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Abstract

Given a set of items to sell and a set of combinatorial bids, the Winner Deter-
mination Problem (WDP) in combinatorial auctions is to determine an allocation
of items to bidders such that the auctioneer’s revenue is maximized while each
item is allocated to at most one bidder. WDP is at the core of numerous relevant
applications in multi-agent systems, e-commerce and many others. We develop a
clique-based branch-and-bound approach for WDP which relies on a transforma-
tion of WDP into the maximum weight clique problem. To ensure the efficiency
of the proposed search algorithm, we introduce specific bounding and branching
strategies using a dedicated vertex coloring procedure and a specific vertex sorting
technique. We assess the performance of the proposed algorithm on a large collec-
tion of benchmark instances in comparison with the CPLEX 12.4 solver and other
approaches. Computational results show that this clique-based method constitutes
a valuable and complementary approach for WDP relative to the existing methods.
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1 Introduction

Combinatorial auctions (CAs) allow bidders to buy entire bundles of goods
(or items) in a single transaction [6]. One key issue in CAs is the winner
determination problem (WDP) [18]. Given a set of combinatorial bids, each
bid being defined by a subset of items with a price, two bids are conflicting
if they share at least one item. WDP is to determine a conflict-free allocation
of items to bidders (the auctioneer can keep some of the items) such that the
auctioneer’s revenue is maximized.

In terms of computational complexity, WDP is known to be NP-hard [26].
From the practical point of view, WDP is at the core of a number of relevant
applications like cloud computing [27], electronic commerce [40], intelligent
transportation systems [31,40], logistics services [40] and production manage-
ment [25]. The computational challenge of WDP and its practical relevance
have motivated the development of a variety of solution approaches in recent
years, including both heuristic and exact methods. We provide a review of the
main existing methods in the literature in Section 2.

In this paper, we are interested in solving WDP exactly using a clique-based
approach. Indeed, it is known that WDP is equivalent to the weight set pack-
ing problem [40], and can be reduced to the maximum weight clique problem
(MWCP). The first study on the clique-based approach for WDP was ex-
plored very recently in [37] where a heuristic is applied to approximate the
transformed MWCP problem. In this work, we explore an exact approach with
an effective branch-and-bound algorithm (called MazWClique). To get tight
upper bounds on the maximum weight clique, we devise a dedicated vertex
coloring heuristic which groups vertices of the largest possible weight into a
same color class. In vertex coloring, vertices in a graph are assigned a color
such that pairwise adjacent vertices are colored differently. The sum of the
weights of the color classes produced in the process is an upper bound to the
maximum weight clique in the graph. In addition, to prune the search tree
effectively, the algorithm employs a global branching rule by presenting the
vertices to the coloring procedure in a non-increasing weight order to obtain
tight bounds.

The rest of this paper is organized as follows. In Section 2, we provide a
literature review of the most representative approaches for WDP as well as
MWCP and summarize the main contributions of our work. In Section 3, we
establish the connections between the winner determination problem and the
maximum weight clique problem. In Section 4, we present the clique-based
branch-and-bound algorithm for MWCP (and WDP). In Section 5, we pro-
vide computational results of extensive experiments on three sets of WDP
benchmark instances in the literature. In Section 6, we provide some insights



on the performance of the proposed approach and discuss the classes of WDP
instances most suitable for our clique-based approach. Perspectives and con-
cluding remarks are provided in Section 7 and Section 8 respectively.

2 Literature review and main contributions

In this section, we provide a literature review on the most representative ap-
proaches for WDP and MWCP, followed by a summary of the main contribu-
tions of our work.

2.1 Literature review on algorithms for the winner determination problem

The computational challenge of WDP and its wide practical applications have
motivated a variety of solution approaches in the literature, including both
heuristic and exact methods.

Heuristic methods are designed to find approximate solutions within accept-
able computing time limits, but without provable optimal guarantee of the
attained solutions. These methods are often applied when an optimal solution
cannot be achieved or is not required. Some representative heuristic algorithms
for WDP include a stochastic local search method (Casanova) [15], a hybrid al-
gorithm combining simulated annealing with branch-and-bound (SAGII) [8], a
hybrid genetic algorithm [3], a crossover-based tabu search algorithm [33] and
a multi-neighborhood tabu search algorithm [37] which explores the clique-
based approach from a heuristic perspective.

On the other hand, considerable effort has been devoted to developing various
exact methods for WDP. Attempts to apply exact methods to solve WDP
(under the name of set packing) can be found as early as in the beginning
of 1970s [23]. Many other solution methods have appeared in the literature
ever since. Most exact algorithms are based on the general branch-and-bound
(B&B) framework and branch on bids to find optimal allocations. Represen-
tative examples include the combinatorial auction structural search (CASS)
[10], the Combinatorial Auction Multi-Unit Search (CAMUS) [19], the BOB
algorithm [29], the CABOB algorithm [30], and the linear programming based
B&B algorithm [21]. These B&B methods differ from each other mainly by 1)
specific techniques to determine the lower and upper bounds, 2) their branch-
ing strategies and 3) some other techniques like preprocessing, decomposition
of the bid graph, and identifying and solving tractable special cases. Especially,
the upper-bounding methods play a key role to the performance of these B&B
algorithms, and a typical upper-bounding method uses linear programming



relaxations of the set packing formulation [21,30]. In addition, other mathe-
matical formulations for WDP have also been studied within a branch-and-cut
algorithm [7], a branch-and-price algorithm [9] and a dynamic programming
algorithm [26]. However, these last methods do not seem to perform better
than the integer linear programming CPLEX solver using a natural formula-
tion of the problem, which indeed shows an excellent performance in many
cases [1,8,30].

2.2 Literature review on algorithms for the maximum weight clique problem

Though various exact algorithms have been proposed for the unweighted case
of the maximum clique problem (see e.g., [38]), MWCP is somewhat less stud-
ied in the literature. Yet, several exact algorithms have been proposed to solve
this problem.

The B&B algorithm proposed by Ostergard [22] (called Cliquer) is among the
most popular and influential MWCP algorithms. Cliquer relies on an itera-
tive deepening strategy similar to dynamic programming for bounding. Given
an undirected graph G = (V, E) where V = {vy,vs,...,v,}. The algorithm
starts with the smallest subgraph containing only the last vertex in V' and
then iteratively finds a maximum weight clique for subgraphs V,, = {v,},
Vo1 =4{vn_1,0}, Vo = {vn_2,0-1,0s}, . ... This process ends up with the
last subgraph V; which is the original graph to be solved and returns the
maximum weight clique found. During the backtrack search of Cliquer, the
information obtained in previously computed smaller graphs is used for better
upper bounds for larger graphs. The performance of Cliquer greatly depends
on the initial ordering of V. In Cliquer, vertices are sorted in descending order
of weights, and vertices with the same weights are sorted by descending order
of the sum of weights of adjacent vertices.

In [11], Kumlander proposed an exact algorithm based on a heuristic vertex
coloring and a backtrack search for MWCP. The first step of this algorithm is
to obtain a vertex coloring ¢ = {C4, Cy, ..., Cy} of the graph G = {V, E'} and
reorder the vertices first by color classes and then by weights inside each color
class in ascending order. Then during the search process of the algorithm,
this vertex coloring is frequently used to prune branches of the maximum
weight clique search tree, since the vertex coloring upper bound computed as

¥ maz{w(u)|lu € C;NS}} can be served as a more precise estimation on the
bound of the subproblem S. A backtrack search similar to Cliquer is also used
to prune the search tree. With these two pruning strategies, this algorithm is
able to prune subproblems more effectively than Ostergard’s algorithm.

Like Ostergard’s Cliquer algorithm, the performance of Kumlander’s algo-



rithm greatly depends on the initial ordering of the vertices. In [12], a new
sorting and coloring strategy was proposed. In [34], some further improvements
were introduced, including some new ordering methods for greedy coloring, a
strategy to limit color class sizes and a new implementation technique for the
computation of coloring upper bounds. Finally, an edge orienting based exact
algorithm is presented in [39)].

2.8  Main contribution of our work

In this paper, we develop a new B&B algorithm for WDP which relies on a
transformation of WDP into the maximum weight clique problem. Especially,
we devise a coloring based upper-bounding method which leads to a faster
completion of the search algorithm than using the traditional linear program-
ming upper-bounding method in many cases. In addition, the coloring based
method is also employed by the branching strategy to guide the choice of bids
(vertices) during the tree search process. Experiments show that our clique-
based approach is particularly effective for the class of WDP instances with
many items per bid. The main contributions of this work can be summarized
as follows.

First, this is the first study using an exact MWCP algorithm to solve WDP.
Even though the relation between WDP and MWCP is known in the litera-
ture, the clique-based approach for WDP was explored only very recently in
[37] by applying a heuristic approach to approximate the WDP problem. In
this work, we further explore the clique-based approach and solve the WDP
problem exactly with a B&B algorithm. To ensure its effectiveness, the pro-
posed MazxWClique algorithm integrates some original features to update its
lower and upper bounds. The proposed exact method not only has the the-
oretical advantage of guaranteeing the optimality of the solution found, and
sometimes is even much faster than the clique-based heuristic approach.

Second, we report extensive computational results on three test suites of popu-
lar WDP benchmark instances with very different characteristics. We compare
our results with the powerful CPLEX 12.4 solver which is known to be a highly
effective tool for WDP in many cases. This study discloses that the clique-
based approach and the IP solvers like CPLEX constitute two complementary
solution methods and can be advantageously used in a joint manner to exactly
solve different classes of WDP instances.

Third, from the perspective of solving MWCP, we explore new bounding
and branching strategies based on vertex coloring within our B&B algorithm.
Though vertex coloring has been frequently applied to exactly solve the un-
weighted maximum clique problem (see [38] for more details on this issue), for



the weighted case (i.e., MWCP), this idea has only been formally explored in
[11] where the initial graph is colored (once for all) before the B&B routine
starts and the resulting coloring is used on the permanent base throughout
the search. This strategy has the main advantage of running the coloring algo-
rithm only once. However, since the clique algorithm manipulates many and
different subgraphs of the initial graph G, the coloring for G is not necessarily
appropriate for bound estimation of these reduced subgraphs.

