
Responsive strategic oscillation for solving the

disjunctively constrained knapsack problem

Zequn Wei a , Jin-Kao Hao b,∗ Jintong Ren c and Fred Glover d

aSchool of Economics and Management, Beijing University of Posts and
Telecommunications, 100876 Beijing, China

bLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France
cBusiness School, Hohai University, 210098 Nanjing, China

dEntanglement, Inc., Boulder, Colorado 80305, USA

European Journal of Operational Research, Feb. 2023

Abstract

This paper presents a responsive strategic oscillation algorithm for the NP-hard
disjunctively constrained knapsack problem, which has a variety of applications.
The algorithm uses an effective feasible local search to find high-quality local
optimal solutions and employs a strategic oscillation search with a responsive
filtering strategy to seek still better solutions by searching along the boundary of
feasible and infeasible regions. The algorithm additionally relies on a
frequency-based perturbation to escape deep local optimal traps. Extensive
evaluations on two sets of 6340 benchmark instances show that the algorithm is
able to discover 39 new lower bounds and match all the remaining best-known
results. Additional experiments are performed on 21 real-world instances of a daily
photograph scheduling problem. The critical components of the algorithm are
experimentally assessed.

Keywords: Combinatorial optimization; Disjunctively constrained knapsack
problem; Heuristics; Strategic oscillation.

1 Introduction

The disjunctively constrained knapsack problem (DCKP) belongs to the
class of well-known knapsack problems and has received substantial

∗ Corresponding author.
Email address: jin-kao.hao@univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 10 February 2023

attention over the past two decades. As a general knapsack model, the
DCKP can be described as follows. Given a knapsack with a fixed capacity
C and a set of items V = {1, . . . , n} such that each item i has a profit pi and
a weight wi, let G = (V,E) be a conflict or incompatibility graph, where V is
the set of n items and an edge {i, j} ∈ E exists between i and j if items i
and j cannot be placed into the knapsack simultaneously. Then the DCKP is
to select a subset of non-conflicting items S ⊆ V (i.e., {i, j} /∈ E, ∀i, j ∈ S)
such that the total profit f(S) of the selected items is maximized, while the
total weight W (S) does not exceed the given knapsack capacity C. Formally,
the DCKP can be written as follows.

(DCKP) Maximize f(S) =
n∑
i=1

pixi (1)

subject to W (S) =
n∑
i=1

wixi ≤ C (2)

xi + xj ≤ 1,∀{i, j} ∈ E, (3)

xi ∈ {0, 1}, i = 1, . . . , n. (4)

where xi is a binary variable indicating whether item i is packed into the
knapsack. Constraint (2) ensures that the capacity is not exceeded.
Constraints (3) guarantee that only compatible items are selected and they
are also called disjunctive constraints.

The DCKP is able to formulate a number of real-world applications related
to public transportation [20], scheduling problems [26,43,8], network
communications [2] and daily photograph scheduling for earth observation
satellite [44,46]. In addition to its practical significance, the DCKP plays an
important role in combinatorial optimization, since it is closely related to
several other popular NP-hard problems. For example, the DCKP reduces to
the maximum weighted independent set problem [24] when we ignore the
knapsack capacity. The DCKP can also be regarded as a subproblem of the
bin packing problem with conflicts [23], the quadratic knapsack problem [6]
and the multiple-choice knapsack problem [5,25].

Since its introduction by Yamada et al. [50] (2002), various solution
algorithms have been proposed in the literature. For instance, in addition to
the first implicit enumeration algorithm introduced in [50], several exact
algorithms have been designed, which are based on branch-and-bound
[19,4,8], branch-and-cut [39] and dynamic programming [33,34,15]. These
methods have been shown to be competitive on several DCKP instances. For
example, the dynamic programming algorithm proposed in [33] is able to
efficiently solve problem instances whose conflict graph is tree, chordal graph
or a graph with bounded treewidth. The branch-and-bound algorithm

2

introduced in [8] has achieved remarkable results on the majority of 6240
DCKP benchmark instances with a wide range of conflict densities (see
Section 3). This algorithm is the best-performing exact algorithm for the
DCKP. Furthermore, it has been shown in [8] that the CPLEX solver with
integer linear programming techniques has significant advantages in solving
very sparse instances. However, given the NP-hard nature of the DCKP [50],
finding the optimal solution is computationally challenging in the general
case.

Consequently, a variety of heuristic algorithms have been devised to solve
the DCKP approximately. The existing heuristic approaches include the
neighborhood search algorithm of [50], parallel neighbor algorithms of
[20,37,36], scatter search algorithms of [21,1], the iterative rounding
algorithm of [17], the probabilistic tabu search algorithm of [38] and the
threshold search based memetic algorithm of [46]. According to their
computational results on the popular set of 100 benchmark instances (see
Section 3), four algorithms represent the state-of-the-art heuristic
approaches for the DCKP, i.e., the parallel neighborhood search algorithm
(PNS) [37], the cooperative parallel adaptive neighborhood search algorithm
(CPANS) [36], the probabilistic tabu search algorithm (PTS) [38] and the
threshold search based memetic algorithm (TSBMA) [46]. In particular, the
TSBMA algorithm also reported remarkable results on many of the 6240
DCKP instances tested in [8]. However, it failed to achieve most of the
best-known results on the 240 random sparse instances (denoted by SR).

As the above literature review shows, although considerable research has
been devoted to developing solution methods for solving the DCKP, no
existing single algorithm dominates the other approaches on all the DCKP
benchmark instances in the literature (the no free lunch theorem [48]). In
this work, we propose the first responsive strategic oscillation search
algorithm (RSOA) for solving the DCKP. The algorithm adopts the strategic
oscillation search framework with an original responsive mechanism to guide
the search to oscillate around the boundary of feasible and infeasible regions.
Previous investigations have disclosed the general idea of strategic oscillation
(SOS, [12]) to be quite effective for a number of constrained optimization
problems, such as the quadratic multiple knapsack problem [11], the
capacitated hub location problem [9], the maximally diverse grouping
problem [10], the quadratic minimum spanning tree problem [31], the
α-neighbor p-center problem [40], and the bipartite boolean quadratic
programming problem [45,49]. In this work, we show the benefits of strategic
oscillation for solving the DCKP. The main contributions of this work are
summarized as follows.

First, unlike the existing DCKP algorithms that confine their search to
feasible space, the proposed RSOA algorithm combines both feasible search

3

and infeasible search to effectively examine candidate solutions. In
particular, it relies on a responsive filtering strategy to guide the search to
strategically oscillate between feasible and infeasible regions. This is the first
time such a mixed search approach is investigated for solving the DCKP.
The algorithm additionally employs an informed perturbation that is guided
by frequency information, able to help the algorithm to get out of local
optimum traps.

Second, we provide new lower bounds for 39 instances out of the 6340
benchmark instances in the literature. These bounds can be used for the
future studies on the DCKP.

Third, we are making the code of our RSOA algorithm publicly available, to
help researchers and practitioners solve problems that can be formulated by
the DCKP model.

The rest of the paper is organized as follows. Section 2 presents the proposed
RSOA algorithm. Section 3 reports experimental results and comparisons with
the state-of-the-art DCKP algorithms. In Section 4, we conduct additional
analysis to provide useful insights about the impacts of the key components of
RSOA on its performance. Concluding remarks are given in the last section.

2 Responsive strategic oscillation search for the DCKP

The design of the responsive strategic oscillation search algorithm proposed
in this work is motivated by three considerations. First, the strategic
oscillation (SO) framework has demonstrated its power for solving a wide
range of constrained optimization problems as noted in the introduction.
Second, the threshold search method has proved to be quite successful for
solving the DCKP [46]. Third, existing algorithms for the DCKP only
examine feasible solutions. In this work, we integrate threshold search (for
examining feasible solutions) and the strategic oscillation framework (for
examining both feasible and infeasible solutions) with an original responsive
filtering strategy to create an effective search algorithm for the DCKP.

2.1 Main framework

In overview, the proposed responsive strategic oscillation search algorithm
RSOA uses a feasible local search procedure to discover high-quality local
optima within the feasible space and employs a responsive strategic
oscillation search procedure to seek, from a discovered feasible local optimal

4

solution, still better solutions by enlarging the search into infeasible space.
When the search is judged to be trapped in a deep local optimum, a
frequency based perturbation procedure is applied to lead the search to a
distant unseen search region from which a new round of feasible search and
strategic oscillation search starts. The main framework of the RSOA
algorithm is shown in Algorithm 1.

Algorithm 1 Responsive strategic oscillation search for the DCKP

1: Input: Instance I, cut-off time tmax, maximum number of iterations of feasible
local search Imax1, maximum number of iterations of strategic oscillation search
Imax2, a set of neighborhoods N , perturbation strength ρ.

2: Output: The overall best solution S∗ found.
3: S ← Random Initialization(I) /* S is the current solution */
4: S∗ ← S /* S∗ is the overall best solution */
5: while Time ≤ tmax do
6: Initialize the frequency vector F
7: Sb1 ← Feasible Local Search(S,N, Imax1)
8: (Sb2,F)← Strategic Oscillation Search(Sb1, N, Imax2,F)
9: if f(Sb2) > f(S∗) then

10: S∗ ← Sb2
11: end if
12: S ← Frequency Based Perturbation(Sb2, ρ,F)
13: end while
14: return S∗

The algorithm starts from a feasible initial solution generated by the random
initialization procedure (line 3). After updating the overall best solution S∗

(line 4), the search enters the main loop of the algorithm (lines 5-13). Each
iteration of the loop first initializes the frequency counter (an n-vector) F
(line 6), where Fi is used to record the frequency that each item i appears in
visited infeasible solutions. Then the feasible local search procedure (line 7)
is run to discover a high-quality local optimal solution. Following this, the
search sequentially examines three neighborhoods N , replacing the current
solution S by a non-prohibited neighboring solution S ′ as long as the latter
meets a given quality threshold. Upon the termination of the feasible local
search procedure (when the maximum number of iterations Imax1 is reached),
the responsive strategic oscillation search procedure (line 8) is started to
explore both feasible and infeasible solutions. A responsive filtering strategy
is employed to ensure the search visits only promising areas. After
conditionally updating the best solution S∗ found so far (lines 9-11), RSOA
applies the frequency based perturbation procedure (line 12) based on the
frequency counter F to obtain a new starting solution which is used to seed
the next round of feasible search and responsive strategic oscillation search.
The algorithm stops when a given cut-off time tmax is reached.

5

2.2 Solution representation and notations

Given a DCKP instance with knapsack capacity C and conflict graph
G = (V,E), a candidate solution S for the instance is represented by
S = (x1, . . . , xn), where the binary variable xi takes the value of 1 if item i is
selected, and 0 otherwise. The solution S can equivalently be expressed as
S =< A, Ā >, where A = {q : xq = 1 in S} is the set of selected items and
Ā = {p : xp = 0 in S} is the set of non-selected items.

