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Abstract

The family traveling salesman problem with incompatibility constraints
(FTSP-IC) is a variant of the well-known traveling salesman problem. Given a set
of candidate nodes divided into several subsets (families), the FTSP-IC is to find
several routes such that the sum of their total traveling distance is minimized,
while ensuring a predetermined number of nodes from each family is visited and
satisfying the incompatibility constraints. The FTSP-IC has a number of real-life
applications, yet it is challenging to solve the problem due to its NP-hard nature.
In this work, we introduce a competitive intensification-driven search algorithm
for solving this relevant problem. The proposed algorithm significantly intensifies
the search by performing extensive searches in the nearby area of discovered local
optima. Computational results on 63 benchmark instances from the literature
show that our algorithm is able to improve 29 best-know solutions (new upper
bounds) and match all the remaining 34 proven optimal solutions. The impacts of
the key components of the algorithm on its performance are experimentally
analyzed.
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1 Introduction1

As a generalization of the conventional traveling salesman problem (TSP),2

the family traveling salesman problem (FTSP) (Morán-Mirabal et al., 2014) is3

defined as follows. Given a complete and directed graph G(V,E), V = {0}∪Vc4

is the set of nodes, where 0 denotes the depot and Vc is the set of customers.5

E is the edge set in which each edge (i, j) ∈ E is assigned a cost (distance)6

dij. The customer set Vc = {1, 2, ..., n} is divided into L subsets (families), i.e.,7

{F1, F2, ..., FL} (
L⋃
l=1

Fl = Vc and Fl1 ∩ Fl2 = ∅, l1 6= l2, ∀l1, l2 ∈ {1, 2, ..., L}).8

Herein, F(i) ∈ {1, 2, ..., L} is the family of the customer i. The salesman starts9

from the depot 0, and selects at least hl (0 ≤ hl ≤ |Fl|,∀l ∈ {1, 2, ..., L})10

different nodes from the family Fl to visit. The goal is to find a route that11

minimizes the total traveling distance. As an illustrative example, Figure 1(a)12

shows four families where each family contains several customers. The number13

of customers to visit in families 1 to 4 is 3, 1, 3, and 2, respectively. Then, the14

traveling salesman needs to choose a shortest route that starts and ends at15

the depot node, while meeting the requirement to visit the given number of16

customers in each family. Figure 1(a) shows a feasible FTSP solution for this17

example.18

In this study, we address the family traveling salesman problem with19

incompatibility constraints (FTSP-IC) as introduced by Bernardino and20

Paias (2022). This problem involves managing incompatibility conflicts21

between different families, which may naturally lead to more than one route22

in a feasible solution. Starting from a central depot, the salesman must23

choose at least hl customers from each family Fl, where 0 ≤ hl ≤ |Fl| for all24

l ∈ {1, 2, ..., L}. The selected customers are then organized into multiple25

routes designed to cover all chosen customers with the minimum total26

traveling distance. Due to incompatibility constraints, nodes (representing27

customers) belonging to incompatible families cannot be visited within the28

same route. Therefore, the salesman needs to plan more than one route that29

minimize total travel distance while adhering to these constraints. To model30

these constraints, FTSP-IC introduces an L × L matrix MF , where31

MF [l1][l2] = true indicates that the customers of the family l1 and l2 can be32

visited together in a route. The presence of incompatibility constraints33

inherently allows for multiple routes in a feasible solution, rendering34

FTSP-IC more complex compared to the standard FTSP.35

Figure 1(b) shows an illustrative example of the FTSP-IC. In this case, there36

are incompatibility constraints between families 1 and 4 as well as families37

2 and 3, which means that the conflicting families cannot be visited in the38

∗ Corresponding author.
Email address: jintong.ren@hhu.edu.cn (Jintong Ren).
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same route. Therefore, a feasible solution of the FTSP could be infeasible39

for the FTSP-IC due to the incompatibility constraints. A feasible FTSP-IC40

solution containing two routes is shown in Figure 1(b). Because the solution41

of the FTSP-IC contains multiple routes, its solution representation is a two-42

dimensional array, where each row of the array represents a route.43
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(b) Example of the FTSP-IC
model

Fig. 1. Illustrative examples of the FTSP model and the FTSP-IC model.

Like other TSP models (Chisman, 1975; Jünger et al., 1995; Baker, 1983;44

Anily and Mosheiov, 1994; Gendreau et al., 1996; Feillet et al., 2005; Bektas,45

2006; Li et al., 2014; Agatz et al., 2018; Zhu et al., 2022; Liu et al., 2024),46

the FTSP-IC is widely used in practical applications. For example, we47

consider the scenario in the filed of supply chain distribution. Suppose that a48

supply chain network is divided into several regions, each region containing a49

number of warehouses. Due to geographical limitations, business50

requirements or operational policy differences, the delivery man needs to51

visit a specified number of warehouses in each region. Additionally, there are52

some conflicting constraints between different regions, meaning that the53

delivery man cannot visit two conflicting regions in the same route. The goal54

of this problem is to complete the delivery tasks in the supply chain while55

satisfying the conflicting constraints and minimizing the total traveling56

distance of the delivery routes. This problem is equivalent to the FTSP-IC57

when a family corresponds to a region of the supply chain and a node of the58

family indicates a warehouse of the region. Another example is the problem59

of planning the route of a patroller or inspector. Suppose they need to visit a60

certain number of points within a number of regions to be inspected. Due to61

factors such as human resources, timeliness and regional representativeness,62

they only need to visit certain nodes within designated areas to understand63

the overall situation of the entire region. This allows them to cover more64

areas within the limited patrol time. There are conflicting constraints65

between some regions due to location or security factors. The objective of66
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the problem is to complete the inspection task with the shortest route while67

satisfying the constraints. The FTSP-IC model can be used to conveniently68

represent this scenario, where each family corresponds to a check region and69

each node corresponds to a check point.70

Due to its relevance, the FTSP has drawn growing interest in recent years,71

which is related to the FTSP-IC studied in this work. Morán-Mirabal et al.72

(2014) introduced an integer programming model and benchmark instances of73

the FTSP for the first time and successfully solved small-size instances using74

the CPLEX solver. They also designed two randomized heuristics: genetic75

algorithm (GA) and a greedy randomized adaptive search procedure (GRASP)76

to find good near-optimal solutions of the FTSP. Bernardino and Paias (2018)77

proposed a number of compact and non-compact formulations of the FTSP78

for the first time and designed an iterative local search algorithm (ILS) for79

solving the FTSP effectively. Pop et al. (2018) decomposed FTSP into two80

subproblems that can be solved separately, thus obtaining several competitive81

results. The first macro-level subproblem is solved by the GA to determine82

the tours for visiting the families and the second micro-level subproblem is83

solved optimally by the Concorde TSP solver (Applegate et al. (2006)) to84

find the minimum-cost tour. Later, Bernardino and Paias (2021) proposed85

three novel heuristic approaches to obtain better upper bounds of the FTSP,86

i.e., a hybrid algorithm that integrates a branch-and-cut algorithm with a87

local search procedure, an easily implementable GA and an enhanced ILS88

algorithm.89

The above studies provide effective solution methods for solving the FTSP,90

however, only few algorithms have been introduced for the FTSP-IC.91

Bernardino and Paias (2022) introduced the compact and non-compact92

models of this problem for the first time and generated the benchmark93

instances of the FTSP-IC according to the instances of FTSP. They designed94

a branch-and-cut algorithm to solve small-size instances optimally and95

developed two heuristic approaches for large-size instances, i.e., an ant96

colony optimization (ACO) algorithm and an ILS algorithm. These two97

state-of-the-art algorithms will be used as the reference algorithms for our98

comparative experiments.99

In this work, we contribute to the advancement of solving the FTSP-IC by100

introducing a novel intensification-driven search algorithm (IDSA). The main101

contributions are summarized as follows.102

• From the perspective of algorithm design, the IDSA integrates a variable103

neighborhood search procedure and a dedicated perturbation procedure104

to strengthen search ability. During the search, the surrounding area of105

each local optimum will be carefully examined to avoid missing nearby106

high-quality solutions. The proposed algorithm will conditionally update107
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the center of the search area throughout the search procedure to guide108

