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Abstract

Combinatorial auctions (CAs) where bidders can bid on combinations of
items is an important model in many application areas. CAs attract more and
more attention in recent years due to its relevance to fast growing electronic
business applications. In this paper, we study the winner determination prob-
lem (WDP) in CAs which is known to be NP-hard and thus computationally
difficult in the general case. We develop a solution approach for the WDP by
recasting the WDP into the maximum weight clique problem (MWCP) and solv-
ing the transformed problem with a recent heuristic dedicated to the MWCP.
The computational experiments on a large range of 530 benchmark instances
show that the clique-based approach for the WDP not only outperforms the
current best performing WDP heuristics in the literature both in terms of solu-
tion quality and computation efficiency, but also competes very favorably with
the powerful CPLEX solver.

Keywords : Winner determination; Combinatorial auctions; Tabu search;
Maximum clique; Heuristics; Combinatorial optimization.

1. Introduction

Combinatorial auctions (CAs) is a type of auctions where bidders are allowed
to buy entire bundles of goods (or items) in a single transaction (Cramton et
al., 2006). One key issue in CAs is the winner determination problem (WDP)
(Lehmann et al., 2006). Given a set of combinatorial bids, each bid being defined
by a subset of items with a price, two bids are conflicting if they share at least one
item. The WDP is to determine a conflict-free allocation of items to bidders
(the auctioneer can keep some of the items) that maximizes the auctioneer’s
revenue. It is known that the WDP is equivalent to the maximum weight set
packing problem (de Vries & Vohra, 2003), and can be reduced to the maximum
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weight clique problem (MWCP). From the computational complexity point of
view, the WDP belongs to the class of NP-complete problems (Rothkopf et al.,
1998). From the practical point of view, the WDP finds many applications in, for
instance, production management (Ray et al., 2011), intelligent transportation
systems (Satunin & Babkin, 2014; de Vries & Vohra, 2003), electronic commerce
(de Vries & Vohra, 2003), game theory (Fontanini & Ferreira, 2012), knowledge
management (Wu, 2001), logistics services (Ignatius et al., 2011; Pla et al., 2014;
de Vries & Vohra, 2003).

The WDP can be reduced to the maximum vertex weight clique problem
(MWCP) (Ausiello et al., 1980). As a consequence, any solution method de-
signed for the MWCP can be applied to solve the WDP via its clique formula-
tion. This solution approach is extremely appealing since 1) we can solve the
WDP without developing dedicated WDP algorithms, and 2) we can take full
advantage of new algorithmic developments on the MWCP to better solve the
WDP. Moreover, one can even apply different clique methods to enlarge the
classes of the WDP instances that can be solved. As far as we know, this clique
based approach for the WDP was not explored in the published literature.

The first objective of the paper is thus to investigate the strong connection
between the WDP and the MWCP by carrying out an in-depth experimental
assessment about the performance of this clique-based approach for the WDP.
For this purpose, we adopt the recent multi-neighborhood tabu search heuristic
(MN/TS) for the MWCP (Wu et al., 2012) and present extensive evaluations
of this approach for the WDP both in terms of solution quality and computing
efficiency. In particular, we provide computational results on three sets of well-
known WDP test suites (for a total of 500+20+10=530 problem instances)
which are commonly used in the literature. We show that this clique-based
approach is clearly superior to the current best performing heuristics in the
literature which are specially designed for the WDP. Moreover, it dominates the
powerful CPLEX 12.4 solver on the realistic test suite and shows a competitive
performance on the other two test suites.

The rest of the paper is organized as follows. In Section 2, we provide a
review on existing algorithms for the WDP and summarize the main contribu-
tions of this work. In section 3, we present the formal definition of the WDP
and the transformation of the WDP to the maximum weight clique problem. In
section 4, we briefly recall the multi-neighborhood tabu search heuristic MN/TS
for the MWCP. In section 5, we provide computational results and comparisons
on a wide range of benchmark instances from the literature. In section 6, we
offer some insights on the behavior of the clique approach. The last section is
dedicated to conclusions and perspectives for future research.

2. Literature review and main contributions

The computational challenge of the WDP and its wide practical applica-
tions have motivated a variety of solution approaches, including both exact and
heuristic methods.
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Exact methods have the theoretical advantage of guaranteeing the optimality
of the solution found, but they need a computing time which grows exponentially
with the problem size in the general case. Still, highly effective exact algorithms
are available in the literature for solving the WDP. Attempts to exactly solve the
WDP (under the name of set packing) can be found as early as in the beginning
of 1970s (Padberg, 1973). Many studies have appeared ever since. Most exact al-
gorithms are based on the general branch-and-bound (B&B) framework. Repre-
sentative examples include the combinatorial auction structural search (CASS)
(Fujishima et al., 1999), the Combinatorial Auction Multi-Unit Search (CA-
MUS) (Leyton-Brown et al., 2000a; Leyton-Brown, 2003), the BOB algorithm
(Sandholm & Suri, 2003), the CABOB algorithm (Sandholm et al., 2005), the
linear programming based B&B algorithm (Nisan, 2000), and the clique-based
B&B algorithm using graph coloring for bounding (Wu & Hao, 2014). Other
interesting exact methods for the WDP are a branch-and-price algorithm based
on a set packing formulation (Günlük et al., 2005), a branch-and-cut algorithm
(Escudero et al., 2009), and a dynamic programming algorithm (Rothkopf et
al., 1998). Finally, the general integer programming approach based on CPLEX
was intensively studied in (Andersson et al., 2000; Guo et al., 2006; Sandholm
et al., 2005), showing an excellent performance in many cases.

On the other hand, given the intrinsic intractability of the WDP, various
heuristic algorithms have been devised to handle problems whose optimal solu-
tions cannot be reached by exact approaches. For instance, Casanova (Hoos &
Boutilier, 2000) is a well-known stochastic local search algorithm which explores
the space of feasible allocations (non-overlapping subsets of bids) by adding at
each step an unallocated bid and removing from the allocation the bids which
are conflicting with the added bid. The selection rule employed by Casanova
takes into consideration of both the quality and history information of the bid.
Casanova is shown to be able to find high quality solutions much faster than the
CASS algorithm (Fujishima et al., 1999). The WDP is also modeled as a set
packing problem and solved by a simulated annealing algorithm (SAGII) with
three different local move operators: an embedded branch-and-bound move,
greedy local search move and exchange move (Guo et al., 2006). SAGII out-
performs dramatically Casanova and the CPLEX 8.0 solver for realistic test
instances. A memetic algorithm is proposed by Boughaci et al. (2009), which
combines a local search component with a specific crossover operator. The local
search component adds at each iteration either a random bid with a probability
p or a best bid with the largest profit with probability 1− p, and then removes
the conflicting bids from the allocation. This hybrid algorithm reaches excel-
lent results on the tested realistic instances. Other interesting heuristics include
greedy algorithms (Lau & Goh, 2002; Mito & Fujita, 2004), a tabu search algo-
rithm (Boughaci et al., 2010), an equilibrium-based local search method (Tsung
et al., 2011) and a recombination-based tabu search algorithm (Sghir et al.,
2014).