In our work, we propose a new vertex coloring based algorithm which applies
repeatedly a (fast) coloring algorithm to different subgraphs at different nodes
of the search tree. Our method makes it possible to obtain tighter bounds
of clique weight of the subgraphs, though coloring multiple graphs may be
somewhat time consuming. Furthermore, as observed in [22,34], the search
tree is pruned more effectively when the vertices of the initial graph are sorted
in descending order of vertex weights. Moreover, it is known that the upper
bound of the maximum weight of the clique in the subgraph will decrease
faster when the vertex is always picked from the color class with the smallest
color number [38]. As a consequence, we introduce a branching strategy which
first sorts the vertices by color numbers in increasing order, and inside a color
class by vertex weights in decreasing order and then always takes the vertices
to join the clique in the sorted order. As we show in Section 6.2, equipped with
our vertex coloring based bounding and branching strategies, our algorithm
competes very favorably with the reference MWCP algorithms, confirming the
value of our adopted bounding and branching strategies.

3 Winner determination and maximum weight clique

Our approach exploits the strong connection between the winner determina-
tion problem and the maximum weight clique problem to develop an exact
approach for WDP. We first define the winner determination problem and
then show its transformation to the maximum weight clique problem.

3.1 The winner determination problem (WDP)

Let M = {1,2...m} be a set of m items to be auctioned and B = {By, Bs... B, }
a set of n bids. A bid B; is a pair (5}, P;) where S; C M is a set of items, and
P; is the price of B; (P; > 0). Let a;,,, be a matrix with m rows and n columns
where a;; = 1 if item ¢ € S}, a;; = 0 otherwise. Furthermore, define a decision
variable for each bid B; such that z; = 1 if bid B; is accepted (a winning
bid), and z; = 0 otherwise (a losing bid). Then, WDP, which concerns finding
an allocation of items to bidders to maximize the auctioneer’s revenue under



the constraint that each item is allocated to at most one bid (some items may
remain unassigned), can be modeled as the following integer program:

Maximize »  Pjx; (1)
j=1
s.t. Zai]’x]’ < 1,2 € {1m} (2)
j=1
x; € {0,1} (3)

The above integer program model corresponds to a set packing problem [40],
which can be reduced to the maximum weight clique problem.

3.2 From WDP to the maximum weight clique problem

Let G = (V, E, W) be an undirected weighted graph where V' denotes the set
of vertices, E the set of edges and W the vertex weighting function that assigns
a positive real number (weight) w; to each vertex i € V. A subset C' C V' is
a clique if every two vertices in C' are connected by an edge. The maximum
weight clique problem is to find a clique C' with a maximum weight, which is
defined as the sum of the weights of all the vertices in C, i.e., W(C) = > ;cc wi.

Given a WDP instance defined by a collection of bids B = { By, Bs...B,, }, each
bid B; being specified by its set of items S; and its associated price P;, we
can transform the WDP instance into a MWCP instance G = (V, E, W) using
the following method. Each vertex j € V in the graph corresponds to a bid
B; € B, its weight w; is given by the price P; of bid B;. For any two vertices
iand j in G = (V, E,W), they are connected by an edge if and only if the
corresponding item sets S; and S; share no common item, i.e., S; N S; = 0,
implying that the two corresponding bids B; and B; can be accepted together
as winning bids. Now it is easy to observe that C' = {iy, ..., 7, } is a maximum
weight clique in the graph G = (V, E, W), if and only if {B;,, ..., B;.} are the
r optimal winning bids with a maximum revenue for the corresponding WDP
instance (see example of Fig. 1 from [37]). Thus, in order to determine the
winning bids for a given WDP instance, we only need to find a maximum
weight clique in the corresponding graph G' = (V, E, W). For this purpose, we
design a branch-and-bound algorithm for the maximum weight clique problem
which is presented in the next section.



4 MaxWClique: a branch-and-bound algorithm for MWCP

4.1 The basic procedure

Branch-and-bound is one of the most successful paradigms for designing exact
algorithms for MWCP (as well as its unweighted case, i.e., the maximum clique
problem where the vertex weight is equal to 1) [11,12,22,38]. The success of a
B&B algorithm mainly relies on the use of refined techniques for determining
lower and upper bounds on the weight (or size) of the clique, and the proper
branching strategies. Especially, vertex coloring techniques are frequently em-
ployed and proven to be effective for these purposes [11,12,38]. Our coloring
based B&B algorithm Maz W Clique for the maximum weight clique problem is
based on and generalizes the procedure in [4] which was designed for the clas-
sical unweighted maximum clique problem. Moreover, our algorithm examines
the graph relying on the standard B&B framework while the algorithms in
[11,22] employs a backtracking search technique which examines the graph in
the opposite order of a standard B&B algorithm.

The presentation of our MaxWClique algorithm (see Alg. 1) follows the gen-
eral recursive backtracking framework adopted by many other exact B&B al-
gorithms for the unweighted maximum clique problem such as BB-MaxClique
[32], MCQ [35], MCS [36] and MaxCliqueDyn [13]. The proposed MaxW Clique
algorithm replies on two key vertex sets: the current clique C' (also called so-
lution) and the candidate vertex set P. C' is a global set and designates the
clique currently under construction while P is a subset of V\C' such that

30£S) = 20 + 20 + 30 = 70

M ={1,2,3,4,5,6,7,8}
Bidl: ({2,4,8},25) —m

Bid2: ({3,5}, 20)
Bid3: ({1,6}, 20)
Bid4: ({4,7}, 20)
Bid5: ({3,6}, 20)
Bid6: ({2,5,8}, 30)
Bid7: ({4,6}, 20)

Fig. 1. The original MDP instance (left) and the transformed maximum weight
clique instance G = (V, E, W) (right) [37]. The maximum weight clique {3,4,6} on
the graph leads to the three winning bids S = {Bid3, Bid4, Bid6} with a maximum
revenue f(.5) = 70.



v € P if and only if Yu € C,{u,v} € E. In other words, each vertex of P
must be connected to all the vertices of the current clique C. Let N(v) be the
set of the vertices adjacent to vertex v, then P can equivalently be defined
by P = NyecN(v). Given the property of P, it is clear that any vertex v of
P can be added to C' to obtain a larger clique C" = C'U {v}. This property
constitutes one of the key foundations of Algorithm 1.

Starting with an empty clique C' = () and P = V (see Alg. 1, lines 2 and
5), the algorithm operates by recursively calling the function MazW Clique
and uses a global variable C* to maintain the largest weight clique found so
far (W (C*) is thus the current lower bound of the maximum weight clique
of G = (V,E,W)). At each recursion of the function MazWClique, a vertex
v is selected among the vertices in P to expand the current clique C. On
backtracking, v is removed from C' and P, and a new vertex is selected from
P to expand C' by calling again MazWClique (see Alg. 1, lines 21-24 and line
12).

Precisely, given the current clique C' and its corresponding candidate set P, we
use a coloring based method (see Section 4.2) to compute an upper bound for
the subgraph induced by P (denoted by UB(P)).If W(C) + UB(P) < W(C*),
C cannot lead to a clique with a weight larger than the weight of C*, and thus
the associated subtree can be safely pruned. Otherwise, the subtree rooted at
the clique C' needs to be further explored. In this case, a branching strategy
is employed to determine the next vertex v € P to be selected to expand the
current clique C' (Alg. 1, line 15). After the vertices in P are sorted according
to its coloring result by the ColorSort procedure, we select the vertices in P in
that order. After each branching step, P is updated by P = PN N (v) (Alg. 1,
line 19) to make sure that the required property of the set P is always verified.

MaxWClique implicitly enumerates the cliques of the graph G = (V, E, W) ac-
cording to some predefined order (by color classes). Initially, after resorting the
vertices by color classes, MaxWClique finds the largest clique C' that contains
the vertex v;. Then it finds Cy, the largest clique in G — {v;} that contains
vy and so on. Without the pruning strategy in line 14, the algorithm will go
through every maximal clique in the graph (A maximal clique is a clique that is
not contained in a larger clique, which corresponds to a leaf node in the search
tree). By applying the pruning techniques in line 14, we only safely prune some
branches of the search tree which cannot lead to an optimal solution (this is
guaranteed by the bounding condition W(C) + UB(P) < W(C*)). Given the
current clique C' and its candidate vertex P = N,ecN(v), we use a heuristic
branching strategy to decide the order of adding the vertices of P to C. This
is done by first sorting the vertices in P according to their color classes and
then adding vertices in P in the sorted order.