The unconstrained search space Ω of the given instance includes all non-empty
subsets of V , i.e.,

Ω = {x : x ∈ {0, 1}n} (5)

The feasible search space ΩF includes all feasible candidate solutions satisfying
the knapsack capacity and the conflict constraints, i.e.,

ΩF = {x ∈ {0, 1}n :
n∑
i=1

wixi ≤ C;xi + xj ≤ 1,∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i 6= j}

(6)

In this work, we use the knapsack constraint to delimit the boundary of the
feasible and infeasible regions. We define thus the infeasible search space ΩIN

to include all candidate solutions satisfying the disjunctive constraints only,
i.e.,

ΩIN = {x ∈ {0, 1}n :
n∑
i=1

wixi > C;xi+xj ≤ 1,∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i 6= j}

(7)

To evaluate the infeasibility degree of a solution S of ΩIN , we define its critical
value CV (S) as follows.

CV (S) = max{0,
n∑
i=1

wixi − C} (8)

where C is the knapsack capacity. So for a feasible solution S (i.e.,
n∑
i=1

wixi ≤
C), CV (S) = 0, while for an infeasible solution CV (S) > 0.

6

Finally, the fitness of a candidate solution S in the search space Ω is given
by the objective value f(S) according to Equation (1). Given two candidate
solutions, if at least one of them is infeasible, they will be assessed by their
critical value CV (S) given by Equation (8) (the smaller the better). Otherwise,
the two feasible solutions of ΩF will be assessed by the objective value f(S)
given by Equation (1) (the larger the better).

2.3 Random initialization

The RSOA algorithm employs a simple random initialization procedure to
obtain a feasible starting solution. Specifically, we randomly choose one item
i among the non-selected items and add it to the solution if the knapsack
constraint and the disjunctive constraints are satisfied. We continue to add new
items until the knapsack capacity is reached or no candidate item is available.
This initialization procedure has the advantage of being simple and able to
provide diversified starting solutions. Our preliminary experiment shows that
other more sophisticated procedures don’t significantly do better than this
simple initialization procedure.

2.4 Feasible local search procedure

The RSOA algorithm adopts a feasible local search procedure (FLS) to
achieve an effective local optimization within the feasible search space ΩF .
FLS relies on the threshold search procedure of the TSBMA algorithm [46]
and adopts for the first time the reverse elimination method (REM) [13] for
its operation-prohibiting mechanism. Basically, FLS iteratively explores the
feasible search space by replacing the current feasible solution by a feasible
neighboring solution as long as its quality satisfies a given threshold. We first
introduce the main components of the FLS procedure and then present its
pseudo-code.

2.4.1 Move operator and neighborhood structure

The FLS procedure relies on three common move operators (add, swap and
drop) for the DCKP, which are also applied to other knapsack problems (e.g.,
[7,28,29]). Given a solution S =< A, Ā > (see Section 2.2), let mv be one of
these move operators and S ′ = S⊕mv denote a neighboring solution obtained
by applying mv to S. Let Capa(S) be a predicate such that Capa(S) = true
if solution S satisfies the knapsack constraint, else Capa(S) = false. Let
Disj(S) be a predicate such that Disj(S) = true if S satisfies the disjunctive

7

constraints, else Disj(S) = false. The neighborhoods induced by the add,
swap and drop operators can be expressed as follows.

NF
1 (S) = {S ′ : S ′ = S ⊕ add(p), p ∈ Ā, Capa(S ′), Disj(S ′)} (9)

NF
2 (S) = {S ′ : S ′ = S ⊕ swap(q, p), q ∈ A, p ∈ Ā, Capa(S ′), Disj(S ′)} (10)

NF
3 (S) = {S ′ : S ′ = S ⊕ drop(q), q ∈ A,Capa(S ′), Disj(S ′)} (11)

To quickly evaluate a neighboring solution, a streamlining technique is used
to quickly identify the neighboring solution S ′ violating the disjunctive
constraint. Specifically, we employ a conflict vector V of length n to record
the number of conflicts of each candidate non-selected item with respect to
the current solution S. Obviously, the value Vi of each selected item is 0.
Once a move operation (add(p), swap(q, p) or drop(q)) is performed, the
value Vj of each non-selected item j is updated as follows.

Vj =

Vj + 1, if j is conflicting with item p,

Vj − 1, if j is conflicting with item q,

Vj, otherwise.

(12)

Thus, the time complexity of checking the disjunctive constraints is bounded
to O(n), where n is the number of items. (Without the streamlining technique,
the time complexity would be O(n2).)

2.4.2 Reverse elimination method

The FLS procedure employs the reverse elimination method to implement the
operation-prohibiting (OP) mechanism introduced in [46]. REM is a general
and efficient method to prevent the search from revisiting previously visited
solutions. The procedure operates by employing a running list to record all
the moves performed during the search process and a residual cancellation
sequence (RCS) to trace back through previous solutions according to the
running list. In our case, the running list size is set to the maximum number
of iterations of the corresponding search procedure, i.e., Imax1 for Algorithm 2
and Imax2 for Algorithm 3. Considering the fact that an encountered solution
can be revisited only if it is a neighboring solution of the current solution, a
move is prohibited if RCS can be reversed by this move. Interested readers

8

are referred to [13] for a detailed presentation of this technique. Unlike the
hash vector based OP mechanism of [46] where collisions may occur, REM can
record exactly each previously visited solution with less computing resources.
Our experiment indicates that REM has a better performance than the hash
vector based OP mechanism of [46].

2.4.3 Main scheme of FLS procedure

Algorithm 2 Feasible local search procedure

1: Input: Input solution S, neighborhoods NF
1 , NF

2 , NF
3 , maximum number of

iterations Imax1.
2: Output: Best solution Sb1 found during feasible local search.
3: Sb1 ← S /* Record the best solution found so far */
4: T ← Calculate Threshold(Sb1)
5: iter ← 0
6: while iter ≤ Imax1 do
7: Examine sequentially neighborhoods NF

1 (S), NF
2 (S) and NF

3 (S)
8: for NF

1 , NF
2 , NF

3 , let S′ be a non-prohibited neighboring solution do
9: if f(S′) ≥ T then

10: S ← S′ /* S′ replaces S when the threshold T is satisfied */
11: break;
12: end if
13: end for
14: if f(S) > f(Sb1) then
15: Sb1 ← S /* Update the best solution found during feasible local search */

16: T ← Calculate Threshold(Sb1)
17: iter ← 0
18: else
19: iter ← iter + 1
20: end if
21: Update the residual cancellation sequence (RCS)
22: end while
23: return Sb1

As shown in Algorithm 2, the FLS procedure first performs some
initialization tasks (lines 3-5). Then the search enters the ‘while’ loop (lines
6-22) to improve the input solution S iteratively by sequentially exploring
three neighborhoods NF

1 to NF
3 (see [46] for more details). Each iteration of

the ‘while’ loop performs three operations. First, a threshold search (lines
7-13) is applied to sequentially explore the three neighborhoods NF

1 , NF
2 ,

NF
3 (see Section 2.4.1). For this, a non-prohibited neighboring solution S ′ is

accepted to replace the current solution S as long as S ′ reaches a dynamic
quality threshold T . The threshold T is a value slightly below the current
best objective value and is defined as T = f(Sb1) − δ where Sb1 is the best
solution found so far during the FLS procedure and δ is a positive valued
parameter (see Section 3.2 for its settings). The threshold search exits if a
neighboring solution is accepted or the three neighborhoods are exhausted.

9

Second, the outcome of the threshold search is used to update the best
solution Sb1 found so far by the FLS procedure (lines 14-15) and recalculate
the quality threshold T (line 16). Third, the residual cancellation sequence
(RCS) needed by the operation-prohibiting mechanism is updated (see
Section 2.4.2). The FLS procedure stops when the best solution Sb1 cannot
be improved during Imax1 consecutive ‘while’ loops. Finally, Sb1 is returned
to seed the responsive strategic oscillation procedure to further improve the
best solution found.

2.5 Strategic oscillation search procedure

Strategic oscillation [12] was initially proposed with the purpose of crossing
back and forth between feasible and infeasible space. By searching around the
feasible and infeasible boundary, strategic oscillation is designed to find high-
quality solutions that cannot be reached if the search is confined to feasible
space.

In our case, we define the oscillation boundary by the knapsack capacity
constraint and relax this constraint to allow the search to visit candidate
solutions exceeding the knapsack capacity. Our strategic oscillation
procedure SOS combines a responsive neighborhood filtering strategy (RNF)
within strategic oscillation to examine both traverse the boundary of the
feasible space and infeasible space. The general SOS procedure follows two
general principles. First, it is preferable to allow the search to transit
between the spaces ΩF and ΩIN , rather than staying in a single space all the
time. Second, as discussed in [14], a critical level is required to prevent the
search from going too far into the feasible or infeasible region.

2.5.1 Main scheme of SOS procedure

As shown in Algorithm 3, after some initialization tasks (lines 3-7), the SOS
procedure performs the ‘while’ loop to examine candidate solutions (lines
8-27). Each iteration of the loop calculates, according to Equation (8), the
critical value CV (S ′) of each non-prohibited neighboring solution S ′ within
the neighborhood N+ (line 10), where N+ is the union of three relaxed
neighborhoods (see Section 2.5.2 for these relaxed neighborhoods.) Then the
responsive neighborhood filtering strategy RNF (see below) is applied to
filter out unpromising neighboring solutions (line 11). The non-prohibited
neighboring solution S ′ with the minimum CV (S ′)min value or the best S ′

(according to the objective value f(S ′)) with the same CV (S ′)min value is
then identified (line 12) and used to replace the current solution (line 14).
Such a neighboring solution corresponds to a promising solution that is

10

Algorithm 3 Strategic oscillation search procedure

1: Input: Input solution Sb1, neighborhood N+, maximum number of iterations
Imax2, frequency counter F .