From the above review, we observe that the existing (exact and heuristic)
methods follow two solution strategies. The first one is to consider directly the
WDP and design dedicated algorithms. This is the case for most of the reviewed
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methods. The second one is to recast the WDP as another related problem P
and then solved with a solution method designed for P . Examples are shown
in Guo et al. (2006) and Padberg (1973) where the WDP is modeled as the set
packing problem and in Andersson et al. (2000), Guo et al. (2006) and Sandholm
et al. (2005) where the WDP is reformulated as an integer programming problem
and solved by the general CPLEX solver.

Compared with the existing studies on the WDP, this work has the following
main contributions:

First, we handle the WDP by recasting it as a weighted maximum clique
problem and applying an effective clique heuristic to solve the problem. To our
knowledge, this is the first study formally investigating the strong connection
between the WDP and the MWCP and presenting extensive computational
assessments of the clique based approach to the WDP.

Second, this study discloses that the clique based approach is well suited for
the WDP, and is able to delivery very competitive and even better results than
the current best performing WDP heuristics which are specially designed for
the problem. This is particularly true for the cases where each bid contains a
relatively long list of item.

Third, from a more technical perspective, it is well known that move opera-
tors play a key role to the performance of a local search algorithm. Most of the
currently best WDP heuristics rely only on a basic ‘add-and-repair’ operator
which first adds an unallocated bid to the current allocation and then removes
the conflicting bids from the allocation. From the clique point of view, this ba-
sic move operator is quite limited and effective clique algorithms employ more
complicated operators like add, swap and drop (Pullan, 2006; Pullan & Hoos,
2006; Wu & Hao, 2014). This study indirectly demonstrates the usefulness of
these combined move operators for the WDP problem, promoting the idea that
to design effective WDP heuristics, it would be relevant to integrate similar
combined operators.

3. Winner determination problem (WDP)

The optimal winner determination problem in CAs can be defined as follows.
Let M = {1, 2, . . . ,m} be the set of m items to be sold by the auctioneer, and
let B = {B1, B2, . . . , Bn} be the set of bids submitted by the buyers. Each bid
can be denoted by a couple (Si, Pi), where Si ⊆ M is a set of items and Pi is
the global price of the items in Si. Let B be a m × n binary matrix such that
Bij = 1 if object j ∈ Si, Bij = 0 otherwise. Furthermore, define xi = 1 if the
bid Bi is accepted (a winning bid), and zero otherwise (a losing bid). Then the
winner determination problem (WDP) is to label the bids as winning or losing
so as to maximize the auctioneer’s revenue under the constraint that each item
can be allocated to at most one bidder. More formally, the WDP problem can
be modeled as the following integer programming formulation.

max
n
∑

i=1

Pixi (1)
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subject to

n
∑

i=1

Bijxi ≤ 1, j ∈ {1, . . . ,m} (2)

xi ∈ {0, 1} (3)

The objective function (1) is to maximize the auctioneer’s revenue which is equal
to the sum of the prices of the winning bids. The constraint (2) establishes that
no item is allocated to more than one bid. Due to the free disposal assumption,
some items could be left uncovered. One notices that this formulation is widely
studied in the literature (Andersson et al., 2000; Boughaci et al., 2009, 2010;
Guo et al., 2006; Hoos & Boutilier, 2000; Sandholm, 2002; Sandholm & Suri,
2003; Sandholm et al., 2005).

The WDP can be conveniently transformed to the maximum (vertex) weight
clique problem. To see this, we first recall some basic notations related to the
MWCP.

Let G = (V,E, ω) be an undirected graph with vertex set V = {1, . . . , n},
edge set E ⊂ V × V , and vertex weighting function ω which associates to each
vertex i a positive weight wi. A clique C of G is a subset of V such that every
two vertices are pairwise adjacent, i.e., ∀u, v ∈ C, {u, v} ∈ E. For a clique
C of G, define its weight as the sum of the weights of all vertices in C, i.e.,
W (C) =

∑

i∈C wi. Then the maximum weight clique problem (MWCP) is to
determine a clique of maximum weight.

For a given WDP instance B = {B1, B2, . . . , Bn} with Bi = (Si, Pi) (1 ≤
i ≤ n), we define a maximum weight clique instance G = (V,E, ω) as follows.

• For a bid Bi ∈ B, define a vertex i ∈ V with the weight wi set to be equal
to Pi. That is, V = {1, 2, . . . , n}, ∀i ∈ V,wi = Pi.

• Define the edge matrix E by: eij =

{

1, if Si ∩ Sj = ∅, i, j ∈ {1, . . . , n}
0, otherwise.

That is, any two vertices i and j are connected by an edge if the correspond-
ing bids Bi = (Si, Pi) and Bj = (Sj , Pj) share no common item, which indicates
that these two bids can be accepted together. The edge matrix can be directly
used to detect the conflict bids that share at least an item.

Now it is easy to observe that a maximum weight clique C = {i1, . . . , ir}
of the graph G = (V,E, ω) corresponds to a feasible subset {Bi1 , . . . , Bir} of B
with a maximum revenue, i.e., the optimal solution of the WDP, implying that
any solution method for the MWCP can be used to solve the WDP.

To illustrate the transformation, we consider a WDP instance with 8 items
and 7 bids (Fig. 1 (left)). The associated graph G = (V,E, ω) with respect to
the WDP instance is shown in Figure 1 (right) where each bid is represented by
a vertex with its weight equal to the price of the bid. Two vertices are linked
by an edge if the two corresponding bids do not share any item. It is clear that
the optimal solution to the MWCP defined by the graph is given by the set
vertices {3, 4, 6} which represents the set of winning bids {Bid3, Bid4, Bid6}
with a maximum revenue of 70.
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Generally, one observes that given a set M of items, if the candidate bids
contain many (few) items, the edge density of the associated graph will have a
low (high) edge density (with respect to the complete graph). As we show in
Sections 5 and 6, graph density may influence the performance of an solution
method, which is particularly true for the clique based approach studied in this
work.

4. Multi-neighborhood tabu search for the WDP

Given a WDP instance formulated as a MWCP instance (see last section),
we can solve the problem with any available algorithm designed for the MWCP.
In this work, we adopt a recent heuristic algorithm called “multi-neighborhood
tabu search (MN/TS)” (Wu et al., 2012), which shows excellent performances
on the MWCP problem as well as on the related set packing problem. In this
section, we briefly review the main ingredients of the MN/TS algorithm. For a
thorough presentation, the reader is referred to Wu et al. (2012).

4.1. Search space, evaluation function, and multi-start strategy

For a given MWCP instance G = (V,E,w), the search space Ω explored
by the MN/TS algorithm is composed of all possible cliques of G. For a given
solution C ∈ Ω, its quality (i.e., objective value) is evaluated by its weight
W (C) =

∑

i∈C wi.

