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Abstract

Many practical decision-making problems involve selecting a subset of objects
from a set of candidate objects such that the selected objects optimize a given
objective while satisfying some constraints. Knapsack problems such as the
Set-union Knapsack Problem (SUKP) are general models that allow such
decision-making problems to be conveniently formulated. Given a set of weighted
elements and a set of items with profits where each item is composed of a subset
of elements, the SUKP aims to pack a subset of items in a capacity-constrained
knapsack in a way that the total profit of the selected items is maximized while
their weights do not exceed the knapsack capacity. In this work, we present an
effective iterated two-phase local search algorithm for this NP-hard problem. The
proposed algorithm iterates through two complementary search phases: a local
optima exploration phase to discover local optimal solutions, and a local optima
escaping phase to drive the search to unexplored regions. We show the
competitiveness of the algorithm compared to the state-of-the-art methods in the
literature. Specifically, the algorithm discovers 18 improved best results (new lower
bounds) for the 30 benchmark instances and matches the best-known results for
the 12 remaining instances. We also report the first computational results with the
general CPLEX solver, including 6 proven optimal solutions. Finally, we
investigate the impacts of the key ingredients of the algorithm on its performance.
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1 Introduction

Knapsack problems are very general and useful models able to formulate
numerous real-world problems in a variety of fields. For instance, suppose
that a firm has a fixed global budget envelope for project investment as well
as a number of candidate projects. Suppose also that each candidate project
requires a budget and its implementation implies a gain. One important
decision problem is then to select a subset of projects from the candidate set
such that the total gain of the retained projects is maximized and the total
budget allocated to the retained projects is no more than the available
budget envelope. This practical problem as well as many other similar
problems can conveniently be formulated with the following general 0/1
knapsack problem (KP) [17]. Given a knapsack with a weight capacity and a
set of items where each item has a weight and a profit. The KP involves
selecting a subset of items in a way that the total profit of the selected items
is maximized, while the weight sum of the selected items does not exceed the
knapsack capacity. As indicated in [17], the KP can be used to model many
real-world decision-making problems such as selection of investments and
portfolios, generating keys for cryptosystems, and finding the least wasteful
way to cut raw materials.

The Set-union Knapsack Problem (SUKP) studied in this work is a
generalized knapsack problem that can formulate additional applications.
Let U = {1, . . . , n} be a set of n elements with weights wj > 0 (j = 1, . . . , n).
Let V = {1, . . . ,m} be a set of m items where each item i (i = 1, . . . ,m)
corresponds to a subset of elements Ui ⊂ U determined by a relation matrix
and has a profit pi > 0. For an arbitrary non-empty item set S ⊂ V , the
total profit of S is defined as f(S) =

∑
i∈S pi, and the weight of S is given by

W (S) =
∑
j∈∪i∈SUi

wj. Let C > 0 be the capacity of a given knapsack, the
SUKP involves finding a subset of items S∗ ⊂ V such that the profit f(S∗) is
maximized and the weight W (S∗) does not surpass the knapsack capacity C.
Formally, the SUKP can be stated as follows [13].

(SUKP ) Maximize f(S) =
∑
i∈S

pi (1)

s.t. W (S) =
∑

j∈∪i∈SUi

wj ≤ C, S ⊂ V (2)

It is worth noting that for a given subset S of items, the weight wj of an
element j is counted only once in W (S) even if the element belongs to more
than one selected items.

One notices that the conventional knapsack problem is a special case of the
SUKP. Indeed, the SUKP reduces to the KP when we set m = n and V = U .

2



The SUKP also generalizes the NP-hard densest k-subhypergraph problem
(DkSH) that aims to determine a set of k nodes of a hypergraph to
maximize the number of hyperedges of the subhypergraph induced by the set
of the selected nodes [4]. In fact, the SUKP reduces to the DkSH when we
consider the elements and items as the nodes and hyperedges of a
hypergraph respectively, with unit weights and unit profits as well as a
capacity of k. As indicated in [1,13,14], the SUKP is an useful model for a
number of relevant applications, such as financial decision making, flexible
manufacturing, building public key prototype, database partitioning etc.
However, as a generalization of the NP-hard KP and DkSH problems, the
SUKP is computationally challenging.

Given its theoretical and practical significance, the SUKP has received more
and more attention. As the review in Section 2 shows, various search
methods have been proposed in the literature, including exact,
approximation and metaheuristic algorithms. In particular, recent studies
focused on metaheuristic algorithms which aim to find satisfactory solutions
as fast as possible, without optimality guarantee of the attained solutions.
These algorithms are especially useful to handle large and difficult problem
instances when they cannot be solved by exact approaches. We observe that
the state-of-the-art algorithms such as [9,14,22] all adopted swam
optimization metaheuristics. However, given that these methods are initially
designed for solving continuous problems, the swam optimization based
algorithms for the SUKP simulate discrete optimization via continuous
search operators, instead of exploring the discrete space directly. As such,
applying swam optimization to the SUKP requires various adaptations to
cope with the binary feature of the SUKP. In particular, these algorithms
must adopt an empirical transfer function to map the continuous space to
the discrete space and maintain both continuous and discrete solutions
during the search. Moreover, as indicated in [14], these approaches inevitably
generate infeasible solutions, and therefore need a repairing procedure to
handle these infeasible solutions.

In this work, we show for the first time that stochastic local search, which
directly operates in the binary search space, can be a highly effective
approach for solving the SUKP. The work is motivated by two
considerations. First, stochastic local search has been quite successful in
solving numerous challenging combinatorial problems [15], including several
knapsack problems such as multidimensional knapsack problem [11,18,25],
multidemand multidimensional knapsack problem [5,19], multiple-choice
multidimensional knapsack problem [6,16], quadratic knapsack problem
[8,27], quadratic multiple knapsack problem [7,23] and generalized quadratic
knapsack problem [2]. Second, given that the SUKP is basically a
constrained subset selection problem with binary variables, it is natural to
investigate solution methods that explore the binary search space and focus
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on feasible solutions. Indeed, as we show in this work, our discrete
optimization approach based on stochastic local search is quite valuable for
the SUKP.

The contributions of this work are summarized as follows.

(1) From a perspective of algorithm design, the proposed iterated two-phase
local search algorithm relies on two innovative and complementary
search components specially designed for the SUKP. The
intensification-oriented component (first phase) employs a combined
neighborhood search strategy to discover local optimal solutions. The
diversification-oriented component (second phase) helps the search
process to explore unvisited regions. The combination of these two
complementary search phases enables the algorithm to perform an
effective examination of the search space.

(2) From a perspective of computational performance, we show the
competitiveness of the proposed algorithm compared to the
state-of-the-art algorithms on the set of 30 benchmark instances
commonly used in the literature. In particular, we report improved best
results for 18 large instances and equal best results for the 12 remaining
instances. The improved best results (new lower bounds) are useful for
future studies on the problem, e.g., they can serve as references for
evaluating existing and new SUKP algorithms.

(3) Third, we investigate for the first time the interest of the general mixed
integer programming solver CPLEX for solving the SUKP. We show that
while CPLEX (version 12.8) can find the optimal solutions for the 6
small benchmark instances (with 85 to 100 items and elements) based on
a simple 0/1 linear programming model, it fails to exactly solve the other
24 instances. These outcomes provide strong motivations for developing
effective approximate algorithms to handle problem instances that cannot
be solved exactly.

