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Abstract

The Minimum Sum Coloring Problem (MSCP) is a relevant model tightly related to
the classical vertex coloring problem (VCP). MSCP is known to be NP-hard, thus
solving the problem for large graphs is particular challenging. Based on the general
“reduce-and-solve” principle and inspired by the work for the VCP, we present an
extraction and backward expansion search approach (EBES) to compute the upper
and lower bounds for the MSCP on large graphs. The extraction phase reduces the
given graph by extracting large collections of pairwise disjoint large independent sets
(or color classes). The backward extension phase adds the extracted independent
sets to recover the intermediate graphs while optimizing the sum coloring of each
intermediate graph. We assess the proposed approach on a set of 35 large benchmark
graphs with 450 to 4000 vertices from the DIMACS and COLOR graph coloring
competitions. Computational results show that EBES is able to find improved upper
bounds for 19 graphs and improved lower bounds for 12 graphs.
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1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V and edge set
E, and let k be an integer (1 ≤ k ≤ n) representing the number of colors. A
legal k-coloring c of G is a partition of V into k mutually disjoint independent
sets (color classes) V1, . . . , Vk such that no two vertices of a color class are
linked by an edge, i.e., for ∀u, v ∈ Vi (i = 1, . . . , k), {u, v} /∈ E holds. The
Minimum Sum Coloring Problem (MSCP) involves finding a legal k-coloring
c that minimizes the following sum of colors [11,14,23].

f(c) =
k∑

i=1

i|Vi| (1)

where |Vi| is the cardinality of Vi, |V1| ≥ . . . ≥ |Vk|. The minimum sum of
colors for the MSCP is called the chromatic sum of G, and is denoted by∑
(G).

The MSCP is derived from the conventional NP-hard Vertex Coloring Problem
(VCP) that aims at finding a legal coloring with the smallest k [3,4], and is
denoted by χ(G). Like the VCP, the MSCP is NP-hard [14]. In practice, the
MSCP has a number of relevant applications in scheduling, resource allocation,
VLSI design and so on [17].

From a perspective of exact methods for the MSCP, only three studies have
been reported in the literature [15,19,25]. In [25], the MSCP was solved by an
integer linear programming solver (CPLEX) applied to a simple linear model.
In [15], the authors investigated different approaches including branch-and-
bound, transformations to satisfiability problems and constraint programming.
In [19], two approaches based on integer linear programming and constraint
programming were experimented. These studies showed that existing exact
approaches can only be applied to solve problem instances of limited sizes
(roughly up to 150 vertices).

In order to deal with larger graphs, heuristic approaches are preferred to find
suboptimal solutions (bounds). These include two greedy algorithms MDSAT
&MRLF [16], a tabu search algorithm [2], a local search heuristic MDS(5)+LS
[7], a breakout local search algorithm BLS [1] and a heuristic using independent
set extraction EXSCOL [26]. More sophisticated hybrid algorithms were also
developed recently including two memetic algorithms (MASC [8] and MA
[21]) and a hybrid evolutionary search algorithm HESA [10]. MASC combines
a tabu search local optimization procedure and a multi-parent crossover while
MA uses a double-parent crossover combined with a hill-climber and “destroy
and repair” procedure. HESA [10] uses an iterated double-phase tabu search
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procedure combined with two dedicated crossover operators. These hybrid
algorithms are among the state-of-the-art heuristics for the MSCP. Yet, all
existing algorithms have trouble to effectively handle large graphs with more
than several hundreds of vertices.

In this paper, we present an extraction and backward expansion search
algorithm (denoted by EBES) to find minimum sum colorings for large
graphs. This approach employs the general “reduce-and-solve” principle,
which is known to be effective in coloring large graphs for the classical VCP
[6,12,22,27]. Basically, the proposed EBES algorithm embeds an extraction
phase that heuristically identifies and removes large collections of pairwise
disjoint large independent sets. This is based on the consideration that
assigning small colors to large independent sets minimizes the sum of colors
defined by Eq. (1). However, this extraction approach may miss some
relevant independent sets. To address this issue, we introduce a backward
expansion phase that reconsiders the extracted independent sets while
re-coloring the intermediate graphs to improve the sum of colors.
Experiments on a set of 35 large benchmark graphs with 450 to 4000 vertices
show that the proposed algorithm performs very well. Indeed, compared with
the state-of-art results, EBES is able to find improved upper bounds for 19
instances and improved lower bounds for 12 instances out of the 35 tested
benchmark graphs. We additionally analyze the behavior of the EBES
algorithm on very large random graphs with 5000 to 10000 vertices.

The reminder of the paper is organized as follows. Section 2 presents the
proposed EBES algorithm for computing upper bounds of the MSCP. Section
3 explain the way of using EBES to compute lower bounds of the MSCP.
Section 4 presents computational results obtained by EBES and comparisons
with state-of-the-art MSCP algorithms in the literature. Before concluding,
Section 5 investigates one key ingredient of the proposed algorithm.

2 Extraction and backward expansion search for the MSCP

In this section, we present the proposed extraction and backward expansion
approach for the MSCP. The approach is inspired by previous studies of
applying similar ideas to the vertex coloring problem [6,27] and extends a
basic independent set extraction approach for the MSCP [26].
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2.1 General procedure

As we can observe in Eq. (1), the objective value (i.e., sum of colors) can
be minimized by constructing large color classes and assigning small colors
to them. This observation was first explored in [26] where an independent
set algorithm is used to progressively extract sets of color classes until a null
graph is reached. This extraction phase generates thus a series of intermediate
graphs with decreasing number of vertices. The proposed EBES algorithm
extends this approach in two directions. First, EBES combines independent
sets extraction with an MSCP coloring algorithm, i.e., the extraction phase
stops when the residual graph has no more than q (a parameter) vertices, which
is then colored with an MSCP algorithm. Second and more importantly, EBES
embeds a backward expansion phase to recover the intermediate graphs in the
reverse order. This phase enables new opportunities for further minimization
of the sum of colors.

The general scheme of our EBES algorithm for the MSCP is summarized in
Algorithm 1, which is composed of three phases.

(1) Independent set extraction: Suppose that the initial graph is given
by G0 = G, EBES simplifies the graph G0 by iteratively extracting a
maximum collection ϕi of disjoint independent sets of the maximum
size, thus progressively obtains smaller intermediate graphs Gi

(Gi = Gi−1 − ϕi, i = 1, 2, . . . ,m). This phase stops when Gm contains no
more than a prefixed threshold of q vertices. For instance, as shown in
Fig. 1, given the initial graph G0 (and q = 2), a smaller intermediate
graph G1 is obtained by removing two maximum independent sets
collected in ϕ1 = {{C,H, J}, {D, I, F}} (as well as the corresponding
edges) from the graph G0. Hereafter, G1 is further reduced to the
residual graph G2 in a similar way.