1

23

4

5

6

7

w1 = 25

w2 = 20w3 = 20

w4 = 20

w5 = 20

w6 = 30

w7 = 20
M = {1, 2, 3, 4, 5, 6, 7, 8}

Bid1: ({2, 4, 8}, 25)

Bid2: ({3, 5}, 20)

Bid3: ({1, 6}, 20)

Bid4: ({4, 7}, 20)

Bid5: ({3, 6}, 20)

Bid6: ({2, 5, 8}, 30)

Bid7: ({4, 6}, 20)

Figure 1: The original MDP instance (left) and the associated MWCP instance G = (V,E, ω)
(right).
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Our MN/TS algorithm is a multi-start tabu search procedure. Each time
MN/TS starts from an initial solution C, and then applies the tabu search pro-
cedure to improve C by maximizing its weight. If the weight of the current
clique C is not improved for L consecutive iterations (L is called the search
depth), the current round of tabu search is stopped to restart from a new ini-
tial solution. The initial solution C is constructed by first initiating C with a
randomly selected seeding vertex and then repeatedly adding to C a vertex v
which is absent from C and connected to all vertices of C until no such vertex
v exists.

4.2. Basic move operators and neighborhoods

To explore the search space, the MN/TS algorithm jointly employs three
neighborhoods which are defined by three basic move operators, denoted by
ADD, SWAP and DROP respectively. These operators rely on the definition
of two vertex subsets: PA and OM relative to a given solution C, which are
defined as follows.

• PA is the set of the vertices that are excluded from the clique C and
connected to all the vertices of C: PA = {v : v ∈ V \C, {v, i} ∈ E, ∀i ∈
C}.

• OM is composed of the vertices that are excluded from the clique C and
connected to all but one vertex of C: OM = {v : v ∈ V \C, |A(v)

⋂

C| =
|C| − 1} where A(v) = {j : j ∈ V, {j, v} ∈ E} is the set of vertices which
are adjacent to v. An illustration of the relationship between a clique C
and its two associated subsets PA and OM is given in Figure 2.

A

B

C

D

E

F

G

C = {A, B, C, D}

PA = {E}

OM = {F, G}

Figure 2: A clique and its two associated subsets: C = {1, 2, 3, 4}, PA = {5} andOM = {6, 7}.

Then the add move operator (ADD(i)) displaces a vertex i from the set PA
to the current clique C (This operator is applied only when the subset PA is
not empty).
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After an ADD(i) move, the change in the clique weight, also known as the
move gain value ∆i, can be computed by the following expression:

∆i = wi (4)

where wi is the weight associated to the newly added vertex i. We can see that
an add move always leads to an increase to the objective function value.

The swap move operator (SWAP (i, j), which applies when OM is not
empty) exchanges a vertex i in OM against the only vertex j of C which is
not adjacent to i. For a given SWAP (i, j) move, the move gain ∆ij can be
conveniently calculated by the following formula:

∆ij = wi − wj (5)

Since ∆ij can be either positive or negative, a SWAP move can improve or
deteriorate the quality of the current solution.

Finally, the drop move operator (DROP (i)), consists in removing a vertex
i from the current clique C. For a given dropping move, the move gain value
induced by DROP (i) can be easily computed by:

∆i = −wi (6)

We observe that the drop operator always leads to a decrease of the clique
weight.

4.3. Combined neighborhood and neighbor selection strategy

For the case of the maximum weight clique problem, we can see that a
SWAP move may lead to a solution which is better than any solution obtained
with an ADD move. Figure 3 provides an illustrative example to show such a
situation. Similarly, when no ADD move is possible, aDROP move may lead to
a solution better than any solution that can be obtained with a SWAP move. To
summarize, for the MWCP problem, there is no absolute dominance of one move
operator over another move operator. The best move operator to be applied
depends on the current search context and should be determined according
to the search context. At each iteration of the tabu search procedure, our
MN/TS algorithm jointly considers these three neighborhoods and selects the
most favorable move (i.e., with the largest ∆ value) among all the ADD, SWAP
and DROP moves to generate the next solution (Ties are broken randomly).

Finally, to prevent the previously visited solutions from being revisited and
to encourage the search to explore new regions of the search space, a simple
prohibition rule is employed by MN/TS: vertices that leave the current clique C
are forbidden to move back to C during the prohibition period (called the tabu
tenure) while vertices that join the clique C can be removed from C without
restriction.
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5. Computational experiments

In this section, we present an extensive assessment about the capacity of the
MN/TS algorithm to solve the WDP as a MWCP. For this purpose, we show
experimental results obtained by MN/TS on a large collection of popular WDP
benchmark instances and make comparisons with the CPLEX 12.4 slover as well
as the best performing WDP heuristic algorithms published in the literature.
The MN/TS algorithm is programmed in C and compiled using GNU GCC. All
the experiments were carried out on a PC running Windows XP with an Intel
Xeon E5440 processor (2.83 GHz and 8 GB of RAM).

5.1. Benchmarks

To evaluate the efficiency of the clique approach (with the MN/TS algo-
rithm), we use three test suites of 530 benchmark instances. The first set of 500
instances is pre-generated problem instances, while the second and third sets
(20 and 10 instances respectively) are generated randomly from generators for
combinatorial auctions according to several distributions. The characteristics
of these instance sets are summarized below and details can be found in Lau &
Goh (2002), Leyton-Brown et al. (2000b) and Sandholm (2002).

The first set of 500 benchmark instances is provided by Lau & Goh (2002)
with up to 1500 items and 1500 bids. These instances are considered in Lau
& Goh (2002) to be more realistic than other instances and are divided into 5
different groups, each group having 100 instances labeled as REL-m-n, where m
is the number of items and n is the number of bids. To generate these instances,

1

23

4

5

6

7

w1 = 2

w2 = 3

w3 = 4

w4 = 1

w5 = 2

w6 = 6

w7 = 7

C = {1, 3, 4}

C = {1, 3, 4}

PA = {2}

OM = {5, 6}

∆2 = 3

∆6,1 = 4

∆5,3 = −2

Figure 3: From clique C = {1, 3, 4}, the SWAP move between vertices 6 and 1 (SWAP (6, 1))
leads to a solution C1 = {3, 4, 6}, which is better than the solution C2 = {1, 2, 3, 4} obtained
by the ADD move (ADD(2)).
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several factors are incorporated, including a pricing factor which models a bid-
der’s acceptable price range for each bid, a preference factor which takes into
account bidder’s preferences among bids, and a fairness factor which measures
the fairness in distributing jobs among bidders. More details about how these
instances are generated can be found in Lau & Goh (2002).

The second test set of 20 instances are obtained from a generator provided by
Sandholm (2002), which can be used to generate instances of different problem
sizes and distributions. There are four different distributions available:

• Random(m,n): The n bids are generated as follows. For each bid, first
pick the number of items randomly from {1,2,. . . ,m}. Then randomly
choose that many items without replacement from {1,2,. . . ,m}. Finally
pick the price randomly from a uniform distribution on [0, 1].

• Weighted Random(m,n): As above, but pick the price between 0 and the
number of items in the bid.