Crucial to the understanding of our exact algorithm is the notion of search



Algorithm 1 The branch-and-bound algorithm for the maximum weight
clique problem

Require: A weighted graph G = (V, E, W)
Ensure: The maximum weight clique C* and its weight W (C*)

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:

/* C and C* are two global variables designating respectively the currently
growing clique and the largest weight clique found so far */
Function Main
C < (0 /* the clique currently under construction */
C* + () /* the maximum weight clique found so far */
ColorSort(V,ColV') /* color and resort vertices in V' (Section 4.2) */
MazW Clique(V,ColV)
return C* and W (C™)
End function to provide a review of different solution approaches approaches
approaches proposed in
Function MaxWClique(set P, set ColP)
/* P is the candidate set containing the vertices that can be added to C, vertices
in P are sorted by non-decreasing order with respect to their color numbers, and
inside color class sorted in non-increasing weights, C'ol P is an array containing
the color number of each vertex in P */
if (P =0 and W(C)> W(C*)) then
C* + C /* update the maximum weight clique found so far */
End if
while P # () do
Compute the upper bound for the subgraph induced by P as UB(P) =
Z?:Olcigf[lﬂ] W (I;) where W(I;) = max{W (v) : v € I;} (Section 4.2)
if (W(C)+UB(P)>W(C*)) then
Select the first vertex p in P / * branching rule (Section 4.3) */
Save set P and C'olP
C + CU{p} /* expand C by adding p */
P’ « P N(p) /* remove the vertices not connected to p from P */
ColorSort(P',ColP") /* resort vertices in the new candidate set P’ */
MazW Clique(P', ColP') /* go to the next level of recursion */
Restore P and ColP /*step back from the precedent level of recursion™/
C + C\ {p} /* remove p from C, then try the next vertex in P */
P« P\ {p} /* continue to examine the left vertices in P (see line 12)
*
/
ColP <+ ColP \ {ColP[1]} /* remove the color of p from ColP */
else
return
End if
End while
End function

depth and recursive calling of function MaxWClique. Given the current clique
C and its candidate set P = Nyec N (v), function MazWClique(P, ColP) aims
at finding the maximum weight clique containing all vertices of C' by adding
the vertices in P. To achieve this, Maz W Clique( P, ColP) examines the vertices

10



in P one by one. Each time a vertex v in P is added to the current clique C,
we continue to search the maximum weight clique containing all vertices of
C = C U {v} by adding the vertices in P' = P N(v). For this purpose, we
recursively call MazWClique(P', ColP") and move to the next level of search
depth. Before going to the next level of search depth, we record the vertices
of Pin a |V| x K matrix M P where M P; is used to store the vertices of P
in the (i + 1)-th (i = |C]) level of recursion (see also the space complexity
analysis in Section 4.4). Then the vertices of P’ will be further examined one
by one by each new call to function MaxWClique. When a vertex is examined,
it is removed from P’. Backtracking is invoked when P' = ) or the pruning
condition is satisfied (see Alg. 1, lines 12 and 14 as well as Fig. 2 for an
illustrative example). After the return of MaxWClique(P’, ColP"), we recover
the vertices in P, backtrack to this level of search depth (see Alg. 1, line 21),
and continue to examine the remaining vertices in P. For this, vertex v is
deleted from the depth and the next vertex of the depth becomes active and
will be expanded (see Alg. 1, lines 22-24 and line 12). This procedure continues
until P = ) or the pruning condition W(C) + UB(P) < W(C*) is satisfied.

Note that the heuristic procedure ColorSort(P, ColP) only changes the order
of the vertices in P (sort the vertices in P according to vertex coloring results),
it does not remove any vertex from P nor add any new vertex to P. After
each call to function ColorSort(P,ColP), the order of vertices in P is fixed.
Then the vertices in P are examined in the sorted order. In this way, we can
guarantee the unexamined vertices are always kept in P.

Using the sorting heuristic for P and the pruning rule W(C') + UB(P) < W(C*),
our MaxWClique algorithm accelerates the enumeration process of the whole
search space without missing any possible candidate solution, ensuring the
completeness of the search procedure.

Two key components of our B&B algorithm are thus the strategy used to
determine the upper bound on the maximum weight clique in the subgraph
induced by P, and the branching strategy to determine the next vertex v € P
to be added to the current clique C. In the following subsections, we formally
describe these strategies.

4.2 A coloring based bounding strateqy

For MWCP, the idea of using vertex coloring to estimate the upper bound for
the maximum clique weight in a subgraph was first explored in [11] where the
initial graph is colored once for all. Given an undirected graph G = (V, E),
a k-coloring of G is a partition of V' into k independent sets (color classes).
An independent set of G is a subset I of V such that no two vertices in [

11



are connected by an edge. The graph coloring problem is to determine the
smallest integer k (its chromatic number y(G)) such that there exists a k-
coloring of G. Given a coloring ¢ = {I3, ..., I } of G, we define, for each color
class I; of ¢, its weight as the maximum weight of the vertices in [;, i.e.,
W(I;) = maz{W(v) : v € I;}.

For a given undirected weighted graph G’ = (V, E, W) and a given k-coloring
c = {6i,..., I} of G', since two vertices in a clique cannot belong to the
same color class of ¢, at most one vertex in a color class can take part in the
construction of a clique. Consequently, the maximum weight of the clique in G
(denoted by W(G")) is bounded by the sum of the weights of the color classes
induced by ¢, i.e.,

W(@) < ; W (I;) (4)

From the above formulation, we observe that the quality of the upper bound
depends on the k-coloring. In other words, to achieve tight upper bounds, it is
better to use a coloring (for the subgraph induced by the current P) such that
the sum of the weights of its color classes is as small as possible. On the other
hand, since we must color the associated subgraph induced by P after each
iteration of our algorithm, the coloring procedure needs to be fast enough.
To fulfill these purposes, we develop in this paper a fast and effective greedy
procedure to color the subgraph induced by P.

The basic idea of our greedy coloring procedure is to put the vertices with
the largest possible weights into the same color class. This strategy could
generally reduce the sum of the weights of the color classes such that a tighter
upper bound can be obtained (see also [12]). The coloring procedure constructs
sequentially the color classes one by one. At the start of the coloring procedure,
all vertices in the subgraph are sorted in descending order with respect to their
weights. To build the first color class I; which is initially an empty set, we
first copy all the vertices of the subgraph into a vertex set U. Then at each
step of building [;, we take the first vertex v € U (the vertex with the largest
weight in U), add it to I; and finally remove all vertices from U which are
adjacent to v. The process continues until the vertex set U becomes empty.
At this point, we finish the construction of the color class ;. To build the
class Iy, we remove from the initial subgraph all the vertices of I; and run
the same procedure on the reduced graph. The coloring procedure ends when
all vertices in the subgraph induced by P have been assigned to a particular
color class. Algorithm 2 summarizes this greedy coloring procedure.

Finally, for an efficient implementation of the coloring procedure, we adopt a
bit-parallel technique proposed in [32]. We first encode the adjacency matrix of
the graph, as well as some vertex sets such as P and U into bit strings. Based

12



Algorithm 2 The coloring procedure: ColorSort(P, ColP)
Require: A weighted subgraph G’ = (V' E', W) induced by P
Ensure: The resorted vertex set P and its coloring result Col P
Begin
k =1 {color number counter }
[ =1 {vertex counter}
Sort the vertices in V' in a descending order with respect to their weights
while V' # () do
U<« V/
I, =10
while U # () do
Select the first vertex v € U
Iy = I, U{v}
U=U\{v}
Remove all vertices which are adjacent to v from U
end while
k=k+1
VI =V\Ij
: end while
: for c=1to k do
for i =1 to |I.| do
P[l] = I.[i] /* resort the vertices in P in an increasing order with their
color numbers */
20: ColPll] = ¢ /* store the color number of each vertex p € P in ColP */
21: Il=1+1
22: end for
23: end for
24: End
25: Return the resorted vertex set P and its coloring result Col P

— =
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on this binary encoding, we make full use of bitwise operations in parallel to
accelerate a number of computations such as sorting vertices in P by weights
(line 4, Alg. 2) and computing graph transitions.

4.3  Branching

In step 15 of Algorithm 1, we need a branching rule to select the next vertex
from the candidate set P to expand the current clique. To make this choice,
we resort to the vertices in P based on their coloring and weight information.

Precisely, after a coloring ¢ = {Ii, ..., I} of P is obtained using the greedy
coloring procedure (see Sect. 4.2), all vertices are copied back to the input
candidate set P as they appear in the color classes and in increasing order
with respect to index k (lines 17-23, Alg. 2). Thus, vertices in P are sorted
by non-decreasing order with respect to their color numbers, and in non-
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increasing weights inside color class. Then we take vertices in P to join the
clique C' in the sorted order i.e., we always select the first vertex v € P
(the vertex with the maximum weight in the color class with the smallest
color number) to expand the clique under construction. On backtracking, the
algorithm deletes v from P and picks a new vertex from P (the first vertex in
P after the removal of v). This process is repeated until the pruning condition
(W(C) +UB(P) < W(C*)) is verified. The upper bound for the maximum
weight of the clique in the remaining subgraph after the removal of v can be
easily computed as UB(P) = W,, —I—Zf:c(v)ﬂ W (I;) where v’ is the next vertex
in the same color class as v and ¢(v) is the color number of v.

This branching strategy has several advantages (see also the analysis of Sec-
tion 6.4). First, the number of color classes of the coloring for the remaining
subgraph to be searched tends to be reduced more quickly by always selecting
the vertices from the first color class. Second, by preferring to add first the
vertices with larger weights to the clique, good solutions are generated earlier
on. This strategy leads to tighter lower bounds and thus reduces the size of
the search tree. Third, the weight of the color class which is currently under
consideration tends to decrease more quickly by choosing the vertex with the
maximum weight in this color class. Thus, our pruning rule may lead to a
fast decrease to the upper bound of the maximum weight of the clique in the
remaining subgraph to be searched, thus reducing the search space on aver-
age. In Section 6.4, we will provide experimental evidences to confirm these
advantages.

4.4 Complexity analysis

In this section, we undertake a (time and space) complexity analysis of our
MaxWClique algorithm. To establish the time complexity, we first analyze
each recursive search step of the algorithm (line 12-26, Alg. 1) and then give
the time complexity of the whole algorithm. Each recursive search step implies
two main procedures for computing the upper bound for the subgraph induced
by P (line 13, Alg. 1) and the greedy coloring procedure (line 20, Alg. 1). For
the upper bound computation, since the vertices in P are already sorted in
non-decreasing order with respect to their color numbers, and inside color class
sorted in non-increasing weights, this procedure can be achieved in O(|V]) by
adding up the weights of the first vertex in each color class. For the coloring
procedure, the time complexity is O(|V|?), since it can be achieved in |P|
steps, each coloring step assigning a color to a vertex with a time complexity
of O(|V]). Other procedures like computing P’ <~ P N(p) at each recursive
search step can also be completed in O(|V]). Thus, each recursive search step
of the algorithm requires no more than O(|V|?) time. For the whole algorithm,
since the maximum search depth of our algorithm is K, where K is the number
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of color classes required to color the initial graph G, the maximum number of
the nodes in the search tree of MazWClique is 2. Thus, the worst-case time
complexity of our algorithm is O(|V'|?2%). Obviously, like other exact MWCP
and MCP algorithms [2,38], our algorithm suffers from an exponential time
complexity.