A B

CD
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F

J

H

I

G0

A B

E

G1

A B

G2

Fig. 1. An illustrative example of the extraction phase

(2) Initial coloring: For the smallest residual graph Gn, we can apply any
MSCP algorithm to determine a legal coloring c′ with the smallest sum
of colors. In our case, we adopt the hybrid evolutionary search algorithm
(HESA) presented in [10], which has obtained state-of-the-art results for
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the MSCP. As mentioned previously, the number of independent sets
extracted from the original graph is

∑m
i=1 |ϕi|. Suppose that the coloring

c′ for Gn is composed of k′ color classes V1, V2, . . . , Vk′ (|V1| ≥ . . . ≥ |Vk′ |),
a legal complete coloring c for the graph G is obtained by joining these∑m

i=1 |ϕi| extracted independent sets plus the k′ color classes V1, V2, . . . ,
Vk′ . Notice that the independent sets (color classes) of the coloring c are
re-sorted in non-increasing order of their cardinality if necessary before
color assignment. Hereby, an initial coloring c for G is generated, which
is submitted to the backward expansion and re-coloring phase for further
improvement of sum of colors.

(3) Backward expansion phase: This phase extends the current graph
Gi (i = m,m− 1, ...1) by adding back the extracted independent sets to
recover the intermediate graph Gi−1 such that Gi−1 = Gi + ϕi in order
to traverse all intermediate graphs in the reverse order of their
creations. For each intermediate graph Gi, the MSCP algorithm is
applied on Gi by starting from the current coloring of Gi extended with
the newly added independent sets, with the purpose of improving the
sum of colors. This phase stops when the initial graph G is recovered.
Fig. 2 illustrates the expansion phase by carrying out the inverse of the
extraction phase of Fig. 1. Starting from the residual graph G2, an
initial coloring c0 is obtained by the MSCP algorithm and let its sum of
colors be f0. Then, the intermediate graph G1 is obtained by adding
back the independent sets ϕ2 = {E} to G2. The corresponding coloring
c1 is again obtained by the MSCP algorithm with a sum of colors f1
(that is hopefully better than f0). The same operations are performed
to recover the initial graph G0 = G by adding back the two extracted
independent sets of ϕ1 = {{C,H, J}, {D, I, F}}. From the coloring c1
and the two color classes of ϕ1, the MSCP algorithm is applied to
obtain a new coloring c2 (that is hopefully better than c1).
Consequently, the solutions are continuously optimized along with the
expansion procedure, contrary to the basic extraction approach of [26]
that stops at the end of the extraction phase.

A B
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G0

Fig. 2. An illustrative example of the backward expansion phase
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Algorithm 1 The EBES algorithm for minimum sum coloring

1: Input: A graph G = (V,E), a parameter q representing the number of
remaining vertices in the smallest residual graph

2: Output: The best sum coloring c∗ found and its sum of colors f∗
3: {Extraction phase}
4: i← 0
5: G0 ← G
6: while Gi has more than q vertices do
7: ϕi+1 ← Extraction(Gi); /* A maximal collection ϕi+1 of disjoint

independent sets of the largest size is identified from graph Gi */;
8: Gi+1 ← Gi−ϕi+1; /* Create an intermediate subgraph by removing all

vertices of ϕi+1 as well as the corresponding edges from Gi */
9: i← i+ 1;
10: end while

11: {Initial sum coloring phase}
12: ci ← Initial Coloring(Gi,

⋃i
j=1 ϕj); /*An initial coloring ci is generated by

the color classes of Gi obtained by an MSCP coloring algorithm, plus the
extracted independent sets */

13: f∗ ← f(ci); c∗ ← ci
14: {Backward expansion phase}
15: repeat

16: i← i− 1;
17: Gi ← Gi+1 + ϕi+1; /* Expand the subgraph Gi+1 by adding back the

independent sets ϕi+1 to obtain the intermediate graph Gi */
18: ci ← Expansion(ci+1, ϕi+1); /* Construct a coloring ci of Gi from ci+1

*/
19: c′i ← Backward Coloring(ci); /* Apply the MSCP algorithm to improve

the coloring ci in terms of sum of colors */
20: if f(c′i) is better than f∗ then

21: f∗ ← f(c′i); c∗ ← c′i
22: end if

23: until Gi = G
24: return f∗, c∗

2.2 Strategy for the extraction phase

Recall that a legal k-coloring of G = (V,E) can be defined as a partition of
V into k independent sets. In order to simplify the graph G, EBES applies
the extraction phase to reduce G by extracting a maximal set of pairwise
disjoint large independent sets. For this, EBES adopts the extraction strategy
developed for the VCP [6,27] to deal with the MSCP. The overall procedure
of the extraction phase is described as follows.

Step 1 Identify an independent set S as large as possible in Gi by employing
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an independent set algorithm (or an equivalent clique algorithm). In
our case, we use the adaptive tabu search algorithm (ATS) [28] to
determine a large independent set S.

Step 2 Use a set CL to collect as many independent sets of size |S| as possible
by repeatedly employing ATS. This procedure stops when the number
of independent sets reaches a prefixed number |V | ∗ ρ (ρ is the density
of the graph) or no new independent set of |S| can be generated.

Step 3 Find a maximal number of pairwise disjoint independent sets ϕi =
{S0, S1, . . . , Smax} (Sb, Sd ∈ ϕi, Sb

⋂
Sd = ∅, b 6= d) in CL, which is

solved by ATS as the maximum set packing problem [4] (it is equivalent
to the maximum clique problem).

Step 4 Remove the vertices of ϕi from Gi as well as the edges adjacent to any
of these vertices and obtain the residual graph Gi+1, then i = i+ 1.

Step 5 Repeat the above steps until the residual graph Gi contains no more
than q vertices.

Fig. 3 illustrates how this procedure works on a graph with 11 vertices. First,
we identify a maximum independent set S of size 3 with S = {C,M,N}.
Then, we repeatedly employ ATS to collect as many independent sets of size
3 as possible in CL. Among those collected independent sets, we identify
a maximal number of pairwise disjoint independent sets ϕ from CL, such
as ϕ = {{A,B, F}, {C,M,H}, {D,N, P}}. Subsequently, we remove these
vertices and the associated edges from the graph G and obtain a residual
graph G′ that contains the vertices J and L, as well as their connecting edge.
We assign colors 1, 2, 3 to the three extracted independent sets of ϕ and assign
colors 4, 5 to the vertices J and L of the residual graph G′. Hence, a coloring
c with sum(c) = 1 ∗ 3 + 2 ∗ 3 + 3 ∗ 3 + 1 ∗ 4 + 1 ∗ 5 = 27 is obtained.