the search towards regions of potential interest.109

• From the perspective of experimental results, we report 29 new upper110

bounds from the 63 benchmark instances in the literature, while matching111

all the known optimal solutions for the remaining 34 instances. These112

bounds can serve as references for future research into the FTSP-IC.113

Moreover, we provide for the first time an instance space analysis of114

FTSP-IC to observe the algorithmic performance across different areas115

of the instance space. Furthermore, we will make the code of our IDSA116

publicly available, providing support for future research on the FTSP-IC117

and its related real-life applications.118

The rest of the paper is organized as follows. We present the proposed119

algorithm in Section 2. Followed by that, we describe the experimental120

settings and results in Section 3. In Section 4, an analysis of the key121

components of the algorithm is given. Conclusions and perspectives are122

provided in the last section.123

2 Intensification-driven search algorithm for the FTSP-IC124

The intensification-driven search algorithm (IDSA) proposed in this work is125

inspired by distance-guided local search (DGLS) (Porumbel and Hao, 2020;126

Ding et al., 2017). Basically, the DGLS framework is dedicated to enhance127

the local search (LS) capacity by intensifying the search around known local128

optima. Through iterative launches of LS procedures within a specified129

sphere radius, DGLS constructs a tree-like search trajectory instead of a130

continuous path, reducing the possibility of missing nearby promising131

solutions. DGLS demonstrates flexibility by enabling the selection and132

utilization of specific distance-based techniques that have proven to be133

highly effective for some combinatorial optimization problems, such as the134

graph coloring problem (Porumbel and Hao, 2020), the capacitated arc135

routing problem (Porumbel and Hao, 2020), the traveling repairman problem136

with profit (Ren et al., 2022) and the nearest neighbor search problem (Xu137

et al., 2021).138

The flow chart of our IDSA framework is presented in Figure 2. Basically,139

IDSA starts from an InitialSolution procedure and then iteratively140

operates between a LocalOptimization procedure and a Perturbation141

procedure to find local optima. During the search process, the search area is142

updated according to the solution quality and the search radius. Finally,143

IDSA terminates when the stop condition is reached.144
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Fig. 2. Flow chart of the IDSA framework.

2.1 Main framework145

The main framework of our IDSA is shown in Algorithm 1. IDSA starts with146

several initialization operations (lines 3-5), and then enters the main while147

loop (lines 6-18). During each iteration of the while loop, a variable148

neighborhood search procedure (VNS) is first adopted to obtain the local149

optimum ϕ (line 7). Then, the solutions ϕ, ϕ∗, and the distance counter Ct150

will be updated conditionally (lines 8-16). Specifically, three cases are151

considered: (1) ϕ∗ and Ct will be updated when a better solution ϕ is found152

(lines 8-10); (2) Ct will be reinitialized to 0 and ϕ be updated by ϕ∗ when153

no better solution is found and the search goes beyond the search sphere154

(lines 11-13); (3) otherwise, Ct will be updated by 1, which means that the155

search will continue inside the search sphere (lines 14-16). Then, the random156

perturbation procedure is employed to drive the search to the new area157

around the known local optimum (line 17). The above process is repeated158

until a pre-determined cut-off time is attained and the algorithm returns the159

best solution ϕ∗ found during the search.160

From the view of search space, IDSA always starts from a ‘centering solution’161

(the best-found solution during the search procedure) as the starting solution,162

and performs the local search procedure multiple times (recorded as Ct, which163

is used to describe the distance between the current solution and the ‘centering164

solution’) to intensify the search. When the ‘counter’ Ct reaches ‘R’ (line165

11 in Algorithm 1), the algorithm returns to ‘centering solution’ (line 13 in166

Algorithm 1) and restarts the search. The Perturbation employed random167

perturbation method, which ensures that the search trajectory will be different168

for each time search (starting from the ‘centering solution’). In this way, the169

search is restricted to an area (like a sphere of radius ‘R’) and generates a170

tree-like trajectory to achieve a detailed search.171

2.2 Greedy initialization procedure172
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Algorithm 1 Intensification-driven search algorithm for the FTSP-IC (IDSA)

1: Input: Input graph G(V,E), radius R of the search sphere, evaluation function f ,
neighborhoods N1 to N8 (see Section 2.3) and cut-off time Tmax.

2: Output: Best found solution ϕ∗.
3: /* GreedyIniSol is used to generate an initial solution. See Section 2.2. */
ϕ← GreedyIniSol(G)

4: ϕ∗ ← ϕ
5: Ct← 0 /* Ct is the distance counter. */
6: while Tmax is not reached do
7: /* VNS is used to perform the local refinement. See Section

2.3.*/
ϕ← VNS(ϕ,N1−8)

8: if f(ϕ) < f(ϕ∗) then
9: Ct← 0

10: ϕ∗ ← ϕ
11: else if Ct ≥ R then
12: Ct← 0
13: ϕ← ϕ∗

14: else
15: Ct← Ct+ 1
16: end if
17: /* RandomPerturb is used to perturb the local optimum. See Section 2.4.*/

ϕ← RandomPerturb(ϕ)
18: end while
19: return ϕ∗

To obtain an initial solution of good quality, we employ a greedy randomized173

construction procedure, whose pseudo-code is presented in Algorithm 2. At174

first, a vertex list Vr is initialized by the nodes from all families (line 3) and175

a vector γ is generated to store the number of nodes for each family in the176

solution (line 4). Starting from an empty solution ϕ, the algorithm constructs177

the first route and sets the first position of the route to the depot (lines 5-178

7). Then, the initialization procedure iteratively adds one vertex to ϕ in a179

greedy randomized way (lines 8-25). At each iteration, we first filter the nodes180

incompatible to the current route k to obtain a node set Va, and construct a181

candidate set Vb by selecting the min(p, |Va|) 1 closest nodes with respect to182

the previous node ϕ(k, q−1) (lines 9-10), where the parameter p is empirically183

set to 5. If set Vb is not empty, we carry out the add operation based on the184

current route by randomly choosing a node v from Vb, adding it to the partial185

solution ϕ(k, q) and removing it from Vr (lines 12-14). After that, the next186

position on this route is considered (the counter q is increased by 1) and the187

number of nodes for the family of v is updated (lines 15-16). All the remaining188

1 The size of Va can be smaller than p. For the purpose of rigorous description, the
notation min(p, |Va|) is introduced to indicate that the maximal size of candidate
set Vb is p.
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Algorithm 2 Greedy initialization procedure (GreedyIniSol)

1: Input: Input graph G(V,E) and the maximal size p of the candidate subset Vb.
2: Output: Current solution ϕ.
3: Vr ← F1 ∪ F2 ∪ ... ∪ FL

4: /* γ[l] depicts the number of nodes for the family l in the solution.*/
γ ← [0, 0, ..., 0]

5: k ← 1
6: q ← 1
7: /*ϕ is a solution with multiple permutations, where ϕ(k, q) denotes the node on

the position q in the k-th route.*/
ϕ(k, 0)← 0

8: repeat
9: Va ← subset of Vr with the nodes which are compatible with the route k

10: /* min(p, |Va|) denotes the smaller value between p and |Va| */
Vb ← subset of Va with min(p, |Va|) nodes which have the minimum distance
respect to the previous visited node ϕ(p, q − 1)

11: if |Vb| > 0 then
12: v ← randomly select one node from Vb
13: ϕ(k, q)← v
14: Vr ← Vr \ {v}
15: q ← q + 1
16: γ[F(v)]← γ[F(v)] + 1

/* hl is the minimal number of nodes to visit for the family l, F(v) is the
family for the node v, and γ[F(v)] depicts the number of visited nodes in
family F(v). A feasible solution requires at least hl nodes for family l. */