On the other hand, MaxW Clique is space efficient with a space complexity of
O(|V|?). First, to store the graph G of a MWCP instance, we use a binary
matrix M of size |V| x |V, where M;; = 1 if vertices ¢ and j are adjacent,
M;; = 0 otherwise. In addition, when MaxzWClique goes from the current level
of recursion (say recursion-level i) to the next level of recursion (say recursion-
level i + 1), all vertex sets P in recursion levels from 1 to i + 1 need to be
stored. This can be achieved efficiently with a |V| x K matrix M P, where K
(K < |V]) is the maximum search depth of our algorithm (see also the time
complexity analysis). Indeed, when MaxWClique returns from recursion-level
7 + 1 to recursion-level i, the space for recursion-level i 4+ 1 is reused and the
vertex set P at recursion-level ¢ only needs to be updated by removing the
first vertex from P. Thus, in order to store the sets P at different levels of
recursions, a |V| x K matrix suffices. Similarly, another two-dimension array
of size |V| x K is also required to store the coloring of P (i.e., ColP) at each
level of recursion which is also reused. Therefore, the total space requirement
of MaxW<Clique is bounded by O(|V]?).

In addition to the above worst case complexity analysis, a more useful study
in practice is to investigate the empirical scaling behavior of run-time of the
proposed algorithm [14]. Such an analysis will shed light on how the algo-
rithm scales on instances of various types and sizes, and thus constitutes an
interesting research topic in the future.

4.5 A working example

In this section, we show an example to illustrate how the proposed algorithm
works using the graph G in Figure 1. Initially, C' = () and C* = (), and the
main steps of the algorithm MazWClique (see Alg. 1) to attain the maximum
weight clique {3,4, 6} is summarized in Table 1.

Before its search, MaxWClique first calls the function ColorSort (line 4,
Alg. 1) to color the vertices in V' and then resorts these vertices in non-
decreasing order with respect to their color numbers, and inside color class by
non-increasing weights. After these coloring and resorting steps, V' becomes
V =16,1,2,5,3,7,4} with the respective coloring ColP = {1,1,2,2,3,3,4}.
Then at the first step of the algorithm, MazWClique chooses vertex 6 as the
branching vertex and adds this vertex to the current clique C, thus C' = {6}
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Table 1
The main steps of the MaxWClique algorithm applied to the example of Fig. 1

Step Depth of C P Algorithm process

recursion

Initially  Depth 1 0 {6,1,2,5,3,7,4} vertices in P are colored and re-sorted by non-
decreasing order with respect to their color num-
bers, and inside color class sorted by non-increasing
weights

Step 1 Depth 2 {6} {3,5,7,4} search the largest weight clique that contains vertex
6 in G, choose vertex 6 as the branching vertex and
add it to clique C, color and resort candidate set P

Step 2 Depth 3 {6,3} {4} choose vertex 3 as the branching vertex and add it
to clique C, color and resort candidate set P
Step 3 Depth 4 {6,3,4} 0 add 4 to clique C, since P = () and W (C) > W (C*),

C* and W(C*) are updated as C* = {3,4,6} and
W(C*) = 70 respectively. P = (), return to the prece-
dent level of recursion
Step 4 Depth 3 {6, 3} 0 P = (), return to the precedent level of recursion
Step 5 Depth 2 {6} {5,7,4} on backtracking, remove the already expanded vertex
3 from P, since W(C)+UB(P) = 30+40 < W(C*),
prune and return to the precedent level of recursion

Step 6 Depth 1 0 {1,2,5,3,7,4} since W(C) + UB(P) = 0 + 85 > W(C*), select
vertex 1 as the branching vertex
Step 7 Depth 2 {1} {2,5,3} search the largest weight clique in G — {6} that con-

tains vertex 1, add vertex 1 to clique C, color and
resort P, since W (C)+UB(P) = 25+40 < 70, prune
and return to the precedent level of recursion

Step 8 Depth 1 ] {2,5,3,7,4} search the largest weight clique in the remain-
ing graph not containing vertices 1 and 6 (P =
{2,5,3,7,4}), since W(C) + UB(P) = 0+ 60 <
W (C*), prune and the whole procedure stops

and P = {3,4,5,7}. Before moving to the next level of recursion, vertices in
P are colored and resorted by ColorSort, leading to P = {3,5,7,4} with the
respective coloring ColP = {1,1,1,2}. At the second step of the algorithm,
vertex 3 is selected as the branching vertex to expand the current clique C,
thus, C' = {6,3} and P = {4}. Once again, before going to the next level re-
cursion, ColorSort is called to color and resort P, thus P = {4} with coloring
ColP = {1}. At step three, the only vertex 4 in P is selected to join C' and, C'
and P become {6,3,4} and () respectively. Since P = () and W (C) > W(C*),
C* and the lower bound W (C*) are updated as C* = {3,4,6} and W (C*) =70
respectively. As P = (), MazWClique returns to the precedent level of recur-
sion. For step four, once again P = () when removing vertex 4, MaxzWClique
returns to the precedent level of recursion and examines the remaining ver-
tices in P. For step five where P = {5,7,4} with coloring ColP = {1,1,2}
when removing vertex 3, the upper bound UB(P) is computed as UB(P) =
W(Iy)+W(Iy) = 40. Since W (C)4+UB(P) = 30440 < W(C*), we can safely
prune the search here and MaxzW Cligue returns to the precedent level of re-
cursion. At step six, MaxWClique returns to the first level of recursion and
examines the left vertices in P excluding vertex 6 (i.e., P = {1,2,5,3,7,4}
with the respective coloring Col P = {1, 2,2, 3,3,4}). Since W(C)+UB(P) =
04 85 > W(C*), MazWClique chooses vertex 1 as the branching vertex and
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goes to the next level of recursion. For step seven, at this level of recursion,
C = {1}, vertices in P are colored and resorted as P = {2,5,3} (with col-
oring ColP = {1,1,2}). Since W(C) + UB(P) = 25+ 40 < W(C"), we
prune the search tree and once again return to the first level of recursion.
For step eight, C' = 0 and P = {2,5,3,7,4} (with ColP = {2,2,3,3,4}),
since W(C) 4+ UB(P) = 0+ 60 < W(C*), we prune the search tree and the
whole procedure stops. Finally, MazWClique returns the maximum weight
clique C* = {6, 3,4} with its weight W (C*) = 70. To complement these ex-
planations, Fig. 2 shows the search tree generated by MazWClique when it is
applied to the example of Fig. 1.
(161,253 7, 4]Q
A

6T 14 11 \
step 6 step 7 step 7 \ step 8

v \

[1][2, 5, 3] \
prune, backtrack

64
step 1. in Table 1

[6][3,5, 7, 4]

[112,5,3,7,4]

prune, finish

[6][5,7, 4]
prune, backtrack

[6, 3111
(6, 3,4]1]
P =, backtrack

Fig. 2. The search tree of the MaxWCClique algorithm applied to the example of Fig.
1. More details about steps 1 to 8 can be found in Table 1.

5 Experimental Results

In this section, we evaluate our MaxWClique algorithm on a large number of
WDP benchmark instances in the literature and compare our results with
those obtained by the general-purpose integer programming CPLEX 12.4
solver. Indeed, previous studies have showed that the general integer pro-
gramming approach based on CPLEX is highly effective to WDP in many
cases. In [30], it was shown that CPLEX 8.0 is comparable with one of the
best performing exact algorithms CABOB. Two early studies demonstrated
that CPLEX 6.5 is faster than (or comparable to) the first-generation special-
purpose exact search algorithms [10,28]. So when we compare our clique-based
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branch-and-bound algorithm against CPLEX 12.4, we are comparing our al-
gorithm against one of the state-of-the-art methods. For our experiments,
CPLEX 12.4 is run on the mathematical model defined in Eq.(1)-(3).

Our MazWClique algorithm was programmed in C (available from the au-
thors by request), and compiled with GNU gcc on an Intel Xeon E5440 with
2.83 GHz CPU and 8GB RAM without compilation optimization flag. When
solving the DIMACS machine benchmarks!, the run time on our machine is
0.31, 1.93 and 7.35 seconds respectively for graphs r300.5, r400.5 and r500.5.
For a fair comparison between MaxW Cligue and CPLEX 12.4, we ran both
software on the same computing platform.

5.1 Benchmark instances

Three sets of benchmark instances were considered in this paper to evaluate
the efficiency of our proposed MaxWClique approach. The first set of 500 in-
stances is composed of pre-generated problem instances, while the second and
third sets are random instances created by generators for combinatorial auc-
tions according to several distributions. The characteristics of these instances
are described in [17,20,28] and summarized as follows.

The first set of benchmarks was provided by Lau and Goh [17], and includes
500 instances with up to 1500 items and 1500 bids. These instances are divided
into 5 different groups, each group having 100 instances labeled as REL-m-n,
where m is the number of items and n is the number of bids. To generate these
instances, several factors are incorporated such as a pricing factor, a bidder
preference factor and a fairness factor in distributing items among bids. More
details about how these instances are generated can be found in [17].

The second test set of instances were obtained with a generator for combi-
natorial auctions provided by Sandholm [28], which can be used to generate
instances of different sizes and distributions. The following four auction dis-
tributions were used.

e Random(m,n): The n bids were generated using the following method. For
each bid, pick the number of items randomly from {1,2,....m}. Randomly
choose that many items without replacement from {1,2,...,m}. Pick the price
randomly from a uniform distribution on [0, 1].

o Weighted Random(m,n): As above, but pick the price randomly from a
uniform distribution on 0 and the number of items in the bid.

e Uniform(m,n,\): For each of the n bids, randomly choose A items without
replacement from {1,2,...,m}. Pick the price randomly from [0, 1].

! ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 2
Max W Clique versus CPLEX 12.4 on some of the REL-500-1000 instances

Instance Density Maz W Clique CPLEX

w Steps Time w Time
in101 0.31 72724.61 30711159 558.53 67101.94 3600
in102 0.29 72518.22 15407971 264.57 70292.58 3600
in103 0.30 72129.50 21705581 375.53 69703.05 3600
in104 0.30 72709.64 17867510 296.03 71579.58 3600
in105 0.29 75646.12 18855463 343.48 68431.12 3600
in106 0.29 71258.61 10649749 176.76 66621.12 3600
in107 0.30 69713.40 33379993 534.32 69182.50 3600
in108 0.31 75813.20 63070304 1089.81 74637.79 3600
in109 0.29 69475.89 12732376 219.96 65901.61 3600
inl10 0.29 68295.28 19924045 336.73 67618.87 3600
inl1l1 0.30 75133.29 26063679 458.04 72242.28 3600
inl112 0.30 71342.48 19503263 329.40 70588.82 3600
inl113 0.31 73365.87 39108287 718.52 70475.80 3600
inl114 0.30 69224.75 24946718 668.85 66757.96 3600
inl15 0.30 70221.56 16280138 267.73 66149.07 3600
inll6 0.31 70032.43 21235344 381.35 69308.00 3600
inll7 0.29 69982.83 16282639 289.80 69923.79 3600
inl18 0.31 72160.98 24555810 672.10 72160.98 3600
in119 0.30 67038.42 30748116 541.61 64934.13 3600
in120 0.32 75514.93 36458776 1042.98 74658.12 3600
Average 71715.10 24974346 478.30 69413.45 3600

e Decay(m,n,a): For each of the n bids, include a first item randomly selected
from {1,2,....m}. Then repeatedly add a new item randomly selected from
{1,2,...,m} with a probability of « until an item is rejected or all m items
are included in the bid. Pick the price randomly from a uniform distribution
on 0 and the number of items in the bid. In our experiments, the parameter
a was set equal to 0.75, since as indicated in [28], this setting leads to the
hardest instances on average (at least for the algorithm in [28]).

The third set of problem instances was generated by the CATS generator
(Combinatorial Auction Test Suite) introduced in [20]2. Five different auc-
tion distributions are available in the CATS suite: paths, regions, matching,
scheduling, and arbitrary. For each of these distributions, we used the default
parameters provided by CATS.

5.2 FExperimental results on the REL instances

In this section, we show the computational statistics obtained by our MaxzWClique
algorithm on the REL benchmark instances and compare our results with

2 http://www.cs.ubc.ca/$\sim$kevinlb/CATS
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Table 3
MaxWClique versus CPLEX 12.4 on some REL-1000-1000 instances

Instance Density Maz W Clique CPLEX

w Steps Time w Time
in201 0.15 81557.74 411331 3.07 79466.83 3600
in202 0.15 90708.12 573636 4.85 90537.28 3600
in203 0.16 86239.21 746917 6.06 86239.21 3600
in204 0.16 87075.42 876275 7.23 87075.42 3600
in205 0.15 86515.95 724793 5.75 84016.43 3600
in206 0.15 91518.96 449189 3.51 86888.23 3600
in207 0.16 93129.24 755874 6.13 89085.69 3600
in208 0.15 94904.67 419107 3.61 91782.04 3600
in209 0.15 87268.96 719742 5.08 83166.69 3600
in210 0.15 89962.39 493544 4.02 86940.49 3600
in211 0.15 84913.68 684138 4.96 84028.31 3600
in212 0.16 90778.20 850172 7.11 85390.73 3600
in213 0.16 85369.18 847181 6.61 83501.07 3600
in214 0.15 85181.60 700029 5.03 83554.16 3600
in215 0.17 91531.69 1560650 12.85 85965.20 3600
in216 0.16 91580.93 565825 4.79 85656.94 3600
in217 0.13 86962.92 215705 1.52 86962.92 3600
in218 0.16 94965.19 525335 4.46 88300.26 3600
in219 0.15 93586.43 524144 3.79 86006.20 3600
in220 0.17 89792.90 1181878 9.78 87883.45 3600
Average 89177.16 691273.25 5.51 86122.37 3600

those attained by the CPLEX 12.4 solver which was run on the SPP model
provided in [1]. As indicated in studies like [3,8], the REL benchmarks are diffi-
cult for CPLEX and some other exact WDP algorithms. We are unaware of any
exact WDP algorithm reporting results on the REL benchmarks to the best
of our knowledge. To obtain the results, the time limit for both Maz W Clique
and CPLEX 12.4 was set to 3600 seconds. If an approach fails to solve an
instance to optimality within the given time limit, we report the best results
(the lower bound) obtained by the approach and denote the computational
time as 3600 seconds.

Tables 2-6 summarize the computational results obtained by our Max W Clique
algorithm in comparison with those obtained by CPLEX 12.4 on the same set
of 94 REL instances which were used in previous studies like [3,8,37] to as-
sess the performance of heuristic approaches. Column 2 reports the density
of the transformed graph (i.e., the number of edges of the graph divided by
the number of edges of the complete graph of the same order). Columns 3
and 6 give respectively for MaxWClique and CPLEX 12.4 the optimal value
if an optimal solution is found or the best lower bound achieved if no optimal
solution is achieved within the time limit. Column 4 (denoted by Steps) indi-
cates the number of branching steps required by MaxWClique. Each branching
step corresponds to adding a vertex v € P to the current clique C'. Note that
the time reported for MazWClique is for the computation of MWCP only. It
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Table 4
Max W Clique versus CPLEX 12.4 on some of the REL-1000-500 instances

Instance Density Maz W Clique CPLEX

w Steps Time w Time
in401 0.14 77417.48 9991 0.06 77417.48 24.26
in402 0.14 76273.33 11167 0.06 76273.33 30.35
in403 0.15 74843.95 9870 0.05 74843.95 35.43
in404 0.16 78761.69 16068 0.09 78761.69 33.76
in405 0.16 75915.90 24609 0.12 75915.90 67.49
in406 0.14 72863.32 12441 0.06 72863.32 55.51
in407 0.17 76365.71 20623 0.09 76365.71 77.82
in408 0.15 77018.83 14625 0.07 77018.83 124.24
in409 0.13 73188.62 9462 0.06 73188.62 51.24
in410 0.16 73791.65 20860 0.12 73791.65 50.81
in411 0.15 73935.40 15787 0.06 73935.40 27.10
in412 0.16 75292.63 13065 0.07 75292.63 69.12
in413 0.16 74434.99 21079 0.10 74434.99 62.49
in414 0.17 77146.37 24569 0.11 77146.37 74.75
in415 0.14 73519.12 11299 0.06 73519.12 68.57
in416 0.16 73487.01 20287 0.09 73487.01 56.36
indl17 0.15 74981.35 13442 0.07 74981.35 49.13
in418 0.14 71404.84 10536 0.05 71404.84 28.75
in419 0.15 72505.21 13692 0.08 72505.21 40.36
in420 0.15 75510.68 12007 0.07 75510.68 54.17
in421 0.16 75694.94 17334 0.09 75694.94 27.50
in422 0.15 77443.90 14312 0.05 77443.90 28.30
in423 0.13 68134.35 7015 0.06 68134.35 35.17
in424 0.17 77352.75 20772 0.11 77352.75 49.28
in425 0.17 77333.91 20102 0.11 77333.91 49.21
in426 0.17 76430.18 21417 0.11 76430.18 211.26
in427 0.15 76387.56 16086 0.11 76387.56 57.56
in428 0.15 77384.94 13432 0.06 77384.94 52.00
in429 0.15 75540.96 16565 0.06 75540.96 61.19
in430 0.16 79038.75 17985 0.09 79038.75 66.95
Average 75313.34 15683.3 0.08 75313.34 57.33

does not include the pre-processing time to create the MWCP graph and the
time to map the solution of MWCP back to WDP. Including these two steps
slightly increases the computational time (less than 0.5 seconds).

From Tables 2-6, we observe that for all of these 94 selected REL instances, our
MazWClique algorithm is able to find the optimal solutions within the given
time limit. Concerning the results obtained by CPLEX, we observe that only
for the 30 REL-1000-500 instances, CPLEX is able to solve these instances
to optimality within the given time limit. For 55 of the 94 selected instances,
CPLEX fails to reach an optimal solution. For the other 9 instances, CPLEX
is able to reach an optimal solution but fails to prove its optimality. From the
table, it can also be seen that MaxWClique consistently outperforms CPLEX
by achieving better results in much shorter times or being faster than CPLEX
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Table 5
MaxWClique versus CPLEX 12.4 on some of the REL-1500-1500 instances

Instance Density Maz W Clique CPLEX
w Steps Time w Time
in601 0.09 108800.44 841358 8.01 105286.85 3600
in602 0.08 105611.47 514680 4.86 99254.88 3600
in603 0.08 105121.02 390253 3.77 101270.04 3600
in604 0.09 107733.80 1100930 10.00 105185.67 3600
in605 0.09 109840.98 723970 7.11 103694.50 3600
in606 0.09 107113.06 665305 6.31 107113.06 3600
in607 0.09 113180.28 718312 7.35 103095.66 3600
in608 0.09 105266.10 769076 6.84 99490.66 3600
in609 0.09 109472.33 574016 5.73 100895.86 3600
in610 0.10 113716.96 1293161 13.14 113716.96 3600
in611 0.09 106666.32 474365 4.53 106666.32 3600
in612 0.09 109796.70 614466 6.30 109796.70 3600
in613 0.09 107980.15 759740 7.29 99328.57 3600
in614 0.10 108364.57 932585 9.09 100513.13 3600
in615 0.08 110508.81 388152 3.62 10443321 3600
in616 0.09 109740.48 710625 6.69 108139.54 3600
in617 0.09 113302.43 691033 6.59 105899.16 3600
in618 0.10 111385.08 1462985 15.45 105154.80 3600
in619 0.09 107571.59 763031 7.27 98035.64 3600
in620 0.09 110937.97 773302 7.63 101712.44 3600
Average 109105.52 758067.25 7.38 103934.18 3600
Table 6 .
MaxWClique versus CPLEX 12.4 on some of the REL-1000-1500 instances
Instance Density Max W Clique CPLEX
w Steps Time w Time
in501 0.08 88656.95 879603 9.28 88656.95 3600
in502 0.08 86236.91 449725 4.56 83757.54 3600
in503 0.07 87812.37 590872 6.21 86318.17 3600
in504 0.10 85600.00 555385 5.55 84220.22 3600
Average 87076.55 618896.25 6.40 85738.22 3600
Table 7 ) .
Comparison of MaxW Clique and CPLEX on the five groups of 500 REL instances.
Instance ins Maz W Clique CPLEX
j22%% HTime 2257 HTime
REL-500-1000 100  71470.93  436.86 69178.52 3600
REL-1000-500 100  75540.68 0.08 75540.68 57.82
REL-1000-1000 100  89158.98  5.56 86107.85 3600
REL-1000-1500 100  89552.18  6.39 88072.36 3600
REL-1500-1500 100  108627.17  7.29 103469.53 3600
Average 86869.98  90.46 84473.78  2891.51
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Table 8
Comparison of MazWCligue and CPLEX on the Sandholm benchmarks. “-” denotes

that CPLEX ran out of memory within a time limit of 3600 seconds.