2: Output: Best solution Sb2 found.
3: Initialize the responsive critical limits CL1, CL2

4: rIN ← 0 /* Initialize the infeasibility rate of neighboring solutions */
5: S ← Sb1 /* S is the current solution */
6: Sb2 ← S /* Record the best solution found so far */
7: iter ← 0
8: while iter ≤ Imax2 do
9: for Each non-prohibited neighboring solution S′ in N+ do

10: Calculate the critical value CV (S′) by Eq. (8)
11: Filter out unpromising neighboring solutions with rIN , CL1, CL2, CV (S′)

12: Identify the non-prohibited neighboring solution S′ with the minimum
CV (S′)min value or the best S′ with the same CV (S′)min value

13: end for
14: S ← S′

15: if (f(S) > f(Sb2)) ∧ (W (S) ≤ C) then
16: Sb2 ← S /* A better feasible solution is encountered */
17: iter ← 0
18: else
19: iter ← iter + 1
20: end if
21: Update the residual cancellation sequence (RCS)
22: Update the infeasibility rate rIN
23: Update the responsive critical limits CL1, CL2

24: if (W (S) > C) then
25: Update the frequency counter F /* An infeasible solution is encountered

*/
26: end if
27: end while
28: return Sb2

closest to the boundary of the feasible and infeasible regions. The best
solution Sb2 found during SOS is updated if S is better than Sb2 (lines
15-20). Since we adopt the same REM method to record previously
encountered solutions, RCS is updated after each solution transition (line
21). The infeasibility rate (rIN) and the critical limits (CL1 and CL2) used
for the RNF strategy (see below) are updated according to the current
status of the search traversing the search spaces ΩF and ΩIN (lines 22-23). If
the current solution S is infeasible, the frequency counter F (used in the
perturbation procedure) is updated (lines 24-26). Finally, the SOS procedure
terminates after Imax2 consecutive iterations without improving the best
solution Sb2.

11

2.5.2 Enlarged neighborhood structures

The SOS procedure explores the neighborhood N+, which is the union of
the neighborhoods N+

1 , N
+
2 , N

+
3 induced by the add, swap and drop moves,

such that the disjunctive constraints are always satisfied while the capacity
constraint is not necessarily satisfied.

N+
1 (S) = {S ′ : S ′ = S ⊕ add(p), p ∈ Ā,Disj(S)} (13)

N+
2 (S) = {S ′ : S ′ = S ⊕ swap(q, p), q ∈ A, p ∈ Ā,Disj(S)} (14)

N+
3 (S) = {S ′ : S ′ = S ⊕ drop(q), q ∈ A,Disj(S)} (15)

Unlike the feasible neighborhoodsNF
1 toNF

3 , a solution inN+ = N+
1 ∪N+

2 ∪N+
3

may or may not satisfy the capacity constraint. As a result, the SOS procedure
explores both feasible and infeasible solutions.

2.5.3 Responsive filtering strategy

The current solution S may be infeasible since the knapsack capacity
constraint is relaxed during the SOS procedure. As indicated in [14], the
strategic oscillation is to guide the search to cross back and forth between
feasible and infeasible regions. The responsive filtering strategy is designed
to prevent the search from staying in the space ΩF or ΩIN for a long time.
To keep the search from becoming trapped deeply in infeasible regions of
ΩIN , only neighboring solutions S ′ with a critical value satisfying
CV (S ′) ≤ CL1 are considered, where CL1 is the so-called critical limit. The
initial value of CL1 is determined automatically by the maximum item
weight and the minimum item weight of the given DCKP instance, setting
CL1 = (argmax{wi : i = 1, . . . , n} + argmin{wi : i = 1, . . . , n})/2. On the
other hand, the critical limit CL2 is employed to keep the search from
becoming mired in the feasible region of ΩF , i.e., only neighboring solutions
S ′ verifying CV (S ′) ≥ CL2 are considered. The initial value of CL2 is equal
to 0 and CL1 and CL2 dynamically evolve as follows.

We inspect the feasibility of the 100 neighboring solutions most recently
visited, to define the infeasibility ratio by rIN = Ninfea/100 where Ninfea is
the number of infeasible solutions among these 100 neighboring solutions. If
rIN = 0 (i.e., no infeasible solution is encountered), we increase the value of
CL2 by 1 to push the search towards infeasible regions. If, on the contrary,
rIN = 1 (all 100 solutions most recently encountered are infeasible), the value

12

of CL1 is reduced by 1 to push the search into the feasible region. CL2 works
only when rIN = 0, while CL1 is always active. As a result, the algorithm
searches along the boundary of the spaces ΩF and ΩIN within a controlled
range. The impact of the SOS procedure and the RNF strategy on the
performance of the proposed algorithm is analyzed in Sections 4.1 and 4.2.

2.6 Frequency-based perturbation

The fact that the SOS procedure may accept infeasible solutions is beneficial
for diversifying the search. However, the degree of this diversification may
not be sufficiently great to allow the algorithm to escape deep local optima.
Thus, we design a frequency-based perturbation to drive the search to enter
new unseen regions, based on a frequency counter F that records the
number of times each item appears in an infeasible solution encountered in
the SOS procedure (Algorithm 3, lines 24-26). Then the perturbation
procedure is carried out according to F .

Algorithm 4 Frequency-based perturbation procedure

1: Input: Input solution Sb2, perturb strength ρ, frequency counter F .
2: Output: The perturbed solution S.
3: Sort items according to F
4: /* Remove the top ρ× |Sb2| most frequently selected items */
S ← Drop items(Sb2, ρ,F)

5: while W (S) ≤ C do
6: Randomly pick one non-selected item j
7: if w(j) +W (S) ≤ C then
8: S ← Add one item(j, S)
9: else

10: break;
11: end if
12: end while
13: return S

As shown in Algorithm 4, we first sort all the selected items in a descending
order according to F (line 3). Then we remove the top ρ×|Sb2| most frequently
selected items (line 4), where ρ is a parameter called perturb strength and |Sb2|
indicates the number of selected items in solution Sb2. Afterwards, new items
are randomly added into the solution S until the knapsack capacity is reached
(lines 5-12). The perturbed solution S will be used as the input solution for
the next round of the RSOA algorithm.

13

2.7 Discussions

In this section, we discuss the differences between the proposed RSOA
algorithm and the existing solution methods.

Although RSOA is derived from the strategic oscillation framework, it has
the following distinguishing features. First of all, RSOA employs the original
responsive filtering strategy to guide the search to oscillate around the
boundary of feasible and infeasible regions and reinforce the SOS framework.
Second, the known SOS solution methods often adopt the tabu heuristic for
local optimization [11,45]. In our case, RSOA uses the threshold search
technique to enhance the performance of the SOS framework.

Compared to the TSBMA heuristic algorithm introduced in [46], which also
uses the threshold search, RSOA distinguishes itself by the fact that RSOA
explores both feasible and infeasible regions, while TSBMA only explores
feasible regions. Moreover, RSOA adopts the REM method to record the
encountered neighboring solutions, which consumes less computing resources
than the solution-based tabu technique applied in TSBMA. Finally, for its
local search, RSOA uses the SOS framework instead of the population-based
memetic framework in TSBMA.

The way of exploring the neighborhoods in the FLS procedure (see Section
2.4) of our algorithm is similar to the variable neighborhood search (VNS)
[16], we analyze their relationships here. First, the FLS procedure adopts the
threshold search technique to accept both improving and deteriorating
neighboring solutions that meet the given threshold, while only improving
neighboring solutions are accepted in the usual VNS framework. Second,
VNS typically uses the best improvement strategy to explore the given
neighborhoods, while our FLS procedure stops exploring the current
neighborhood once it finds a neighboring solution satisfying the quality
threshold. Finally, the frequency-based perturbation strategy of RSOA can
be viewed as an informative shaking procedure for VNS.

3 Computational results and comparisons

To evaluate the performance of our RSOA algorithm, we perform extensive
experiments on a large number of DCKP benchmark instances commonly
tested in the literature. The computational results of the RSOA algorithm as
well as the state-of-the-art reference algorithms are provided in this section.

14

3.1 Benchmark instances

Two sets (Set I and Set II) of 6340 popular DCKP benchmark instances are
adopted for our experimental studies. Each instance can be characterized by
three parameters: n represents the number of items, C is the knapsack capacity
and η is the edge density of the corresponding conflict graph (conflict density),
i.e., η = 2m/n(n− 1) where m is the number of disjunctive constraints.

Set I [18,36] includes 100 popular instances with n ranging from 500 to 2000,
C from 1800 to 4000 and η from 0.04 to 0.40. These instances are denoted by
xIy where x = {1, . . . , 20} and y = {1, . . . , 5}. These instances were largely
tested in the literature such as [36,37,1,22,20,17,38,46].

Set II [4,8] includes 6240 instances with n ranging from 60 to 1000, C from
150 to 15000 and η from 0.001 to 0.90. These instances are further divided
into ten classes, with 720 instances in each of the first eight classes (C1, C3,
C10, C15, R1, R3, R10, R15) and 240 instances in each of the other two very
sparse classes (SC, SR). In this paper, the four correlated instance classes C1
to C15 are denoted by CC and the other four random classes R1 to R15 are
denoted by CR. These instances are relatively new and were tested in [4,8,46].

More details of these two sets of benchmark instances are summarized in [46].
All instances are available online 1 .

Finally, like in [46], we also test our algorithm on the 21 benchmark instances
from the real-life daily photograph scheduling problem (DPSP) of the earth
observation satellite SPOT5 [3,44].

3.2 Experimental settings and reference algorithms

To assess the performance of our RSOA algorithm, we employ four
state-of-the-art algorithms for the instances of Set I: the parallel
neighborhood search algorithm (PNS) [37], the cooperative parallel adaptive
neighborhood search algorithm (CPANS) [36], the probabilistic tabu search
algorithm (PTS) [38] and the threshold search based memetic algorithm
(TSBMA) [46]. For the instances of Set II, we compare RSOA against three
best-performing exact approaches: the two branch-and-bound algorithms
BCM [4] and CFS [8], the CPLEX solver (denoted by ILP) [8] as well as the
best heuristic algorithm TSBMA [46]. Both RSOA and TSBMA are heuristic
algorithms, and consequently we use TSBMA as our main reference

1 http://dx.doi.org/10.17632/gb5hhjkygd.1

15

http://dx.doi.org/10.17632/gb5hhjkygd.1

algorithm, which is the latest DCKP algorithm and has achieved excellent
results on both benchmark sets.

Table 1
Experimental environments of the compared algorithms.
Algorithm Programming language Processor CPU (GHz) RAM (GB) Operating system

BCM [4] C Intel Xeon E3-1220 3.1 16 Linux

CFS & ILP1,2 [8] C++/CPLEX 12.8 Intel Xeon E5-2690 3.0 128 Linux

PTS [38] Java Intel Pentium I5-6500 3.2 4 -

PNS [37] C++ - 3.06 - -

CPANS [36] C++ Intel Xeon E5-4640 2.6 - -

TSBMA [46] C++ Intel Xeon E5-2670 2.5 2 Linux

RSOA (this work) C++ Intel Xeon E5-2670 2.5 2 Linux

The proposed RSOA algorithm was coded in C++ 2 . and compiled by the
g++ compiler with the -O3 option. The main experimental environments for
the compared algorithms are shown in Table 1. Following [46], the cut-off time
was set to be 1000 seconds for Set I and 600 seconds for Set II. Corresponding
to [46], we ran our RSOA algorithm 20 times independently for the instances
of Set I and 10 times for the instances of Set II. According to the above
experimental settings, the computing resources consumed by our experiment
are the same or less than those in the existing literature.