• Uniform(m,n, λ): The n bids are generated as follows. For each bid, first
randomly choose λ items without replacement from {1,2,. . . ,m}, and then
pick a price randomly from a uniform distribution on [0, 1].

• Decay(m,n, α): Generate n bids as follows. For each bid, give a first
item randomly selected from {1,2,. . . ,m}. Then repeatedly add a new
random item randomly selected from {1,2,. . . ,m} (without replacement)
with probability α until an item is not added or the bid includes all m
items. Pick the price between 0 and the number of items in the bid. In
our experiments, α is set equal to 0.75, since as indicated in Sandholm
(2002), this setting leads to the hardest instances on average (at least for
the algorithm in Sandholm (2002)).

The third set of problem instances are generated randomly by the program
combinatorial auction test suite (CATS) generator developed by Leyton-Brown
et al. (2000b). Different distributions are available in the CATS suite: paths,
regions, matching, scheduling, and arbitrary. For each one of these distributions,
we used the CATS default parameters.

All the instances used in our experimental evaluations will be made available
at http://www.info.univ-angers.fr/pub/hao/wdp.html.

5.2. Parameter settings and stop condition

The main parameter required by the MN/TS algorithm is L which is the
number of consecutive iterations for which the current solution cannot be further
improved. Notice that given a fixed computing time, a small (large) value of
L leads to more (less) frequent restarts of the tabu search procedure. In our
experiment, we simply set L to 4000 as indicated in Wu et al. (2012). Given the
stochastic nature of our MN/TS procedure, each instance is solved 100 times
independently with different random seeds. For each run, the time limit is set
to be 5 minutes.
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Table 1: MN/TS versus MA and CPLEX 12.4 on some of the REL-500-1000 instances

Instance Density MN/TS MA (Boughaci et al., 2009) CPLEX

W Wavg hit Time W Time W Time

in101 0.31 72724.61 72724.61 100 5.46 67101.93 129.62 67101.94 3600

in102 0.29 72518.22 72518.22 100 19.91 67797.61 132.18 70292.58 3600

in103 0.30 72129.50 72129.50 100 18.52 66350.99 133.34 69703.05 3600

in104 0.30 72709.64 72709.64 100 7.33 64618.41 135.14 71579.58 3600

in105 0.29 75646.12 75646.12 100 1.70 66376.83 153.96 68431.12 3600

in106 0.29 71258.61 71258.61 100 9.05 65481.64 140.96 66621.12 3600

in107 0.30 69713.40 69713.40 100 1.94 66245.70 146.40 69182.50 3600

in108 0.31 75813.20 75803.35 73 113.53 74588.51 161.03 74637.79 3600

in109 0.29 69475.89 69475.89 100 4.96 62492.66 144.71 65901.61 3600

in110 0.29 68295.28 68295.28 100 26.10 65171.19 149.01 67618.87 3600

in111 0.30 75133.29 75133.29 100 2.90 72969.16 157.34 72242.28 3600

in112 0.30 71342.48 71342.48 100 16.33 66671.67 151.40 70588.82 3600

in113 0.31 73365.87 73365.87 100 6.24 68901.96 165.26 70475.80 3600

in114 0.30 69224.75 69224.75 100 3.72 64190.63 160.00 66757.96 3600

in115 0.30 70221.56 70221.56 100 32.42 62052.25 148.03 66149.07 3600

in116 0.31 70032.43 70032.43 100 3.17 64849.85 162.54 69308.00 3600

in117 0.29 69982.83 69982.83 100 3.79 66466.39 152.85 69923.79 3600

in118 0.31 72160.98 72160.98 100 24.98 69239.96 159.06 72160.98 3600

in119 0.30 67038.42 67038.42 100 30.59 63968.32 153.84 64934.13 3600

in120 0.32 75514.93 75514.93 100 2.07 68587.41 166.82 74658.12 3600

Average 71715.10 71714.60 16.73 66706.15 150.17 69413.45 3600

Table 2: MN/TS versus MA and CPLEX 12.4 on some REL-1000-1000 instances

Instance Density MN/TS MA (Boughaci et al., 2009) CPLEX

W Wavg hit Time W Time W Time

in201 0.15 81557.74 81557.74 100 9.45 77499.82 98.26 79466.83 3600

in202 0.15 90708.12 90708.12 100 2.47 90464.19 106.68 90537.28 3600

in203 0.16 86239.21 86239.21 100 3.88 86239.21 102.28 86239.21 3600

in204 0.16 87075.42 87075.42 100 2.67 81969.046 97.40 87075.42 3600

in205 0.15 86515.95 86515.95 100 1.73 82469.19 91.26 84016.43 3600

in206 0.15 91518.96 91518.96 100 0.75 86881.42 93.99 86888.23 3600

in207 0.16 93129.24 93129.24 100 11.23 91033.51 100.90 89085.69 3600

in208 0.15 94904.67 94904.67 100 4.24 83667.76 101.29 91782.04 3600

in209 0.15 87268.96 87268.96 100 11.25 81966.65 96.42 83166.69 3600

in210 0.15 89962.39 89962.39 100 7.64 85079.98 97.78 86940.49 3600

in211 0.15 84913.68 84913.68 100 2.96 79746.14 90.78 84028.31 3600

in212 0.16 90778.20 90778.20 100 0.51 81061.38 103.45 85390.73 3600

in213 0.16 85369.18 85369.18 100 1.88 83549.21 101.56 83501.07 3600

in214 0.15 85181.60 85181.60 100 0.63 81935.32 95.06 83554.16 3600

in215 0.17 91531.69 91531.69 100 1.50 83663.13 102.48 85965.20 3600

in216 0.16 91580.93 91580.93 100 0.45 83286.63 100.93 85656.94 3600

in217 0.13 86962.92 86962.92 100 0.60 83125.25 90.34 86962.92 3600

in218 0.16 94965.19 94965.19 100 0.68 86936.78 105.06 88300.26 3600

in219 0.15 93586.43 93586.43 100 1.15 88054.21 93.35 86006.20 3600

in220 0.17 89792.90 89792.90 100 3.84 86937.85 104.35 87883.45 3600

Average 89177.16 89177.16 3.47 84278.33 98.68 86122.37 3600
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Table 3: MN/TS versus MA and CPLEX 12.4 on some of the REL-1000-500 instances