(4) This work demonstrates that the discrete optimization approach based
on stochastic local search is quite valuable and effective for solving the
SUKP. This work invites thus more investigations in this direction, in
addition to the swarm optimization based approaches.

The remaining part of this paper is organized as follows. In Section 2, we
provide a review of the related work on solution methods for the SUKP. In
Section 3, we present the general framework of the proposed algorithm as well
as its composing ingredients. Computational results and comparisons with the
best-performing algorithms and CPLEX are reported in Section 4. In Section
5, we analyze the parameters and components of the algorithm and show their
effects on its performance. In the last section, we summarize the present work
and discuss future research directions.
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2 Related Work

This section is dedicated to a review of existing solution methods for the
SUKP.

First, in 1994, Goldschmidt et al. devised an exact algorithm based on the
general dynamic programming method [13] and presented sufficient
conditions for it to run in polynomial time. In 2014, Arulselvan studied a
greedy algorithm that is based on a previous approximation algorithm for
the related budgeted maximum coverage problem [1]. The algorithm provides

a (1− e− 1
d ) approximation for the SUKP with the additional restriction that

the number of items in which an element is present is bounded by a constant
d. In 2016, Taylor designed an approximation algorithm using results of the
related densest k-subhypergraph problem [24]. The proposed algorithm is
shown to achieves, for any given ε > 0, an approximation ratio of at most
O(nαm+ε) for αm = 2

3
[m − 1 − 2m−2

m2+m−1
], where the subsets have at most m

elements. Focusing on theoretical aspects of the SUKP, these studies do not
show computational results.

Second, in addition to these theoretical studies, metaheuristic algorithms
based on swarm optimization were recently studied to find sub-optimal
solutions for the SUKP [9,14,22]. In 2018, He et al. proposed the first binary
artificial bee colony algorithm (BABC) for solving the SUKP [14]. Since this
approach inevitably generates infeasible solutions, a greedy repairing and
optimization procedure (named S-GROA) is proposed to handle infeasible
solutions. To assess their algorithm, He et al. generated a set of 30 random
instances (more information on these instances can be found in Section 4.1)
and presented large scale experiments on these instances. Comparisons with
three other population-based algorithms (genetic algorithm, continuous
artificial bee colony algorithm, differential evolution strategies) showed the
competitiveness of the BABC algorithm. In 2019, Ozsoydan and Baykasoglu
presented a binary particle swarm optimization algorithm (gPSO) and
reported improved best results on the set of 30 benchmark instances [22].
Also in 2019, Feng et al. investigated several versions of discrete moth search
(MS) and reported computational results on 15 out of the 30 benchmark
instances with some updated best results [9]. It is worth mentionning that
like BABC, both gPSO and MS generate infeasible solutions during the
search process and use the S-GROA procedure of [14] to recover solution
feasibility.

In this work, we are interested in practical solving of the SUKP with heuristics
and investigate the first binary optimization approach based on stochastic
local search. To highlight the technical contributions of this work, we provide
in Table 1 the main characteristics of the proposed algorithm with respect to
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the reviewed studies. From Table 1, we observe that compared to the existing
methods, our approach distinguishes itself by its adopted search framework,
the search strategy and the explored search space. As we show in Section
4, this approach is indeed very effective for solving the SUKP and competes
favorably with the state-of-the-art algorithms presented in [9,14,22] on the set
of 30 benchmark instances commonly tested in the literature.

Table 1
Summary of the main features and technical contributions of the proposed algorithm
with respect to the most related studies.

Algorithm Type of
approach

Framework Search strategy Search
space

Comments Compu-
tational
results

[13]
(1994)

Exact Dynamic
programming

Implicit exhaustive
enumeration

Binary
space

Theoretical
guarantee of
optimality,
exponential time
complexity

No

[1]
(2014)

Approxi-
mation

Greedy Progressive
construction guided by
a greedy function

Binary
space

Theoretical
guarantee of an
approximation ratio

No

[24]
(2016)

Approxi-
mation

Greedy Progressive
construction guided by
a greedy function

Binary
space

Theoretical
guarantee of an
approximation ratio

No

[14]
(2018)

Heuristic Artificial
bee colony
optimization

Solution combination;
repair of infeasible
solutions, mapping
between continuous
solution and discrete
solution

Continuous
and binary
spaces
including
both
infeasible
and
feasible
binary
solutions

Suboptimal
solutions,
polynomial time
complexity

Yes

[9]
(2019)

Heuristic Moth
search

Solution combination,
repair of infeasible
solutions, mapping
between continuous
solution and discrete
solution

Continuous
and binary
spaces
including
both
infeasible
and
feasible
binary
solutions

Suboptimal
solutions,
polynomial time
complexity

Yes

[22]
(2019)

Heuristic Particle
swarm
optimization,
genetic
algorithm

Solution combination,
repair of infeasible
solutions, mapping
between continuous
solution and discrete
solution

Continuous
and binary
spaces
including
both
infeasible
and
feasible
solutions

Suboptimal
solutions,
polynomial time
complexity

Yes

This
work

Heuristic Stochastic
local
search

Neighborhoods based
iterative improvement,
perturbation based
diversification, focus
on feasible solution

Binary
space
including
only
feasible
solutions

Suboptimal
solutions,
polynomial time
complexity

Yes
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3 Iterated two-phase local search for the SUKP

This section is dedicated to the presentation of the proposed iterated two-
phase local search algorithm (I2PLS) for the SUKP. We first show its general
scheme, and then explain the composing ingredients.

3.1 General Algorithm

As shown in Algorithm 1, I2PLS is composed of two complementary search
phases: a local optima exploration phase (Explore) to find new local optimal
solutions of increasing quality and a local optima escaping phase (Escape) to
displace the search to unexplored regions.

Algorithm 1 Iterated two-phase local search for the SUKP
1: Input: Instance I, cut-off time tmax, neighborhoods N1−N3, exploration depth
λmax, sampling probability ρ, tabu search depth ωmax, perturbation strength η.

2: Output: The best solution found S∗.
3: /* Generate an initial solution S0 in a greedy way, §3.3 */
S0 ← Greedy Initial Solution(I)

4: S∗ ← S0 /* Record the overall best solution S∗ found so far */
5: while Time ≤ tmax do
6: /* Local optima exploration phase using VND and TS, §3.4 */

Sb ←VND-TS(S0, N1 −N3, λmax, ρ, ωmax)
7: if f(Sb) > f(S∗) then
8: S∗ ← Sb /* Update the best solution S∗ found so far */
9: end if

10: /* Local optima escaping phase using frequency-based perturbation, §3.5 */
S0 ←Frequency Based Local Optima Escaping(Sb, η)

11: end while
12: return S∗

The algorithm starts from a feasible initial solution (line 3, Alg. 1) that is
obtained with a greedy construction procedure (Section 3.3). Then it enters
the ‘while’ loop to iterate the ‘Explore’ phase and the ‘Escape’ phase (lines
5-11, Alg. 1) to seek solutions of improving quality. At each iteration, the
‘Explore’ phase (line 6, Alg. 1) first performs a variable neighborhood descent
(VND) search to locate a new local optimal solution within two neighborhoods
N1 and N2 and then runs a tabu search (TS) to explore additional local optima
with a different neighborhood N3 (Section 3.4). When the ‘Explore’ phase is
exhausted, I2PLS switches to the ‘Escape’ phase (line 10, Alg. 1), which uses
a frequency-based perturbation to displace the search to an unexplored region
(Section 3.5). These two phases are iterated until a stopping condition (in our
case, a given time limit tmax) is reached. During the search process, the best
solution found is recorded in S∗ (lines 7-8, Alg. 1) and returned as the final

7



output of the algorithm at the end of the algorithm.