Table 2
Parameter settings of RSOA.

Parameters Section Description Value

Imax1 2.4 maximum number of iterations of FLS 10× n

Imax2 2.5 maximum number of iterations of SOS 5× n

δ 2.4 threshold parameter
n/10 (for Set I)

MinP + rand(20) (for Set II)

ρ 2.6 perturbation strength 0.6

The four parameters required by RSOA are shown in Table 2. The value of
Imax1 and Imax2 are automatically determined according to the number of items
n in each instance. The parameter δ to calculate the quality threshold T of the
feasible local search adopts the same settings as in [46], where MinP is the
minimum profit of each instance and rand(20) is a random integer in [1...20].
For the perturbation strength ρ, we use the automatic parameter tuning tool
Irace [30] to determine its value. The candidate values of ρ are from 0.1 to 0.9
with a step size of 0.1. This experiment is carried out on 8 instances from Set
I with a cut-off time of 200 seconds. From the outcome of the experiment, the
final value of ρ was set to 0.6. Unless stated otherwise, these values of the four
parameters are consistently adopted for all our experiments reported in this
paper and can be considered as the default settings of the RSOA algorithm.

2 The code of our algorithm will be made available upon the publication of the
paper at https://github.com/Zequn-Wei/DCKP-sol.git

16

https://github.com/Zequn-Wei/DCKP-sol.git

3.3 Computational results and comparisons

The performance of the RSOA algorithm is assessed by comparing it with
the reference algorithms introduced in Section 3.2, reporting computational
results for the instances of sets I and II. A further comparison is made between
RSOA and the main reference algorithm TSBMA by applying these algorithms
to an additional set of real-world instances from the earth observation satellite
SPOT5. All solution certificates reported in this section are available online 3 .

3.3.1 Computational results on the 100 instances of Set I

Table 3 summarizes the comparisons between the RSOA algorithm and each
reference algorithm on the 100 instances of Set I, with the reference results
obtained from [46]. The first three columns of the table indicate the pairs of
compared algorithms, the instance names and the performance indicators.
Note that some of the performance indicators are not available in the
literature. Columns 4 to 6 give the number of instances where RSOA attains
a better, equal or worse result compared to each reference algorithm. The
last column shows the p-values obtained from the Wilcoxon signed-rank test
[47] with a significance level of 0.05. NA in the last column indicates that the
results of the compared algorithms are the same.

Table 3
Summarized comparisons of the RSOA algorithm against each reference algorithm
on the 100 DCKP instances of Set I.

Algorithm pair Instance (total) Indicator #Wins #Ties #Losses p-value

RSOA vs. PTS [38] 1Iy − 10Iy (50) fbest 8 42 0 1.40e-2

favg 45 5 0 5.34e-9

RSOA vs. PNS [37] 1Iy − 10Iy (50) fbest 9 41 0 8.91e-3

11Iy − 20Iy (50) fbest 27 23 0 5.56e-6

RSOA vs. CPANS [36] 1Iy − 10Iy (50) fbest 0 50 0 NA

11Iy − 20Iy (50) fbest 31 19 0 1.18e-6

RSOA vs. TSBMA [46] 1Iy − 10Iy (50) fbest 0 50 0 NA

favg 12 34 4 7.44e-2

11Iy − 20Iy (50) fbest 2 48 0 3.46e-1

favg 15 16 19 3.47e-1

Table 3 shows that the RSOA algorithm dominates the reference algorithms
PTS, PNS and CPANS in terms of the best objective value fbest and average
objective value favg. Compared with the main reference algorithm TSBMA,
our algorithm is able to obtain improved fbest values for two instances and
obtains all the best-known results for the remaining 98 instances. However,

3 https://github.com/Zequn-Wei/DCKP-sol.git

17

https://github.com/Zequn-Wei/DCKP-sol.git

instances in which the p-values are greater than 0.05 mean that the
difference between RSOA and TSBMA is not statistically significant in these
cases. Detailed results of our algorithm on the instances of Set I are reported
in the Appendix.

3.3.2 Computational results on the 6240 instances of Set II

Table 4 summarizes the comparisons of the RSOA algorithm against each
reference algorithm on the 6240 instances of Set II. Column 1 shows the
name of each instance class and column 2 indicates the number of instances
corresponding to each class. The numbers of instances for which an
algorithm reaches the known optimal solution are given in columns 3 to 7.
Column 8 indicates the number of improved best results (new lower bounds)
obtained by our RSOA algorithm. The last four columns give a detailed
comparison between RSOA and the heuristic algorithm TSBMA, as well as
the p-values from the Wilcoxon signed-rank test. The summarized results for
each column are presented in the last three rows.

Table 4
Summarized comparisons of the RSOA algorithm against each reference algorithm
on the 6240 DCKP instances of Set II.

Class Total
ILP1,2 [8] BCM [4] CFS [8] TSBMA [46] RSOA (this work) RSOA vs. TSBMA [46]

Solved Solved Solved Solved Solved New LB #Wins #Ties #Losses p-value

C1 720 720 720 720 720 720 0 0 720 0 NA

C3 720 584 720 720 716 720 0 4 716 0 6.79e-2

C10 720 446 552 617 617 617 9 9 711 0 7.47e-3

C15 720 428 550 600 600 600 3 3 717 0 1.09e-1

R1 720 720 720 720 717 720 0 3 717 0 1.09e-1

R3 720 680 720 720 720 720 0 0 720 0 NA

R10 720 508 630 670 669 670 1 3 717 0 1.09e-1

R15 720 483 590 622 622 622 14 15 705 0 6.53e-4

SC 240 200 109 156 194 196(200) 0 2 238 0 5.64e-1

SR 240 229 154 176 9 223(229) 10 231 9 0 2.20e-16

CC and CR 5760 4569 5201 5389 5381 5389 27 37 5723 0 3.20e-06

SC and SR 480 429 263 332 204 419(429) 10 233 247 0 2.20e-16

Grand total 6240 4998 5424 5721 5585 5808(5818) 37 270 5970 0 2.20e-16

From Table 4, we observe that for the 5760 instances CC and CR with conflict
densities from 0.1 to 0.9, our RSOA algorithm obtains all the 5389 known
optimal solutions. For the 480 very sparse instances SC and SR with conflict
densities from 0.001 to 0.05, the RSOA algorithm achieves 419 out of 429
proved optimal solutions. Our algorithm successfully solves the remaining 10
instances (4 for SC and 6 for SR) with a longer cut-off time (2000 seconds) or
with more repeated runs (100 times), as shown within parentheses in the table.
In addition, RSOA discovers 37 new lower bounds, which have not previously

18

been reported in the literature. Compared to the main reference heuristic
algorithm TSBMA, our RSOA algorithm obtains 270 better, 5970 equal and
no worse results for the 6240 instances of Set II. Notably, RSOA performs
very well on the very sparse instance class SR, which proved challenging for
the reference algorithm TSBMA. Finally, the small p-value (< 0.05) discloses
that the performance difference between RSOA and TSBMA is statistically
significant for this second benchmark set.

3.3.3 Computational results on 21 real-life instances

To complete the comparison, we also tested the 21 benchmark instances
from the real-life daily photograph scheduling problem (DPSP) of the earth
observation satellite SPOT5 [3,44]. The number of items (photographs) in
these DPSP instances ranges from 8 to 1057. As indicated in [46], this
problem is equivalent to the DCKP model when ignoring the ternary
constraints. As a result, the DPSP can be solved via any DCKP algorithm
by adding a simple repair procedure. We adopted the same repair procedure
and experimental settings as our main reference algorithm TSBMA for these
real-life instances, i.e., 10 repeated runs with a cut-off time of one hour per
run.

The computational results on the 21 DPSP instances are shown in Table 5.
The first five columns give the name, number of photographs and number of
conflict constraints of each instance. The symbol * in the first column indicates
that the optimal value of any instance is known. Column 6 presents the known
optimal values (indicated by *) or best-known values (Opt/BKV), which have
been obtained by specially designed DPSP algorithms. Columns 7 to 12 show
the detailed results of the proposed RSOA algorithm as well as the reference
algorithm TSBMA. The gap(%) is defined by (fbest − BKV)/BKV and the
better results between the two compared algorithms are highlight in bold. The
row #Avg shows the average value of each column. According to the fbest and
favg values of RSOA and TSBMA, we give the p-values from the Wilcoxon
signed-rank test in the last row.

Table 5 discloses that RSOA performs very well compared to TSBMA, by
achieving 11 better and 8 equal fbest values while obtaining a worse result for
only two cases. Although TSBMA has better #Avg values in terms of favg,
the p-value of 5.71e-01 (> 0.05) indicates that there is no significant difference
between TSBMA and RSOA for favg. From the row #Avg, we observe that
RSOA achieves a smaller gap(%) than TSBMA (-0.742 against -1.025). With
reference to the best-known values BKV, our RSOA algorithm matches ten
optimal results against eight for TSBMA. In terms of fbest, the small p-value
(< 0.05) confirms RSOA performs significantly better than TSBMA. These
computational results on the DPSP instances again show the utility of our

19

Table 5
Computational results of the RSOA algorithm and comparison with the best-
known values (BKV) on the 21 real-life instances of the SPOT5 daily photograph
scheduling problem.

Instance Photographs
Number of constraints

Opt/BKV
TSBMA [46] RSOA (this work)

C2 C3 1 C3 2 fbest favg gap(%) fbest favg gap(%)

8* 8 17 0 4 10* 10 10 0 10 10 0.000

54* 67 389 23 29 70* 70 69.60 0.000 70 70 0.000

29* 82 610 0 19 12032* 12032 12031.40 0.000 12032 12030.40 0.000

42* 190 1762 64 57 108067* 108067 108067 0.000 108067 108067 0.000

28* 230 6302 590 58 56053* 56053 56053 0.000 56053 56053 0.000

5* 309 13982 367 250 115* 111 107.40 -3.478 115 108.40 0.000

404* 100 919 18 29 49* 49 47.80 0.000 49 49 0.000

408* 200 2560 389 64 3082* 3075 3074.20 -0.227 3078 3077.80 -0.130

412* 300 6585 389 122 16102* 16094 16092.40 -0.050 16096 15496.20 -0.037

11* 364 9456 4719 164 22120* 22111 22109.10 -0.041 22117 20814 -0.014

503* 143 705 86 58 9096* 9096 8994.60 0.000 9096 7798.60 0.000

505* 240 2666 526 104 13100* 13096 12995.40 -0.031 13099 11803.70 -0.008

507* 311 5545 2293 131 15137* 15132 15127.30 -0.033 15137 13334.70 0.000

509* 348 7968 3927 152 19215* 19113 19110.60 -0.531 19115 17720.90 -0.520

1401 488 11893 2913 213 176056 170056 167960.50 -3.408 171062 169660.80 -2.837

1403 665 14997 3874 326 176140 170146 167848.80 -3.403 172141 169245.70 -2.270

1405 855 24366 4700 480 176179 168185 167882.40 -4.537 170175 168484.10 -3.408

1021 1057 30058 5875 649 176246 170247 168049.70 -3.404 169240 168145.10 -3.975

1502* 209 296 29 102 61158* 61158 61158 0.000 61158 61157.80 0.000

1504 605 5106 882 324 124243 124238 124135.50 -0.004 124240 124236.90 -0.002

1506 940 19033 4775 560 168247 164241 161639.30 -2.381 164239 159341.80 -2.382

#Avg - - - - 63453.19 62018.10 61550.67 -1.025 62209.00 61271.71 -0.742

p-value - - - - - 2.48e-2 5.71e-01 - - - -

RSOA algorithm for solving this real-world problem.

