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ABSTRACT

We present an iterated hyperplane search approach for the budgeted maximum coverage problem.
Our algorithm relies on the idea of searching on specific areas identified by cardinality-constrained
hyperplanes. It combines three complementary procedures: a tabu search procedure to identify a
promising hyperplane, a hyperplane search procedure to examine candidate solutions on cardinality-
constrained hyperplanes and a dedicated perturbation procedure to ensure the diversification of
the search. We show the competitiveness of the algorithm on 30 benchmark instances and present
experiments to study the key components of the algorithm.

1. Introduction
The maximum coverage problem (MCP) (Hochba,

1997) and its variants are general models with interesting
applications (Chauhan, Unnikrishnan and Figliozzi, 2019;
Kartashov, SergiyYakoIlev, YakoIleva and Shekhovtsov,
2019; Liang, Shen and Chen, 2021). The budgeted
maximum coverage problem (BMCP) generalizes the MCP.
Given a set E = {1,… , n} of n elements and a set
 = {1,… , m} of m items, where each element has a
positive gain (or profit) and each item is a subset of E with
a positive weight. The relationships between the items of 
and the elements of E are given by a m × n binary matrix
M . Then BMCP aims to find a subset  ⊆  to maximize
the profit sum P () of the covered elements while ensuring
that the weight sum W () of the selected items satisfies a
given budget (knapsack capacity) C (Khuller, Moss and
Naor, 1999). Formally, BMCP can be written as follows.

(BMCP ) Maximize P () =
∑

j∈E

pj (1)

subject to W () =
∑

i∈
wi ⩽ C (2)

 ⊆ , E = ∪i∈Ei (3)

with  ⊆  being the selected item set and E ⊆ E being
the elements covered by the item set  . It is worth noting
that the profit of an element will be calculated once in
Equation (1), even if it appears in multiple selected items.
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BMCP can model numerous real-life applications. We
take the case in the area of flexible production networks (or
supply chain networks with flexible plants). Suppose that a
company has a number of plants that produce different
types of commodities and some commodities can be
produced by different plants. Each plant has a cost (e.g.,
representing production and operational expenses) and each
produced commodity generates a profit. Usually, the
company uses the process flexibility strategy (Simchi-Levi,
2010; Cachon and Terwiesch, 2011) to satisfy the
variability of product demands. So the company needs to
decide which plants are to be used for production to
maximize the sum of profit of the produced commodities
while ensuring the sum of budget required by the selected
plants satisfies the given budget. This problem is equivalent
to the BMCP model when an item represents a plant with
its cost and an element represents a commodity with its
profit. Moreover, BMCP has other practical applications
related to the locations of network monitors (Suh, Guo,
Kurose and Towsley, 2006), news recommendation (Li,
Wang, Li, Knox and Padmanabhan, 2011), software defined
networking (Kar, Wu and Lin, 2016), text summarization
(Takamura and Okumura, 2009), and program assignment
(Li, Wei, Hao and He, 2021).

Depending on the optimization objective and
constraints, several decision-making problems related to
BMCP have been proposed and studied, such as the
maximum coverage problem with group budget constraints
(Chekuri and Kumar, 2004), the generalized maximum
coverage problem (Cohen and Katzir, 2008), the budgeted
maximum coverage with overlapping costs (Curtis,
Pemmaraju and Polgreen, 2010), the set-union knapsack
(Goldschmidt, Nehme and Yu, 1994) (SUKP), etc. These
problems as well as BMCP are difficult to solve due to their
-hard nature. Among these problems, SUKP and
BMCP can be regarded as a pair of “dual” problems (Li
et al., 2021). Several solution approaches have been
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proposed for solving for SUKP, including: exact algorithm
(Goldschmidt et al., 1994), approximation algorithm
(Taylor, 2016), population-based hybrid algorithms (He,
Xie, Wong and Wang, 2018; Ozsoydan and Baykasoglu,
2019; Liu and He, 2019) and local search algorithms (Lin,
Guan, Li and Feng, 2019; Wei and Hao, 2021).

However, for BMCP, only two algorithms have been
devised in the literature. First, Khuller et al. (Khuller et al.,
1999) introduced an approximation algorithm, which has a
guaranteed approximation ratio of (1 − 1∕e). Recently, Li et
al. (Li et al., 2021) proposed the first probability learning
based tabu search (PLTS) approach, which integrates the
reinforcement learning technique and local optimization.
Based on 30 benchmark instances (see Section 3.1), they
demonstrated the superiority of PLTS compared with the
reference algorithms they tested. They also reported lower
and upper bounds for these 30 instances with the CPLEX
solver under the running time of 5 hours.