A

BC

D

M

F

N

H

P

J

L

A
1

B 1C
2

D3

M2

F1

N 3

H 2

P 3

J4

L
5

Fig. 3. Extracting independent sets of the extraction phase
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2.3 Initial and intermediate MSCP coloring

In principle, our EBES algorithm can apply any MSCP algorithm to color
the residual (generated at the end of the extraction phase) and intermediate
graphs (generated by the backward expansion phase). Intuitively, it is
advantageous to employ an effective MSCP algorithm to increase the overall
performance of the approach. As mentioned above, we apply the
state-of-the-art hybrid evolutionary search algorithm HESA introduced in
[10]. HESA follows the general memetic framework that combines
population-based evolutionary search and local optimization [5,18]. Starting
from an initial population of legal colorings generated by the maximum
independent set algorithm SBTS [9], HESA repeats a number of generations
to improve the solutions. At each generation, HESA randomly selects two
coloring to serve as parent solutions and uses two crossover operators to
generate two offspring solutions. The offspring solutions are improved by an
iterated double-phase tabu search procedure. Since HESA allows illegal
colorings, a repairing procedure is employed to reestablish the solution
feasibility when this situation occurs. More details about HESA can be
found in [10].

2.4 Backward expansion phase

As explained in Section 2.1 (Step (3)), the backward expansion phase
extends the current graph Gi (i = m,m − 1, ..., 1) to recover Gi−1 by adding
back the extracted independent sets of ϕi, i.e., Gi−1 = Gi + ϕi in order to
traverse all intermediate graphs. For each extended intermediate graph Gi−1,
we use the HESA algorithm to further improve the sum of colors of the
solution by starting from the coloring of Gi extended with the newly added
independent sets from ϕi. We also experimented with a simplified backward
expansion strategy (denoted by a two-level strategy) that recovers G0 from
the residual graph Gi by adding back all the extracted independent sets at
one time. This simplified strategy proved to perform well with respect to the
successive backward expansion strategy and thus adopted for our
experimental studies.

3 Lower bounds for the MSCP

Let G′ = (V,E ′) be a subgraph of the original graph G = (V,E) with vertex
set V and edge set E ′ (E ′ ⊂ E). Obviously, the chromatic sum of G′ is a lower
bound for the chromatic sum of G. Hence, to calculate the lower bound of
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the MSCP, we could try to find a subgraph G′ whose chromatic sum can be
efficiently and exactly computed.

One effective approach to obtain a subgraph G′ is to decompose the set V
of G into k pairwise disjoint cliques S1, S2, . . . , Sk such that ∀i 6= j, Si

⋂
Sj =

∅,
⋃

i Si = V [20,10]. Herein, the chromatic sum of the subgraphG′ is computed

by
∑k

i=1
|Si|(|Si|+1)

2
since each clique Si with size |Si| needs exactly |Si| colors. As

shown in Fig. 4, the graphG (Fig. 4(1)) has two different clique decompositions
G′

1 and G′
2 (Fig. 4(2) and Fig. 4(3)), and the corresponding chromatic sum∑

(G′
1) = 21 and

∑
(G′

2) = 23. One notices that the subgraph G′
2 of Fig.

4(3) has a larger chromatic sum than the subgraph G′
2 of Fig. 4(2), thereby

Fig. 4(3) gives a tighter lower bound. Hence, the quality of the lower bounds
depends on the clique decomposition.
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(1)
∑
(G) = 27 (2)

∑
(G′

1) = 21 (3)
∑
(G′

2) = 23

Fig. 4. Subgraphs obtained by clique decomposition

But finding a clique decomposition with a maximal chromatic sum is itself
NP-hard [21]. In order to approximate this problem heuristically, in view of
the fact that each color class of the complement graph Ḡ is a clique of G, one
popular approach is to apply an MSCP algorithm to color the complement
graph Ḡ and use the resulting color classes to define the clique decomposition
of G [7,21,29].

In this work, we apply our EBES algorithm to color the complement graph Ḡ
and uses the resulting clique decomposition for lower bound estimation. As we
show in Section 4.2, this approach leads to tighter lower bounds for a number
of benchmark graphs compared to the state-of-the-art results.

4 Experimental results

In order to evaluate the performance of the proposed EBES algorithm for the
MSCP, we conduct experiments on a set of 35 large graphs with 450 to 4000
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vertices. These graphs are from the well-known DIMACS and COLOR 2002-
2004 graph coloring competitions 1 , which are largely tested in the literature
for both the vertex coloring and miminum sum coloring problems. The current
known “theoretical” bounds of the chromatic sums of the tested instances are
shown in Sections 4.1 and 4.2, which are calculated by the number of vertices
and edges, as well as the chromatic number χ(G) of each graph [11,13,21,24].

Our experiments were performed on an Intel Xeon E5440 with 2.83 GHz and
8 GB RAM. To obtain our results, each instance was solved 30 times
independently. The EBES algorithm stops when a fixed cutoff time (2 hours)
is met. All the computational results were obtained with the same
parameters, the threshold q is fixed to be 200. For the parameters required
by the underlying HESA coloring algorithm, we adopted the settings from
the original paper [10].

4.1 Computational results and comparisons for the upper bounds

We compare our EBES algorithm with four leading MSCP algorithms from
the literature, which are reviewed in Section 1.

(1) The basic independent set extraction heuristic EXSCOL [26].
(2) The memetic algorithm MA presented in [21].
(3) The memetic algorithm MASC proposed in [8].
(4) The hybrid evolutionary search algorithm HESA [10] that is also used as

our underlying coloring algorithm.

For the experimental platforms, EXSCOL was run on a 2.8 GHz computer
with 2 GB RAM and iteratively extracts maximum independent sets until the
null graph is reached. MA was run on an Intel Core 2 Duo T5450–1.66 GHz
with 2 GB RAM and used a cutoff limit of 2 hours. MASC was run on a 2.7
GHz PC with 4 GB RAM and used 104 maximum iterations of its tabu search
procedure and 50 maximum generations as its stopping condition. HESA was
run on a computer with 2.83 GHz with 8 GB RAM and used a cutoff limit of
2 hours.

