1236 10 <0.01

gen200 p0.9 55 A 75 1206 1206 1206 10 0.26 1206 1206 10 <0.01

gen400 p0.9 75 A 75 1490 1490 1490 10 0.57 1490 1490 10 <0.01

hamming8-4 A 75 1759 1759 1759 10 0.45 1759 1759 10 <0.01

keller4 A 75 1434 1434 1434 10 0.03 1434 1434 10 <0.01

MANN a27 A 75 1323 1323 1323 10 0.86 1323 1323 10 <0.01

p hat300-1 A 75 4164 4164 4164 10 0.20 4164 4164 10 <0.01

p hat300-2 A 75 2990 2990 2990 10 1.01 2990 2990 10 <0.01

p hat300-3 A 75 1564 1564 1564 10 0.45 1564 1564 10 <0.01

brock200 2 B 75 1641 1641 1641 10 0.48 1641 1641 10 <0.01

brock400 2 B 75 1386 1386 1386 10 2.40 1386 1386 10 0.03

C125.9 B 75 856* 856 856 10 0.02 856 856 10 <0.01

C250.9 B 75 1001 1001 1001 10 1.10 1001 1001 10 <0.01

gen200 p0.9 55 B 75 983 983 983 10 0.23 983 983 10 <0.01

gen400 p0.9 75 B 75 1120 1120 1120 10 0.49 1120 1120 10 <0.01

hamming8-4 B 75 1579 1579 1579 10 0.12 1579 1579 10 <0.01

keller4 B 75 1268 1268 1268 10 0.04 1268 1268 10 <0.01

MANN a27 B 75 1021 1021 1021 10 0.58 1021 1021 10 <0.01

p hat300-1 B 75 3886 3886 3886 10 0.42 3886 3886 10 <0.01

p hat300-2 B 75 2782 2782 2782 10 0.30 2782 2782 10 <0.01

p hat300-3 B 75 1299 1299 1299 10 0.55 1299 1299 10 <0.01

brock200 2 C 75 1321 1321 1321 10 0.31 1321 1321 10 <0.01

brock400 2 C 75 1033 1033 1033 10 0.87 1033 1033 10 <0.01
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Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

C125.9 C 75 644* 644 644 10 0.23 644 644 10 <0.01

C250.9 C 75 734 734 734 10 1.06 734 734 10 <0.01

gen200 p0.9 55 C 75 727 727 727 10 0.05 727 727 10 <0.01

gen400 p0.9 75 C 75 772 772 772 10 0.95 772 772 10 0.01

hamming8-4 C 75 1378 1378 1378 10 0.14 1378 1378 10 <0.01

keller4 C 75 1109 1109 1109 10 0.03 1109 1109 10 <0.01

MANN a27 C 75 651 651 651 10 2.04 651 651 10 <0.01

p hat300-1 C 75 3480 3480 3480 10 0.51 3480 3480 10 <0.01

p hat300-2 C 75 2473 2473 2473 10 0.11 2473 2473 10 <0.01

p hat300-3 C 75 1004 1004 1004 10 0.84 1004 1004 10 <0.01

SET 2

brock200 2 A 75 3326 3326 3300.2 4 7.54 3326 3326 10 0.07

brock400 2 A 75 2941 2941 2862.7 1 12.25 2941 2941 10 0.19

C125.9 A 75 1837* 1837 1837 10 0.29 1837 1837 10 <0.01

C250.9 A 75 2171 2171 2171 10 4.72 2171 2171 10 <0.01

gen200 p0.9 55 A 75 2096 2096 2096 10 0.14 2096 2096 10 <0.01

gen400 p0.9 75 A 75 2404 2404 2367.6 1 18.56 2404 2404 10 0.11

hamming8-4 A 75 3124 3124 3124 10 1.00 3124 3124 10 <0.01

keller4 A 75 2690 2690 2690 10 0.12 2690 2690 10 <0.01

MANN a27 A 75 2208 2208 2110.1 1 0.45 2208 2208 10 0.02

p hat300-1 A 75 7899 7899 7871.1 1 24.72 7899 7899 10 <0.01

p hat300-2 A 75 5343 5343 5343 10 0.61 5343 5343 10 <0.01

p hat300-3 A 75 2838 2838 2838 10 2.00 2838 2838 10 <0.01

brock200 2 B 75 1533 1533 1533 10 0.63 1533 1533 10 <0.01

brock400 2 B 75 1291 1291 1279.1 3 15.55 1291 1291 10 0.09

C125.9 B 75 837* 837 837 10 0.25 837 837 10 <0.01

C250.9 B 75 971 971 971 10 2.71 971 971 10 0.01

gen200 p0.9 55 B 75 946 946 946 10 0.08 946 946 10 <0.01

gen400 p0.9 75 B 75 1052 1052 1036 1 11.16 1054 1054 10 0.13

hamming8-4 B 75 1474 1474 1474 10 0.91 1474 1474 10 <0.01

keller4 B 75 1254 1254 1254 10 0.10 1254 1254 10 <0.01

MANN a27 B 75 958 958 932.7 1 10.89 958 958 10 0.02

p hat300-1 B 75 3818 3818 3818 10 1.88 3818 3818 10 <0.01

p hat300-2 B 75 2543 2543 2543 10 0.95 2543 2543 10 <0.01

p hat300-3 B 75 1288 1288 1288 10 1.83 1288 1288 10 <0.01

brock200 2 C 75 658 658 658 10 0.32 658 658 10 <0.01

brock400 2 C 75 500 500 500 10 3.22 500 500 10 0.01

C125.9 C 75 337* 337 337 10 0.13 337 337 10 <0.01

C250.9 C 75 372 372 372 10 4.84 372 372 10 0.02

gen200 p0.9 55 C 75 371 371 371 10 0.07 371 371 10 <0.01

gen400 p0.9 75 C 75 395 395 393.2 4 16.31 395 395 10 0.10

hamming8-4 C 75 652 652 652 10 0.45 652 652 10 0.01

keller4 C 75 558 558 558 10 0.12 558 558 10 <0.01

MANN a27 C 75 335 335 334.1 4 10.50 335 335 10 <0.01

p hat300-1 C 75 1793 1793 1793 10 1.38 1793 1793 10 <0.01

p hat300-2 C 75 1159 1159 1159 10 0.36 1159 1159 10 <0.01

p hat300-3 C 75 529 529 529 10 1.04 529 529 10 <0.01

# of best 71 72

# of best Mean 62 72
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Instance Best known
ILS-VND ALS

fbest favg success time(s) fbest favg success time(s)

Avg. time(s) 2.54 0.01

p-value 3.17E-01 5.06E-03 1.66E-13
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