17: if γ[F(v)] = hl then
18: Vr ← Vr \ {i : i ∈ Vr ∩ FF(v)}
19: end if
20: else
21: k ← k + 1
22: q ← 1
23: ϕ(k, 0)← 0
24: end if
25: until Vr = ∅
26: return ϕ

nodes coming from FF(v) will be removed when the salesman visits enough189

nodes of the family F(v) (lines 17-19). If Vb is empty, a new route starting at190

the depot is created (lines 20-24). These steps are repeated until Vr becomes191

empty (line 25), and a complete feasible solution ϕ is returned (line 26).192

2.3 Variable neighborhood search procedure193

Given a solution ϕ, the VNS procedure is employed to discover a local194

optimum, which is used as the center of a new sphere that is intensively195
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Algorithm 3 Variable Neighborhood Search (VNS)

1: Input: Evaluation function f , current solution ϕ and neighborhoods N1 to N8.
2: Output: Local best solution ϕ′.
3: repeat
4: ϕ′ ← ϕ
5: /* Construct the neighborhood set NL */

NL← {N1, N2, N3, N4, N5, N6, N7, N8}
6: while NL 6= ∅ do
7: Randomly select a neighborhood N ∈ NL
8: NL← NL \ {N}
9: ϕ← LocalSearch(ϕ,N)

10: end while
11: until f(ϕ) ≥ f(ϕ′)
12: return ϕ′

examined by IDSA. As presented in Algorithm 3, the VNS procedure196

iteratively improves the current solution ϕ by performing local descent with197

eight different neighborhoods until no better solution ϕ′ can be found.198

Specifically, the local best solution ϕ′ is first updated by ϕ (line 4). After199

creating the set NL containing all the defined neighborhoods (line 5), the200

algorithm enters a while loop to perform the local optimization iteratively201

(lines 6-10). During each loop, a neighborhood N is randomly selected from202

the set NL (line 7) and then removed from NL (line 8). Then the descent203

local search procedure with the first improvement strategy is invoked to204

improve the current solution ϕ within the neighborhood N (line 9). The205

while loop terminates when the set NL is empty. Finally, the VNS procedure206

returns the local best solution ϕ′ found so far.207

The VNS procedure relies on three sets of neighborhoods induced by eight move208

operators. The first set I is composed of four move operators, which change209

the orders of the nodes in one route as follows.210

• Swap (N1): Exchange the positions of two nodes in one route.211

• Insert (N2): Remove one node from its position and insert it between212

two adjacent nodes in the same route.213

• 2-opt (N3): Remove two non-adjacent edges in the same route and replace214

them with two new edges in the same route.215

• Block-Insert (N4): Remove a block of h (h = 2, 3) successive nodes from216

their positions and insert this block between two adjacent nodes in the217

same route. Figure 3 shows an illustrative example demonstrating the218

Block-Insert operator, where a block containing two consecutive nodes219

B and C is moved.220

The second set II of two move operators is designed for changing nodes between221

different routes with respect to the incompatibility constraints.222
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Fig. 3. Illustration of the Block-Insert operator: the block with two nodes (B and
C) is removed from the original position and inserted between the node E and F
without changing the order in the block.

• Inter-Swap (N5): Exchange the positions of two nodes from two different223

routes by respecting the incompatibility constraints.224

• Inter-Insert (N6): Remove one node from its position and insert it225

between two adjacent nodes in a different route by respecting the226

incompatibility constraints.227

The third set III of two move operators works as follows.228

• Switch (N7): Switch a visited node and a non-visited node from the same229

family.230

• DropAdd (N8): Remove a visited node and insert a non-visited node231

from the same family to any position by respecting the incompatibility232

constraints.233

In this work, the local search procedure is integrated with the multiple234

neighborhoods and the first-improvement strategy, which can be simply235

summarized as follows. For each neighborhood, the algorithm evaluates236

neighboring solutions one by one until an improving solution is encountered237

or all the neighboring solutions in this neighborhood are evaluated. The238

current solution is replaced with the first-encountered improving solution239

(first-improvement strategy). Then, the algorithm switches to another240

neigborhood and repeats the same procedure. The local search procedure241

sequentially explores the above neighborhoods in a random order to search242

for high-quality local optimal solutions. Note that the Switch move operator243

has already been proposed in Bernardino and Paias (2022), while DropAdd244

is a new move operator specially designed for the FTSP-IC. In fact, the245

Switch operator is a subset of the DropAdd operator. The influence of these246

two key move operators will be analyzed in Section 4.2.247

2.4 Random perturbation procedure248
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Algorithm 4 Random perturbation procedure (RandomPerturb)

1: Input: Evaluation function f , the strength k1 of Insert operation, the strength
k2 of DropAdd operation and current solution ϕ.

2: Output: Perturbed solution ϕ.
3: Cp← 0 /* Cp is the perturbation counter. */
4: while Cp < k1 do
5: ϕ← Insert(ϕ)
6: Cp← Cp+ 1
7: end while
8: Cp← 0
9: while Cp < k2 do

10: ϕ← DropAdd(ϕ)
11: Cp← Cp+ 1
12: end while
13: return ϕ

To help IDSA escape from local optimum traps, a random perturbation249

procedure, depicted in Algorithm 4, involving two simple operations is250

adopted. At first, we apply k1 times the Insert operation to change the251

input solution, where k1 is a parameter that indicates the strength of the252

Insert operation. Specifically, a perturbation step removes a random node253

and re-inserts the node into a random position between two adjacent nodes254

in the same route (lines 3-7). After that, the DropAdd operator is adopted255

by randomly removing a node from the solution and inserting a non-visited256

node from the same family to that random position. The DropAdd operation257

is executed k2 times where k2 is a parameter that indicates the strength of258

the DropAdd operation (lines 8-12). At last, the perturbed solution ϕ is259

returned (line 13). The value of the parameters k1 and k2 are given in260

Section 3.2. Note that when we insert a non-visited node to the solution, the261

incompatibility constraints are satisfied to ensure the feasibility of the new262

obtained solution.263

2.5 Discussion264

The proposed algorithm IDSA differs from the reference algorithm ILS265

(Bernardino and Paias, 2022) mainly in two aspects. On the one hand, the266

proposed algorithm adopted an intensification-driven framework, which can267

significantly intensify the search by performing extensive searches in the268

nearby area of discovered local optima. On the other hand, three new269

neighborhood operators are introduced (Insert, Block-Insert and270

Drop-Add) to enhance the search ability of the proposed algorithm in the271

local search procedure. The important role of each component is revealed in272

Section 4 by extensive experiments.273
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It is worth noting that the proposed algorithm IDSA in this work is different274

from the algorithm in Ren et al. (2022) in terms of the detailed components.275

The problem studied in Ren et al. (2022) is the traveling repairman problem276

with profits (TRPP), which is totally different from the FTSP-IC in the277

representation of the solution, the objective function as well as the278

constraints. TRPP’s solution comprises a single route, while FTSP-IC needs279

to find a solution with multiple routes. TRPP’s objective function is to280

maximize the collecting profits (related to the cumulative traveling distance),281

but FTSP-IC is to minimize the traveling distance. FTSP-IC considers the282

incompatibility constraints on one route, which is not included in TRPP.283

These differences lead to a more complex construction heuristic (considering284

the incompatibility constraints and the solution formulation) and more types285

of neighborhoods of VNS (considering the operations among the routes). In286

summary, these two algorithms for solving TRPP and FTSP-IC are quite287

different in the detailed components.288

For the computational complexity, each neighboring solution stated in289

Section 2.3 could be evaluated in O(1) by only calculating the changing part290

of the fitness function. Therefore, the computational complexity of291

evaluating the solutions in each neighborhood is O(n2) (n is the number of292

nodes) and the complexity of each iteration is also O(n2). The complexity of293

the whole algorithm depends on the iterations of execution, which could be294

controlled by an input parameter. Considering the notation ‘iteration’ may295

vary significantly between different algorithms, we adopt the cutoff-time as296

the stopping condition in experiments for a fair comparison.297

3 Computational results and comparisons298

This section is devoted to evaluating the performance and drawing299

comparisons between IDSA and the state-of-the-art algorithms for the300

FTSP-IC. The benchmark instances and the source code of IDSA will be301

publicly available at https://github.com/Zequn-Wei/FTSP-IC_IDSA.302

3.1 Benchmark Instances303

The 63 FTSP-IC benchmark instances used in this paper were originally304

proposed in Bernardino and Paias (2022), which are derived from the305

instances of the FTSP introduced in Morán-Mirabal et al. (2014). These306

benchmark instances are divided into seven groups according to the number307

of nodes ranging from 14 to 1002. Each group of instances is further308

distinguished based on the number of nodes to be visited per family and309
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conflict density for incompatible families. For example, Gn x d designates310

that a FTSP-IC instance with type G and n nodes (including the depot311

point), category x of nodes to be visited per family and conflict density of d,312

where d ∈ {0.30, 0.60, 0.90}. Specifically, d is given by d = 2λ/µ(µ− 1) where313