Table 1 reports the comparative results of our EBES algorithm together with
EXSCOL, MASC, MA and HESA for the set of 35 graphs. Columns 2–3
show the current known theoretical upper bounds UBt and the best-known
upper bounds f b

UB reported in the literature respectively. For each reference
algorithm, columns f ∗

UB and Avg. indicate the best result in terms of sum
of colors and the average result respectively, and column t(min) gives the

1 Available from http://mat.gsia.cmu.edu/COLOR/instances.html, http://

dimacs.rutgers.edu/Challenges/ and http://mat.gsia.cmu.edu/COLOR04/
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Table 1. Comparisons of EBES with four state-of-art algorithms in terms of upper bounds of the MSCP on the set of 35 benchmark
graphs

Graph EXSCOL [26] MASC [8] MA [21] HESA[10] EBES

Name UBt fb

UB
f∗

UB
Avg. t(min) f∗

UB
Avg. t(min) f∗

UB
Avg. t(min) f∗

UB
Avg. t(min) f∗

UB
Avg. t(min)

fpsol2.i.1 12 150 3 403 – – – 3 403 3 403.0 8.7 3 403 3 403.0 4.0 3 403 3 403.0 8.5 3403 3403.0 13.3

fpsol2.i.2 6 990 1 668 – – – 1 668 1 668.0 5.7 1 668 1 668.0 3.0 1 668 1 668.0 0.8 1668 1668 18.6

inithx.i.1 19 571 3 676 – – – 3 676 3 676.0 7.6 3 676 3 679.6 5.0 3 676 3 676.0 1.3 3676 3676.0 25.5

inithx.i.2 10 320 2 050 – – – 2 050 2 050.0 4.4 2 050 2 053.7 10.0 2 050 2 050.0 1.3 2050 2050.0 12.4

inithx.i.3 9 936 1 986 – – – 1 986 1 986.0 1.8 1 986 1 986.0 2.0 1 986 1 986.0 0.0 1986 1986.0 9.5

wap05 23 077 13 656 13 680 13 718.4 21.0 13 669 13 677.8 3.3 – – – 13 656 13 677.8 1872.5 13642 13663.8 108.4

wap06 22 254 13 773 13 778 13 830.9 27.0 13 776 13 777.8 4.1 – – – 13 773 13 777.6 621.3 13769 13772.5 97.4

wap07 42 511 28 617 28 629 28 663.8 112.0 28 617 28 624.7 12.4 – – – 29 154 29 261.1 4.4 28599 28603.9 106.0

wap08 43 010 28 885 28 896 28 946.0 127.0 28 885 28 890.9 15.1 – – – 29 460 29 542.3 3.0 28874 28881.5 45.9

qg.order30 13 950 13 950 13 950 13 950.0 28.0 13 950 13 950.0 3.8 13 950 13 950.0 1.0 13 950 13 950.0 0.0 13 950 13 950.0 5.0

qg.order40 32 800 32 800 32 800 32 800.0 35.0 32 800 32 800.0 11.8 32 800 32 800.0 1.0 32 800 32 800.0 0.0 32 800 32 800.0 5.0

qg.order60 10 9800 10 9800 110 925110 993.0 87.0 10 9800 10 9800.0 290.6 10 9800 10 9800.0 7.0 10 9800 10 9800.0 0.2 109800 109800.0 120.0

DSJC500.1 3 250 2 836 2 850 2 857.4 9.0 2 841 2 844.1 28.9 2 897 2 990.5 4.0 2 836 2 836.0 1997.9 2835 2837.1 65.4

DSJC500.5 12 250 10 886 10 910 10 918.2 11.0 10 897 10 905.8 73.3 11 082 11 398.3 42.0 10 886 10 891.5 4919.3 10881 10881.0 120.0

DSJC500.9 31 750 29 862 29 912 29 936.2 15.0 29 896 29 907.8 59.0 29 995 30 361.9 51.0 29 862 29 874.3 5513.3 29857 29871.4 108.9

29856 29867.0 154.6

DSJC1000.1 10 500 8 991 9 003 9 017.9 28.0 8 995 9 000.5 70.7 9 188 9 667.1 31.0 8 991 8 996.5 5604.4 8979 8984.8 75.0

8978 8981.2 137.4

DSJC1000.5 42 000 37 575 37 598 37 673.8 24.0 37 594 37 597.6 200.4 38 421 40 260.9 23.0 37 575 37 594.7 3090.3 37567 37570.9 61.5

DSJC1000.9 112 000 103 445 103 464103 531.0 27.0 103 464103 464.0 125.9 105 234107 349.0 61.0 103 445 103 463.3 211.2 103440 103446.8 102.2

103429 103443.1 138.3

DSJR500.1 3 250 2 156 – – – – – – 2 173 2 253.1 4.0 2 156 2 170.7 99.8 2155 2172.4 106.9

DSJR500.1c 21 250 16 286 – – – – – – 16 311 16 408.5 34.0 16 286 16 286.0 21.7 16 286 16 286.0 19.2

DSJR500.5 30 750 25 440 – – – – – – 25 630 26 978.0 44.0 25 440 25 684.1 97.6 25685 25749.9 106.3

25603 25747.1 128.4

flat1000 50 0 25 500 25 500 25 500 25 500.0 9.0 25 500 25 500.0 0.1 25 500 25 500.0 28.0 25 500 25 500.0 0.3 25 500 25 500.0 0.5

flat1000 60 0 30 500 30 100 30 100 30 100.0 11.0 30 100 30 100.0 114.6 30 100 30 100.0 16.0 30 100 30 100.0 2.7 30 100 30 100.0 0.5

flat1000 76 0 38 500 37 164 37 167 37 213.2 19.0 37 167 37 167.0 1.1 38 213 39 722.7 8.0 37 164 37 165.9 2237.0 37151 37164.6 119.5

le450 15a 3 600 2 632 2 632 2 641.9 5.0 2 706 2 742.6 41.3 2 681 2 733.1 19.0 2 634 2 648.4 91.5 2626 2626.1 50.8

le450 15b 3 600 2 632 2 642 2 643.4 7.0 2 724 2 756.2 40.3 2 690 2 730.6 19.0 2 632 2 656.5 89.9 2635 2636.7 61.4

le450 15c 3 600 3 487 3 866 3 868.9 6.0 3 491 3 491.0 45.3 3 943 4 048.4 6.0 3 487 3 792.4 86.7 3852 3852.0 7.0

le450 15d 3 600 3 505 3 921 3 928.5 5.0 3 506 3 511.8 59.8 3 926 4 032.4 3.0 3 505 3 883.1 82.7 3887 3898.9 32.8

le450 25a 5 850 3 153 3 153 3 159.4 7.0 3 166 3 176.8 39.2 3 178 3 204.3 5.0 3 157 3 166.7 88.5 3152 3153.6 61.4

le450 25b 5 850 3 365 3 366 3 371.9 6.0 3 366 3 375.1 40.3 3 379 3 416.2 7.0 3 365 3 375.2 88.6 3356 3358.8 76.2

le450 25c 5 850 4 515 4 515 4 525.4 8.0 4 700 4 773.3 75.3 4 648 4 700.7 16.0 4 553 4 583.8 84.8 4501 4503.6 42.5

le450 25d 5 850 4 544 4 544 4 550.0 7.0 4 722 4 805.7 63.4 4 696 4 740.3 3.0 4 569 4 607.6 92.4 4532 4538.0 65.4

latin sqr 10 44 550 41 444 42 223 42 392.7 4.0 41 444 41 481.5 101.2 – – – 41 492 41 672.8 98.3 41591 41642.5 115.5