Instance Density MN/TS MA (Boughaci et al., 2009) CPLEX

W Wavg hit Time W Time W Time

in401 0.14 77417.48 77417.48 100 0.16 72948.07 37.07 77417.48∗ 24.26

in402 0.14 76273.33 76273.33 100 0.38 71454.78 37.20 76273.33∗ 30.35

in403 0.15 74843.95 74843.95 100 3.02 74843.96 38.81 74843.95∗ 35.43

in404 0.16 78761.69 78761.69 100 0.87 78761.68 38.78 78761.69∗ 33.76

in405 0.16 75915.90 75915.90 100 0.39 72674.25 39.29 75915.90∗ 67.49

in406 0.14 72863.32 72863.32 100 0.64 71791.03 38.09 72863.32∗ 55.51

in407 0.17 76365.71 76365.71 100 0.26 73935.28 40.95 76365.71∗ 77.82

in408 0.15 77018.83 77018.83 100 0.16 72580.04 39.07 77018.83∗ 124.24

in409 0.13 73188.62 73188.62 100 0.38 68724.53 36.28 73188.62∗ 51.24

in410 0.16 73791.65 73791.65 100 0.51 71791.57 41.90 73791.65∗ 50.81

in411 0.15 73935.40 73935.40 100 0.58 71200.55 38.76 73935.40∗ 27.10

in412 0.16 75292.63 75292.63 100 0.13 75292.63 37.17 75292.63∗ 69.12

in413 0.16 74434.99 74434.99 100 0.32 73350.87 40.95 74434.99∗ 62.49

in414 0.17 77146.37 77146.37 100 0.21 77146.36 41.26 77146.37∗ 74.75

in415 0.14 73519.12 73519.12 100 0.24 71926.73 36.32 73519.12∗ 68.57

in416 0.16 73487.01 73487.01 100 0.18 72520.66 39.81 73487.01∗ 56.36

in417 0.15 74981.35 74981.35 100 0.51 74680.99 39.29 74981.35∗ 49.13

in418 0.14 71404.84 71404.84 100 1.68 71404.84 40.00 71404.84∗ 28.75

in419 0.15 72505.21 72505.21 100 0.10 70472.84 38.45 72505.21∗ 40.36

in420 0.15 75510.68 75510.68 100 0.17 71381.02 37.65 75510.68∗ 54.17

in421 0.16 75694.94 75694.94 100 0.12 75694.94 38.78 75694.94∗ 27.50

in422 0.15 77443.90 77443.90 100 0.21 72850.90 37.36 77443.90∗ 28.30

in423 0.13 68134.35 68134.35 100 0.17 68134.35 36.17 68134.35∗ 35.17

in424 0.17 77352.75 77352.75 100 1.56 73196.15 43.26 77352.75∗ 49.28

in425 0.17 77333.91 77333.91 100 0.15 73258.59 41.35 77333.91∗ 49.21

in426 0.17 76430.18 76430.18 100 0.37 74524.80 39.67 76430.18∗ 211.26

in427 0.15 76387.56 76387.56 100 0.12 73147.95 36.96 76387.56∗ 57.56

in428 0.15 77384.94 77384.94 100 0.29 76554.58 38.64 77384.94∗ 52.00

in429 0.15 75540.96 75540.96 100 0.12 75540.96 39.87 75540.96∗ 61.19

in430 0.16 79038.75 79038.75 100 0.71 76264.92 39.60 79038.75∗ 66.95

Average 75313.34 75313.34 0.49 73268.36 38.95 75313.34 57.33
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Table 4: MN/TS versus MA and CPLEX 12.4 on some of the REL-1500-1500 instances

Instance Density MN/TS MA (Boughaci et al., 2009) CPLEX

W Wavg hit Time W Time W Time

in601 0.09 108800.44 108800.44 100 9.12 99044.32 110.62 105286.85 3600

in602 0.08 105611.47 105611.47 100 1.72 98164.23 114.18 99254.88 3600

in603 0.08 105121.02 105121.02 100 1.21 94126.96 110.71 101270.04 3600

in604 0.09 107733.80 107733.80 100 16.62 103568.86 110.60 105185.67 3600

in605 0.09 109840.98 109840.98 100 2.72 102404.76 122.40 103694.50 3600

in606 0.09 107113.06 107113.06 100 1.47 104346.07 107.79 107113.06 3600

in607 0.09 113180.28 113180.28 100 1.37 105869.44 113.26 103095.66 3600

in608 0.09 105266.10 105266.10 100 1.12 95671.77 109.15 99490.66 3600

in609 0.09 109472.33 109472.33 100 1.34 98566.94 111.12 100895.86 3600

in610 0.10 113716.96 113716.96 100 2.67 102468.60 120.17 113716.96 3600

in611 0.09 106666.32 106666.32 100 2.50 98974.64 107.98 106666.32 3600

in612 0.09 109796.70 109796.70 100 6.85 106056.07 122.81 109796.70 3600

in613 0.09 107980.15 107980.15 100 1.52 93289.85 120.14 99328.57 3600

in614 0.10 108364.57 108364.57 100 7.72 97510.72 122.51 100513.13 3600

in615 0.08 110508.81 110508.81 100 4.27 101770.70 108.67 104433.21 3600

in616 0.09 109740.48 109740.48 100 4.61 100169.53 109.65 108139.54 3600

in617 0.09 113302.43 113302.43 100 5.80 100653.88 114.98 105899.16 3600

in618 0.10 111385.08 111385.08 100 6.60 102378.27 120.71 105154.80 3600

in619 0.09 107571.59 107571.59 100 2.79 97306.30 115.00 98035.64 3600

in620 0.09 110937.97 110937.97 100 3.00 102951.68 115.79 101712.44 3600

Average 109105.52 109105.52 4.25 100264.67 114.41 103934.18 3600

Table 5: MN/TS versus MA and CPLEX 12.4 on some of the REL-1000-1500 instances

Instance Density MN/TS MA (Boughaci et al., 2009) CPLEX

W Wavg hit Time W Time W Time

in501 0.08 88656.95 88656.95 100 1.47 79132.03 107.82 88656.95 3600

in502 0.08 86236.91 86236.91 100 1.76 80340.76 108.71 83757.54 3600

in503 0.07 87812.37 87812.37 100 19.63 83277.71 114.15 86318.17 3600

in504 0.10 85600.00 85600.00 100 4.62 81903.02 116.11 84220.22 3600

Average 87076.55 87076.55 6.87 81163.38 111.69 85738.22 3600
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Table 6: Comparison of MN/TS with MA, SAGII and Casanova on 14 REL instances. The
results of MA, SAGII and Casanova are from Table 7 in Boughaci et al. (2009)

Instance MN/TS MA SAGII Casanova

(Boughaci et al., 2009) (Guo et al., 2006) (Hoos & Boutilier, 2000)