λ is the number of incompatible family pairs and µ is the number of families.314

3.2 Experimental settings315

Reference algorithms. We adopt the two state-of-the-art FTSP-IC316

algorithms proposed in Bernardino and Paias (2022), i.e., the ACO and the317

ILS. Considering that the experimental results for these two algorithms were318

obtained under different termination conditions, including the maximum319

number of iterations and the time limit, we select the best result reported for320

each instance as the reference result. Moreover, we also include the best321

lower bound (LB) reported in Bernardino and Paias (2022).322

Computing platform. The source code of our IDSA is implemented in323

C++ and compiled using the g++ compiler with the -O3 option. All324

experiments were executed in multiple threads and performed on an Intel325

Xeon 6148 processor (2.40 GHz CPU) under the Linux operating system.326

Note that all the results of the reference algorithms were obtained on an327

AMD Ryzen5 2600 processor (3.40 GHz CPU).328

Stopping condition. To ensure a fair comparison, we adopt the cut-off time329

reported in Bernardino and Paias (2022) as the stopping condition for our330

IDSA. The detailed cut-off time Tmax of each instances is presented in Table331

2. Note that no cut-off time is provided in Bernardino and Paias (2022) for332

three groups of small-size instances, i.e., burma14, bayg29 and att48. Thus,333

we simply set Tmax to a small value of 5 seconds for these instances. Moreover,334

each instance was solved independently 5 times with different random seeds,335

which is the same as the settings used for the reference algorithms.336

Parameter setting. The proposed IDSA requires three parameters whose337

values were determined automatically by the ‘IRACE’ tool (López-Ibáñez338

et al., 2016), i.e., the radius R of the search sphere, the perturbation339

strength k1 of the Insert operator and the perturbation strength k2 of the340

DropAdd operator. The ‘IRACE’ tuning experiment was carried out on six341

representative benchmark instances with the same cut-off time as the time342

used by IDSA. The range of candidate parameter values for the ‘IRACE’343

tool and the final values are shown in the last two columns of Table 1.344

13



Table 1
Parameter settings of the IDSA.

Parameter Description Type ‘IRACE’ Range Final value

R Radius of the search sphere Integer [0, 100] 70

k1 Perturbation strength of Insert Integer [10, 50, 100, 300, 500, 1000] 300

k2 Perturbation strength of DropAdd Integer [0, 50] 3

3.3 Experimental results345

The computational results from our IDSA along with those attained by each346

reference algorithm are reported in Table 2. Column 1 shows the name of347

each instance and Column 2 represents the lower bounds (LB). Column 3348

shows the best-known values (BKV) of each instance reported in the literature349

while the asterisk (*) indicates a known proven optimal value. Columns 4-350

9 report the best results (fbest) and average results (favg) achieved by the351

two reference algorithms (ILS and ACO) and our IDSA. We also report the352

average run times tavg to obtain the fbest value of IDSA in column 10. The353

last column shows the gap between the best results of IDSA and BKV, where354

Gap = (fbest − BKV )/BKV . Moreover, we also present the average value355

#Avg of each column, the p-values obtained from the Wilcoxon tests between356

IDSA and each reference algorithm, and the comparative statistical results in357

the last three rows of the table. Specifically, W/M/F indicates the number of358

instances for which IDSA performs better (W), equally well (M) and worse359

(F) compared to each reference algorithm. Furthermore, the best results of360

each instance are highlighted in bold.361

From Table 2, we can observe that our IDSA dominates the two reference362

algorithms by achieving better or equal results for all the 63 benchmark363

instances without exception. Specifically, IDSA is able to obtain 42 and 38364

better fbest values compared to ILS and ACO, respectively, while matching365

all the remaining results. When comparing with the BKV values, IDSA366

achieves all the 34 known−optimal results and improves the remaining 29367

best-known results of the literature (see the negative Gaps in the last368

column). Moreover, the small p-values (� 0.05) indicate that the differences369

between IDSA and each reference algorithm are statistically significant.370

To complete the performance assessment of the compared algorithms, we371

present the performance profiles (see Dolan and Moré (2002) for more372

details) on the 63 benchmark instances. Given a set P of instances to be373

tested and a set A of compared algorithms. Since the FTSP-IC studied in374

this work is a minimization problem, we define the performance ratio by375

rg,a = fg,a
min{fg,a:a∈A} , where fg,a represents the objective values of fbest or favg376
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Table 2
Experimental results of the IDSA and the reference algorithms, the maximal running
time (in seconds) for each instance is listed in the column Tmax(s), each instance is
executed independently 5 times with different seeds, in multiple threads, and on an
Intel Xeon 6148 processor (2.40 GHz CPU) under the Linux operating system.