41470 41547.5 272.2

C2000.5 149 000 132 483 132 515132 682.0 656.0 – – – – – – 132 483 132 513.9 161.8 132478 132478.0 131.9

C4000.5 544 000 473 234 473 234 473 211.0 2588.0 – – – – – – 513457 514 639.0 75.3 473205 473212.2 86.6

Suc#/Total# 9/27 13/30 10/28 26/35 30/35
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run time in minutes that is only provided for indicative purposes. The last
row Suc#/Total# shows the number of graphs for which an algorithm can
achieve the best-known result over the total number of the tested graphs. The
bold entries, italic entries and “–” marks in the table indicate respectively
that an algorithm improves the best-known results, fails to reach the best-
known results and does not report results on the tested graphs respectively.
Note that when the cutoff limit of 2 hours is prolonged to 5 hours, the upper
bounds on five instances (DSJC500.9, DSJC1000.1, DSJC1000.9, DSJR500.5
and latin sqr 10) can be improved, which are also listed in Table 1 (shown
in the next line of the result for each of these results). Besides, since the
extraction phase is quite time-consuming for C2000.5 and C4000.5, we just
set 2 hours for the cutoff time of EBES while excluding the extraction phase.

From Table 1, we can make the following observations. (Notice that for this
study on upper bounds, smaller values correspond to better results.)

For the upper bounds of the considered large graphs, the first three reference
algorithms (EXSCOL, MASC and MA) report results on a subset of graphs,
the most recent HESA algorithm and the proposed EBES algorithm report
results for all 35 graphs. EXSCOL, MASC, MA, HESA and EBES find the
9/27, 13/30, 10/28, 26/35 and 30/35 best-known solutions respectively. In
particular, our EBES algorithm can improve the best-known results for 19
graphs (in bold, representing 54% of the tested set). Besides, we notice that
the computational upper bounds are always (much) better than the current
known theoretical upper bounds UBt except for four instances (underlined)
for which the computational and theoretical bound match perfectly.

Finally, since the EBES algorithm uses EXSCOL (extraction phase) and
HESA (initial and intermediate graph coloring), it is interesting to compare
the results of EBES against those of EXSCOL and HESA alone. When
comparing EBES and EXSCOL, we notice that EBES finds a better or equal
result for all the instances. This provides a very favorable indicator
concerning the benefit of the backward expansion phase which is missing in
EXSCOL. When comparing EBES and HESA, we observe that the results of
EBES are equal or better for 30 out of 35 graphs. This shows that the mixed
strategy of EBES combining independent sets extraction and backward
expansion is highly effective.

4.2 Computational results and comparisons for the lower bounds

In this section, we assess our EBES algorithm for computing MSCP lower
bounds with respect to three state-of-art algorithms EXCLIQUE [29], MA
[21] and HESA [10], which reported the best-known lower bounds for the
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tested graphs. Recall that MA was run on an Intel Core 2 Duo T5450–1.66
GHz with 2 GB RAM, HESA was run on a processor with 2.83 GHz and
8 GB RAM, both with a timeout limit of 2 hours. EXCLIQUE is a variant
of EXSCOL for computing the lower bounds of the MSCP, which was run
on a 2.8 GHz computer with 2 GB RAM and iteratively extracts maximum
independent sets until the null graph is reached. Like in Section 4.1 for the
upper bound, the cutoff time for the EBES algorithm is set to 2 hours (for
C2000.5 and C4000.5, this excludes the running time of the extraction phase).

Table 2 reports the comparative results of EBES with respect to EXCLIQUE,
MA and HESA for the lower bounds of the 35 test graphs. Like Table 1,
columns 2–3 show for each graph the theoretical lower bounds LBt and the
best-known lower bounds f b

LB reported in the literature. Columns f ∗
LB, Avg.

and t(min) of each compared algorithm report the best, average lower bound
and the running time in minutes respectively. The last row Suc#/Total#
presents the number of cases where an algorithm can achieve the best-known
result over the total number of the tested graphs. The bold entries, italic
entries and “–” marks in the table show that each algorithm improves the
best-known lower bounds, fails to reach the best-known lower bounds and
does not report the lower bounds on the tested graphs respectively. Notice
that larger bounds are better for this comparison of lower bounds.

We observe from Table 2 that the reference algorithms EXCLIQUE, MA and
HESA can match the best lower bounds for 15/29 graphs, 11/28 graphs and
27/35 graphs respectively. On the other hand, our EBES algorithm can match
or improve 32/35 best-known results, and fail to do so for only 3 instances. In
particular, EBES improves the best lower bounds for 12 graphs (in bold).

Furthermore, one notices that the computational lower bounds, in particular
those of our EBES algorithm, are (much) better than the theoretical lower
bounds for all the tested instances, indicating clearly the usefulness of various
heuristic approaches for lower bound approximation. Comparing the results of
Tables 1 and 2 shows that the upper and lower bounds match for 8 instances
(fpsol2.i.1, fpsol2.i.2, inithx.i.1, inithx.i.2, inithx.i.3, qg.order30, qg.order40
and qg.order60), proving the optimal chromatic sum for these graphs. For the
remaining instances, we observe large gaps between the best upper and lower
bounds in many cases, indicating that there remains considerable room for
further improvement.