In this paper, we enrich the toolbox for practically
solving BMCP by proposing an iterated hyperplane search
algorithm (IHS) with the following contributions. First, the
proposed iterated hyperplane search algorithm (IHS) is the
first BMCP algorithm, which explores the idea of searching
on specific areas identified by cardinality-constrained
hyperplanes. During the search process, a promising
hyperplane is identified by a local search procedure at first,
then a focused hyperplane search is carried out to examine
in detail this hyperplane as well as some nearby
hyperplanes. To ensure a suitable diversification of the
search process, the algorithm additionally integrates a
dedicated perturbation procedure to complement the
intensification-oriented hyperplane search. Second, the
comparative study on the 30 benchmark instances indicates
that our algorithm is highly effective and robust compared
to the best performing BMCP algorithms. Our algorithm
discovers new lower bounds for 18 instances, while
requiring a short running time (typically less than one
minute) to attain its best solutions. We make our algorithm
publicly available to facilitate its use in future research on
BMCP and for solving related practical problems.

2. Iterated hyperplane search for the BMCP
The basic idea of our IHS approach is to explore

efficiently promising sub-spaces (“hyperplanes”) around
attained high-quality local optima. This section starts with
some basic notations and definitions involved in our
approach and then describes its main components.

2.1. Notations and definitions
By reference to the item set  = {1, 2,… , m}, we

represent a solution of BMCP by S = (x1,… , xm), where
xi = 1 if item i is selected, xi = 0 otherwise. Then we
define the search space Ω of the given instance as the
collection of all non-empty subsets of , i.e.,

Ω = {x ∶ x ∈ {0, 1}m} (4)

We define the feasible search space ΩF as the set of all
feasible solutions satisfying the given budget C , i.e.,

ΩF = {x ∈ {0, 1}m ∶
m
∑

i=1
wixi ⩽ C} (5)

Let S = (x1,… , xm) be a solution, let k denote the
number of selected items in S = (x1,… , xm), i.e.,

k =
m
∑

i=1
xi. We define the restricted subspace Ω[k] as a

subspace of Ω such that each solution satisfies the
k-dimensional hyperplane constraint.

Ω[k] = {x ∈ {0, 1}m ∶
m
∑

i=1
xi = k} (6)

Note that each k-dimensional hyperplane Ω[k] includes
both feasible and infeasible S. It is clear that Ω = ∪mk=1Ω

[k].
Given a solution S and its total weight

W (S) =
∑

i∈ wi, its overweigℎt is defined as follows.

Wo(S) = max{W (S) − C, 0} (7)

where C is the given budget.

2.2. Main framework
The proposed IHS algorithm focuses on exploring some

promising subspaces identified by cardinality-constrained
hyperplanes, instead of searching in the whole space. The
idea of using hyperplanes to limit the search scope has been
successfully employed for solving knapsack problems such
as multidimensional knapsack (Fleszar and Hindi, 2009;
Vasquez and Hao, 2001) and quadratic knapsack problem
(Chen and Hao, 2017).

IHS combines three complementary procedures, i.e., a
tabu search procedure to identify a promising hyperplane, a
hyperplane search procedure to examine candidate
solutions on cardinality-constrained subspaces and a
dedicated perturbation procedure to diversify the search.

Specifically, as shown in Algorithm 1, the algorithm
starts with a dynamic greedy initialization procedure (line
3, Alg. 1, and Section 2.3) to generate a feasible solution of
reasonable quality in the space Ω. The algorithm first
initializes the best solution S∗ found so far (line 4, Alg. 1),
then runs a “while” loop (lines 5-13, Alg. 1) to perform the
main procedure until the cut-off limit tmax is met. At each
“while” loop, the solution S is improved by the tabu search
procedure with a union neighborhood N1 ∪ N2 limited by
search depth Imax1 (line 6, Alg. 1, and Section 2.4). After
determining the hyperplane dimension k from the best
solution of tabu search (line 7, Alg. 1), the hyperplane
search procedure uses the neighborhood N3 to successively
examine candidate solutions in the spaces
Ω[k],Ω[k],… ,Ω[k+
] where 
 is a parameter (line 8, Alg.
1). The overall best solution S∗ will be updated
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conditionally (lines 9-11, Alg. 1), and then the solution
from hyperplane search is modified by the greedy
randomized perturbation procedure. The perturbed solution
is employed as the input solution of the next “while” loop.
Finally, IHS terminates when the cut-off time tmax is met
while returning the recorded overall best solution S∗.

Algorithm 1 Iterated hyperplane search for BMCP
1: Input: Instance I , cut-off time tmax, depth of tabu search Imax1, depth of

hyperplane search Imax2, limit of hyperplane search 
 , neighborhoods
N1 (flip), N2 (swap), N3 (swap with infeasible search space),
perturbation strength �.