Instance LB BKV
ILS ACO IDSA

fbest favg fbest favg fbest favg tavg(s) Tmax(s) Gap

burma14 1 0.30 17.0 17.00* 17.00 17.00 17.00 17.00 17.00 17.00 0.00 5.00 0.00 %
burma14 1 0.60 20.47 20.47* 20.47 20.47 20.47 20.47 20.47 20.47 0.00 5.00 0.00 %
burma14 1 0.90 21.57 21.57* 21.57 21.57 21.57 21.57 21.57 21.57 0.00 5.00 0.00 %
burma14 2 0.30 28.84 28.84* 28.84 28.84 28.84 28.84 28.84 28.84 0.00 5.00 0.00 %
burma14 2 0.60 34.35 34.35* 34.35 34.35 34.35 34.35 34.35 34.35 0.00 5.00 0.00 %
burma14 2 0.90 37.78 37.78* 37.78 37.78 37.78 37.78 37.78 37.78 0.00 5.00 0.00 %
burma14 3 0.30 13.2 13.20* 13.20 13.20 13.20 13.20 13.20 13.20 0.00 5.00 0.00 %
burma14 3 0.60 13.8 13.80* 13.80 13.80 13.80 13.80 13.80 13.80 0.00 5.00 0.00 %
burma14 3 0.90 14.9 14.90* 14.90 14.90 14.90 14.90 14.90 14.90 0.00 5.00 0.00 %
bayg29 1 0.30 5657.45 5657.45* 5657.45 5657.45 5657.45 5750.80 5657.45 5657.45 0.00 5.00 0.00 %
bayg29 1 0.60 7560.39 7560.39* 7560.39 7560.39 7560.39 7560.39 7560.39 7560.39 0.00 5.00 0.00 %
bayg29 1 0.90 9795.97 9795.97* 9795.97 9795.97 9795.97 9795.97 9795.97 9795.97 0.00 5.00 0.00 %
bayg29 2 0.30 6917.82 6917.82* 6917.82 6917.82 6917.82 6917.82 6917.82 6917.82 0.01 5.00 0.00 %
bayg29 2 0.60 8269.98 8269.98* 8269.98 8269.98 8269.98 8275.10 8269.98 8269.98 0.00 5.00 0.00 %
bayg29 2 0.90 9678.84 9678.84* 9678.84 9678.84 9678.84 9678.84 9678.84 9678.84 0.00 5.00 0.00 %
bayg29 3 0.30 7608.14 7608.14* 7608.14 7608.14 7608.14 7640.30 7608.14 7608.14 0.00 5.00 0.00 %
bayg29 3 0.60 8516.86 8516.86* 8516.86 8516.86 8548.59 8567.40 8516.86 8516.86 0.00 5.00 0.00 %
bayg29 3 0.90 10556.8 10556.80* 10556.80 10556.80 10556.80 10563.86 10556.80 10556.80 0.00 5.00 0.00 %
att48 1 0.30 37531.2 37531.20* 37858.40 37903.22 37876.70 38154.30 37531.20 37531.20 0.00 5.00 0.00 %
att48 1 0.60 45476.2 45476.20* 45627.00 45679.36 45476.20 45670.26 45476.20 45476.20 0.02 5.00 0.00 %
att48 1 0.90 60267.7 60267.70* 60367.50 60427.02 60302.00 60681.00 60267.70 60267.70 0.01 5.00 0.00 %
att48 2 0.30 31659.1 31659.10* 31859.00 32071.20 31660.20 31704.86 31659.10 31659.10 0.03 5.00 0.00 %
att48 2 0.60 33752.2 33752.20* 33789.90 34409.52 33752.20 33803.96 33752.20 33752.20 0.72 5.00 0.00 %
att48 2 0.90 40444.7 40444.70* 41197.90 41197.90 40444.70 40461.74 40444.70 40444.70 0.00 5.00 0.00 %
att48 3 0.30 14358.0 14358.00* 14358.00 14358.00 14358.00 14363.24 14358.00 14358.00 0.00 5.00 0.00 %
att48 3 0.60 16397.2 16397.20* 16397.20 16449.28 16397.20 16397.20 16397.20 16397.20 0.00 5.00 0.00 %
att48 3 0.90 20066.3 20066.30* 20066.30 20066.30 20066.30 20066.30 20066.30 20066.30 0.00 5.00 0.00 %
bier127 1 0.30 42968.1 46080.50 46080.50 46362.76 46299.00 46635.66 45267.90 45368.08 6.71 10.00 -1.76 %
bier127 1 0.60 47482.2 47482.20* 47963.70 48135.50 47625.00 48140.44 47482.20 47482.20 0.01 7.00 0.00 %
bier127 1 0.90 67336.9 67336.90* 67686.60 67735.82 67336.90 67560.22 67336.90 67336.90 0.00 6.00 0.00 %
bier127 2 0.30 113553.0 121356.00 121356.00 121783.40 121973.00 122223.20 119484.00 119790.40 7.78 13.00 -1.54 %
bier127 2 0.60 124486.0 124486.00* 128809.00 129485.60 127168.00 129090.20 124486.00 124486.00 4.53 10.00 0.00 %
bier127 2 0.90 157638.0 157638.00* 157915.00 158198.00 157966.00 158254.40 157638.00 157638.00 1.48 7.00 0.00 %
bier127 3 0.30 55369.9 55369.90* 55867.10 57864.12 56788.30 57066.40 55369.90 55369.90 2.15 8.00 0.00 %
bier127 3 0.60 62061.1 62061.10* 62586.60 62947.78 62570.90 63019.88 62061.10 62061.10 1.65 6.00 0.00 %
bier127 3 0.90 76174.7 76174.70* 76463.30 76536.16 76174.70 76265.94 76174.70 76174.70 0.29 5.00 0.00 %
a280 1 0.30 2249.73 3039.67 3039.67 3103.64 3071.44 3099.91 2985.35 3025.20 66.14 112.00 -1.79 %
a280 1 0.60 2986.27 3826.12 3826.12 3849.54 3831.76 3836.09 3700.53 3733.25 58.30 74.00 -3.28 %
a280 1 0.90 5444.79 5605.77 5665.02 5737.80 5605.77 5623.84 5567.46 5567.55 20.26 51.00 -0.68 %
a280 2 0.30 2029.25 2874.99 2874.99 2882.85 2903.70 2936.92 2786.26 2851.99 60.69 93.00 -3.09 %
a280 2 0.60 2767.25 3695.29 3740.03 3744.75 3695.29 3725.43 3583.62 3597.53 41.19 62.00 -3.02 %
a280 2 0.90 5254.75 5390.06 5548.48 5551.81 5390.06 5399.40 5335.25 5335.34 25.32 41.00 -1.02 %
a280 3 0.30 1866.72 2762.10 2764.53 2772.91 2762.10 2788.57 2665.36 2677.52 45.88 82.00 -3.50 %
a280 3 0.60 2528.23 3510.15 3565.11 3580.22 3510.15 3546.83 3385.88 3439.06 40.36 57.00 -3.54 %
a280 3 0.90 5256.26 5385.75 5422.34 5440.38 5385.75 5392.64 5352.99 5352.99 11.54 38.00 -0.61 %
gr666 1 0.30 1568.46 2603.54 2603.54 2688.85 2820.96 2997.12 2508.31 2564.41 709.84 836.00 -3.66 %
gr666 1 0.60 2224.41 3786.99 3786.99 3807.12 3830.89 3888.75 3608.44 3703.69 371.09 500.00 -4.71 %
gr666 1 0.90 4218.3 5014.68 5114.51 5126.12 5014.68 5081.20 4763.10 4804.21 250.43 294.00 -5.02 %
gr666 2 0.30 1310.14 2337.92 2337.92 2464.30 2382.80 2573.36 2208.56 2246.32 634.71 779.00 -5.53 %
gr666 2 0.60 1975.66 3334.47 3334.47 3368.83 3345.10 3367.39 3085.92 3115.50 404.34 490.00 -7.45 %
gr666 2 0.90 3754.53 4440.32 4440.32 4494.25 4474.41 4494.23 4263.31 4273.69 269.73 292.00 -3.99 %
gr666 3 0.30 1269.32 2421.06 2421.06 2468.26 2456.77 2543.20 2160.31 2208.94 583.93 787.00 -10.77%
gr666 3 0.60 1834.92 3251.59 3251.59 3297.32 3253.26 3301.22 3069.83 3117.99 432.86 497.00 -5.59 %
gr666 3 0.90 3732.65 4381.93 4433.85 4457.32 4381.93 4453.71 4252.08 4303.64 208.77 286.00 -2.96 %
pr1002 1 0.30 NA 259286.00 259286.00 269518.20 298480.00 306177.80 256723.00 265505.20 3540.28 4253.00 -0.99 %
pr1002 1 0.60 NA 384544.00 384544.00 388290.00 392447.00 398616.80 374619.00 379872.40 1999.88 2552.00 -2.58 %
pr1002 1 0.90 NA 551845.00 551845.00 554247.80 554164.00 556249.40 533217.00 535695.60 1303.39 1519.00 -3.38 %
pr1002 2 0.30 NA 275893.00 275893.00 290893.80 298346.00 333587.80 268200.00 280370.00 3245.61 4695.00 -2.79 %
pr1002 2 0.60 NA 393510.00 393510.00 398189.20 404173.00 430939.20 383491.00 390004.00 2303.96 2744.00 -2.55 %
pr1002 2 0.90 NA 568551.00 568551.00 569907.80 572606.00 574746.80 554279.00 562341.00 1345.32 1646.00 -2.51 %
pr1002 3 0.30 NA 255858.00 255858.00 261017.20 300204.00 309114.40 240475.00 248360.00 3004.28 3985.00 -6.01 %
pr1002 3 0.60 NA 358443.00 358443.00 365692.60 369860.00 387871.20 352176.00 358067.20 2426.14 2533.00 -1.75 %
pr1002 3 0.90 NA 538003.00 542094.00 543124.60 538003.00 544730.20 522460.00 525672.00 1451.72 1576.00 -2.89 %
#Avg - 75972.98 76177.90 77080.83 78340.17 80247.54 74300.64 75273.50 394.94 493.35 -1.57 %

p-value - - 1.65×10−8 - 7.74×10−8 - - - - - -
W/M/F - - 42/21/0 43/20/0 38/25/0 48/15/0 - - - - -

for instance g obtained from algorithm a. Then, we obtain the performance377

profiles shown in Figure 4 based on the performance ratio rg,a of both fbest378

and favg. The X-axis indicates the performance ratio and the Y -axis379

represents the proportion of the number of instances in which algorithm a380

attains the best values (min{fg,a : a ∈ A}), with a maximum value of 1.381
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From Figure 4, we can clearly observe that our IDSA can achieve all the best382

values of the set A of tested algorithms, while the reference algorithms fail383

on more than 60% of instances according to both fbest and favg indicators.384

These outcomes provide further evidences on the dominance of IDSA over385

the reference algorithms.386
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Fig. 4. Performance profiles of the compared algorithms.