One notices that the general scheme of the I2PLS algorithm for the SUKP
shares ideas of breakout local search [3], three-phase local search [10] and
iterated local search [20]. Meanwhile, to ensure its effectiveness for solving
the SUKP, the proposed algorithm integrates dedicated search components
tailored for the considered problem, which are described below.

3.2 Solution Representation, Search Space, and Evaluation Function

Given a SUKP instance composed of m items V = {1, . . . ,m}, n elements
U = {1, . . . , n} and knapsack capacity C. The search space Ω includes all
non-empty subsets of items such that the capacity constraint is satisfied, i.e.,
Ω = {S ⊂ V : S 6= ∅, ∑

j∈∪i∈SUi

wj ≤ C}.

For any candidate solution S of Ω, its quality is assessed by the objective value
f(S) =

∑
i∈S

pi that corresponds to the total profit of the selected items.

Notice that a candidate solution S of Ω can be represented by S =< A, Ā >
where A is the set of selected items and Ā are the non-selected items.
Equivalently S can also be coded by a binary vector of length m where each
binary variable corresponds to an item and its value indicates whether the
item is selected or not selected.

The goal of our I2PLS algorithm is to find a solution S ∈ Ω with the objective
value f(S) as large as possible.

3.3 Initialization

The I2PLS algorithm starts its search with an initial solution, which is
generated by a simple greedy procedure in three steps. First, we calculate
the total weight wi of each item i in O(mn). Second, based on the given
profit pi of each item, we obtain the profit ratio ri of each item by ri = pi/wi
and sort all items in the descending order according to ri in O(log(m)).
Third, we add one by one the items to S by following this order until the
capacity of the knapsack is reached in O(m). The time complexity of the
initialization procedure is thus O(mn).

3.4 Local Optima Exploration Phase
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Algorithm 2 Local Optima Exploration Phase - VND-TS
1: Input: Starting solution S, neighborhoods N1 − N3, exploration depth λmax,

sampling probability ρ, tabu search depth ωmax,
2: Output: The best solution Sb found by VND-TS.
3: Sb ← S /*Sb records the best solution found so far during VND-TS */
4: λ← 0 /*λ counts the number of consecutive non-improving rounds*/
5: while λ < λmax do
6: /* Attain a new local optimum S by VND with N1 and N2, see Alg. 3 */

S ←VND(S,N1, N2, ρ)
7: /* Explore nearby optima around the new S by TS with N3, see Alg. 5 */

(Sc, S)←TS(S,N3, ωmax) /*Sc is the best solution found so far during TS */
8: if f(Sc) > f(Sb) then
9: Sb ← Sc /* Update the best solution Sb found so far */

10: λ← 0
11: else
12: λ← λ+ 1
13: end if
14: end while
15: return Sb

From an initial solution, the ‘Explore’ phase (see Algorithm 2) aims to find new
local optimal solutions of increasing quality. This is achieved by a combined
strategy mixing a variable neighborhood descent (VND) procedure (line 6,
Alg. 2, see Section 3.4.1) and a tabu search (TS) procedure (line 7, Alg. 2,
see Section 3.4.3). For each VND-TS run (each ‘while’ iteration), the VND
procedure exploits, with the best-improvement strategy, two neighborhoods
N1 and N2 to locate a local optimal solution. Then from this solution, the
TS procedure is triggered to examine additional local optimal solutions with
another neighborhood N3. At the end of TS, its best solution (Sc) is used
to update the recorded best solution (Sb) found during the current VND-TS
run, while its last solution (S) is used as the new starting point of the next
iteration of the ‘Explore’ phase. The ‘Explore’ phase terminates when the best
solution (Sb) found during this run cannot be updated during λmax consecutive
iterations (λmax is a parameter called exploration depth).

3.4.1 Variable Neighborhood Descent Search

Following the general variable neighborhood descent search [21], the VND
procedure (Algorithm 3) relies on two neighborhoods (N1 and N2, see
Sections 3.4.2) to explore the search space. Specifically, VND examines the
neighborhood N1 at first and iteratively identifies a best-improving neighbor
solution in N1 to replace the current solution. When a local optimal solution
is reached within N1, VND switches to the neighborhood N2. As we explain
in Section 3.4.2, given the large size of N2, VND only examines a subset N−2
which is composed of ρ × |N2| randomly solutions of N2 (ρ is a parameter
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Algorithm 3 Variable Neighborhood Descent - VND
1: Input: Input solution S, neighborhoods N1 and N2, sampling probability ρ.
2: Output: The best solution Sb found during the VND search.
3: Sb ← S /*Sb record the best solution found so far*/
4: Improve← True
5: while Improve do
6: S ← argmax{f(S′) : S′ ∈ N1(S)}
7: if f(S) > f(Sb) then
8: Sb ← S /*Update the best solution found so far*/
9: Improve = True

10: else
11: N−2 ← Sampling(N2, S, ρ)
12: S ← argmax{f(S′) : S′ ∈ N−2 (S)}
13: if f(S) > f(Sb) then
14: Sb ← S /*Update the best solution found so far*/
15: Improve← True
16: else
17: Improve = False
18: end if
19: end if
20: end while
21: return Sb

Algorithm 4 Sampling Procedure
1: Input: Input solution S, neighborhood N2, sampling probability ρ.
2: Output: Set N−2 of sampled solutions from N2(S)
3: N−2 ← ∅
4: for each S′ ∈ N2(S) do
5: if random() < ρ then
6: N−2 ← N−2 ∪ {S′}
7: end if
8: end for
9: return N−2

called sampling probability and Algorithm 4 shows the sampling procedure
where random() is a random real number in [0,1]). If an improving neighbor
solution is detected in N−2 , VND switches back to N1. VND terminates when
no improving solution can be found within both neighborhoods. In Section
5.2, we study the influence of this sampling strategy.

3.4.2 Move Operators, Neighborhoods and VND Exploration

To explore candidate solutions of the search space, the I2PLS algorithm
employs the general swap operator to transform solutions. Specifically, let
S =< A, Ā > be a given solution with A and Ā being the set of selected and
non-selected items. Let swap(q, p) denote the operation that deletes q items
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from A and adds p other items from Ā into A. By limiting q and p to specific
values, we introduce two particular swap(q, p) operators.

The first operator swap1(q, p) (q ∈ {0, 1}, p = 1) includes two customary
operations as described in the literature [19,26,28]: the Add operator and the
Exchange operator. Basically, swap1(q, p) either adds an item from Ā into A
or exchanges one item in A with another item in Ā while keeping the capacity
constraint satisfied.