Instance ins Density MaxWClique CPLEX

bw HTime mw KTime
Random?2000-100 100 0.03 19.92 2.69 19.92 0.89
Random?2000-200 100 0.02 17.01 0.95 17.01 2.36
Random?2000-300 100 0.02 16.83 0.15 16.83 4.15
Random?2000-400 100 0.01 15.07 0.10 15.07 5.26
Random?2000-500 100 0.01 13.86 0.05 13.86 7.23
Wrandom2000-100 100 0.04 45.16 1.67 45.16 0.70
Wrandom2000-200 100 0.02 43.05 0.53 43.05 3.13
Wrandom2000-300 100 0.02 42.35 0.23 42.35 4.19
Wrandom2000-400 100 0.01 40.23 0.13 40.23 5.46
Wrandom2000-500 100 0.01 39.57 0.06 39.57 9.01
Uniform2000-100-20 100 0.01 2.71 0.05 2.71 110.82
Uniform2000-200-20 100 0.10 4.29 0.25 4.29 189.21
Uniform2000-300_20 100 0.24 6.19 5.73 6.19 1423.57
Uniform2000-400-20 100 0.35 8.28 112.36 7.85 -
Uniform2000-500-20 100 0.45 9.26 1206.35 8.93 -
Decay2000-100 100 0.78 68.78 3600.00 85.19 0.05
Decay2000-200 100 0.89 122.79 3600.00 166.26 0.11
Decay2000-300 100 0.93 184.07 3600.00 223.12 2.33
Decay2000-400 100 0.95 230.26 3600.00 277.90 2.45
Decay2000-500 100 0.96 269.07 3600.00 321.59 2.31

for every instance.

To further illustrate the effectiveness of the MazWClique algorithm for the
instances of this test set, we summarize in Table 7 the averaged results ob-
tained by our MaxWClique algorithm in comparison with those obtained by
CPLEX on all the 500 REL instances of the five groups of the first test set. In
Table 7, column py corresponds to the arithmetic average revenue obtained
by the corresponding approach on the 100 instances of each group while col-
umn [ip;me reports the average time in second. The results reported in Table
7 further confirm that MazWClique dominates the CPLEX 12.4 solver on
the whole set of the REL instances. Indeed, on four of the five groups of in-
stances, MaxW Clique is able to achieve better results in much shorter times
than CPLEX, while on the other remaining group (REL-1000-500) where both
MaxWCligue and CPLEX reach the same revenue, Maxz W Clique remains much
faster.

5.3  FExperimental results on the Sandholm benchmarks

In this section, we test our MaxWClique algorithm on the four Sandholm’s
distributions. To produce the test instances for each distribution, we fixed the
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number of bids (n) equal to 2000 and varied the number of items (m) from 100
to 500. For the uniform distribution, we fixed the number of items contained
in each bid equal to 20. For each pair of fixed m and n, 100 problem instances
were generated.

Table 8 summarizes the comparison results between Maz W Clique and CPLEX.
Each row in Table 8 corresponds to the average results of MaxWClique and
CPLEX on the 100 instances of each pair of fixed m and n. From Table 8, we
observe that the random distribution and the weighted random distribution
are easy for both algorithms. It is also interesting to notice that the algorithms
achieve their performance very differently. The performance of MaxW Clique
increases with the decrease of the number of items due to the decrease of the
density of the transformed graphs, while the reverse is true for the performance
of CPLEX. We also notice that on the random and weighted random distri-
butions, the speeds are comparable, but MaxWClique is slightly faster than
CPLEX. The uniform distribution is much harder than the random distribu-
tion and the weighted random distribution for both algorithms. The difficulty
of the instances increases dramatically with the number of items for both al-
gorithms. MazWClique performs significantly better than the CPLEX on the
uniform distribution, for two sets of benchmark instances (Uniform200-400-20
and Uniform200_500_20), CPLEX fails to report a solution since it runs out
of memory. The decay distribution is significantly harder for the Maz W Clique
algorithm, for all of the five sets of decay distribution instances, Max W Clique
fails to find the optimal solution due to the high density of the transformed
graphs. However, the decay distribution seems to be easy for CPLEX which
dominates MaxWClique by achieving better results in much shorter times on
this distribution.

5.4 Ezperimental results on the CATS distributions

We turn now our attention to the performance of MazWClique on the five
CATS distributions: paths, regions, matching, scheduling and arbitrary. For
each of the distributions, we used the default parameters in the CATS instance
generators, fixed the number of bids to 2000 (n) and varied the number of items
(m) from 20 to 100 (We also found that the instances with more than 100
items are significantly difficult for our MazWClique algorithm). For each pair
of fixed m and n, 100 problem instances were generated. Table 9 summarizes
the comparison results between MaxWClique and CPLEX.

From Table 9, we observe that on all of the five CATS distributions, CPLEX
performs much better and is significantly faster than our MaxWClique algo-
rithm. Indeed, our MaxWClique algorithm performs poorly on the CATS test
suite since it is able to find the optimal solution only for some instances with
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Table 9
Comparison of MaxzW Clique and CPLEX on the CATS distributions.

Instance ins Density MazWClique CPLEX
rw HKTime KW HTime

Arbitrary2000-20 100 0.08 2401.65 2.83 2401.65 0.11
Arbitrary2000-40 100 0.18 4348.33 3600.00 4348.33 0.20
Arbitrary2000_60 100 0.25 4839.06 3600.00 5010.08 0.39
Arbitrary2000-80 100 0.34 6431.46 3600.00 6815.30 0.53
Arbitrary2000-100 100 0.50 7722.34 3600.00 8295.74 9.98
Matching2000_20 100 0.73 83.42 37.08 83.42 0.01
Matching2000-40 100 0.86 111.29 3600.00 111.29 0.02
Matching2000-60 100 0.92 252.88 3600.00 254.56 0.01
Matching2000_80 100 0.95 303.11 3600.00 311.98 0.03
Matching2000-100 100 0.96 424.73 3600.00 464.67 0.03
Paths2000-20 100 0.82 14.57 3600.00 14.57 0.02
Paths2000-40 100 0.84 19.17 3600.00 20.91 0.03
Paths2000-60 100 0.81 21.45 3600.00 24.95 0.05
Paths2000_80 100 0.81 29.52 3600.00 33.43 0.05
Paths2000-100 100 0.81 31.27 3600.00 36.15 0.06
Regions2000_20 100 0.03 2702.50 3.16 2702.50 0.06
Regions2000-40 100 0.22 3427.92 3600.00 3427.92 0.11
Regions2000-60 100 0.36 4915.37 3600.00 5003.04 0.13
Regions2000-80 100 0.41 6759.59 3600.00 7126.73 0.11
Regions2000-100 100 0.55 7115.06 3600.00 7747.56 0.31
Scheduling2000-20 100 0.52 45.03 3365.69 45.03 0.02
Scheduling2000-40 100 0.74 79.63 3600.00 81.31 0.03
Scheduling2000_60 100 0.82 122.76 3600.00 124.62 0.05
Scheduling2000-80 100 0.87 166.68 3600.00 166.68 0.05
Scheduling2000-100 100 0.89 211.39 3600.00 216.11 0.05

20 items. This may be explained by the fact that (see also the analysis in
the next section), the instances from the CATS distributions usually contain
only small numbers of items per bid, which leads to dense graphs which are
much harder for MaxWClique to find the maximum weight clique. Inversely,
as indicated in studies like [30], approaches based on the ILP model such as
CPLEX seem more appropriate to handle these cases with short bids.

6 Analysis of the performance of MazWClique

6.1 Performance of MazWClique on WDP

Our MaxWClique approach seeks the maximum weight clique in the trans-
formed graph to solve the WDP problem. In this section, we provide some
insights into the performance of MaxWClique and try to identify the classes
of problem instances which are the most suitable and most difficult for this
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clique-based approach. As we observed from experimental results presented
in Tables 2-9, it seems that the density of the transformed graph impacts
on the behavior of the MazWClique algorithm and there is a clear correla-
tion between the instance difficulty and the density of the transformed graph.
Obviously, graphs with a low density is much easier for MazWClique, since
for sparse graphs, the number of the vertices in the candidate set P decreases
more quickly as the current clique C' expands (see Section 4.1). Thus, from the
perspective of the search tree, the path from the root node to the leaf node
is much shorter for sparse graphs, leading to a considerably smaller search
tree for the MaxWClique algorithm. On the other hand, the situation is dif-
ferent for graphs with a high density where each vertex has more adjacent
vertices. Indeed, since the vertices adjacent to a specific vertex are kept in
the candidate set P for further recursive examination, the depth of the search
tree will increase and more computational time will be required. However, the
case of a complete graph is an exception for MaxWClique. Since in this case,
the maximum weight clique can be immediately reached by adding all the
vertices in the graph to the clique. Then at each level of the recursion, since
the pruning condition W(C') + UB(P) < W(C*) (W(C*) = Y1, w;) always
holds, MazWClique can prune very effectively the search tree, leading to fast
completion of the search procedure.