4 Additional experiments and discussions

To shed light on the RSOA algorithm’s performance, this section presents a
series of experiments to assess two main components: the strategic oscillation
procedure and the responsive filtering strategy. We also show the first analysis
on the distribution of feasible and infeasible solutions and the landscape of
the DCKP.

20

4.1 Effectiveness of the strategic oscillation search procedure

As indicated in Section 2.5, the RSOA algorithm adopts a strategic oscillation
procedure SOS to allow the search to explore infeasible regions within ΩIN . In
this section, we investigate the influence of SOS on the algorithm by creating a
variant RSOA−1 of RSOA that disables the SOS procedure. As a result, RSOA−1
will only explore the feasible search space. For the experiment, we tested
240 very sparse instances SR, for which the RSOA algorithm demonstrated
its effectiveness compared to the main reference algorithm TSBMA. Each
instance was solved 10 times independently with a cut-off time of 600 seconds
per run.

The experimental results are summarized in Table 6. The first two columns
give the name of each group of 10 instances. The remaining columns show
the number of instances where the RSOA algorithm obtains better (#Wins),
equal (#Ties) or worse (#Losses) results compared to the RSOA−1 variant
in terms of fbest and favg. We also present the p-values from the Wilcoxon
signed-rank test according to these two performance indicators. The last row
shows a summary of each column.

The results of Table 6 clearly demonstrate the dominance of the RSOA
algorithm over the RSOA−1 variant. Specifically, RSOA achieves better fbest
values for 221 out of the 240 instances and no worse values compared to
RSOA−1 . The effectiveness of RSOA is even more evident when considering
the favg indicator, according to which RSOA dominates RSOA−1 for all
instances tested. The small p-values indicate that the performance
differences are statistically significant. This experiment confirms the
usefulness of the strategic oscillation search procedure adopted by the
proposed algorithm.

4.2 Influence of the responsive filtering strategy

The responsive filtering strategy is another key component of the RSOA
algorithm. To investigate its influence on the RSOA algorithm, we performed
an experiment by disabling this strategy to produce the procedure denoted
by RSOA−2 . We adopted the same experimental settings and benchmark
instances as in Section 4.1. The experimental results are reported in Table 7
with the same information as in Table 6.

Table 7 discloses that RSOA outperforms RSOA−2 by obtaining better fbest
results for 187 out of the 240 instances and equal results for the 53 remaining
instances. RSOA achieves better or equal favg values for most of the instances.
The p-values smaller than 0.05 indicate significant differences between the

21

Table 6
Effectiveness of the strategic oscillation search procedure on the performance of the
RSOA algorithm (RSOA vs. RSOA−1).

Instance Total
Indicator: fbest Indicator: favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SR 500 1000 r0.01 10 9 1 0 7.58e-3 10 0 0 5.06e-3

SR 500 1000 r0.02 10 7 3 0 1.78e-2 10 0 0 5.06e-3

SR 500 1000 r0.05 10 4 6 0 6.79e-2 10 0 0 5.06e-3

SR 500 2000 r0.01 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 500 2000 r0.02 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 500 2000 r0.05 10 6 4 0 2.77e-2 10 0 0 5.06e-3

SR 500 1000 r0.001 10 10 0 0 7.69e-3 10 0 0 5.06e-3

SR 500 1000 r0.002 10 10 0 0 7.63e-3 10 0 0 5.06e-3

SR 500 1000 r0.005 10 8 2 0 1.16e-2 10 0 0 5.06e-3

SR 500 2000 r0.001 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 500 2000 r0.002 10 9 1 0 7.69e-3 10 0 0 5.06e-3

SR 500 2000 r0.005 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 1000 r0.01 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 1000 r0.02 10 9 1 0 7.63e-3 10 0 0 5.06e-3

SR 1000 1000 r0.05 10 9 1 0 7.69e-3 10 0 0 5.06e-3

SR 1000 2000 r0.01 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.02 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.05 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 1000 r0.001 10 10 0 0 5.01e-3 10 0 0 5.06e-3

SR 1000 1000 r0.002 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 1000 r0.005 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.001 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 2000 r0.002 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.005 10 10 0 0 5.06e-3 10 0 0 5.06e-3

Summary 240 221 19 0 2.20e-16 240 0 0 2.20e-16

results of the RSOA algorithm and the RSOA−2 variant. We conclude that the
responsive filtering strategy plays an important role for the performance of
the RSOA algorithm.

4.3 Analysis of the feasible and infeasible solutions

As noted in Section 1, this is the first work that employs strategic oscillation
for solving the DCKP, allowing the search to transition between feasible and
infeasible regions. To shed light on why such an approach is meaningful for
solving the DCKP, we adopted the perspective of the study [35] on the graph
coloring problem and investigated the following fundamental questions.

(1) Are high-quality feasible solutions close to each other or separated by
large distances?
(2) Are high-quality infeasible solutions close to each other or separated by

22

Table 7
Influence of the responsive filtering strategy on the performance of RSOA algorithm.
(RSOA vs. RSOA−2)

Instance Total
Indicator: fbest Indicator: favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

SR 500 1000 r0.01 10 8 2 0 1.17e-2 10 0 0 5.06e-3

SR 500 1000 r0.02 10 7 3 0 1.80e-2 10 0 0 5.06e-3

SR 500 1000 r0.05 10 0 10 0 NA 3 7 0 1.03e-1

SR 500 2000 r0.01 10 9 1 0 7.63e-3 10 0 0 5.06e-3

SR 500 2000 r0.02 10 4 6 0 6.79e-2 10 0 0 5.06e-3

SR 500 2000 r0.05 10 0 10 0 NA 0 10 0 NA

SR 500 1000 r0.001 10 9 1 0 7.69e-3 10 0 0 5.06e-3

SR 500 1000 r0.002 10 9 1 0 7.63e-3 10 0 0 5.06e-3

SR 500 1000 r0.005 10 7 3 0 1.80e-2 10 0 0 5.06e-3

SR 500 2000 r0.001 10 9 1 0 7.63e-3 10 0 0 5.06e-3

SR 500 2000 r0.002 10 9 1 0 7.47e-3 10 0 0 5.06e-3

SR 500 2000 r0.005 10 9 1 0 7.58e-3 10 0 0 5.06e-3

SR 1000 1000 r0.01 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 1000 r0.02 10 10 0 0 7.63e-3 10 0 0 5.06e-3

SR 1000 1000 r0.05 10 7 3 0 1.80e-2 8 1 1 1.09e-2

SR 1000 2000 r0.01 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 2000 r0.02 10 10 0 0 5.03e-3 10 0 0 5.06e-3

SR 1000 2000 r0.05 10 0 10 0 NA 4 3 3 7.35e-1

SR 1000 1000 r0.001 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 1000 r0.002 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 1000 r0.005 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.001 10 10 0 0 5.00e-3 10 0 0 5.06e-3

SR 1000 2000 r0.002 10 10 0 0 5.06e-3 10 0 0 5.06e-3

SR 1000 2000 r0.005 10 10 0 0 5.03e-3 10 0 0 5.06e-3

Summary 240 187 53 0 2.20e-16 215 21 4 2.20e-16

large distances?
(3) Are high-quality feasible solutions close to or far away from high-quality
infeasible solutions?
(4) Are high-quality solutions clustered in spheres of small diameter or
scattered everywhere in the search space?

To answer these questions we executed our RSOA algorithm to solve four
representative instances:18I2 (Set I, 2000 items), C10 8 0 3 r0.1 (Set II,
class C10, 501 items), 1000 2000 r0.01-0 (Set II, class SR, 1000 items),
1000 2000 r0.005-0 (Set II, class SR, 1000 items). Our preliminary
experiment indicates that these instances are hard for RSOA due to their
large size or low conflict density. For each instance, we ran RSOA 10 times
with the same cut-off time as indicated in Section 3.2. For each run, we
recorded the top 50 best feasible solutions in terms of the largest objective
values and the top 50 high-quality infeasible solutions in terms of the least
critical values CV (defined in Section 2.2), thus obtaining 500 high-quality
feasible solutions and 500 good infeasible solutions for each instance. Then

23

0 50 100 150 200
Distance

0

2000

4000

6000

8000

N
um

be
r o

f s
ol
ut
io
ns

(a) Instance: 18I2

0 50 100 150 200
Distance

0

2000

4000

6000

8000

10000

N
um

be
r o

f s
ol
ut
io
ns

(b) Instance: C10 8 0 3 r0.1

0 50 100 150 200
Distance

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r o

f s
ol
ut
io
ns

(c) Instance: 1000 2000 r0.01-0

0 50 100 150 200
Distance

0

2000

4000

6000

8000

10000

N
um

be
r o

f s
ol
ut
io
ns

(d) Instance: 1000 2000 r0.005-0

Fig. 1. Frequencies of distances between each pair of high-quality feasible solutions.

0 50 100 150 200
Distance

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f s
ol
ut
io
ns

(a) Instance: 18I2

0 50 100 150 200
Distance

0

2000

4000

6000

8000

N
um

be
r o

f s
ol
ut
io
ns

(b) Instance: C10 8 0 3 r0.1

0 50 100 150 200
Distance

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f s
ol
ut
io
ns

(c) Instance: 1000 2000 r0.01-0

0 50 100 150 200
Distance

0

1000

2000

3000

4000

5000

N
um

be
r o

f s
ol
ut
io
ns

(d) Instance: 1000 2000 r0.005-0

Fig. 2. Frequencies of distances between each pair of high-quality infeasible solutions.

we used the Hamming distance to measure the distance between each pair of
solutions (feasible or infeasible).