The second operator swap2(q, p) (3 ≤ q + p ≤ 4) covers three different cases:
delete two items from A and add one item from Ā into A; delete one item
from A and add two items from Ā into A; exchanges two items of A against
two items of Ā. These three operations are subject to the capacity constraint.

On the basis of these two swap operators, we define the neighborhoods Nw
1

and Nw
2 induced by swap1 and swap2 as follows.

Nw
1 (S) = {S ′ : S ′ = S ⊕ swap1(q, p), q ∈ {0, 1}, p = 1,

∑
j∈∪i∈S′Ui

wj ≤ C} (3)

Nw
2 (S) = {S ′ : S ′ = S ⊕ swap2(q, p), 3 ≤ q + p ≤ 4,

∑
j∈∪i∈S′Ui

wj ≤ C} (4)

where S ′ = S⊕swapk(q, p) (k = 1, 2) is the neighbor solution of the incumbent
solution S obtained by applying swap1(q, p) or swap2(q, p) to S.

Nw
1 and Nw

2 are bounded in size by O(|A| × |Ā|) and O(
(

2
|A|

)
×
(

2
|Ā|

)
)

respectively.

Given the large sizes of these neighborhoods, it is obvious that exploring all
the neighbor solutions at each iteration will be very time consuming. To cope
with this problem, we adopt the idea of a filtering strategy that excludes
the non-promising neighbor solutions from consideration [19]. Specifically, a
neighbor solution S ′ qualifies as promising if f(S ′) > f(Sb) holds, where Sb is
the best solution found so far in Algorithm 3. Using this filtering strategy, we
define the following reduced neighborhoods N1 and N2.

N1(S) = {S ′ ∈ Nw
1 (S) : f(S ′) > f(Sb)} (5)

N2(S) = {S ′ ∈ Nw
2 (S) : f(S ′) > f(Sb)} (6)

As explained in Section 3.4.1 and Algorithm 3, the VND procedure successively
examines solutions of these two neighborhoods N1 and N2. Notice that swap2

leads generally to a very large number of neighbor solutions such that even
the reduced neighborhood N2 can still be too large to be explored efficiently.
For this reason, the VND procedure explores a sampled portion of N2 at each
iteration, according to the sampling procedure shown in Algorithm 4.
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3.4.3 Tabu Search

Algorithm 5 Tabu Search - TS
1: Input: Input solution S, Neighborhood N3, tabu search depth ωmax
2: Output: The best solution Sb found during tabu search, the last solution S of

tabu search.
3: Sb ← S /*Sb records the best solution found so far*/
4: ω ← 0 /*ω counts the number of consecutive non-improving iterations */
5: while ω < ωmax do
6: S ← argmax{f(S′) : S′ ∈ N3(S) and S′ is not forbidden by the tabu list}
7: if f(S) > f(Sb) then
8: Sb ← S /* Update the best solution Sb found so far */
9: ω ← 0

10: else
11: ω ← ω + 1
12: end if
13: Update the tabu list
14: end while
15: return (Sb, S)

To discover still better solutions when the VND search terminates, we trigger
the tabu search (TS) procedure (Algorithm 5) that is adapted from the general
tabu search metaheuristic [12]. To explore candidate solutions, TS relies on
the swap3(q, p) (1 ≤ p + q ≤ 2) operator, which extends swap1 used in VND
by including the case q = 1, p = 0, which corresponds to the drop operation
(i.e., deleting an item from A without adding any new item). One notices
that swap3(1, 0) always leads to a neighbor solution of worse quality, which
can be usefully selected for search diversification. We use N3 to denote the
neighborhood induced by swap3.

N3(S) = {S ′ : S ′ = S ⊕ swap3(q, p), 1 ≤ p+ q ≤ 2,
∑

j∈∪i∈S′Ui

wj ≤ C} (7)

As shown Algorithm 5, the TS procedure iteratively makes transitions from
the incumbent solution S to a selected neighbor solution S ′ in N3. At each
iteration, TS selects the best neighbor solution S ′ in N3 (or one of the best ones
if there are multiple best solutions) that is not forbidden by the so-called tabu
list (tabu list) (line 6, Alg. 5, see below). Notice that if no improving solution
exists in N3(S), the selected neighbor solution S ′ is necessarily a worsening
or equal-quality solution relative to S. It is this feature that allows TS to go
beyond local optimal traps. To prevent the search from revisiting previously
encountered solutions, the tabu list is used to record the items involved in the
swap operation. And each item i of the tabu list is then forbidden to take part
in any swap operation during the next Ti consecutive iterations where Ti is
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called the tabu tenure of item i and is empirically fixed as follows.

Ti =

0.4× |A|, if i ∈ A;

0.2× |Ā| × (100/m), if i ∈ Ā.
(8)

TS terminates when its best solution cannot be further improved during ωmax
consecutive iterations (ωmax is a parameter called the tabu search depth).

3.5 Frequency-Based Local Optima Escaping Phase

The ‘Explore’ phase aims to diversify the search by exploring new search
regions. For this purpose, the algorithm keeps track of the frequencies that
each item has been displaced and uses the frequency information to modify
(perturb) the incumbent solution. Particularly, we adopt an integer vector F
of length m whose elements are initialized to zero. Each time an item i is
displaced by a swap operation, Fi is increased by one. Thus, items with a
low frequency are those that are not frequently moved during the ’Explore’
phase. Then when the ‘Explore’ phase terminates and before the next round
of the ‘Explore’ phase starts, we modify the best solution Sb =< Ab, Āb > as
follows. We delete the top η × |Ab| least frequently moved items from Ab (η
is a parameter called perturbation strength and adds to Ab randomly select
items from Āb until the knapsack capacity is reached. This perturbed solution
serves as the new starting solution S0 of the next iteration of the algorithm
(see line 10, Alg. 1). In Section 5.3, we study the usefulness of this perturbation
strategy.

4 Experimental Results and Comparisons

This section presents a performance assessment of the I2PLS algorithm. We
show computational results on the 30 benchmark instances commonly used in
the literature, in comparison with three state-of-the-art algorithms for SUKP.
We also present the first results from the CPLEX solver.

4.1 Benchmark Instances

We use the 30 benchmark instances provided in [14], which were also tested
in 2 other recent studies [9,22]. These instances are divided into three sets
according to the relationship between the number of items and elements
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ranging from 85 to 500, where each instance has a different density α of
elements in an item and a different ratio β of the knapsack capacity to the
total weight of all elements. Let R be a m × n binary relation matrix
between m items and n elements where Rij = 1 indicates the presence of
element j in item i, wj be the weight of element j, and C the knapsack
capacity. Then m n α β designates an instance with m items and n
elements, density of α and ratio of β, where α = (

∑m
i=1

∑n
j=1 Rij)/(mn) and

β = C/
∑n
j=1wj. The characteristics of the three sets of instances are shown

in Tables 3 to 5. These 30 instances are denoted by F1−F10 (m > n),
S1−S10 (m = n) and T1−T10 (m < n) in Fig. 1 to 2, respectively.