Thus, it can be expected that our MaxWClique algorithm is especially effec-
tive for WDP instances with a large numbers of items per bid. Indeed, for
an instance with many items per bid, two bids have a higher chance of being
conflicting by sharing a common item, thus leading to a sparser transformed
graph. This can explain why our MazWClique algorithm shows excellent per-
formances on most of the tested REL benchmark instances and on the in-
stances from the random, weighted random and uniform distributions of the
Sandholm test suite. We will provide additional computational evidence in
Section 6.3 to support this expectation. Reversely, the clique-based approach
may run into trouble on instances with small numbers of items per bid (like
the decay distribution of the Sandholm test suite and the CATS distributions)
since they lead to much denser graphs. On the other hand, approaches based
on the ILP model like CPLEX tend to handle such instances well thanks to
the multiple and dedicated technologies (pre-processing...) used. Thus, our
clique-based approach can be considered as a complementary method with
respect to other exact WDP methods.

6.2 Performance of MaxWClique on MWCP

Our MaxWClique algorithm is a clique-based approach, it is interesting to in-
vestigate whether Max W Clique remains competitive on the original maximum
weight clique problem. To answer this question, we make a comparison with
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Table 10
Comparison of four MWCP algorithms on the set of 15 MWCP instances. The best

result for each instance is marked in bold.

N Density MaxW Clique Cliquer DK OK
T000 0.40 727 2.12 5.54 15.18
1000 0.50 88.40 36.13 108.39 415.46
900 0.50 48.31 18.02 67.29 188.35
700 0.60 156.72 90.12 429.75 1038.35
500 0.60 14.18 13.75 24.13 72.73
500 0.70 233.12 324.23 1082.56 7431.88
300 0.70 3.22 4.27 12.55 32.78
300 0.80 78.12 280.32 712.25 9918.46
200 0.80 2.13 6.02 12.38 38.35
200 0.90 29.53 1640.02 1080.49 > 10800
150 0.90 1.72 36.23 30.56 968.00
150 0.95 4.05 1846.12 232.30 > 10800
150 0.98 0.01 1942.13 297.67 > 10800
100 0.95 0.02 1.45 0.86 57.81
100 0.98 0.01 0.65 0.03 115.75

two well-known and fast exact algorithms in the literature for MWCP: the
Cliquer algorithm proposed by Ostergad [22] and the DK algorithm proposed
by Kumlander [11].

For the Cliquer algorithm, we used its last version released in 2008 % and ran it
with its default parameters. For the DK algorithm, we downloaded its source
code which was implemented in VB*. Given that MazWClique and Cliquer
were written in C which is much faster than VB, we faithfully translated DK’s
VB code in C?. In addition, we also included in our comparison another
version of Cliguer implemented (in VB) by Kumlander[12]¢ that was used
in [12] to compare with the DK algorithm. Again, we faithfully translated
the VB code into a faster C code and denote this Cliquer implementation
by OK. Note that in OK, the initial vertex ordering was given by a greedy
vertex coloring, whereas in the original Cliguer algorithm of [22], the vertices
were sorted by vertex weights and the sum of weights of adjacent vertices. As
observed in [34], these two ordering strategies degrade the performance of OK
relative to the original Cliquer.

For this experiment, we used gcc to compile (with no optimization option)
the four compared algorithms (MaxWClique, Cliquer, DK, and OK ). Our
comparison was based on a set of 15 random graphs with 100 to 1000 vertices,
where the weights of vertices were randomly assigned from 1 to 10. Table 10
summarizes the run times of Cliquer, DK and MaxzWClique to solve these

3 Available at: http://users.tkk.fi/pat/cliquer.html

4 Available at: http://www.kumlander.eu/graph/Weighted/clsVColorBTw.txt
> The C code is available at: www.info.univ-angers.fr/pub/hao/MaxWClique.
html

6 http://www.kumlander.eu/graph/Weighted/clsPatricWeight.txt

27



instances. Columns 1 and 2 respectively indicate the number of vertices and
the densities of the graphs. Table 10 discloses that MaxWClique competes
favorably with Cliquer. Moreover, these two methods perform quite differently
on sparse and dense graphs and complement each other. Cliquer is faster
than MaxWClique for the relatively easy sparse graphs (with density < 0.7).
However, MaxWClique is much faster than Cliquer for graphs of density > 0.7,
and the speed-up also grows with the density of the graph. With respect to
DK, we observe again that MaxWClique competes very favorably. Indeed,
MaxWClique is faster than DK over all instances except the first instance
where MaxWClique is slightly slower. When comparing DK and Cliquer, we
note that DK is faster for graphs with density > 0.8 while the reverse is true
for graphs with density < 0.8. Finally, the results in Table 10 also reveal that
DK is faster than OK for all tested instances, confirming the contribution of
sorting the initial vertices by weights to the overall performance of the Cliquer
algorithm, as already observed in [34].

6.3 Clique approach for WDP: exact algorithm vs heuristic algorithm

In [37], the authors explored the clique-based approach for solving WDP by ap-
plying a clique heuristic called MN/TS. Based on a large computational study
on various WDP benchmark instances, they showed that MN/TS competes
very favorably with several heuristic algorithms specially designed for WDP.
In this section, we carry out an additional study to contrast MaxW Clique
of this paper and MN /TS of [37]. Since we are comparing an ezact algorithm
(MaxWClique) which guarantees the optimality of its solutions and a heuristic
algorithm (MN/TS) which only provides lower bounds, some cautions must
be taken. In fact, as a heuristic, MN /TS just tries to reach a solution as good
as possible. Unlike MN/TS (and any other heuristics), the exact MaxWClique
algorithm not only attains the optimal solution C*, but also proves there
does not exist any solution better than C*. In many cases, even if the best
(optimal) solution can be found at the early stage of the search process, the
algorithm needs additional time to prove the optimality of the found solution.
As a consequence, it is not meaningful to directly compare the computing
times required by an exact method and a heuristic. Yet, it is interesting to
contrast these two different solution approaches (exact and heuristic) via the
clique-based approach for WDP.

For this purpose, we applied MaxWClique to solve exactly 25 REL and Sand-
holm benchmark instances used in [37] and reported our results in Table 11
along with the results of MN/TS extracted from [37]. Note that both algo-
rithms were programmed in C and run on the same computing platform. In Ta-
ble 11, the time of MN/TS (T},;;) is the time for MN /TS to hit for the first time
its best results (lower bounds) and each row in Table 11 corresponds to a sin-
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Table 11
MaxWClique versus MN/TS on 25 REL and Sandholm instances

Instance Density Max W Clique MN/TS

w Ts Thit w Thit
in101 0.31 72724.61 558.53 65.29 72724.61 5.46
in102 0.29 72518.22 264.57 29.19 72518.22 19.91
in103 0.30 72129.50 375.53 183.23 72129.50 18.52
in104 0.30 72709.64 296.03 125.56 72709.64 7.33
in201 0.15 81557.74 3.07 0.22 81557.74 9.45
in202 0.15 90708.12 4.85 0.58 90708.12 2.47
in203 0.16 86239.21 6.06 0.46 86239.21 3.88
in204 0.16 87075.42 7.23 0.39 87075.42 2.67
in401 0.14 77417.48 0.06 0.01 76273.33 0.16
in402 0.14 76273.33 0.06 0.02 76273.33 0.38
in403 0.15 74843.95 0.05 0.03 74843.95 3.02
in404 0.16 78761.69 0.09 0.03 78761.69 0.87
in501 0.08 88656.95 9.28 1.02 88656.95 1.47
in502 0.08 86236.91 4.56 0.80 86236.91 1.76
in503 0.07 87812.37 6.21 1.86 87812.37 19.63
in504 0.10 85600.00 5.55 1.63 85600.00 4.62
in601 0.09 108800.44 8.01 0.83 108800.44 9.12
in602 0.08 105611.47 4.86 0.89 105611.47 1.72
in603 0.08 105121.02 3.77 1.03 105121.02 1.21
in604 0.09 107733.80 10.00 3.15 107733.80 16.62
Random2000-100 0.03 18.16 1.89 1.05 18.16 0.17
Wrandom2000-100 0.03 43.52 2.09 1.08 43.52 7.02
Uniform2000.100-10 0.33 6.85 80.14 19.66 6.85 19.17
Decay2000-100 0.78 68.13 3600.00 3313.15 86.37 217.96
Decay2000-200 0.89 125.88 3600.00 3215.32 159.18 220.01

gle instance. To make a fair comparison, for the exact MazW Clique algorithm,
we reported in Table 11 the time for MazWClique to hit the optimal results
(Thit) as well as the time for MaxWClique to complete its search (i.e., prove
the optimality of the solution found) (7). In some sense, one can compare
the two Tj;; columns of MN /TS and Max W Clique. From Table 11, we observe
that MazWClique hits its best solutions quickly (7};), especially for the in-
stances with low density (also see the analysis of Section 6.1), though for some
instances with high density (such as the two ‘decay’ instances), MaxWClique
performs much worse than MN/TS. Naturally, MazWClique requires in gen-
eral much more time (7}) to prove the optimality of it solutions.

To further highlight the advantage of our Maz W Clique algorithm over MN /TS
for solving large sparse graphs (see also Section 6.1), we tested both algorithms
on 24 groups (10 graphs per group) of randomly generated large sparse graphs
with 20000 to 50000 vertices and a density ranging from 0.02 to 0.10. For
each given N (vertices) and Density, we generated 10 random graphs, where
the vertices were assigned a random weight from 1 to 1000. We used both
MazWCliqgue and MN/TS to solve each of these 240 instances with a time
limit of 300 seconds (the same time limit as used in [37] for MN/TS). We
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Table 12
Comparison of MazWClique and MN /TS on 24 families of 240 randomly generated

large sparse graphs under a time limit of 300 seconds (the same timeout limit as in
[37]).