4 Analysis387

In this section, we analyzed two important components of IDSA as well as the388

instance space to observe their influence on the performance of our algorithm.389

The experiments are mainly based on 36 large-size benchmark instances, whose390

optimal results are still unknown in most cases.391

4.1 Influence of the intensification-driven framework392

The intensification-driven framework has significant influences in guiding the393

search towards nearby promising areas. To see its impacts on the394

performance of IDSA, we create an IDSA variant (denoted by395

IDSA-noInten) by disabling the intensification-driven part. Thus, the396

IDSA-noInten variant can be regarded as an ILS algorithm with the VNS397

procedure introduced in Section 3. Then we run IDSA and IDSA-noInten398

with the default experimental settings introduced in Section 3.2.399

The computational results are shown in Table 3. Column 1 gives the names of400

the 36 instances tested. The remaining columns present the same performance401

indicators as shown in Table 2 and the standard deviations Std over 5 runs.402

Moreover, we also show #Avg, p-value and W/M/F in the last three rows of403

Table 3.404
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Table 3
Comparison between the IDSA and the IDSA-noInten variant.

Instance
IDSA-noInten IDSA

Gap
fbest favg tavg(s) Std fbest favg tavg(s) Std

bier127 1 0.30 45349.10 45396.32 3.84 91.05 45267.90 45368.08 6.71 108.43 -0.18 %
bier127 1 0.60 47482.20 47482.20 0.01 0.00 47482.20 47482.20 0.01 0.00 0.00 %
bier127 1 0.90 67336.90 67336.90 0.00 0.00 67336.90 67336.90 0.00 0.00 0.00 %
bier127 2 0.30 119399.00 120225.20 4.75 424.54 119484.00 119790.40 7.78 231.89 0.07 %
bier127 2 0.60 124486.00 125020.80 4.09 402.84 124486.00 124486.00 4.53 0.00 0.00 %
bier127 2 0.90 157638.00 157638.00 1.60 0.00 157638.00 157638.00 1.48 0.00 0.00 %
bier127 3 0.30 55369.90 55369.90 1.96 0.00 55369.90 55369.90 2.15 0.00 0.00 %
bier127 3 0.60 62061.10 62061.10 3.02 0.00 62061.10 62061.10 1.65 0.00 0.00 %
bier127 3 0.90 76174.70 76174.70 0.24 0.00 76174.70 76174.70 0.29 0.00 0.00 %
a280 1 0.30 2992.22 3033.12 47.15 31.70 2985.35 3025.20 66.14 34.67 -0.23 %
a280 1 0.60 3715.56 3750.89 37.12 19.22 3700.53 3733.25 58.30 21.36 -0.40 %
a280 1 0.90 5568.24 5568.73 30.23 0.34 5567.46 5567.55 20.26 0.18 -0.01 %
a280 2 0.30 2819.56 2873.90 34.88 29.23 2786.26 2851.99 60.69 45.34 -1.18 %
a280 2 0.60 3590.88 3612.70 32.15 19.46 3583.62 3597.53 41.19 24.41 -0.20 %
a280 2 0.90 5335.25 5336.01 16.01 0.65 5335.25 5335.34 25.32 0.19 0.00 %
a280 3 0.30 2683.25 2691.00 34.28 5.25 2665.36 2677.52 45.88 8.56 -0.67 %
a280 3 0.60 3385.88 3395.30 28.74 15.63 3385.88 3439.06 40.36 64.47 0.00 %
a280 3 0.90 5352.99 5353.08 5.87 0.19 5352.99 5352.99 11.54 0.00 0.00 %
gr666 1 0.30 2545.93 2591.01 426.35 41.55 2508.31 2564.41 709.84 59.26 -1.48 %
gr666 1 0.60 3703.47 3733.04 220.86 46.68 3608.44 3703.69 371.09 72.31 -2.57 %
gr666 1 0.90 4814.83 4842.42 182.87 28.44 4763.10 4804.21 250.43 24.74 -1.07 %
gr666 2 0.30 2277.81 2300.47 297.43 30.98 2208.56 2246.32 634.71 37.50 -3.04 %
gr666 2 0.60 3175.69 3202.48 213.29 23.10 3085.92 3115.50 404.34 23.01 -2.83 %
gr666 2 0.90 4314.11 4345.03 131.34 23.12 4263.31 4273.69 269.73 16.19 -1.18 %
gr666 3 0.30 2172.64 2228.63 418.00 48.95 2160.31 2208.94 583.93 35.81 -0.57 %
gr666 3 0.60 3090.40 3142.02 344.90 30.56 3069.83 3117.99 432.86 44.02 -0.67 %
gr666 3 0.90 4343.56 4367.92 191.63 16.00 4252.08 4303.64 208.77 28.54 -2.11 %
pr1002 1 0.30 264968.00 270789.80 2991.25 3231.15 256723.00 265505.20 3540.28 6300.79 -3.11 %
pr1002 1 0.60 377990.00 385452.20 1228.20 5643.38 374619.00 379872.40 1999.88 3633.14 -0.89 %
pr1002 1 0.90 531952.00 534978.80 979.71 2224.79 533217.00 535695.60 1303.39 3541.47 0.24 %
pr1002 2 0.30 280319.00 284656.60 2279.81 2750.07 268200.00 280370.00 3245.61 9837.24 -4.32 %
pr1002 2 0.60 397063.00 400991.00 1671.96 3612.74 383491.00 390004.00 2303.96 5534.29 -3.42 %
pr1002 2 0.90 555637.00 562918.80 628.83 4565.40 554279.00 562341.00 1345.32 4392.40 -0.24 %
pr1002 3 0.30 247625.00 252589.40 1139.89 3500.46 240475.00 248360.00 3004.28 8420.00 -2.89 %
pr1002 3 0.60 359301.00 368417.60 1091.08 5603.69 352176.00 358067.20 2426.14 4259.62 -1.98 %
pr1002 3 0.90 524196.00 528161.00 1129.00 2306.16 522460.00 525672.00 1451.72 3315.86 -0.33 %
Average 121117.50 122556.34 440.34 965.76 119617.31 121319.82 691.13 1392.10 -0.98 %

p-value 2.68×10−4 - - - - - - - -
W/M/F 24/10/2 28/6/2 - - - - - - -

From Table 3 we can observe that IDSA significantly outperforms the IDSA-405

noInten variant by obtaining 24 better fbest results and 28 better favg results,406

while matching most of the remaining results. A significant difference between407

IDSA and IDSA-noInten is indicated by the small p-value derived from the408

Wilcoxon test. These outcomes provide evidence for the advantages of the409

intensification-driven framework for solving the FSTP-IC.410

4.2 Influence of the Switch and DropAdd move operators411

The proposed IDSA relies on three sets of move operators to achieve the VNS412

procedure 3. Our preliminary experiments show that all these neighborhoods413

have an impact on the algorithm’s performance. Here we analyze the DropAdd414

and Switch move operators of set III specifically designed for the FTSP-IC.415

For this experiment, we create two variants by disabling theDropAdd (denoted416

by IDSA-noDropAdd) operator and the Switch (denoted by IDSA-noSwi)417

operator of IDSA, respectively. Then, we run the two variants with the same418

settings as in Section 4.1. The computational results are presented in Table419

4 (for IDSA-noDropAdd) and Table 5 (for IDSA-noSwi) with the same420

performance indicators as in Table 3.421
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Table 4
Comparison between the IDSA and the IDSA-noDropAdd variant.