4.2 Experimental Setting and reference algorithms

The proposed algorithm was implemented in C++ and compiled using the
g++ compiler with the -O3 option. The experiments were carried on an Intel
Xeon E5-2670 processor with 2.5 GHz and 2 GB RAM under the Linux
operating system.

Table 2
Settings of parameters.

Parameters Sect. Description Value

λmax 2 Exploration depth 2

ρ 3.4.1 Sampling probability for VND 5

ωmax 3.4.3 Tabu search depth 100

η 3.5 Perturbation strength in escaping phase 0.5

Table 2 shows the setting of parameters used in our algorithm, whose values
were discussed in Section 5.1. Given the stochastic nature of the algorithm,
we ran 100 times (like in [14,22]) with different random seeds to solve each
instance, with a cut-off time of 500 seconds per run.

For the comparative studies, we use as reference algorithms the following three
very recent algorithms: BABC (binary artificial bee colony algorithm) (2018),
which is the best performing among five population-based algorithms tested in
[14], gPSO (binary particle swarm optimization algorithm) (2019) [22] and MS
(discrete moth search algorithm) (2019) [9]. Among these reference algorithms,
we obtained the code of BABC. So for BABC, we report both the results
listed in [14] as well as the results obtained by running the BABC code on
our computer under the same time limit of 500 seconds. For gPSO and MS,
we cite the results reported in the corresponding papers. The results of these
reference algorithms have been obtained on computing platforms with the
following features: an Intel Core i5-3337u processor with 1.8 GHz and 4 GB
RAM for BABC, an Intel Core i7-4790K 4.0 GHz processor with 32 GB RAM
for gPSO, and an Intel Core i7-7500 processor with 2.90 GHz and 8.00 GB
RAM for MS.
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Additionally, we notice that until now, no result has been reported by using
the general integer linear programming (ILP) approach to solve the SUKP.
Therefore, we include in our experimental study the results achieved by the
ILP CPLEX solver (version 12.8) under a time limit of 2 hours based on the
0/1 linear programming model presented in the Appendix.

4.3 Computational Results and Comparisons

The computational results 1 of I2PLS on the three sets of benchmark instances
are reported in Tables 3-5, together with the results of the reference algorithms
(BABC [14], gPSO [22], MSO4 [9]) where BABC* corresponds to the results
by running the BABC code as explained in Section 4.2 and MSO4 is the best
MS version among all twelve MS algorithms studied in [9]. The first column of
each table gives the name of each instance. Column 2 (Best Known) indicates
the best known value reported in the literature and compiled from [9,14,22].
The best lower bound (LB) and upper bound (UB) achieved by the CPLEX
solver are given in columns 3 and 4. Column 5 lists respectively the four
performance indicators: best objective value (fbest), average objective value
over 100 runs (favg), standard deviations over 100 runs (std), and average run
times tavg in seconds to reach the best objective value. Columns 6 to 9 present
the computational statistics of the compared algorithms. The best values of
fbest and favg among the results of the compared algorithms are highlighted in
bold and the equal values are indicated in italic. Entries with ”-” mean that
the results are not available.

Given the fact that the compared algorithms were run on different computing
platforms and they report solutions of various quality, it is not meaningful to
compare the computation times. Therefore, the comparisons are mainly based
on the quality, while run times (when they are available) are included only for
indicative purposes.

Finally, Table 6 provides a summary of the compared algorithms on all 30
benchmark instances where rows #Better, #Equal and #Worse indicate
the number of instances for which each algorithm obtains a better, equal or
worse fbest value compared to the best-known values in the literature
(Best Known). Moreover, to further analyze the performance of our I2PLS
algorithm, we use the non-parametric Wilcoxon signed-rank test to check the
statistical significance of the compared results between I2PLS and each
reference algorithm in terms of fbest values. The outcomes of the Wilcoxon
tests are shown in the last row of Table 6 where a p-value smaller than 0.05

1 Our solution certificates are available at: http://www.info.univ-angers.fr/

pub/hao/SUKP_I2PLS.html. The code of I2PLS will also be made available.
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implies a significant performance difference between I2PLS and its
competitor.

Table 3
Computational results and comparison of the proposed I2PLS algorithm with the
reference algorithms on the first set of instances (m > n).

Instance Best Known LB UB Results BABC BABC* gPSO MSO4 I2PLS

100 85 0.10 0.75∗ 13283 13283 13283 fbest 13251 13283 13283 13283 13283

favg 13208.5 13283 13050.53 13062 13283

std 92.63 0 37.41 - 0

tavg 0.210 51.102 - 1.398 3.094

100 85 0.15 0.85∗ 12274 12479 12479 fbest 12238 12479 12274 - 12479

favg 12155 12479 12084.82 - 12335.13

std 53.29 0 95.38 - 98.78

tavg 0.223 24.032 - - 103.757

200 185 0.10 0.75 13521 11585 27055.82 fbest 13241 13402 13405 13521 13521

favg 13064.4 13260.16 13286.56 13193 13521

std 99.57 38.98 93.18 - 0

tavg 1.562 253.693 - 7.901 71.984

200 185 0.15 0.85 14044 11017 29625.82 fbest 13829 14215 14044 - 14215

favg 13359.2 14026.18 13492.60 - 14031.28

std 234.99 151.55 328.72 - 131.46

tavg 1.729 241.932 - - 180.809

300 285 0.10 0.75 11335 9028 43937.51 fbest 10428 10572 11335 11127 11563

favg 9994.76 10466.45 10669.51 10302 11562.02

std 154.03 61.94 227.85 - 3.94

tavg 5.281 315.240 - 24.912 181.248

300 285 0.15 0.85 12245 6889 53164.23 fbest 12012 12245 12245 - 12607

favg 10902.9 12019.28 11607.10 - 12364.55

std 449.45 85.76 477.80 - 83.03

tavg 5.673 226.818 - - 240.333

400 385 0.10 0.75 11484 8993 66798.30 fbest 10766 11021 11484 11435 11484

favg 10065.2 10608.91 10915.87 10411 11484

std 241.45 138.07 367.75 - 0

tavg 12.976 293.560 - 56.838 31.801

400 385 0.15 0.85 10710 5179 77480.39 fbest 9649 9649 10710 - 11209

favg 9135.98 9503.65 9864.55 - 11157.26

std 151.90 94.69 315.38 - 87.29

tavg 13.359 270.813 - - 141.525

500 485 0.10 0.75 11722 7202 86166.50 fbest 10784 10927 11722 11031 11771

favg 10452.2 10628.31 11184.51 10716 11729.76

std 114.35 70.31 322.98 - 6.59

tavg 25.372 486.210 - 124.378 349.545

500 485 0.15 0.85 10022 4762 97218.01 fbest 9090 9306 10022 - 10238

favg 8857.89 9014.01 9299.56 - 10133.94

std 94.55 64.06 277.62 - 94.72

tavg 26.874 482.740 - - 369.375

From Tables 3 to 5, we observe that our I2PLS algorithm performs
extremely well compared to the state-of-the-art results on the set of 30
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Table 4
Computational results and comparison of the proposed I2PLS algorithm with the
reference algorithms on the second set of instances (m = n).