W Time W Time W Time W Time

in202 90708.12 2.47 90464.19 106.68 86179.64 45.19 52048.73 113.55

in207 93129.24 11.23 91033.51 100.90 88513.37 44.58 51003.39 132.92

in208 94904.67 4.24 83667.76 101.29 83500.82 44.80 51340.27 111.16

in227 92613.37 5.23 83667.76 101.29 86747.23 44.58 54998.44 117.16

in501 88656.95 1.47 79132.03 107.82 85101.43 71.05 53992.12 164.94

in525 93651.06 3.83 85143.13 109.96 88086.29 67.56 58365.02 164.66

in593 94044.63 1.39 80304.07 106.89 82046.16 69.03 58527.76 171.72

in594 91334.89 2.56 86112.90 103.56 82341.22 68.11 55821.04 171.80

in600 91538.68 3.78 82555.91 95.46 83772.91 67.09 56001.82 174.25

in664 112866.86 6.84 102905.25 123.81 104346.07 90.73 65543.41 161.11

in688 112012.55 7.51 103742.53 114.81 106056.08 90.95 64962.00 166.88

in694 114477.05 7.17 108114.12 107.87 105699.93 91.09 70140.69 170.56

in699 107132.33 5.19 103762.70 120.71 103252.95 90.42 65026.40 171.70

in700 106730.67 4.23 101510.20 117.42 105462.71 91.22 62404.80 160.98

Average 98842.93 4.79 91579.71 108.46 92221.91 69.74 58583.79 153.81

5.3. Experimental results on the REL instances

In this section, we present the computational results obtained by the MN/TS
algorithm on the REL instances. To assess the relative quality of our results,
we compare MN/TS with the CPLEX 12.4 solver and the recent memetic algo-
rithm (MA) (Boughaci et al., 2009) which is one of the current best performing
heuristics for these instances. MA was run on a Pentium-IV processor (2.8 GHZ
CPU and 1 GB RAM). According to the Standard Performance Evaluation Co-
operation (www.spec.org), this computer is as fast as the computer we used for
our experiments. To obtain the results of the CPLEX 12.4 solver on our com-
puter, we use the integer programming formulation (Eq. (1)-(3)) as described
in Section 3 and run CPLEX until a timeout limit of 3600 seconds is reached,
or until the memory limits is reached. Previous studies show that general ILP
solvers like CPLEX represent a highly effective approach for many cases of the
WDP problem (see for instance Andersson et al. (2000) and Sandholm et al.
(2005)) and thus can be considered as a valuable reference for our compara-
tive study. Since there are 500 REL instances, we show first in Tables 1-6, like
previous studies in the literature (Boughaci et al., 2009; Guo et al., 2006), the
detailed results on some selected instances from each of the five groups, and
then in Table 7 the global results for the five groups of 500 instances.

Tables 1-5 present the detailed computational results of the MN/TS algo-
rithm in comparison with those of the reference algorithm (MA) reported in
Boughaci et al. (2009) as well as those obtained with the CPLEX 12.4 solver.
Each table is dedicated to one of the 5 groups of the REL instances. The first
column in these tables indicates the name of the instance. Column 2 indicates
the density of the transformed graph. Columns 3 to 7 show the results obtained
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by the MN/TS algorithm including the maximum revenue (W ) obtained by the
MN/TS algorithm over the 100 independent trials, the average revenue (Wavg)
over the 100 trials, the success rate (hit) for reaching Wavg and the average CPU
time in seconds (T ime) over the 100 trials on which the W value is reached.
Columns 7 to 8 present MA’s results, which are directly extracted from the
original paper (Boughaci et al., 2009). The last two columns report the results
obtained with the CPLEX 12.4 solver within a time limit of 3600 seconds. Fi-
nally, the last row “Average” indicates the summary of our algorithm’s average
performance with reference to the MA algorithm and the CPLEX 12.4 solver.

From Tables 1-5, one observes that, for 86 of the 94 selected instances where
the MA algorithm reports its results, the MN/TS algorithm outperforms MA
both in terms of solution quality and computing time. For the remaining 8
instances on which the two algorithms attain the same revenue, MN/TS needs
much less computing time than MA to reach its objective values. Even the
average values (Wavg) of MN/TS are better than the best results obtained by
MA. We can conclude that the MN/TS algorithm dominates the reference MA
algorithm both in terms of solution quality and computing time.

Concerning the results obtained by the CPLEX 12.4 solver within a time
limit of 3600 seconds, we can observe from Tables 1-5 that for 30 (REL-1000-500,
Table 3) of the 94 REL instances, the CPLEX 12.4 solver is able to find optimal
solutions (marked with a ∗ symbol when proven to be optimal by CPLEX). For
55 of the 94 instances, MN/TS is able to reach a larger revenue than the CPLEX
12.4 solver. For the remaining 39 instances, both the MN/TS algorithm and
the CPLEX 12.4 solver attain the same revenue, however, MN/TS needs much
less computing time than the CPLEX 12.4 solver for each of these instances.
We can see that MN/TS performs much better than the CPLEX 12.4 solver on
the REL benchmark instances.

For all these instances, we observe that the results of MN/TS are very stable.
Except for one instance, MN/TS attains its best objective value for each of the
100 runs (see column hit).

To augment the above comparison, Table 6 compares the results of the
MN/TS algorithm with those obtained by the MA algorithm as well as two
additional effective heuristic approaches in the literature: SAGII (Guo et al.,
2006) and Casanova (Hoos & Boutilier, 2000). The results for these 3 reference
algorithms are extracted from Table 7 in Boughaci et al. (2009). From Table
6, it is observed that the MN/TS algorithm outperforms these 3 reference algo-
rithms both in terms of solution quality and computing time. For each of these
14 instances, the MN/TS algorithm attains a much larger objective value within
significantly shorter computing times compared with each of these 3 reference
algorithms.

To further confirm the effectiveness of the MN/TS algorithm, we summarize
in Table 7 the averaged results obtained by the MN/TS algorithm as well as the
three reference algorithms for the 500 instances of the five groups. In Table 7, the
column µW corresponds to the arithmetic average revenue of the 100 instances
in each group and the column µTime gives the average time in second. The
results of Table 7 clearly show a better performance of MN/TS compared to the
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Table 7: Comparison of MN/TS with MA, SAGII and Casanova on the five groups of 500
REL instances. The results of the reference algorithms are from Boughaci et al. (2009)

Instance ins MN/TS MA SAGII Casanova

(Boughaci et al., 2009) (Guo et al., 2006) (Hoos & Boutilier, 2000)

µW µTime µW µTime µW µTime µW µTime

REL-500-1000 100 71470.93 12.28 67520.23 477.22 64922.02 38.06 37053.78 119.46

REL-1000-500 100 75540.68 0.38 74149.49 101.12 73922.10 24.46 51248.79 57.74

REL-1000-1000 100 89158.98 3.12 84926.39 281.63 83728.34 45.37 51990.91 111.42

REL-1000-1500 100 89552.18 6.39 80805.98 297.35 82651.49 68.82 56406.74 168.24

REL-1500-1500 100 108627.17 2.64 102234.80 321.27 101739.64 91.78 65661.03 165.92

Average 86869.98 4.96 81927.37 295.71 81392.78 53.69 52472.25 124.55

competing methods. For each of the 5 groups of instances, the MN/TS algorithm
achieves a much larger average revenue when compared with each of the three
reference algorithms. In particular, MN/TS produces significantly better results
than MA and SAGII which are currently among the most successful algorithms
in the literature for the REL instances while the historical Casanova method is
largely dominated by the other algorithms. This experiment demonstrates thus
the effectiveness of the MN/TS algorithm for the whole set of REL instances.