N ins Density MazWClique MN/TS

Hrw KTy KTy KW KTy, ,s
20000 10 0.02 4054.6* 18.79 6.25 3899.0 189.10
20000 10 0.04 4933.3* 29.95 15.69 4780.0 236.02
20000 10 0.06 5573.5* 64.26 28.78 5333.3 135.96
20000 10 0.08 5917.2* 143.01 98.47 5763.6 226.18
20000 10 0.10 6351.7* 286.36 115.32 6253.5 223.23
25000 10 0.02 4294.9* 21.25 12.10 3922.4 170.56
25000 10 0.04 4945.1* 52.74 21.15 4796.9 153.65
25000 10 0.06 5623.0* 123.39 75.28 5436.8 139.18
25000 10 0.08 6220.8* 271.85 118.69 5768.3 146.75
25000 10 0.10 6521.9 > 300.00 287.87 6296.2 191.28
30000 10 0.02 4424.4* 28.29 19.56 4165.0 102.62
30000 10 0.04 5170.3* 83.95 39.28 4842.1 189.63
30000 10 0.06 5719.9* 229.08 139.84 5561.2 142.29
30000 10 0.08 6236.1 > 300.00 279.23 5995.6 251.62
35000 10 0.02 4592.2* 40.66 16.68 4197.7 115.71
35000 10 0.04 5184.5* 131.19 52.28 4880.9 165.23
35000 10 0.06 5752.9* 285.27 172.56 5595.2 211.95
40000 10 0.02 4645.7* 58.46 36.32 4209.9 233.31
40000 10 0.04 5244.6* 190.58 81.21 4935.4 145.41
40000 10 0.06 5946.8 > 300.00 268.02 5569.3 231.58
45000 10 0.02 4667.3* 67.23 42.60 4223.8 145.92
45000 10 0.04 5249.1* 223.69 136.14 4959.7 231.76
50000 10 0.02 4685.5* 78.18 43.95 4290.9 145.42
50000 10 0.04 5475.9* 269.69 168.20 5029.2 218.05

summarized in Table 12 the comparative results of MazWClique and MN /TS
(averaged over the 10 instances of each group).

The results of Table 12 show a clear dominance of MazWClique over MN /TS
on these graphs. For each of the 24 groups of instances, the MaxWClique algo-
rithm attains a much larger average weight when compared to MN/TS. Partic-
ularly, for most of the tested instances (those marked with an asterisk in Table
12), our MaxWClique algorithm is able to complete its search (i.e., prove the
optimality of the solution found) within the given timeout limit while MN /TS
only finds much worse sub-optimal solutions. We also tested both algorithms
under relaxed time conditions and observed that MaxWClique always dom-
inates MN/TS on these large sparse graphs even if MN/TS finds improved
solutions. The outcomes of this experiment are consistent with those of Sec-
tion 6.1 and further confirm the effectiveness of the MaxWClique algorithm
for solving large sparse graphs which remain difficult for MN /TS.

To summarize, with the clique-based approach, exact algorithms like Maxz W Clique
and heuristic algorithms like MN /TS are complementary approaches and can
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be used to solve instances of different characteristics. In particular, Max W Clique
is suitable for solving instances with low density while MN/TS is more effec-

tive for solving instances with high density. Considering these two solution

approaches together, we conclude that these approaches enlarge the class of

WDP instances that can be solved exactly or approximately with respect to

the existing WDP approaches. Finally, from a more general perspective, these

clique-based approaches could also be useful to handle large graphs in other

settings like social network analysis [5].

6.4 Analysis of the sorting and branching strategy

As shown in [12], sorting and branching are very important since they can
greatly affect the performance of a maximum weight clique algorithm. In our
MaxWClique algorithm, we employ a coloring based vertex sorting technique,
which first sorts vertices by color numbers in increasing order, and then inside
color class by weights in decreasing order. Further more, before the coloring
procedure is applied, all vertices presented to the greedy coloring procedure
are sorted by weights in descending order. Thus, the color class with a smaller
color number constructed by our greedy coloring procedure will include ver-
tices of higher weights. Since the branching rule of MaxW Clique selects these
sorted vertices to join the clique in order, our MaxzWClique algorithm favors
the vertices with higher weights when branching. In Section 4.3, we put for-
ward some expected advantages of our sorting and branching strategy. In this
section, we provide experimental evidences to support these expectations. For
this purpose, we compare our sorting and branching strategy (denoted by Si)
with two other strategies, Ss, sorting vertices by color numbers in decreasing
order (such as Cy,Cy_1,...,1), and inside color class by weights in decreas-
ing order, and S3, sorting vertices by color numbers in decreasing order, and
inside color class by weights in increasing order. Detailed experiments with
these three sorting strategies were conducted on 6 selected WDP instances.
For a fair comparison, we used the same greedy coloring procedure (Alg. 2)
and the same upper bounding strategy based on graph coloring.

The computational results are provided in Table 13 where we show the time
required by the B&B algorithm with each different strategy to solve a given
instance. As we can observe, the B&B algorithm with our sorting and branch-
ing strategy performs much better than the algorithms with the two other
strategies, showing the merit of our adopted sorting and branching strategy.
Finally, we mention that several similar sorting and branching strategies were
developed and analyzed in [30], showing the interest of preferring to choose
bids (vertices) with large profits (high weights) as a good branching technique.
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Table 13 ) . ) .
Comparison of three different sorting and branching strategies.

Instance Density Three sorting and branching strategies
S1 S S3

in101 0.31 558.53 1172.91 1731.92
in201 0.15 3.07 4.51 5.31
in401 0.14 0.06 0.07 0.08
in501 0.08 9.28 15.36 19.58
in601 0.09 8.01 13.87 17.02
Random?2000-100 0.03 2.69 3.02 3.58
Uniform200-400-20 0.35 112.36 280.90 393.26

7 Future research direction

As future work, one would like to investigate how other clique-based exact
algorithms perform on the WDP problem. Since different clique-based algo-
rithms are efficient for different classes of WDP instances. Such an investiga-
tion may enlarge the classes of WDP that can be effectively solved.

In addition, it would be interesting to explore the possibilities of adapting the
proposed algorithm to other WDP variants with other constraints and business
rules. In particular, the following issues could be investigated. First, we may
modify transformation rules from WDP to MWCP. For instance, in some
settings, a participant may wish to submit two or more bids but require that
at most one bid will be allocated [19]. To handle this additional constraint,
the transformation rule from WDP to MWCP can be modified as follows:
any two vertices in the transformed MWCP instance are connected by an
edge if and only if the corresponding bids share no common item and are not
submitted by the same participant, implying that the two corresponding bids
can be accepted together as winning bids. Second, we may modify the objective
function of the algorithm. For instance, in some situations, the allocation
rule seeks to maximize the total socially efficient outcomes. In this case, we
can adjust our objective function value by further including the costs of all
participants. Third, we may use our algorithm as an independent component
for more complex auction situations. For instance, the iterative combinatorial
auctions [24] consists of multi-round auctions and can be decomposed into
several single-round auctions. For each single round auction, our algorithm
can be directly applied to determine an optimal allocation.

Finally, contrary to the maximum clique problem which is one of the most
studied combinatorial problems for a long time, its vertex weight version (i.e.,
the MWCP problem) is much less studied and only few exact algorithms
exist. Moreover, there are currently no well-defined benchmark instances for
performance assessment of a MWCP algorithm. Usually, the MWCP instances
reported in the published papers are not available. With this work, we have
generated a large number of MWCP instances with quite different structures
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by transforming various WDP instances. Clearly, these instances can form
the basis of a standard benchmark for the MWCP problem. As it is shown in
Sections 5 and 6.2, the proposed Max W CClique algorithm performs particularly
well on some classes of instances, providing some good indications about our
algorithm for the maximum weight clique problem.

8 Conclusion

Combinatorial auctions find more and more applications in divers domains,
but determining the winners in combinatorial auctions is a hard combinatorial
problem. In this paper, we have investigated an approach which transforms
the optimal winner determination problem into the maximum weight clique
problem. To solve the later clique problem, we introduced MazWClique, a
branch-and-bound algorithm which integrates effective bounding and branch-
ing strategies using a dedicated vertex coloring procedure.

We have evaluated extensively the performance of the proposed algorithm
via a large experimental assessment with three well-known test suites (REL,
Sandholm, CATS) from the literature. We have shown that in many cases,
this clique-based algorithm can achieve very competitive results compared to
the powerful CPLEX 12.4 solver, which is known to be one of the current best
performing exact solvers for WDP. In particular, this clique-based approach is
able to successfully solve the whole set of the REL instances, which are diffi-
cult for both exact and heuristic approaches in the literature. In addition, the
proposed algorithm runs in a linear space, while CPLEX has an exponential
space complexity, and runs out of virtual memory in some cases. The experi-
ments have also disclosed that the clique-based approach performs much worse
than CPLEX for the CATS distributions. Often this corresponds to problem
instances with a short list of items per bid (leading to dense graphs) where
other approaches like CABOB [30] and CPLEX perform very well. To sum,
since the proposed MaxW Clique algorithm and existing approaches are suit-
able for different classes of problem instances, they all together cover a larger
spectrum of cases that can be solved effectively. In this sense, Maz W Clique is
not really a competitor, instead, it constitutes an interesting alternative and
complementary approach to the important winner determination problem.

Finally, MazW Clique enriches the family of available algorithms for maximum
clique problems and can be advantageously employed to enlarge the class of
MCP and MWCP instances that can be solved exactly. Moreover, the various
types of WDP instances used in this paper can constitute the basis for a future
standard benchmark for the MWCP problem.
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