Instance Best Known LB UB Results BABC BABC* gPSO MSO4 I2PLS

100 100 0.10 0.75∗ 14044 14044 14044 fbest 13860 14044 14044 14044 14044

favg 13734.9 14040.87 13854.71 13649 14044

std 70.76 11.51 96.23 - 0

tavg 0.213 169.848 - 1.646 38.245

100 100 0.15 0.85∗ 13508 13508 13508 fbest 13508 13508 13508 - 13508

favg 13352.4 13508 13347.58 - 13451.50

std 155.14 0 194.34 - 126.49

tavg 0.244 6.795 - - 70.587

200 200 0.10 0.75 12522 11187 29394.32 fbest 11846 12350 12522 12350 12522

favg 11194.3 11953.11 11898.73 11508 12522

std 249.58 97.57 391.83 - 0

tavg 1.633 183.130 - 8.112 54.780

200 200 0.15 0.85 12317 9258 30610.99 fbest 11521 11929 12317 - 12317

favg 10945 11695.21 11584.64 - 12280.07

std 255.14 78.33 275.32 - 57.77

tavg 1.819 147.930 - - 238.348

300 300 0.10 0.75 12736 11007 45191.75 fbest 12186 12304 12695 12598 12817

favg 11945.8 12202.80 12411.27 11541 12817

std 127.80 67.81 225.80 - 0

tavg 5.315 202.515 - 28.612 66.403

300 300 0.15 0.85 11425 7590 51891.53 fbest 10382 10857 11425 - 11585

favg 9859.69 10383.64 10568.41 - 11512.18

std 177.02 75.79 327.48 - 73.15

tavg 6.019 113.380 - - 220.100

400 400 0.10 0.75 11531 7910 68137.98 fbest 10626 10869 11531 10727 11665

favg 10101.1 10591.65 10958.96 10343 11665

std 196.99 105.83 274.90 - 0

tavg 12.805 298.970 - 58.433 18.733

400 400 0.15 0.85 10927 4964 77719.78 fbest 9541 10048 10927 - 11325

favg 9032.95 9602.13 9845.17 - 11325

std 194.18 142.77 358.91 - 0

tavg 12.953 386.555 - - 76.000

500 500 0.10 0.75 10888 7500 85184.48 fbest 10755 10755 10888 10355 11249

favg 10328.5 10522.56 10681.46 9919 11243.40

std 94.62 70.17 125.36 - 27.43

tavg 27.735 194.490 - 121.622 134.186

500 500 0.15 0.85 10194 3948 101964.36 fbest 9318 9601 10194 - 10381

favg 9180.74 9334.52 9703.62 - 10293.89

std 84.91 40.59 252.84 - 85.53

tavg 27.813 135.130 - - 237.894

benchmark instances. In particular, I2PLS improves on the best-known
results of the literature for 18 out of 30 instances, while matching the
best-known results for the remaining 12 instances. Notice that among these
12 instances, 6 instances with 85 and 100 items are solved to optimality by
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Table 5
Computational results and comparison of the proposed I2PLS algorithm with the
reference algorithms on the third set of instances (m < n).

Instance Best Known LB UB Results BABC BABC* gPSO MSO4 I2PLS

85 100 0.10 0.75∗ 12045 12045 12045 fbest 11664 12045 12045 11735 12045

favg 11182.7 11995.12 11486.95 11287 12045

std 183.57 53.15 137.52 - 0

tavg 0.188 206.570 - 1.354 2.798

85 100 0.15 0.85∗ 12369 12369 12369 fbest 12369 12369 12369 - 12369

favg 12081.6 12369 11994.36 - 12315.53

std 193.79 0 436.81 - 62.60

tavg 0.217 0.531 - - 17.47

185 200 0.10 0.75 13696 12264 25702.48 fbest 13047 13647 13696 13647 13696

favg 12522.8 13179.14 13204.26 13000 13695.60

std 201.35 100.78 366.56 - 3.68

tavg 1.502 202.560 - 7.642 124.136

185 200 0.15 0.85 11298 8608 26289.16 fbest 10602 10926 11298 - 11298

favg 10150.6 10749.46 10801.41 - 11276.17

std 152.91 97.24 205.76 - 83.78

tavg 1.948 259.050 - - 139.865

285 300 0.10 0.75 11568 9421 44274.85 fbest 11158 11374 11568 11391 11568

favg 10775.9 11143.69 11317.99 10816 11568

std 116.80 76.90 182.82 - 0

tavg 5.450 426.680 - 24.539 25.128

285 300 0.15 0.85 11517 7634 51440.30 fbest 10528 10822 11517 - 11802

favg 9897.92 10396.60 10899.20 - 11790.43

std 186.53 128.63 300.36 - 27.51

tavg 5.571 192.575 - - 206.422

385 400 0.10 0.75 10483 9591 59917.77 fbest 10085 10110 10483 9739 10600

favg 9537.5 9926.18 10013.43 9240 10536.53

std 184.62 87.43 202.40 - 56.08

tavg 13.012 203.870 - 57.000 234.475

385 400 0.15 0.85 10338 5810 73409.01 fbest 9456 9659 10338 - 10506

favg 9090.03 9444.34 9524.98 - 10502.64

std 156.69 46.40 286.16 - 23.52

tavg 13.724 177.910 - - 129.505

485 500 0.10 0.75 11094 5940 84239.56 fbest 10823 10835 11094 10539 11321

favg 10483.4 10789.57 10687.62 10190 11306.47

std 228.34 27.29 168.06 - 36.00

tavg 27.227 299.260 - 114.066 207.118

485 500 0.15 0.85 10104 4325 100374.77 fbest 9333 9380 10104 - 10220

favg 9085.57 9258.82 9383.28 - 10179.45

std 115.62 58.72 241.01 - 46.97

tavg 28.493 49.170 - - 238.630

CPLEX (LB=UB), which are indeed not challenging for the other
algorithms. Compared to the reference algorithms (BABC/BABC*, gPSO,
MS), I2PLS reports better or equal fbest values for all the tested instances
without exception. In terms of the average results (favg), I2PLS also
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Table 6
Summary of numbers of instances for which each algorithm reports a better, equal
or worse fbst value compared to the best-known value in the literature and p-values
of the Wilcoxon singned-rank test on fbest values over all instances between I2PLS
and each reference algorithm including the best-known values.

Instance Best Known BABC BABC* gPSO MSO4 I2PLS

# Better - 0 2 0 0 18

# Equal - 2 6 28 3 12

# Worse - 28 22 2 12 0

p-value 2.14e-4 4.00e-6 2.89e-5 1.43e-4 2.52e-3 -

performs very well by reporting better or equal fbest values for all instances
except three cases (100 85 0.15 0.85, 100 100 0.15 0.85 and 85 100 0.15 0.85)
for which BABC* has better values. Moreover, I2PLS has smaller standard
deviations of its fbest values (fbest values often better than the compared
results), suggesting that our algorithm is highly robust.

The small p-values (< 0.05) of Table 6 from the Wilcoxon signed-rank test
(2.14e-4, 4.00e-6, 2.89e-5 and 1.43e-4) confirm that the results of our algorithm
are significantly better than those of the compared results (best known in the
literature, BABC, BABC* and gPSO).