Instance
IDSA-noDropAdd IDSA

Gap
fbest favg tavg(s) Std fbest favg tavg(s) Std

bier127 1 0.30 45352.50 45676.94 8.13 263.09 45267.90 45368.08 6.71 108.43 -0.19 %
bier127 1 0.60 47482.20 47482.20 3.78 0.00 47482.20 47482.20 0.01 0.00 0.00 %
bier127 1 0.90 67336.90 67336.90 0.96 0.00 67336.90 67336.90 0.00 0.00 0.00 %
bier127 2 0.30 120975.00 121485.60 10.49 687.66 119484.00 119790.40 7.78 231.89 -1.23 %
bier127 2 0.60 126284.00 126956.40 7.41 597.90 124486.00 124486.00 4.53 0.00 -1.42 %
bier127 2 0.90 157837.00 157912.20 4.99 77.92 157638.00 157638.00 1.48 0.00 -0.13 %
bier127 3 0.30 55369.90 55638.52 2.73 198.56 55369.90 55369.90 2.15 0.00 0.00 %
bier127 3 0.60 62061.10 62076.28 2.74 15.48 62061.10 62061.10 1.65 0.00 0.00 %
bier127 3 0.90 76174.70 76196.80 2.26 23.52 76174.70 76174.70 0.29 0.00 0.00 %
a280 1 0.30 3054.29 3108.26 98.85 41.74 2985.35 3025.20 66.14 34.67 -2.26 %
a280 1 0.60 3751.60 3783.94 57.18 18.02 3700.53 3733.25 58.30 21.36 -1.36 %
a280 1 0.90 5579.45 5582.60 41.11 2.93 5567.46 5567.55 20.26 0.18 -0.21 %
a280 2 0.30 2914.53 2927.63 74.63 11.48 2786.26 2851.99 60.69 45.34 -4.40 %
a280 2 0.60 3674.17 3681.64 50.16 8.70 3583.62 3597.53 41.19 24.41 -2.46 %
a280 2 0.90 5343.63 5349.63 32.60 5.10 5335.25 5335.34 25.32 0.19 -0.16 %
a280 3 0.30 2683.94 2715.29 70.16 28.10 2665.36 2677.52 45.88 8.56 -0.69 %
a280 3 0.60 3529.15 3538.62 41.66 6.00 3385.88 3439.06 40.36 64.47 -4.06 %
a280 3 0.90 5353.92 5362.73 25.85 8.07 5352.99 5352.99 11.54 0.00 -0.02 %
gr666 1 0.30 2733.80 2921.59 723.99 103.96 2508.31 2564.41 709.84 59.26 -8.25 %
gr666 1 0.60 3829.69 3848.69 467.21 10.43 3608.44 3703.69 371.09 72.31 -5.78 %
gr666 1 0.90 4783.02 4820.00 222.94 38.22 4763.10 4804.21 250.43 24.74 -0.42 %
gr666 2 0.30 2463.38 2531.69 655.26 64.92 2208.56 2246.32 634.71 37.50 -10.34%
gr666 2 0.60 3376.25 3451.11 361.93 39.35 3085.92 3115.50 404.34 23.01 -8.60 %
gr666 2 0.90 4324.32 4372.05 266.16 27.90 4263.31 4273.69 269.73 16.19 -1.41 %
gr666 3 0.30 2322.47 2413.95 723.18 84.27 2160.31 2208.94 583.93 35.81 -6.98 %
gr666 3 0.60 3399.76 3404.99 354.78 6.50 3069.83 3117.99 432.86 44.02 -9.70 %
gr666 3 0.90 4326.25 4399.18 263.63 62.07 4252.08 4303.64 208.77 28.54 -1.71 %
pr1002 1 0.30 269830.00 276416.60 3540.03 4819.41 256723.00 265505.20 3540.28 6300.79 -4.86 %
pr1002 1 0.60 394011.00 412308.20 2215.07 11021.18 374619.00 379872.40 1999.88 3633.14 -4.92 %
pr1002 1 0.90 535326.00 539544.60 1027.62 4193.81 533217.00 535695.60 1303.39 3541.47 -0.39 %
pr1002 2 0.30 287559.00 292608.40 4100.73 3834.61 268200.00 280370.00 3245.61 9837.24 -6.73 %
pr1002 2 0.60 410180.00 420893.00 2299.00 8463.10 383491.00 390004.00 2303.96 5534.29 -6.51 %
pr1002 2 0.90 556429.00 567989.40 1367.98 6259.89 554279.00 562341.00 1345.32 4392.40 -0.39 %
pr1002 3 0.30 271413.00 280566.40 3262.08 6299.90 240475.00 248360.00 3004.28 8420.00 -11.40%
pr1002 3 0.60 356892.00 374421.40 2290.08 13063.04 352176.00 358067.20 2426.14 4259.62 -1.32 %
pr1002 3 0.90 526688.00 532896.80 1315.36 3605.63 522460.00 525672.00 1451.72 3315.86 -0.80 %
Average 123184.58 125739.45 722.02 1777.57 119617.31 121319.82 691.13 1392.10 -3.03 %

p-value 1.17×10−6 - - - - - - - -
W/M/F 31/5/0 34/2/0 - - - - - - -

From Table 4, we can clearly observe that our IDSA dominates422

IDSA-noDropAdd by reporting better or equal results for all the 36423

instances without exception. Moreover, the small values of tavg and Std of424

IDSA indicate that IDSA is more efficient and robust than425

IDSA-noDropAdd. From Table 5, the small #Avg values of fbest from IDSA426

show that its overall performance is slightly better than the IDSA-noSwi427

variant. However, the similar #Avg values of favg and tavg indicate that428

there is little difference in stability and efficiency between IDSA and429

IDSA-noSwi. Moreover, the p-values of Table 5 also display that there are430

no significant differences in performance between IDSA and IDSA-noSwi.431

Note that IDSA-noSwi has better performance on several large-size432

instances, it can be seen as an alternative algorithm of the proposed IDSA.433

In this work, we adopted the Switch (N7) in our IDSA to achieve better or434

equally good results than the reference algorithms (Bernardino and Paias,435

2022). These outcomes show that both the DropAdd and Switch operators436

contribute to improving the performance of IDSA, especially the Drop-Add437

operator has a greater impact on the proposed algorithm.438
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Table 5
Comparison between the IDSA and the IDSA-noSwi variant.