The frequencies of the distances between each pair of solutions are shown
in the histograms of Figures 1 to 3. The X-axis in each sub-figure gives the
distances between the solutions and the Y-axis indicates the number of paired
solutions having a specific distance. Each sub-figure includes the distances of
the 124750 paired solutions for each instance, where the distance of 0 between
two identical solutions is ignored. From these figures, we observe that the

24

0 50 100 150 200
Distance

0

2500

5000

7500

10000

12500

15000

17500

N
um

be
r o

f s
ol
ut
io
ns

(a) Instance: 18I2

0 50 100 150 200
Distance

0

2500

5000

7500

10000

12500

15000

17500

N
um

be
r o

f s
ol
ut
io
ns

(b) Instance: C10 8 0 3 r0.1

0 50 100 150 200
Distance

0

2000

4000

6000

8000

N
um

be
r o

f s
ol
ut
io
ns

(c) Instance: 1000 2000 r0.01-0

0 50 100 150 200
Distance

0

2000

4000

6000

8000

10000

N
um

be
r o

f s
ol
ut
io
ns

(d) Instance: 1000 2000 r0.005-0

Fig. 3. Frequencies of distances between each pair of feasible and infeasible
high-quality solutions.

distances between high-quality solutions are quite small. Most of the paired
solutions are distributed in a cluster with a diameter less than 0.1n, where n
is the number of items of each instance.

To visualize the spatial distribution of the sampled high-quality solutions in
the solution space, we map the locations of these solutions from n-dimensional
space into the Euclidean space R3 by employing the multidimensional scaling
(MDS) procedure [27] using the classical cmdscale algorithm to generate the
solution distributions in R3. The spatial distributions of these high-quality
feasible and infeasible solutions are shown in Figure 4. Each point on the
sub-figure represents a high-quality solution, where a blue point represents a
feasible solution and a red point represents an infeasible solution.

From Figure 4, we observe that high-quality feasible solutions are grouped
in several clusters, rather than scattered throughout the search space. Since
there are boundaries between feasible and infeasible solutions, it makes sense
to allow the search to cross back and forth over these boundaries to locate high-
quality solutions. Moreover, we observe that if an infeasible solution is far from
clusters of feasible solutions, there are usually no other high-quality feasible
solutions around it. Therefore, to ensure the effectiveness of the search, we
should prevent the search from going too deeply into infeasible regions. These
findings provide foundations for the design of our RSOA algorithm regarding
the use of strategic oscillation.

25

−60 −40 −20 0 20 40

−
6
0

−
4
0

−
2
0

0

 2
0

 4
0

−40

−20

 0

 20

 40

 60

Feasible

Infeasible

(a) Instance: 18I2

−30 −20 −10 0 10 20 30 40

−
3
0

−
2
0

−
1
0

0

 1
0

 2
0

 3
0

 4
0

−30

−20

−10

 0

 10

 20

 30

 40

Feasible

Infeasible

(b) Instance: C10 8 0 3 r0.1

−40 −30 −20 −10 0 10 20 30

−
3
0

−
2
0

−
1
0

0

 1
0

 2
0

 3
0

 4
0

 5
0

−30

−20

−10

 0

 10

 20

 30

 40

Feasible

Infeasible

(c) Instance: 1000 2000 r0.01-0

−30 −20 −10 0 10 20 30 40 50

−
4
0

−
3
0

−
2
0

−
1
0

0

 1
0

 2
0

−30

−20

−10

 0

 10

 20

 30

Feasible

Infeasible

(d) Instance: 1000 2000 r0.005-0

Fig. 4. Spatial distributions of feasible and infeasible high-quality solutions.

4.4 Instance space analysis

To further understand the behavior of our RSOA algorithm as well as the
reference algorithms, we provide an instance space analysis (ISA, [41]).
Basically, ISA helps to get insights into the algorithm performance on
instances of different features. We employ the recently emerging toolkit
MATILDA that provides visualized ISA results. Interested readers are
referred to [32,42] for more details about MATILDA. In our case, the
experiment is based on the 480 very sparse instances SC and SR, on which
the performance of existing DCKP algorithms varies greatly. In this
experiment, the proposed RSOA algorithm and the four leading reference
algorithms introduced in Section 3.2 are considered, i.e., BCM [4], CFS [8],
ILP [8] and TSBMA [46]. For the parameter settings of MATILDA, we set
the value of the parameter ‘opts.perf.epsilon’ (threshold of good

26

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10
z

2

Sources

SC

SR

(a) Distribution of instances

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10

z
2

Density

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Distributions of Density feature

Fig. 5. Distributions of benchmark instances and Density feature in the 2D instance
space.

performance) to 0.01, while keeping the other parameters as their default
values. For the description of instance characteristics, we adopted the
conflict density feature (denoted by Density) defined in Section 3.1 and the
44 features for the 0-1 knapsack problem introduced in MATILDA.

Figure 5 shows the distributions of the 480 benchmark instances and Density
feature in the 2D instance space. The values of the Density feature in the right
figure were scaled ranging from 0 (dark bule) to 1 (light yellow). From Figure
5 we can observe that the two sets of instances SC and SR are clustered in
two regions of the instance space and the Density values in each region are
scattered.

Figure 6 presents the prediction results for the Support Vector Machine (SVM)
classification model of MATILDA on the tested algorithms. This figure helps
us to better understand the strengths and weaknesses of each algorithm on the
given instances. We can observe from Figure 6 (d) that our RSOA algorithm is
able to achieve a good performance on all the instance points. SVM predicts
that such a result can not be achieved by the other reference algorithms.
Specifically, from Figure 6 (a) and (b), we can find that the exact methods
CFS and ILP will perform well on a majority of the instances, while show
weaknesses on the instances of set SC with large Density values. Figure 6
(c) discloses that TSBMA will show a good performance on the instances of
set SC and have trouble on the instances of set SR. These outcomes of SVM
predictions are consistent with the results reported in Table 4.

Finally, we present the predicted footprints of each algorithm to see the
strengths and weaknesses of each algorithm in the 2D instance space. As
shown in Figure 7, footprint refers to an area (blue shading) where an
algorithm is expected to achieve a good performance. From the footprints,
we can gain insights about the algorithm performance on the instances of

27

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10

z
2

CFS

GOOD

BAD

(a) CFS

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10

z
2

ILP1 2

GOOD

BAD

(b) ILP

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10

z
2

TSBMA

GOOD

BAD

(c) TSBMA

-6 -4 -2 0 2 4 6 8

z
1

-10

-5

0

5

10

z
2

RSOA

GOOD

(d) RSOA

Fig. 6. Prediction results for SVM model on the tested algorithms.

different features. The largest footprint of RSOA in Figure 7 indicates that
our RSOA algorithm is able to perform well in the instance space of SC and
SR, while the other reference algorithms show some weaknesses.

5 Conclusions and perspectives

The disjunctively constrained knapsack problem (DCKP) plays an important
role in combinatorial optimization due to its theoretical and practical
significance. Previous solution methods have only focused on searching
feasible regions. In this work, we have designed a responsive strategic
oscillation search algorithm (RSOA) which explores for the first time both
feasible and infeasible regions.

We have assessed the algorithm on two sets of 6340 DCKP benchmark
instances as well as 21 real-world instances of the daily photograph
scheduling problem of the earth observation satellite SPOT5. Our algorithm
obtains the best-known results for all the 6340 DCKP benchmark instances
(an outcome unmatched by all previous algorithms). Moreover, it finds

28

(a) CFS (b) ILP

(c) TSBMA (d) RSOA

Fig. 7. Footprint analysis of the tested algorithms.

improved best-known results for 2 instances of Set I and 37 instances of Set
II. The proposed algorithm also shows its relevance for the real-world daily
photograph scheduling problem, outperforming the best DCKP algorithm
applied to this scheduling problem. In addition to these computational
results, we have experimentally studied the key algorithmic components to
shed light on their roles in the performance of the algorithm. We have also
carried out the first investigation of the distribution of high-quality solutions,
which discloses the merit of the rationale underlying our algorithm.

From the perspective of future work, two directions could be pursued. First,
in the present work, we used the responsive filtering strategy to limit the
search around the boundary between feasible and infeasible regions. It is worth
investigating other possibilities to achieve this goal. Second, the proposed
algorithm combines the strategic oscillation (SO) framework with threshold
search to examine both feasible and infeasible solutions. Such an idea is general
enough to be tested on other constrained optimization problems.

29

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions,
which helped us to improve the paper. This work was partially supported
by the Fundamental Research Funds for the Central Universities (Grant No.
2022RC64).

References

[1] H. Akeb, M. Hifi, M. E. O. A. Mounir, Local branching-based algorithms
for the disjunctively constrained knapsack problem, Computers & Industrial
Engineering 60 (4) (2011) 811–820.

[2] S. Basagni, Finding a maximal weighted independent set in wireless networks,
Telecommunication Systems 18 (1) (2001) 155–168.

[3] E. Bensana, M. Lemaitre, G. Verfaillie, Earth observation satellite management,
Constraints 4 (3) (1999) 293–299.

[4] A. Bettinelli, V. Cacchiani, E. Malaguti, A branch-and-bound algorithm for the
knapsack problem with conflict graph, INFORMS Journal on Computing 29 (3)
(2017) 457–473.

[5] Y. Chen, J.-K. Hao, A ”reduce and solve” approach for the multiple-choice
multidimensional knapsack problem, European Journal of Operational Research
239 (2) (2014) 313–322.

[6] Y. Chen, J.-K. Hao, An iterated “hyperplane exploration” approach for the
quadratic knapsack problem, Computers & Operations Research 77 (2017) 226–
239.

[7] Y. Chen, J.-K. Hao, An iterated “hyperplane exploration” approach for the
quadratic knapsack problem, Computers & Operations Research 77 (2017) 226–
239.

[8] S. Coniglio, F. Furini, P. San Segundo, A new combinatorial branch-and-
bound algorithm for the knapsack problem with conflicts, European Journal
of Operational Research 289 (2) (2021) 435–455.

[9] Á. Corberán, J. Peiró, V. Campos, F. Glover, R. Mart́ı, Strategic oscillation for
the capacitated hub location problem with modular links, Journal of Heuristics
22 (2) (2016) 221–244.

[10] M. Gallego, M. Laguna, R. Mart́ı, A. Duarte, Tabu search with strategic
oscillation for the maximally diverse grouping problem, Journal of the
Operational Research Society 64 (5) (2013) 724–734.

30

[11] C. Garćıa-Mart́ınez, F. Glover, F. J. Rodriguez, M. Lozano, R. Mart́ı, Strategic
oscillation for the quadratic multiple knapsack problem, Computational
Optimization and Applications 58 (1) (2014) 161–185.

[12] F. Glover, Heuristics for integer programming using surrogate constraints,
Decision Sciences 8 (1) (1977) 156–166.