Finally, we complete the above presentation by showing graphical comparisons
of I2PLS against BABC, BABC*, and gPSO on the three sets of 30 instances.
We ignore MS of [9] since no result is available for half of the 30 instances. The
plots of Fig. 1 concern the best and average objective values of the compared
algorithms while the plots of Fig. 2 are based on the standard deviations.
These figures clearly indicate the dominance of the proposed I2PLS algorithm
over the reference algorithms in terms of the considered indicators.

5 Analysis and Insights

In this section, we perform an analysis of the parameters and the ingredients
of the algorithm to get useful insights about their impacts on its performance.

5.1 Analysis of Parameters

As shown in Table 2, I2PLS requires four parameters: exploration depth
λmax (Section 2), neighborhood sampling probability ρ (Section 3.4.1), tabu
search depth ωmax (Section 3.4.3), perturbation strength η (Section 3.5). To
analyze the sensibility and tuning of the parameters, we select 8 out of the
30 benchmark instances, i.e., 185 200 0.15 0.85, 200 185 0.15 0.85,
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Fig. 1. The best objective values (left) and mean objective values (right) of BABC,
BABC*, gPSO and I2PLS for solving three sets of instances.
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Fig. 2. The standard deviations of BABC, BABC*, gPSO and I2PLS for solving
three sets of instances.
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200 200 0.15 0.85, 300 285 0.15 0.85, 400 385 0.15 0.85, 500 485 0.10 0.75,
500 485 0.15 0.85 and 500 500 0.15 0.85. According to Tables 3-5, the
compared algorithms have a larger standard deviation for most of these
instances than for other instances, implying that they are rather difficult to
solve. We exclude the instances with 85 and 100 items since they can be
solved exactly by the CPLEX and are thus too easy to be used for our
analysis.

In this experiment, we studied each parameter independently by varying its
value in a pre-determined range while fixing the other parameters to the
default values shown in Table 2. We then ran I2PLS with each parameter
setting 30 times to solve each of the 8 selected instances with the same
cut-off time as in Section 4.3. Specifically, the exploration depth λmax takes
its values in {1, 2, . . . , 10} with a step size of 1, the sampling probability ρ
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Fig. 3. Average of the best objective values (fbest) on the 8 instances obtained by
executing I2PLS with different values of the four parameters.
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varies from 0.01 to 0.10 with a step size of 0.01, the tabu search depth ωmax
takes its values in {100, 200, . . . , 1000} with a step size of 100, and the
perturbation strength η varies from 0.1 to 1 with a step size of 0.1. Fig. 3
shows the average of the best objective values (fbest) obtained by I2PLS with
the four parameters on the 8 instances.

Fig. 3 indicates I2PLS achieves better results when λmax = 2, ρ = 0.05 (the
favg value is better when ρ = 0.05 than ρ = 0.04), ωmax = 100, η = 0.5,
respectively. This justifies the adopted settings of parameters as shown in
Table 2. In addition, for each parameter, we used the non-parametric Friedman
test to compare the fbest values reached with each of the alternative parameter
values. The resulting p−value (> 0.05) of the parameters λmax and ωmax show
that the differences from alternative parameter settings are not statistically
significant, implying that I2PLS is not sensitive to these two parameters.
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5.2 Effectiveness of the VND Search Strategy

The VND procedure explores two neighborhoods N1 and N2 with a sampling
probability ρ applied to N2. To investigate the impact of this sampling
strategy, we performed an experiment by setting ρ ∈ {0.05, 0.0, 1.0}, where
ρ = 0.05 is the adopted value as shown in Table 2, ρ = 0.0 indicates that
only the neighborhood N1 is used during the descent search while N2 is
disabled, and ρ = 1.0 indicates that the entire neighborhoods N1 and N2 are
explored.

We denote these three VND variants by VND0.05, VND0.0 and VND1.0

respectively. Recall that the VND procedure adopts the best-improvement
strategy at each iteration. However, it is interesting to observe the effect of
adopting the first-improvement strategy in N2, So we included a fourth
VND variant with the first-improvement strategy and ρ = 1.0 (denoted as
VNDf

1.0). We ran these four VND variants to solve the 30 benchmark
instances under the condition of Section 4.3 and report the results in terms
of fbest in Table 7 (the best of the fbest values in bold). The rows #Better,
#Equal and #Worse respectively indicate the number of instances for
which VND0.0, VND1.0 and VNDf

1.0 attain a better, equal and worse result
compared to the result obtained by VND0.05 (which is the default strategy of
I2PLS).

Table 7 shows that VND0.05 performs the best with the setting ρ = 0.05.
Compared to VND0.05, VND0.0 obtains worse results on 3 instances, and
equal results on the other 27 instances. VND1.0 reaches the same results as
VND0.05 on 25 instances, and worse results on 5 instances. VND1.0f obtains
worse results on 4 instances, and equal results on the other 26 instances.
Moreover, we observe that when exploring the whole neighborhood N2,
neither the best-improvement strategy nor the first-improvement strategy
performs well. This can be explained by the fact that given the large size of
N2, a thorough examination of this neighborhood becomes very expensive.
Within the cut-off time, the VND search cannot perform many iterations,
decreasing its chance of encountering high-quality solutions. Finally, the
p − value of 4.18e-2 from the Friedman test indicates a significant difference
among the compared VND strategies. This implies that the adopted VND
strategy and sampling technique of the I2PLS algorithm are relevant for its
performance.
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Table 7
Influence of the VND search strategy on the performance of the I2PLS algorithm.