When comparing EBES against EXCLIQUE, one notices that EBES
dominates EXCLIQUE for the tested graphs. Comparing EBES against
HESA shows that EBES finds better or equal results for 32 out of the 35
tested graphs. Hence, this experiment demonstrates the efficiency of the
EBES algorithm for computing high-quality lower bounds of the MSCP.
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Table 2. Comparisons of EBES with three state-of-art algorithms in terms of lower bounds of the MSCP on the set of 35 benchmark
graphs

Graph EXCLIQUE [29] MA [21] HESA [10] EBES

Name LBt fb

LB
f∗

LB
Avg. t(min) f∗

LB
Avg. t(min) f∗

LB
Avg. t(min) f∗

LB
Avg. t(min)

fpsol2.i.1 2 576 3 403 3 403 3 403.0 44.6 3 403 3 403.0 63.0 3 403 3 403.0 13.1 3403 3403.0 10.0

fpsol2.i.2 886 1 668 – – – 1 668 1 668.0 28.0 1 668 1 668.0 8.9 1668 1668.0 10.0

inithx.i.1 2 295 3 676 3 676 3 676.0 61.5 3 676 3 616.0 107.0 3 676 3 675.3 82.1 3676 3676.0 10.0

inithx.i.2 1 110 2 050 – – – 2 050 1 989.2 16.0 2 050 2 050.0 21.5 2050 2050.0 10.0

inithx.i.3 1 086 1 986 – – – 1 986 1 961.8 89.0 1 986 1 986.0 18.8 1986 1986.0 10.0

wap05 2 130 12 449 12 428 12 339.3 104.7 – – – 12 449 12 438.9 57.9 12449 12448.9 61.6

wap06 1 982 12 454 12 393 12 348.8 90.3 – – – 12 454 12 431.6 53.2 12454 12452.9 44.8

wap07 2 844 24 800 24 339 24 263.8 139.3 – – – 24 800 24 783.6 72.6 24802 24791.6 14.2

wap08 2 860 25 283 24 791 24 681.1 152.1 – – – 25 283 25 263.4 65.6 25274 25260.5 78

qg.order30 1 335 13 950 13 950 13 950.0 7.9 13 950 13 950.0 0.0 13 950 13 950.0 0.1 13950 13950.0 10.0

qg.order40 2 380 32 800 32 800 32 800.0 23.0 32 800 32 800.0 1.0 32 800 32 800.0 0.3 32800 32800.0 10.0

qg.order60 5 370 109 800 109 800 109 800.0 125.1 109 800 109 800.0 11.0 109 800 109 800.0 2.7 109 800 109800.010.0

DSJC500.1 566 1 250 1 250 1 246.6 21.2 1 241 1 214.9 22.0 1 250 1 243.4 62.0 1253 1251.4 35.4

DSJC500.5 1 628 2 923 2 921 2 902.6 1.0 2 868 2 797.7 50.0 2 923 2 896.0 65.6 2925 2915.9 67.1

DSJC500.9 8 375 11 053 10 881 10 734.5 4.6 10 759 10 443.8 16.0 11 053 10 950.1 68.6 10999 10937.8 73.4

DSJC1000.1 1 190 2 762 2 762 2 758.6 86.6 2 707 2 651.2 98.0 2 719 2 707.6 66.0 2779 2774.1 48.6

DSJC1000.5 4 403 6 708 6 708 6 665.9 2.6 6 534 6 182.5 34.0 6 582 6 541.3 44.6 6725 6721.1 52.4

DSJC1000.9 25 753 26 557 26 557 26 300.3 45.7 26 157 24 572.0 73.0 26 296 26 150.3 51.8 26706 26626.9 70.4

DSJR500.1 566 2 069 – – – 2 061 2 052.9 21.0 2 069 2 069.0 4.2 2069 2069.0 11.3

DSJR500.1c 3 986 15 398 – – – 15 025 14 443.9 11.0 15 398 15 212.4 65.0 15268 15216.0 61.4

DSJR500.5 7 881 22 974 – – – 22 728 22 075.0 30.0 22 974 22 656.7 32.0 23609 23065.2 46.4

flat1000 50 0 2 225 6 601 6 601 6 571.8 2.0 6 433 6 121.5 63.0 6 476 6 452.1 51.5 6627 6622.4 78.2

flat1000 60 0 2 770 6 640 6 640 6 600.5 6.9 6 402 6 047.7 42.0 6 491 6 466.5 46.2 6648 6636.4 31.9

flat1000 76 0 3 850 6 632 6 632 6 583.2 1.6 6 330 6 074.6 66.0 6 509 6 482.8 34.1 6662 6656.7 49.2

le450 15a 555 2 331 2 329 2 313.7 4.2 2 329 2 324.3 3.0 2 331 2 331.0 23.3 2331 2331.0 10.0

le450 15b 555 2 348 2 343 2 315.7 10.0 2 348 2 335.0 2.0 2 348 2 348.0 4.8 2348 2347.8 45.1

le450 15c 555 2 610 2 591 2 545.3 3.1 2 593 2 569.1 6.0 2 610 2 606.6 57.3 2610 2606.4 73.5

le450 15d 555 2 628 2 610 2 572.4 2.9 2 622 2 587.2 24.0 2 628 2 627.1 54.9 2628 2628.0 65.6

le450 25a 750 3 003 2 997 2 964.4 16.1 3 003 3 000.4 5.0 3 003 3 003.0 1.2 3003 3003.0 10.1

le450 25b 750 3 305 3 305 3 304.1 25.8 3 305 3 304.1 2.0 3 305 3 305.0 1.0 3305 3305.0 10.0

le450 25c 750 3 657 3 619 3 597.1 11.5 3 638 3 617.0 31.0 3 657 3 656.9 41.7 3657 3657.0 12.1

le450 25d 750 3 698 3 684 3 627.4 14.2 3 697 3 683.2 20.0 3 698 3 698.0 8.3 3698 3698.0 15.6

latin sqr 10 5 653 40 950 40 950 40 950.0 0.3 – – – 40 950 40 950.0 0.0 40 950 40 950.0 10.0

C2000.5 12 878 15 091 15 091 15 077.6 66.6 – – – 14 498 14 442.9 24.2 15106 15099.3 48.0

C4000.5 40 585 33 033 33 033 33 018.8 240.2 – – – 31 525 31 413.3 66.5 33063 33058.5 17.6

Suc#/Total# 15/29 11/28 27/35 32/35
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5 Analysis of EBES

5.1 Analysis of backward expansion

In this section, we present an experiment to assess the usefulness of the
backward expansion phase. For this, we compare EBES with a variant
EBES− where the backward expansion phase of EBES is disabled. In other
words, EBES− uses only the two first phases of the EBES algorithm, i.e.,
independent set extraction and initial coloring phases (see Section 2.1). For
this experiment, EBES− was run exactly under the same condition with the
same parameter setting as for EBES.