[13] F. Glover, Tabu search—part II, ORSA Journal on Computing 2 (1) (1990)
4–32.

[14] F. Glover, J.-K. Hao, The case for strategic oscillation, Annals of Operations
Research 183 (1) (2011) 163–173.

[15] F. Gurski, C. Rehs, Solutions for the knapsack problem with conflict and forcing
graphs of bounded clique-width, Mathematical Methods of Operations Research
89 (3) (2019) 411–432.

[16] P. Hansen, N. Mladenovic, J. A. Moreno-Pérez, Variable neighbourhood search:
methods and applications, Annals of Operations Research 175 (1) (2010) 367–
407.

[17] M. Hifi, An iterative rounding search-based algorithm for the disjunctively
constrained knapsack problem, Engineering Optimization 46 (8) (2014) 1109–
1122.

[18] M. Hifi, M. Michrafy, A reactive local search-based algorithm for the
disjunctively constrained knapsack problem, Journal of the Operational
Research Society 57 (6) (2006) 718–726.

[19] M. Hifi, M. Michrafy, Reduction strategies and exact algorithms for the
disjunctively constrained knapsack problem, Computers & Operations Research
34 (9) (2007) 2657–2673.

[20] M. Hifi, S. Negre, T. Saadi, S. Saleh, L. Wu, A parallel large neighborhood
search-based heuristic for the disjunctively constrained knapsack problem,
in: 2014 IEEE International Parallel & Distributed Processing Symposium
Workshops, IEEE, 2014.

[21] M. Hifi, N. Otmani, A first level scatter search for disjunctively constrained
knapsack problems, in: 2011 International Conference on Communications,
Computing and Control Applications (CCCA), IEEE, 2011.

[22] M. Hifi, N. Otmani, An algorithm for the disjunctively constrained knapsack
problem, International Journal of Operational Research 13 (1) (2012) 22–43.

[23] K. Jansen, An approximation scheme for bin packing with conflicts, Journal of
Combinatorial Optimization 3 (4) (1999) 363–377.

[24] D. S. Johnson, M. R. Garey, Computers and intractability: A guide to the
theory of NP-completeness, WH Freeman, 1979.

[25] H. Kellerer, U. Pfersch, D. Pisinger, Knapsack problems, Spinger, 2004.

31

[26] J. M. Kleinberg, É. Tardos, Algorithm design, Addison-Wesley, 2006.

[27] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis, Psychometrika 29 (1) (1964) 1–27.

[28] X. Lai, J. Hao, F. W. Glover, Z. Lü, A two-phase tabu-evolutionary algorithm
for the 0-1 multidimensional knapsack problem, Information Sciences 436-437
(2018) 282–301.

[29] X. Lai, J.-K. Hao, D. Yue, Two-stage solution-based tabu search for
the multidemand multidimensional knapsack problem, European Journal of
Operational Research 274 (1) (2019) 35–48.

[30] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle, The
irace package: Iterated racing for automatic algorithm configuration, Operations
Research Perspectives 3 (2016) 43–58.

[31] M. Lozano, F. Glover, C. Garćıa-Mart́ınez, F. J. Rodŕıguez, R. Mart́ı, Tabu
search with strategic oscillation for the quadratic minimum spanning tree, IIE
Transactions 46 (4) (2014) 414–428.

[32] M. A. Muñoz, K. Smith-Miles, Instance space analysis: A toolkit for the
assessment of algorithmic power, Source code is available at https://github.
com/andremun/InstanceSpace. (2020).

[33] U. Pferschy, J. Schauer, The knapsack problem with conflict graphs, Journal
Graph Algorithms and Applications 13 (2) (2009) 233–249.

[34] U. Pferschy, J. Schauer, Approximation of knapsack problems with conflict and
forcing graphs, Journal of Combinatorial Optimization 33 (4) (2017) 1300–1323.

[35] D. C. Porumbel, J.-K. Hao, P. Kuntz, A search space “cartography” for guiding
graph coloring heuristics, Computers & Operations Research 37 (4) (2010) 769–
778.

[36] Z. Quan, L. Wu, Cooperative parallel adaptive neighbourhood search for the
disjunctively constrained knapsack problem, Engineering Optimization 49 (9)
(2017) 1541–1557.

[37] Z. Quan, L. Wu, Design and evaluation of a parallel neighbor algorithm for the
disjunctively constrained knapsack problem, Concurrency and Computation:
Practice and Experience 29 (20) (2017) e3848.

[38] M. B. Salem, S. Hanafi, R. Taktak, H. B. Abdallah, Probabilistic tabu
search with multiple neighborhoods for the disjunctively constrained knapsack
problem, RAIRO-Operations Research 51 (3) (2017) 627–637.

[39] M. B. Salem, R. Taktak, A. R. Mahjoub, H. Ben-Abdallah, Optimization
algorithms for the disjunctively constrained knapsack problem, Soft Computing
22 (6) (2018) 2025–2043.

[40] J. Sánchez-Oro, A. López-Sánchez, A. Hernández-Dı́az, A. Duarte, Grasp with
strategic oscillation for the α-neighbor p-center problem, European Journal of
Operational Research.

32

https://github.com/andremun/InstanceSpace.
https://github.com/andremun/InstanceSpace.

[41] K. Smith-Miles, D. Baatar, B. Wreford, R. Lewis, Towards objective measures
of algorithm performance across instance space, Computers & Operations
Research 45 (2014) 12–24.

[42] K. Smith-Miles, M. A. Muñoz, Neelofar, Melbourne Algorithm Test Instance
Library with Data Analytics (MATILDA), Aavailable at https://matilda.

unimelb.edu.au. (2020).

[43] R. Van Bevern, M. Mnich, R. Niedermeier, M. Weller, Interval scheduling and
colorful independent sets, Journal of Scheduling 18 (5) (2015) 449–469.

[44] M. Vasquez, J.-K. Hao, A “logic-constrained” knapsack formulation and a tabu
algorithm for the daily photograph scheduling of an earth observation satellite,
Computational Optimization and Applications 20 (2) (2001) 137–157.

[45] Y. Wang, Q. Wu, A. P. Punnen, F. Glover, Adaptive tabu search with strategic
oscillation for the bipartite boolean quadratic programming problem with
partitioned variables, Information Sciences 450 (2018) 284–300.

[46] Z. Wei, J.-K. Hao, A threshold search based memetic algorithm for the
disjunctively constrained knapsack problem, Computers & Operations Research
136 (2021) 105447.

[47] F. Wilcoxon, Individual comparisons by ranking methods, in: S. Kotz, N. L.
Johnson (eds.), Breakthroughs in statistics, Springer, 1992, pp. 196–202.

[48] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[49] Q. Wu, Y. Wang, F. Glover, Advanced tabu search algorithms for bipartite
boolean quadratic programs guided by strategic oscillation and path relinking,
INFORMS Journal on Computing 32 (1) (2020) 74–89.

[50] T. Yamada, S. Kataoka, K. Watanabe, Heuristic and exact algorithms for the
disjunctively constrained knapsack problem, Journal of Information Processing
Society of Japan 43 (9) (2002) 2864–2870.

A Detailed results on the 100 DCKP instances of Set I

This appendix shows the computational results of our RSOA algorithm and
the reference algorithms on the 100 DCKP instances of Set I (the results of
the reference algorithms are from [46]). In Table A.1 and A.2, the first column
presents the name of each instance and the second column gives the best-
known values (BKV) reported in the literature. The remaining columns show
the detailed results of the compared algorithms according to four performance
indicators: the best objective value fbest, the average objective value favg, the
standard deviation std and the average run time tavg(s) to reach the fbest
value. The average values of each column are summarized in the last row. The

33

https://matilda.unimelb.edu.au.
https://matilda.unimelb.edu.au.

two improved best results (new lower bounds for 14I3 and 20I3) discovered
by RSOA are indicated in bold.

Table A.1
Comparison between the RSOA algorithm and the four state-of-the-art algorithms
on the 50 DCKP instances of Set I (1Iy to 10Iy).

Instance BKV
PNS [37] CPANS [36] PTS [38] TSBMA [46] RSOA (this work)

fbest fbest tavg(s) fbest favg fbest favg std tavg(s) fbest favg std tavg(s)