Instance/Setting VND0.05 VND0.0 VND1.0 VNDf
1.0

100 85 0.10 0.75 13283 13283 13283 13283

100 85 0.15 0.85 12479 12479 12479 12479

200 185 0.10 0.75 13521 13521 13521 13521

200 185 0.15 0.85 14215 14215 14215 14215

300 285 0.10 0.75 11563 11563 11563 11563

300 285 0.15 0.85 12607 12500 12332 12332

400 385 0.10 0.75 11484 11484 11484 11484

400 385 0.15 0.85 11209 11209 11209 11209

500 485 0.10 0.75 11771 11729 11746 11729

500 485 0.15 0.85 10238 10194 10194 10194

100 100 0.10 0.75 14044 14044 14044 14044

100 100 0.15 0.75 13508 13508 12238 13508

200 200 0.10 0.75 12522 12522 12522 12522

200 200 0.15 0.85 12317 12317 12317 12317

300 300 0.10 0.75 12817 12817 12817 12817

300 300 0.15 0.85 11585 11585 11502 11585

400 400 0.10 0.75 11665 11665 11665 11665

400 400 0.15 0.85 11325 11325 11325 11325

500 500 0.10 0.75 11249 11249 11249 11249

500 500 0.15 0.85 10381 10381 10381 10381

85 100 0.10 0.75 12045 12045 12045 12045

85 100 0.15 0.85 12369 12369 12369 12369

185 200 0.10 0.75 13696 13696 13696 13696

185 200 0.15 0.85 11298 11298 11298 11298

285 300 0.10 0.75 11568 11568 11568 11568

285 300 0.15 0.85 11802 11802 11802 11802

385 400 0.10 0.75 10600 10600 10600 10600

385 400 0.15 0.85 10506 10506 10506 10506

485 500 0.10 0.75 11321 11321 11321 11321

485 500 0.15 0.85 10220 10220 10220 10208

# Better - 0 0 0

# Equal - 27 25 26

# Worse - 3 5 4

5.3 Effectiveness of the Frequency-Based Local Optima Escaping Strategy

The frequency-based local optima escaping strategy of I2PLS perturbs the
locally best solution Sb = (A, Ā) by replacing the first η × |A| (in I2PLS, η is
set to 0.5) least frequently moved items of A with items that are randomly
chosen from Ā. In this experiment, we compared I2PLS against two variants
with alternative perturbation strategies. In the first variant (denoted by
I2PLSrandom), we replace 0.5 × |A| items randomly selected items of A while
in the second variant (denoted by I2PLSstrong) and we perform a very strong
perturbation by replacing all the items of A with items of Ā (i.e., setting η
to 1). We ran I2PLS, I2PLSrandom and I2PLSstrong 30 times to solve each of
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the 30 benchmark instances. The computational results of this experiment
are shown in Table 8 where in addition to the best fbest values of each
compared algorithm (the best of the fbest values in bold), the last three rows
indicate the number of instances for which I2PLSrandom and I2PLSstrong has
a better, equal and worse result compared to that of I2PLS.

Table 8
Impact of the frequency-based local optima escaping strategy on the performance
of the I2PLS algorithm.

Instance/Setting I2PLS I2PLSrandom I2PLSstrong

100 85 0.10 0.75 13283 13283 13283

100 85 0.15 0.85 12479 12479 12479

200 185 0.10 0.75 13521 13521 13521

200 185 0.15 0.85 14215 14215 14215

300 285 0.10 0.75 11563 11563 11563

300 285 0.15 0.85 12607 12607 12607

400 385 0.10 0.75 11484 11484 11484

400 385 0.15 0.85 11209 11209 11209

500 485 0.10 0.75 11771 11729 11729

500 485 0.15 0.85 10238 10194 10194

100 100 0.10 0.75 14044 14044 14044

100 100 0.15 0.75 13508 13508 13508

200 200 0.10 0.75 12522 12522 12522

200 200 0.15 0.85 12317 12317 12317

300 300 0.10 0.75 12817 12817 12817

300 300 0.15 0.85 11585 11585 11585

400 400 0.10 0.75 11665 11665 11665

400 400 0.15 0.85 11325 11325 11325

500 500 0.10 0.75 11249 11249 11249

500 500 0.15 0.85 10381 10381 10381

85 100 0.10 0.75 12045 12045 12045

85 100 0.15 0.85 12369 12369 12369

185 200 0.10 0.75 13696 13696 13696

185 200 0.15 0.85 11298 11298 11298

285 300 0.10 0.75 11568 11568 11568

285 300 0.15 0.85 11802 11802 11802

385 400 0.10 0.75 10600 10600 10600

385 400 0.15 0.85 10506 10506 10506

485 500 0.10 0.75 11321 11321 11321

485 500 0.15 0.85 10220 10220 10220

# Better - 0 0

# Equal - 28 28

# Worse - 2 2

Table 8 shows that I2PLS with its frequency-based local optima escaping
strategy performs slightly better than the two variants with alternative
perturbation strategies. Indeed, even if the compared strategies lead to equal
results for 28 instances, I2PLS achieves a better result on two of the most
difficult instances (500 485 0.10 0.75 and 500 485 0.15 0.85). This
experiment tends to indicate that the frequency-based local optima escaping
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strategy is particularly helpful for solving difficult instances. The p − value
of 1.35e-1 from the Friedman test indicates that the compared strategies
differ only marginally.

6 Conclusions

The set-union knapsack problem (SUKP) studied in this work is a
generalization of the conventional 0-1 knapsack problem with a variety of
practical applications. Existing solution methods are mainly based on swarm
optimization. This work introduces the first local search approach for solving
the SUKP that directly operates in the discrete search space. The proposed
algorithm combines a local optima exploration phase and a local optima
escaping phase based on frequency information within the iterated local
search framework.

The proposed algorithm has been tested on three sets of 30 benchmark
instances commonly tested in the literature and showed a high competitive
performance compared to the state-of-the-art SUKP algorithms. Specifically,
our algorithm has improved on the best-known results (new lower bounds)
for 18 out of the 30 benchmark instances, while matching the best-known
results for the remaining 12 instances. Moreover, we has investigated for the
first time the interest of the general mixed integer linear programming solver
CPLEX for solving the SUKP, showing that the optimal solutions can be
reached only for 6 small instances. Furthermore, we have analyzed the
impacts of parameters and the main components of the algorithm on its
performance.

This work can be further improved. First, even if the algorithm uses the
filtering mechanism and the sampling technique to reduce the
neighborhoods, evaluating a given neighbor solution remains
time-comsuming. To speed up the search process, it is useful to seek
streamlining techniques to reduce the complexity of neighborhood
evaluation. Second, considering the potential strong correlations of
constituent elements between different items, a hybrid approach combining
local search and population-based search could be helpful to break search
barriers and traps. Finally, the SUKP belongs to the large family of
knapsack problems, it would be interesting to investigate whether proven
techniques and strategies designed for related knapsack problems remain
useful for solving the SUKP.
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A Appendix: 0/1 linear programming model for the SUKP

We present the mathematical model that we proposed and used to report the
results (lower and upper bounds) of the general ILP solver CPLEX in Section
4.3. Our model is based on the mathematical model of the SUKP introduced
in [14] (see the detailed description of this model in Section 2, page 78 of this
reference), which is, however, inapplicable by the CPLEX solver. We introduce
below the modified 0/1 linear programming model that is suitable for the
solver. For an arbitrary non-empty item set S ⊂ V represented by its binary
vector S = (y1, . . . , ym) such that yi = 1 (i = 1, . . . ,m) if item i is selected in
S, and yi = 0 otherwise. Let R be a m × n binary relation matrix such that
Rij = 1 if element j belongs to item i, and Rij = 0 otherwise. Furthermore,

for each element j (j = 1, . . . , n), define Lj =
m∑
i=1

yiRij that counts the number

of appearances of element j in the items of S. Let xj be a binary variable such
that xj = 1 if Lj > 0, and xj = 0 otherwise, that is, xj indicates whether
element j is involved in calculating the total weight of S. Then our 0/1 linear
programming model for the SUKP is defined as follows.

(SUKP ) Maximize f(S) =
m∑
i=1

piyi (A.1)

s.t. W (S) =
n∑
j=1

wjxj ≤ C (A.2)

xj =

1, if Lj > 0;

0, otherwise.
(A.3)

Lj =
m∑
i=1

yiRij, j = 1, . . . , n (A.4)
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yi ∈ {0, 1}, i = 1, . . . ,m (A.5)

Constraints A.2–A.4 jointly ensure that the weight wj of an element j is
counted only once in W (S) even if the element appears in more than one
selected items and the capacity constraint is satisfied. Constraints A.5
guarantee that each item is selected at most once. Equation (A.1) maximizes
the total profit of the selected items.
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