5.4. Experimental results on the Sandholm benchmark sets

To further assess the performance of the clique approach for the WDP, we
test the MN/TS algorithm on 20 instances which covers all of the benchmark
distributions presented in Sandholm (2002) and compare our results with those
obtained by the CPLEX 12.4 solver. For each of these distributions (random,
weighted random uniform and decay), five benchmark instances are generated by
fixing the number of bids equal to 2000 and varying the number of items from 100
to 500. For the uniform distribution, each bid consists of 10 items. Notice that
some heuristic approaches like Casanova also reported their results on instances
produced by the Sandholm’s generator, however, due to the randomness of
the generator, it is impossible to exactly replicate their test instances. As a
consequence, it is difficult to objectively compare results with those approaches.
For this study, CPLEX is again used as our reference approach.

Table 8 presents the detailed computational results of the MN/TS algo-
rithm in comparison with those of the CPLEX 12.4 solver with a time limit of
3600 seconds. The last column δ indicates the deviation of the MN/TS algo-
rithm with respect to CPLEX. The deviation is calculated as follows: (W −
CPLEX)/CPLEX. The averaged results over the 20 instances are presented
in the last row. From Table 8, we observe that for all these instances except
for the 5 uniform distribution instances, CPLEX is able to obtain optimal so-
lutions within 3600 seconds. For the 5 random distribution instances, MN/TS
is able to reach the optimal solutions and it is faster than CPLEX. For the 5
weighted random distribution instances, MN/TS can also successfully achieve
the optimal solutions with similar computing times. For the 5 uniform distri-
bution instances where CPLEX fails to obtain an optimal solution within 3600
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Table 8: MN/TS versus CPLEX on the Sandholm benchmark set

Instance Density MN/TS CPLEX δ

W Wavg hit Time W Time

Random2000 100 0.03 18.16 18.16 100 0.17 18.16∗ 0.91 0.00%

Random2000 200 0.02 15.94 15.94 100 0.14 15.94∗ 2.66 0.00%

Random2000 300 0.02 13.09 13.09 100 0.13 13.09∗ 4.61 0.00%

Random2000 400 0.01 14.10 14.10 100 0.62 14.10∗ 5.45 0.00%

Random2000 500 0.01 12.63 12.63 100 0.98 12.63∗ 7.23 0.00%

Wrandom2000 100 0.04 43.52 43.52 100 7.02 43.52∗ 0.70 0.00%

Wrandom2000 200 0.02 41.87 41.87 100 8.58 41.87∗ 3.30 0.00%

Wrandom2000 300 0.02 42.40 42.40 100 0.27 42.40∗ 4.09 0.00%

Wrandom2000 400 0.01 46.03 46.03 100 0.05 46.03∗ 5.47 0.00%

Wrandom2000 500 0.01 37.69 37.69 100 0.83 37.69∗ 9.09 0.00%

Uniform2000 100 10 0.33 6.85 6.85 100 19.17 6.53 3600.00 4.86%

Uniform2000 200 10 0.60 12.24 12.24 100 14.69 11.82 3600.00 3.55%

Uniform2000 300 10 0.70 17.20 17.20 100 41.04 15.61 3600.00 10.18%

Uniform2000 400 10 0.77 22.02 22.02 100 79.70 19.18 3600.00 14.79%

Uniform2000 500 10 0.81 26.56 26.56 100 134.88 24.94 3600.00 6.48%

Decay2000 100 0.78 86.37 86.25 15 217.96 86.37∗ 0.28 0.00%

Decay2000 200 0.89 159.18 158.40 3 220.01 159.67∗ 0.39 -0.31%

Decay2000 300 0.93 220.66 216.52 1 226.23 226.82∗ 0.70 -2.46%

Decay2000 400 0.95 266.76 261.67 1 256.66 277.01∗ 0.72 -3.70%

Decay2000 500 0.96 316.11 311.43 1 189.36 340.81∗ 1.23 -7.25%

Average 70.97 70.23 70.92 72.70 902.34 1.30%

seconds, MN/TS outperforms CPLEX by producing much better results in so-
lution quality (revenue). Inversely, on the decay distribution whose graphs have
a very high density (≥ 0.89), MN/TS shows a worse performance than CPLEX
both in terms of solution quality and computing time, since for 4 of the 5 de-
cay distribution instances, MN/TS is unable to obtain an optimal solution with
deviations to the optimal solutions from 0.31% to 7.25%.

5.5. Experimental results on the CATS instances

In this section, we test the MN/TS algorithm on 10 instances that covers
all of the benchmark distributions available in the CATS test suite: arbitrary,
matching, paths, regions and scheduling. For each distribution, two instances
are generated by fixing the number of bids equal to 2000 and setting the number
of items equal to 40 and 100 respectively. The CATS distributions seems to be
easy to CPLEX since it can solve instances from this test suite with thousands
of bids and hundreds of items (Sandholm et al., 2005).

In Table 9, we summarize the computational results obtained by MN/TS as
well as those of CPLEX. It can be seen that CPLEX performs extremely well
on this test suite. For each of these 10 instances, CPLEX is able to reach the
optimal solution within 60 seconds. For 8 of these 10 instances, MN/TS is able
to achieve the optimal solutions but it is much slower than CPLEX. For the two
remaining instances whose graphs have a very high density (≥ 0.86), MN/TS
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Table 9: MN/TS versus CPLEX on the CATS instances

Instance Density MN/TS CPLEX δ

W Wavg hit Time W Time

Arbitrary2000 40 0.17 4046.01 4046.01 100 2.16 4046.01∗ 0.50 0.00%

Arbitrary2000 100 0.85 8977.21 8841.35 2 215.36 8977.21∗ 51.98 0.00%

Matching2000 40 0.85 129.80 129.80 100 0.15 129.80∗ 0.03 0.00%

Matching2000 100 0.96 508.32 507.38 4 189.26 515.82∗ 0.03 -1.45%

Paths2000 40 0.83 24.87 24.69 5 198.38 24.87∗ 0.03 0.00%

Paths2000 100 0.86 36.41 36.16 1 225.39 36.77∗ 0.09 -0.96%

Regions2000 40 0.23 4558.89 4558.89 100 4.63 4558.89∗ 0.22 0.00%

Regions2000 100 0.57 9401.70 9400.49 91 110.56 9401.70∗ 0.70 0.00%

Scheduling2000 40 0.72 84.62 84.62 100 0.13 84.62∗ 0.03 0.00%

Scheduling2000 100 0.84 204.51 204.48 93 89.52 204.51∗ 0.05 0.00%

Avg 2797.23 2783.38 103.55 2798.02 5.36 -0.24%

fails to reach an optimal solution with a deviation to the optimal values smaller
than 1.45%. We conclude that CPLEX is a better approach than MN/TS on
the CATS instances.

6. Discussions

As shown in the last section, MN/TS shows excellent performances on most
of the tested WDP benchmark instances. This is particularly the case for the
REL and Sandholm test suites. However, for some cases from the Sandholm
and CATS test suites, our approach does not perform well and fails to attain
the optimal solutions which can be easily reached by the CPLEX 12.4 solver.
Even if there is no formal arguments to fully explain these results, it is intuitively
understood that the performance of a given algorithm depends on the properties
of the underlying graphs. In our case, it seems that the density of the underlying
MWCP graph impacts on the behavior of the MN/TS algorithm, graphs with
high densities being more difficult for MN/TS. For instance, the REL instances
where the densities of the transformed graphs are generally low (from 0.07 to
0.35) are quite easy for MN/TS. This is also true for the random distribution
and weighted random distribution instances from the Sandholm test suite whose
densities range from 0.01 to 0.04. Inversely, the performance of MN/TS clearly
decreases on graphs with a very high density. This is the case for the five decay
distribution instances (densities ≥ 0.78) and two CATS instances (densities
≥ 0.86).