Instance
IDSA-noSwi IDSA

Gap
fbest favg tavg(s) Std fbest favg tavg(s) Std

bier127 1 0.30 45322.50 45424.22 2.27 124.58 45267.90 45368.08 6.71 108.43 -0.12 %
bier127 1 0.60 47482.20 47482.20 0.10 0.00 47482.20 47482.20 0.01 0.00 0.00 %
bier127 1 0.90 67336.90 67336.90 0.00 0.00 67336.90 67336.90 0.00 0.00 0.00 %
bier127 2 0.30 119300.00 119981.20 4.28 521.62 119484.00 119790.40 7.78 231.89 0.15 %
bier127 2 0.60 124486.00 125008.00 8.79 871.01 124486.00 124486.00 4.53 0.00 0.00 %
bier127 2 0.90 157638.00 157638.00 2.00 0.00 157638.00 157638.00 1.48 0.00 0.00 %
bier127 3 0.30 55369.90 55369.90 1.69 0.00 55369.90 55369.90 2.15 0.00 0.00 %
bier127 3 0.60 62061.10 62061.10 0.53 0.00 62061.10 62061.10 1.65 0.00 0.00 %
bier127 3 0.90 76174.70 76174.70 0.06 0.00 76174.70 76174.70 0.29 0.00 0.00 %
a280 1 0.30 2943.94 2978.77 87.22 24.89 2985.35 3025.20 66.14 34.67 1.41 %
a280 1 0.60 3694.77 3719.89 60.65 22.26 3700.53 3733.25 58.30 21.36 0.16 %
a280 1 0.90 5567.00 5567.64 17.18 0.55 5567.46 5567.55 20.26 0.18 0.01 %
a280 2 0.30 2785.75 2831.98 73.43 50.22 2786.26 2851.99 60.69 45.34 0.02 %
a280 2 0.60 3581.21 3621.24 50.64 31.23 3583.62 3597.53 41.19 24.41 0.07 %
a280 2 0.90 5335.25 5335.85 22.27 0.76 5335.25 5335.34 25.32 0.19 0.00 %
a280 3 0.30 2665.82 2671.36 61.47 7.19 2665.36 2677.52 45.88 8.56 -0.02 %
a280 3 0.60 3385.88 3439.83 32.97 66.18 3385.88 3439.06 40.36 64.47 0.00 %
a280 3 0.90 5352.99 5352.99 5.78 0.00 5352.99 5352.99 11.54 0.00 0.00 %
gr666 1 0.30 2439.14 2553.58 699.27 106.69 2508.31 2564.41 709.84 59.26 2.84 %
gr666 1 0.60 3547.79 3658.09 430.29 74.01 3608.44 3703.69 371.09 72.31 1.71 %
gr666 1 0.90 4755.12 4819.90 222.78 37.08 4763.10 4804.21 250.43 24.74 0.17 %
gr666 2 0.30 2243.07 2268.67 628.18 29.60 2208.56 2246.32 634.71 37.50 -1.54 %
gr666 2 0.60 3100.47 3149.91 407.53 28.48 3085.92 3115.50 404.34 23.01 -0.47 %
gr666 2 0.90 4269.44 4316.68 260.33 37.82 4263.31 4273.69 269.73 16.19 -0.14 %
gr666 3 0.30 2145.77 2180.94 731.65 36.46 2160.31 2208.94 583.93 35.81 0.68 %
gr666 3 0.60 3053.42 3095.86 398.40 34.58 3069.83 3117.99 432.86 44.02 0.54 %
gr666 3 0.90 4306.74 4329.90 242.87 22.17 4252.08 4303.64 208.77 28.54 -1.27 %
pr1002 1 0.30 244302.00 258472.20 3772.22 8074.39 256723.00 265505.20 3540.28 6300.79 5.08 %
pr1002 1 0.60 366229.00 371403.00 2186.79 5690.52 374619.00 379872.40 1999.88 3633.14 2.29 %
pr1002 1 0.90 530569.00 534631.80 1224.71 4709.06 533217.00 535695.60 1303.39 3541.47 0.50 %
pr1002 2 0.30 279763.00 282850.80 3267.27 3768.64 268200.00 280370.00 3245.61 9837.24 -4.13 %
pr1002 2 0.60 395684.00 402682.20 2290.28 5556.88 383491.00 390004.00 2303.96 5534.29 -3.08 %
pr1002 2 0.90 562468.00 564171.60 935.67 1279.53 554279.00 562341.00 1345.32 4392.40 -1.46 %
pr1002 3 0.30 240952.00 245307.80 2910.73 3531.62 240475.00 248360.00 3004.28 8420.00 -0.20 %
pr1002 3 0.60 359073.00 360325.20 2286.01 847.59 352176.00 358067.20 2426.14 4259.62 -1.92 %
pr1002 3 0.90 522826.00 525126.40 1453.56 2579.96 522460.00 525672.00 1451.72 3315.86 -0.07 %
Average 120061.41 121315.01 688.33 1060.15 119617.31 121319.82 691.13 1392.10 0.03 %

p-value 8.39×10−1 - - - - - - - -
W/M/F 12/10/14 16/7/13 - - - - - - -

4.3 Instance space analysis439

To further get some insights of the performance of IDSA along with the440

reference algorithms on the benchmark instances of different features, we441

present an instance space analysis (ISA) (Smith-Miles et al., 2014).442

Specifically, ISA allows us to understand the strengths and weaknesses of the443

compared algorithms over the areas of the instance space. This experiment444

was carried out on the recently developed toolkit MATILDA (Muñoz and445

Smith-Miles, 2020; Smith-Miles and Muñoz, 2023), which has been446

successfully adopted to analyze various of combinatorial optimization447

problems, such as the variants of the knapsack problem (Smith-Miles et al.,448

2021; Wei et al., 2023), the max flow problem (Alipour et al., 2023), the449

clustering problem (Fernandes et al., 2021) and the personnel scheduling450

problem (Kletzander et al., 2021). The MATILDA framework provides a451

comprehensive approach to evaluating algorithm performance using instance452

space analysis. By employing a support vector machine (SVM) classification453

model, MATILDA predicts whether an algorithm performs well or poorly on454

the 2D instance space. This method allows for a detailed and intuitive455

comparison of algorithms, highlighting their strengths and weaknesses across456

the instance space.457
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Fig. 5. Distributions of benchmark instances (subfigure (a)) and prediction results
for SVM model on the compared algorithms (subfigures (b) to (d)).

For the experiment, we selected eight representative instance features of FSTP-458

IC, including the conflict density d of incompatible families as introduced in459

Section 3.1. We primarily used the default parameter settings of MATILDA,460

while setting the threshold parameter ‘opts.perf.epsilon’ to 0.01.461

Figure 5 displays the distributions of instances and prediction results462

obtained from the SVM model. The X and Y axes in the figure represent the463

linear combination of the selected features. In Figure 5(b) to 5(d), the464

indicators of ‘GOOD’ and ‘BAD’ reveal where each compared algorithm can465

achieve good or bad performance on the benchmark instances. Specifically,466

an algorithm is defined as ‘GOOD’ if the SVM predicts its performance to467

be relatively better than that of the compared algorithms (Smith-Miles and468

Muñoz, 2023). From Figure 5(a), we can clearly see that different types of469

instances (distinguished by color) are clustered in different space. When470

considering the prediction results given by the SVM model as shown in471

Figure 5(b) to 5(d), we can observe that IDSA demonstrates a high472
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Fig. 6. Predicted footprints of the compared algorithms.

competitiveness on all the tested instances, while ILS and ACO show473

obvious weakness on three groups of instances, i.e., a280, gr666 and pr1002.474

These prediction results again confirm the superiority of the proposed IDSA,475

which is consistent with the experimental results of Section 3.3.476

Furthermore, we show in Figure 6 the predicted footprints of the compared477

algorithms obtained from MATILDA. Basically, the footprint represents the478

regions within the instance space where an algorithm is expected to perform479

well. The larger the shaded footprint area in Figure 6, the more instances on480

which an algorithm can achieve good performance. By visualizing these areas,481

we can objectively evaluate the strengths and weaknesses of the compared482

algorithms and understand where each algorithm performs well or struggles.483

From Figure 6, we can observe that the predicted footprints of IDSA are484

significantly larger than those of the two reference algorithms, indicating its485

superior performance on the instance space induced by the 63 benchmark486

instances.487

21



5 Conclusions and perspectives488

The family traveling salesman problem with incompatibility constraints489

(FTSP-IC) studied in this work is a variant of the conventional traveling490

salesman problem with numerous relevant applications. This work is devoted491

to advancing the state-of-the-art algorithms for solving the FTSP-IC. We492

present the intensification-driven search algorithm that achieves extensive493

exploitation around local optimal solutions through a distance guided local494

search framework.495

Computational results indicate that the proposed IDSA is highly competitive496

comparing with the reference algorithms. In particular, IDSA is able to achieve497

all the best-known results reported in literature (including 34 proven optimal498

solutions) and discover new upper bounds for 29 instances. These bounds499

hold potential to play a valuable role in future research on the FTSP-IC. The500

algorithm and its code can be used to solve practical problems related to the501

FTSP-IC.502

For future work, there are at least two possible directions. First, the503

IDSA-noSwi variant discovered some better results than IDSA on the504

large-size instances (see Table 5), indicating that the performance of the505

proposed algorithm could be further improved. We will seek out more506

powerful local search techniques to further improve the algorithm’s507

performance on large-size instances. Second, the IDSA algorithm is a508

relatively general framework, thus it would be interesting to explore its509

application to other problems related to the FTSP-IC.510
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