1I1 2567 2567 2567 17.133 2567 2567 2567 2567 0 163.577 2567 2567 0 76.647

1I2 2594 2594 2594 12.623 2594 2594 2594 2594 0 19.322 2594 2594 0 3.280

1I3 2320 2320 2320 14.897 2320 2320 2320 2320 0 6.060 2320 2320 0 2.450

1I4 2310 2310 2310 13.063 2310 2310 2310 2310 0 10.969 2310 2310 0 9.855

1I5 2330 2330 2330 20.757 2330 2321 2330 2330 0 63.663 2330 2330 0 8.358

2I1 2118 2118 2118 21.710 2118 2115.20 2118 2117.70 0.46 330.797 2118 2118 0 131.154

2I2 2118 2112 2118 129.390 2110 2110 2118 2111.60 3.20 705.755 2118 2116.80 2.86 426.448

2I3 2132 2132 2132 23.820 2119 2112.40 2132 2132 0 210.108 2132 2131.35 2.83 152.244

2I4 2109 2109 2109 31.377 2109 2105.60 2109 2109 0 14.182 2109 2109 0 13.391

2I5 2114 2114 2114 20.040 2114 2110.40 2114 2114 0 99.133 2114 2114 0 96.935

3I1 1845 1845 1845 34.683 1845 1760.30 1845 1845 0 3.780 1845 1845 0 1.513

3I2 1795 1795 1795 107.993 1795 1767.50 1795 1795 0 3.029 1795 1795 0 0.682

3I3 1774 1774 1774 22.490 1774 1757 1774 1774 0 3.585 1774 1774 0 7.950

3I4 1792 1792 1792 27.953 1792 1767.40 1792 1792 0 3.275 1792 1792 0 1.460

3I5 1794 1794 1794 34.820 1794 1755.50 1794 1794 0 9.159 1794 1794 0 2.663

4I1 1330 1330 1330 37.307 1330 1329.10 1330 1330 0 1.967 1330 1330 0 0.330

4I2 1378 1378 1378 40.827 1378 1370.50 1378 1378 0 3.926 1378 1378 0 0.947

4I3 1374 1374 1374 100.183 1374 1370 1374 1374 0 2.431 1374 1374 0 0.478

4I4 1353 1353 1353 26.930 1353 1337.60 1353 1353 0 4.167 1353 1353 0 2.803

4I5 1354 1354 1354 81.113 1354 1333.20 1354 1354 0 6.196 1354 1354 0 7.036

5I1 2700 2694 2700 122.637 2700 2697.90 2700 2700 0 78.215 2700 2700 0 56.455

5I2 2700 2700 2700 111.160 2700 2699 2700 2700 0 57.300 2700 2700 0 16.205

5I3 2690 2690 2690 73.640 2690 2689 2690 2690 0 18.566 2690 2690 0 14.793

5I4 2700 2700 2700 130.913 2700 2699 2700 2700 0 52.807 2700 2700 0 29.078

5I5 2689 2689 2689 279.377 2689 2682.70 2689 2687.65 3.21 289.966 2689 2685.40 4.41 529.143

6I1 2850 2850 2850 104.623 2850 2843 2850 2850 0 57.997 2850 2850 0 32.735

6I2 2830 2830 2830 93.887 2830 2829 2830 2830 0 76.883 2830 2830 0 61.418

6I3 2830 2830 2830 203.677 2830 2830 2830 2830 0 157.597 2830 2830 0 83.878

6I4 2830 2824 2830 160.587 2830 2824.70 2830 2830 0 328.817 2830 2830 0 165.146

6I5 2840 2831 2840 112.947 2840 2825 2840 2833.10 4.22 378.393 2840 2836.90 3.60 514.102

7I1 2780 2780 2780 186.970 2780 2771 2780 2779.40 1.43 483.465 2780 2780 0 207.449

7I2 2780 2780 2780 161.117 2780 2769.80 2780 2775.50 4.97 372.935 2780 2779 3.00 406.568

7I3 2770 2770 2770 136.310 2770 2762 2770 2768.50 3.57 393.018 2770 2768.50 3.57 386.366

7I4 2800 2800 2800 123.957 2800 2791.90 2800 2795.50 4.97 162.060 2800 2797.50 4.30 314.032

7I5 2770 2770 2770 149.933 2770 2763.60 2770 2770 0 290.591 2770 2770 0 158.003

8I1 2730 2720 2730 472.153 2720 2718.90 2730 2724 4.90 484.264 2730 2725.50 4.97 579.706

8I2 2720 2720 2720 109.373 2720 2713.60 2720 2720 0 214.760 2720 2720 0 80.060

8I3 2740 2740 2740 112.847 2740 2731.50 2740 2739.55 1.96 207.311 2740 2740 0 159.391

8I4 2720 2720 2720 253.230 2720 2712 2720 2715.35 4.85 518.579 2720 2718.55 2.84 475.087

8I5 2710 2710 2710 115.777 2710 2705 2710 2710 0 67.003 2710 2710 0 49.843

9I1 2680 2678 2680 134.023 2670 2666.90 2680 2679.70 0.71 316.210 2680 2680 0 217.079

9I2 2670 2670 2670 158.397 2670 2661.70 2670 2669.90 0.44 238.149 2670 2669.95 0.22 302.939

9I3 2670 2670 2670 123.280 2670 2666.50 2670 2670 0 161.176 2670 2670 0 140.003

9I4 2670 2670 2670 137.690 2663 2657.30 2670 2668.90 2.49 522.294 2670 2669.95 0.22 336.999

9I5 2670 2670 2670 131.247 2670 2662 2670 2670 0 98.124 2670 2670 0 94.351

10I1 2624 2620 2624 244.020 2620 2613.70 2624 2621.45 1.72 348.617 2624 2621.45 1.88 513.555

10I2 2642 2630 2630 144.867 2630 2620.80 2630 2630 0 182.474 2630 2630 0 175.915

10I3 2627 2620 2627 198.050 2620 2614.50 2627 2621.40 2.80 326.099 2627 2620.35 1.53 259.592

10I4 2621 2620 2620 148.997 2620 2609.70 2620 2620 0 105.609 2620 2620 0 120.01

10I5 2630 2627 2630 170.620 2627 2617.60 2630 2629.50 2.18 307.851 2630 2629 3.00 383.384

#Avg 2403.68 2402.36 2403.42 112.508 2402.18 2393.26 2403.42 2402.47 0.96 179.244 2403.42 2402.82 0.79 156.198

34

Table A.2
Comparison between the RSOA algorithm and the three state-of-the-art algorithms
on the 50 DCKP instances of Set I (11Iy to 20Iy).

Instance BKV
PNS [37] CPANS [36] TSBMA [46] RSOA (this work)

fbest fbest tavg(s) fbest favg std tavg(s) fbest favg std tavg(s)

11I1 4960 4950 4950 333.435 4960 4960 0 4.594 4960 4960 0 7.384

11I2 4940 4940 4928 579.460 4940 4940 0 14.305 4940 4940 0 18.914

11I3 4950 4920 4925 178.400 4950 4950 0 69.236 4950 4950 0 75.143

11I4 4930 4890 4910 320.067 4930 4930 0 139.197 4930 4930 0 137.875

11I5 4920 4890 4900 222.053 4920 4920 0 100.178 4920 4920 0 88.264

12I1 4690 4690 4690 230.563 4690 4687.65 2.22 416.088 4690 4688.45 1.56 588.182

12I2 4680 4680 4680 502.600 4680 4680 0 224.000 4680 4680 0 213.861

12I3 4690 4690 4690 229.116 4690 4690 0 215.103 4690 4690 0 112.227

12I4 4680 4680 4676 367.330 4680 4679.50 2.18 256.300 4680 4679.50 2.18 218.957

12I5 4670 4670 4670 487.563 4670 4670 0 79.190 4670 4670 0 150.989

13I1 4539 4533 4533 395.985 4539 4534.80 3.60 415.880 4539 4535.55 3.58 434.457

13I2 4530 4530 4530 573.718 4530 4528 4.00 361.229 4530 4528.55 3.46 328.305

13I3 4540 4530 4540 901.620 4540 4531 3.00 498.622 4540 4531.50 3.57 612.543

13I4 4530 4530 4530 315.076 4530 4529.15 2.29 366.951 4530 4529.95 0.22 288.374

13I5 4537 4537 4537 343.240 4537 4534.20 3.43 425.064 4537 4534.55 3.34 344.715

14I1 4440 4440 4440 483.156 4440 4440 0 205.733 4440 4439.95 0.22 241.302

14I2 4440 4440 4440 735.505 4440 4439.40 0.49 438.190 4440 4438.45 3.06 489.488

14I3 4439 4439 4439 614.733 4439 4439 0 146.119 4440 4439.40 0.49 490.091

14I4 4435 4435 4434 533.908 4435 4431.50 2.06 106.389 4435 4431.30 2.00 623.823

14I5 4440 4440 4440 473.448 4440 4440 0 160.900 4440 4439.50 2.18 201.209

15I1 4370 4370 4370 797.125 4370 4369.95 0.22 321.296 4370 4369.75 0.54 299.153

15I2 4370 4370 4370 676.703 4370 4370 0 181.021 4370 4369.90 0.44 235.340

15I3 4370 4370 4370 612.792 4370 4369.25 1.84 315.575 4370 4369.50 1.07 499.235

15I4 4370 4370 4370 649.398 4370 4369.85 0.36 424.873 4370 4369.50 0.92 405.624

15I5 4379 4379 4379 678.354 4379 4373.15 4.29 359.003 4379 4371.80 3.60 366.956

16I1 5020 4980 4980 286.130 5020 5020 0 205.964 5020 5020 0 135.759

16I2 5010 4990 4980 232.825 5010 5010 0 342.824 5010 5010 0 252.130

16I3 5020 5000 5009 199.880 5020 5020 0 155.070 5020 5020 0 122.188

16I4 5020 4997 5000 831.750 5020 5020 0 86.324 5020 5020 0 87.126

16I5 5060 5020 5040 982.970 5060 5060 0 32.837 5060 5060 0 214.644

17I1 4730 4730 4721 422.640 4730 4729.70 0.64 388.541 4730 4729.95 0.22 350.570

17I2 4720 4710 4710 248.770 4720 4719.50 2.18 300.275 4720 4719.50 2.18 195.371

17I3 4729 4720 4720 454.317 4729 4723.60 4.41 343.016 4729 4727.20 3.60 323.057

17I4 4730 4720 4720 432.900 4730 4730 0 288.961 4730 4730 0 242.384

17I5 4730 4720 4720 102.468 4730 4726.85 4.50 366.752 4730 4729.80 0.40 304.977

18I1 4568 4566 4566 225.010 4568 4565.80 3.40 269.545 4568 4567.25 1.30 488.992

18I2 4560 4550 4550 288.862 4560 4551.40 3.01 13.884 4560 4551.65 3.40 776.628

18I3 4570 4570 4570 328.555 4570 4569.40 2.20 466.748 4570 4568.40 3.56 407.121

18I4 4568 4560 4560 511.527 4568 4565.20 3.12 264.931 4568 4562.30 3.18 214.938

18I5 4570 4570 4570 651.887 4570 4567.95 3.46 572.589 4570 4564.35 4.46 532.574

19I1 4460 4460 4460 506.945 4460 4456.65 3.48 459.570 4460 4454.90 4.23 552.430

19I2 4460 4459 4459 666.900 4460 4453.25 4.17 307.224 4460 4452.85 4.09 287.043

19I3 4469 4460 4460 608.913 4469 4462.05 4.04 485.550 4469 4459.50 2.67 159.261

19I4 4460 4450 4450 476.755 4460 4453.20 3.89 430.824 4460 4452.10 3.32 455.170

19I5 4466 4460 4460 508.730 4466 4460.75 1.61 40.752 4466 4460.85 1.96 422.412

20I1 4390 4389 4388 957.410 4390 4383.20 3.36 929.372 4390 4383.30 3.52 598.771

20I2 4390 4390 4387 756.908 4390 4381.80 3.78 299.673 4390 4381.20 2.91 344.526

20I3 4389 4383 4389 966.010 4389 4387.90 2.77 568.988 4390 4385.75 4.07 165.729

20I4 4389 4388 4380 993.630 4389 4380.40 1.98 657.694 4389 4380.20 2.18 45.058

20I5 4390 4389 4389 772.495 4390 4386.40 4.05 646.570 4390 4383.95 4.44 448.259

#Avg 4614.14 4606.88 4607.58 513.011 4614.14 4611.83 1.80 303.390 4614.18 4611.64 1.76 311.991

35

	Introduction
	Responsive strategic oscillation search for the DCKP
	Main framework
	Solution representation and notations
	Random initialization
	Feasible local search procedure
	Strategic oscillation search procedure
	Frequency-based perturbation
	Discussions

	Computational results and comparisons
	Benchmark instances
	Experimental settings and reference algorithms
	Computational results and comparisons

	Additional experiments and discussions
	Effectiveness of the strategic oscillation search procedure
	Influence of the responsive filtering strategy
	Analysis of the feasible and infeasible solutions
	Instance space analysis

	Conclusions and perspectives
	References
	Detailed results on the 100 DCKP instances of Set I