Table 3 summarizes the upper and lower bounds obtained by EBES− and
EBES. Columns 2-3 recall the best-known upper and lower bounds. The
following columns present for each graph the best upper bound, average
upper bound, average time, best lower bound, average lower bound and
average time achieved by EBES− and EBES respectively. First, if we
compare these results with the best-known results, we observe that EBES−

finds 7 equal and 13 improved best upper bounds, 11 equal and 10 improved
best lower bounds, while EBES finds 11 equal and 19 improved best upper
bounds, 20 equal and 12 improved best lower bounds. Hence, both EBES−

and EBES have a quite competitive performance on the tested large graphs.
Second, if we contrast the results of EBES− with those of EBES, we observe
that EBES obtains 21 better upper bounds, 17 better lower bounds out of 35
instances while the reverse is true only for 7 upper bounds and 7 lower
bounds. This experiment confirm that the backward expansion phase leads
to valuable improvements of the computational results of the EBES
algorithm.

5.2 Influence of the expansion strategy

As mentioned in Section 2.4, EBES employs a two-level strategy to add back
all the extracted independent sets as new color classes of colorings at one
time. In order to show the interest of this strategy, we perform an additional
experiment to compare it with two other expansion strategies. The first
compared strategy regains the extratced independent sets of the same size
according to the extraction order (i.e., from the largest to the smallest,
denoted by largest first strategy). The second compared strategy recovers the
independent sets of the same size according to the reverse of extraction order
(i.e., from the smallest to the largest, denoted by smallest first strategy).

For this experiment, we created two EBES variants where only the
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Table 3
Comparisons of upper and lower bounds obtained by EBES with and without the
backward expansion phase on the set of 35 benchmark graphs

Graph EBES− EBES

Name fb
UB

fb
LB

Upper Bound Lower Bound Upper Bound Lower Bound

f∗
UB

Avg. t f∗
LB

Avg. t f∗
UB

Avg. t f∗
LB

Avg. t

fpsol2.i.1 3403 3403 3987 3987.0 0.0 3403 3403.0 0.8 3403 3403.0 13.3 3403 3403.0 10.0

fpsol2.i.2 1668 1668 2136 2136.0 0.0 1668 1668.0 1.6 1668 1668.0 18.6 1668 1668.0 10.0

inithx.i.1 3676 3676 5968 5968.0 0 3676 3676.0 17.7 3676 3676.0 25.5 3676 3676.0 10.0

inithx.i.2 2050 2050 3193 3193.0 0.0 2050 2050.0 0.5 2050 2050.0 12.4 2050 2050.0 10.0

inithx.i.3 1986 1986 2990 2990.0 0.0 1986 1986.0 0.5 1986 1986.0 9.5 1986 1986 10

wap05 13656 12449 13656 13666.8 48.4 12411 12411.0 0.3 13642 13663.8 108.4 12449 12448.9 61.6

wap06 13773 12454 13769 13775.3 34.3 12452 12452.0 0 13769 13772.5 97.4 12454 12452.9 44.8

wap07 28617 24800 28605 28618.0 42.8 24791 24791.0 1.2 28599 28603.9 106.0 24802 24791.6 14.2

wap08 28885 25283 28857 28869.8 44.6 25255 25255 1.1 28874 28881.5 45.9 25274 25260.5 78.0

qg.order30 13950 13950 13950 13950.0 0.0 13950 13950.0 0.0 13950 13950.0 5.0 13950 13950.0 10.0

qg.order40 32800 32800 32800 32800.0 0.0 32800 32800.0 0.0 32800 32800.0 5.0 32800 32800.0 10.0

qg.order60 109800109800 109800 109800.0 0.0 109800 109800.0 0.0 109800 109800.0 120.0 109800 109800.0 10.0

DSJC500.1 2836 1250 2836 2839.0 20.9 1251 1251.0 2.9 2835 2837.1 65.4 1253 1251.4 35.4

DSJC500.5 10886 2923 10874 10896.6 61.2 2927 2917.1 62.9 10881 10881 120.0 2925 2915.9 67.1

DSJC500.9 29862 11053 29912 29912.0 0.0 10944 10905.0 59.4 29856 29867.0 154.6 10999 10937.8 73.4

DSJC1000.1 8991 2762 8980 8987.6 44.0 2773 2773.0 4.9 8978 8981.2 137.4 2779 2774.1 48.6

DSJC1000.5 37575 6708 37571 37595.3 45.8 6732 6719.2 69.5 37567 37570.9 61.5 6725 6721.1 52.4

DSJC1000.9 10344526557 103462 103462.0 0.2 26641 26607.4 62.6 103429103443.1 138.3 26709 26626.9 70.4

DSJR500.1 2156 2069 2220 2220.0 0.0 2045 2045.0 0.4 2155 2172.4 106.9 2069 2069.0 11.3

DSJR500.1c 16286 15398 16502 16502.0 0.1 14968 14968.0 0.1 16286 16286.0 19.2 15268 15216.0 61.4

DSJR500.5 25440 22974 26295 26295.0 1.6 22968 22968.0 0.0 25603 25747.1 128.4 23069 23065.2 46.4

flat1000 50 0 25500 6601 25500 25500.0 0.0 6635 6623.9 67.1 25500 25500.0 0.5 6627 6622.4 78.2

flat1000 60 0 30100 6640 30100 30100.0 0.0 6657 6643.1 56.0 30100 30100.0 0.5 6648 6636.4 31.9

flat1000 76 0 37164 6632 37139 37154.8 49.3 6670 6659.2 70.4 37151 37164.6 119.5 6662 6656.7 49.2

le450 15a 2632 2331 2627 2627.0 2.8 2331 2331.0 0.3 2626 2626.1 50.8 2331 2331.0 10.0

le450 15b 2632 2348 2635 2636.3 24.9 2345 2345.0 0.3 2635 2636.7 61.4 2348 2347.8 45.1

le450 15c 3487 2610 3850 3857.0 9.4 2595 2595.0 0.2 3852 3852 7 2610 2606.4 73.5

le450 15d 3505 2628 3900 3901.4 8.9 2594 2594 0.4 3887 3898.9 32.8 2628 2628.0 65.6

le450 25a 3153 3003 3150 3153.2 28.1 2997 2997.0 0.4 3152 3153.6 61.4 3003 3003.0 10.1

le450 25b 3365 3305 3361 3361.2 10.6 3305 3305.0 0.3 3356 3358.8 76.2 3305 3305.0 10.0

le450 25c 4515 3657 4503 4503.9 12.1 3615 3615.0 0.2 4501 4503.6 42.5 3657 3657.0 12.1

le450 25d 4544 3698 4534 4536.8 19.7 3685 3685.0 0.2 4532 4538 65.4 3698 3698.0 15.6

latin sqr 10 41444 40950 42193 42193.9 6.7 40950 40950.0 0.0 41470 41547.5 272.2 40950 40950.0 10.0