To understand why the clique approach does not work well for dense graphs,
we highlight the fact that the number of cliques in the search space grows
exponentially with the graph density. As such, a dense graph contains a high
number of cliques, making it more difficult for an algorithm to locate the optimal
solution. As an illustration, Figure 4 shows the evolution of the number of
maximal cliques contained in random graphs of size 40 with densities ranging
from 0.1 to 0.8. The number of maximal cliques in a graph is obtained with the
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algorithm of Loukakis & Tsouros (1981) by enumerating all maximal cliques in
the graph. Note that a maximal clique is a clique not contained in any other
clique and corresponds to a leaf node in the search tree. From Figure 4, we
observe that as the graph density increases, the number of cliques contained
in the graph grows drastically, rendering the task of reaching the maximum
clique extremely difficult. This observation is also confirmed on the unweighted
maximum clique problem. Indeed, even the most effective heuristic algorithms
such as DLS (Pullan & Hoos, 2006) and PLS (Pullan, 2006) have trouble to
attain the optimal solutions for some large and dense graphs with a density
larger than 0.8.

7. Conclusion and perspectives

The winner determination problem (WDP) in combinatorial auctions is an
important and difficult combinatorial optimization problem with a number of
highly relevant practical applications. In this paper, we have investigated for the
first time the approach of solving the WDP by recasting the problem into the
maximum weight clique problem and solving it with an existing clique algorithm
(MS/TS).

We have evaluated the merit and limit of this clique-based approach for the
WDP via a large experimental assessment with three well-known test suites
(REL, Sandholm, CATS) of the literature. These test suites represent a total
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Figure 4: The number of maximal cliques grows with the graph density.
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of 530 test cases and cover divers problem characteristics. We have compared
the results of the clique-based approach with those reported by several best per-
forming specific WDP heuristics (MA, SAGII, Casanova) as well as the powerful
(and general) CPLEX 12.4 solver. According to the computational results, we
can draw the following conclusions.

Despite its simplicity, the clique-based approach with the MS/TS algorithm
shows excellent performances on a large portion of the tested benchmark in-
stances. For the REL instances which are difficult for the CPLEX 12.4 solver
and other existing heuristics, the clique approach performs extremely well and
improves the previous best known results for a large number of cases, making
MN/TS the best choice for this set of instances. For the Sandholm test suite,
the clique approach is preferable to CPLEX when the graph density is not too
high (< 0.80) or when the graph has a random, weighted random and uniform
distributions. For the decay distribution, CPLEX is a better choice. For the
CATS test suite which is known to be easy to CPLEX, CPLEX dominates the
clique approach even if MS/TS manages to find good solutions in some cases.

This study confirms that no single method can dominate all the other ap-
proaches on all test problems. In this sense, the clique-based approach presented
in the paper offers an effective and complementary alternative for practical solv-
ing of the WDP problem.

Based on this work, we advance some research perspectives with the purpose
of designing more effective WDP methods.

First, this study focuses on the MS/TS heuristic to solve the problem. Given
that different MWCP heuristics employ different search strategies, it would be
interesting to investigate other MWCP heuristics to see whether one can enlarge
the classes of the WDP that can be effectively solved. Going one step further, it
is even possible to consider a clique approach using multiple MWCP heuristics
to cope with different WDP instances.

Second, as discussed in Section 2, the MS/TS algorithm used in this study as
well as most effective clique algorithms rely on several move operators (e.g., add,
swap, drop) while the current WDP heuristics are most often based only on a
basic ‘add-and-repair’ operator. Given that MS/TS achieves good performances
on the tested WDP benchmark instances, it can be expected that dedicated
WDP heuristics can improve their performances if they use more sophisticated
move operators to explore the search space.

Third, as shown in Section 3, the WDP can be formulated as an integer
programming problem. As such, its LP relaxation can be solved easily by any LP
solver. The resulting LP optimal solution could be a source of useful information
for a dedicated WDP heuristic. For instance, one can fix some variables (bids)
according to the LP optimum and exclude them from the search space examined
by the WDP heuristic. Such a strategy helps the heuristic to intensify its search
and proves to be useful for a number of binary LP problems. It is worthy of
investigating this strategy within the context of the WDP.

Finally, the clique-based approach shows excellent performances for the
WDP problem when compared with the current best performing WDP heuris-
tics. Another interesting study would be to extend this clique approach to deal
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with more generalized combinatorial auction problems, such as the multi-unit
combinatorial auctions (Leyton-Brown et al., 2000a) and iterative combinatorial
auctions (Parkes & Ungar, 2000).

To conclude, the WDP is a generic model which finds more and more appli-
cations including those mentioned in this paper. Advances in solution methods
for the WDP will help to find satisfying solutions to many practical problems.
Meanwhile, studies of challenging real-world applications will encourage the de-
velopment of more effective methods for the general WDP. Given the growing
interest in the problem and their applications, it can be expected that research
in these domains will become even more intense and fruitful in the forthcoming
years.
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A. Pla, B. López, J. Murillo, N. Maudet, Multi-attribute auctions with different
types of attributes: Enacting properties in multi-attribute auctions, Expert
Systems with Applications, 41(10): 4829–4843, 2014.

W. Pullan, Phased local search for the maximum clique problem. Journal of
Combinatorial Optimization, 12(3): 303–323, 2006.

W. Pullan, H.H. Hoos, Dynamic local search for the maximum clique problem.
Journal of Artificial Intelligence Research, 25: 159–185, 2006.

A.K. Ray, M. Jenamani, P.K.J. Mohapatra, Supplier behavior modeling and
winner determination using parallel MDP. Expert Systems with Applications,
38(5): 4689–4697, 2011.

M.H. Rothkopf, A. Pekec̆, R.M. Harstad, Computationally manageable combi-
natorial auctions. Management Science, 44(8): 1131–1147, 1998.

T. Sandholm, Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135(1–2): 1–54, 2002.

T. Sandholm, S. Suri, BOB: Improved winner determination in combinatorial
auctions and generalizations. Artificial Intelligence, 145(1–2): 33–58, 2003.

T. Sandholm, S. Suri, A. Gilpin, D. Levine, CABOB: A fast optimal algorithm
for winner determination in combinatorial auctions. Management Science,
51(3): 374–390, 2005.

S. Satunin, E. Babkin, A multi-agent approach to Intelligent Transportation
Systems modeling with combinatorial auctions. Expert Systems with Appli-
cations, 41(15): 6622–6633, 2014.

I. Sghir, J.K. Hao, I. Ben Jaafar, K. Ghédira, A recombination-based tabu
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