C2000.5 13248315091 132510 132520.6 42 15123 15110.3 66.5 132478132478.0 131.9 15106 15099.3 48.0

C4000.5 47323433033 473179473203.3 64.8 33071 33062.1 61.9 473205 473212.2 86.6 33063 33058.5 17.6

expansion strategy of EBES is changed. We ran each EBES variant 30 times
with a cutoff time of 2 hours to solve a given graph. Fig. 5 presents the
evolution profiles of the three compared strategies on four selected graphs
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(DSJR500.1, DSJC1000.5, le450 25 and flat1000 76 0). The average best
upper bounds are plotted against the running time. One observes that no
strategy performs strictly better than the other expansion strategies. For
DSJR500.1, DSJC1000.5 and le450 25, the two-level strategy has the best
performance among the three expansion strategies. However, the smallest
first strategy achieves the best result for flat1000 76 0 compared to the other
two strategies. For the overall performance of these expansion strategies, this
comparison shows that the two-level strategy performs globally best.
Moreover, the two-level strategy has the advantage of simplicity and of being
less-consuming. This justifies the choice of using this strategy within our
proposed EBES algorithm for the backward expansion phase.
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Fig. 5. Comparison between the two-level expansion strategy and two other
expansion strategies
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Table 4
Comparison of EBES with two state-of-the-art algorithms in terms of upper bounds
of the MSCP on the set of 10 large random graphs
Graph EXSCOL [29] HESA [10] EBES

Name f∗

UB
Avg. t(min) f∗

UB
Avg. t(min) f∗

UB
Avg. t(min)

Random5000.05 89935 90155.5 662.4 90895 91171.2 287.8 89896 89989.2 755.3

Random5000.1 155911 156551.0 406.8 162959 163419.1 88.4 155901 156114.8 821.3

Random5000.2 285978 287151.6 216.4 304624 305154.4 110.4 285777 286340 466.1

Random5000.3 419015 426996.8 104.4 449564 450658.1 91.9 418665 421543.4 515.3

Random5000.5 754587 776007.5 89.6 778161 779763.8 158.5 753835 763754.9 592.5

Random6000.1 217540 217976.9 556.7 227008 227422.3 48.1 217416 217850.5 775.5

Random6000.2 399235 401060.2 344.9 425935 426730.3 58.7 398051 399907.2 686.8

Random8000.1 371070 371909.1 535.7 387122 388081.0 20 371050 371320.6 746.8

Random8000.5 1847799 1950911.2 127.0 1890040 1892547.9 359.5 1846957 1847419.1 556.9

Random10000.5 2819955 2946127.7 106.1 2833255 2834378.3 235.7 2813352.0 2824099.8 302.8

5.3 The effectiveness of the proposed approach on large random graphs

In this section, we study the behavior of the proposed EBES algorithm on
large random graphs. Since the available benchmark graphs for the MSCP
in the literature are limited to 4000 vertices, we generated 10 large random
graphs with the number of vertices from 5000 to 10000 and the edge density
from 0.05 to 0.5. We ran EXSCOL, HESA and the proposed EBES on these
large graphs to calculate both upper and lower bounds of the MSCP. We used
a cutoff limit of 15 hours for HESA and EBES (note that EXSCOL terminates
automatically when the residual graph becomes empty, thus does not need a
cutoff time). To obtain the comparative results, each instance was solved 30
times independently. The computational results in terms of upper and lower
bounds are given in Tables 4 and 5.

From Table 4, we observe that the proposed EBES algorithm achieves the best
upper bounds (in bold) for all the 10 large graphs compared to the reference
algorithms EXSCOL and HESA (Notice that smaller bounds are better for this
comparison of upper bounds). In particular, EBES improves on the results of
HESA by more than 1% for each case. Besides, the average upper bounds
of EXSCOL are improved by more than 1% for 4 out of 10 cases (in italic).
Moreover, from Table 5, one notices that EBES performs the best among these
three algorithms for each instance (in bold). Especially, EBES can improve the
lower bounds of EXSCOL by more than 1% for each case, as well as the lower
bounds of HESA on Random5000.5. This experiment shows that the proposed
EBES algorithm is highly effective in solving the MSCP on large graphs.

18



Table 5
Comparisons of EBES with two state-of-the-art algorithms in terms of lower bounds
of the MSCP on the set of 10 large random graphs

Graph EXSCOL [29] HESA [10] EBES

Name f∗

LB
Avg. t(min) f∗

LB
Avg. t(min) f∗

LB
Avg. t(min)

Random5000.05 12495 12437.6 159.9 13276 13264.96 172.8 13295 13280.66 243.5

Random5000.1 15321 15254.73 142.3 16123 16117.23 200.2 16154 16148.13 254.1

Random5000.2 19632 19537.2 125.3 21205 21191.4 79 21243 21223.5 286.6

Random5000.3 24041 23912.96 145.5 26362 26346.36 68.1 26400 26382.13 155.3

Random5000.5 39563 39493.8 12.9 39695 39676.83 39.6 40360 39802.4 121.1

Random6000.1 17985 17534.5 180.1 19669 19655.16 111 19700 19679.6 307.9

Random6000.2 23044 22548.43 98.8 25934 25916.86 125.6 25997 25959.5 202.3

Random8000.1 25567 25372 193.2 27143 27116 155.4 27200 27174.8 240.6

Random8000.5 65436 63390.26 172.8 66826 66780 81.8 66950 66866.33 196.8

Random10000.5 82464 82054.7 154.5 84840 84802.36 93.2 84877 84861.33 170.4

6 Conclusion

Minimum sum coloring is a computationally challenging problem both in
theory and in practice. This is particular true when handling large graphs
with more than several hundreds of vertices. Inspired by the
“reduce-and-solve” principle and studies on the vertex coloring problem, we
investigated for the first time the extraction and backward expansion
approach for computing upper and lower bounds of the MSCP, especially for
large graphs.

We assessed the performance of EBES on 35 large benchmark graphs from the
well-known DIMACS and COLOR 2002-2004 competitions. EBES can match
the best-known upper and lower bounds for most graphs except for 5 and 3
graphs respectively. In particular, EBES can find 19 improved upper bounds
and 12 improved lower bounds. These improved bounds can serve as reference
values for assessment of existing and new MSCP algorithms.

This study demonstrates that the “reduce-and-solve” principle is a powerful
idea that can help design effective search algorithms for the MSCP. It is worthy
of investigating similar ideas for solving other combinatorial search problems.
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