2: Output: The overall best solution S∗ found.
3: S ← Dynamic_Greedy_Initialization(I) /* S is the current solution

*/
4: S∗ ← S
5: while T ime ≤ tmax do
6: S ← T abu_Searcℎ(S,N1 ∪N2, Imax1) /* Improve S by tabu

search */
7: k ← Determine_Hyperplane_Dimension(S) /* Calculate the

hyperplane dimension k from the solution of tabu search */
8: S ← Hyperplane_Searcℎ(S, k, 
,N3, Imax2) /* Improve S by

hyperplane search starting from hyperplane k */
9: if f (S) > f (S∗) then
10: S∗ ← S
11: end if
12: S ← Greedy_Randomized_Perturbation(S, �)
13: end while
14: return S∗

2.3. Dynamic greedy initialization
Given a solution S and the set ES of the covered

elements, let u be a non-selected item (u ∉ S) and Eu be
the set of corresponding elements. Then, we define the
contribution CT of the non-selected item u to the solution
S by CTu =

∑

j∈Eu∧j∉ES pj and the dynamic density DD
of the item u by DDu = CTu∕wu where wu is the weight of
the item u. It is clear that items with a high DDu value are
more interesting than those with a low DDu value. The
dynamic greedy initialization procedure uses the high DDu
items to create an initial solution.

The initialization procedure uses a “while” loop to
iteratively add non-selected items into the initial solution S
(see Algorithm 2). Specifically, we first calculate the
contribution CTu of each non-selected item u in the item set
 and the associated dynamic density DDu. Then, the item
u∗ with the maximum density is identified and added into
S. This process is iterated until the budget C is met.

2.4. Tabu search
The IHS algorithm applies the well-known tabu search

(TS) approach (Glover and Laguna, 1997) to explore local
optima within the feasible space ΩF . As shown in
Algorithm 3, the TS procedure first initializes the tabu list
and the local best solutions Sb (lines 4-5, Alg. 3). Then the
main search process performs a “while” loop to examine
candidate solutions in ΩF (lines 6-17, Alg. 3). At each
iteration, all admissible neighbor solutions in the union
neighborhood N1(S) ∪ N2(S) are identified and the best
admissible neighbor solution S′ is used to update S (lines
7-11, Alg. 3, see Section 2.4.1). After each solution

Algorithm 2 Dynamic greedy initialization
1: Input: Instance I .
2: Output: A feasible solution S.
3: S ← ∅
4: W (S)← 0
5: whileW (S) ≤ C do
6: CT ← Calculate_contribution() /* Calculate the contribution of

each non-selected item */
7: DD ← Calculate_dynamic_density(CT ) /* Calculate the

dynamic density of each non-selected item */
8: Identify the item u∗ with the maximum density in DD
9: if w(u∗) +W (S) ≤ C then
10: S ← Add_item(u∗, S)
11: else
12: break;
13: end if
14: end while
15: return S

transition, the best solution Sb found so far and the tabu list
are updated accordingly (lines 12-18, Alg. 3, see Section
2.4.2). When Sb cannot be improved for Imax1 consecutive
iterations, the TS procedure terminates and returns its best
feasible solution Sb found.

Algorithm 3 Tabu search procedure
1: Input: Input solution S, neighborhoodN1,N2, the maximum number

of iterations Imax1.
2: Output: Best solution Sb found during tabu search.
3: Initialize tabu_list
4: Sb ← S
5: i ← 0
6: while i ≤ Imax1 do
7: Find all admissible neighbor solutionsN ′(S) inN1(S) ∪N2(S)
8: if N ′(S) ≠ ∅ then
9: /* Select the best admissible neighbor solution S′ inN ′(S)*/

S′ ← argmax{f (S′) ∶ S′ ∈ N ′(S)}
10: end if
11: S ← S′ /* The selected neighbor solution becomes the new

current solution */
12: if f (S) > f (Sb) then
13: f (Sb)← f (S)
14: i ← 0
15: else
16: i ← i + 1
17: end if
18: Update tabu_list
19: end while
20: return Sb

2.4.1. Neighborhood and its evaluation
To explore efficiently the feasible space ΩF , our TS

procedure employs a constrained union neighborhood
induced by two common move operators flip and swap (Li
et al., 2021; Wei and Hao, 2021; Aïder, Gacem and Hifi,
2022; Avci and Topaloglu, 2017). The flip(p) operator
simply changes the value of a binary variable i of the
current solution, implying that either a new item is added
into the solution or a selected item is removed from the
solution. The operation swap(q, p) exchanges a selected
item against a non-selected item to generate a new solution.
Let S′ = S ⊕ {flip, swap} be the feasible neighbor
solution achieved by the move operators. Then the
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associated neighborhoods N1 and N2 induced by flip and
swap can be written as follows, respectively.

N1(S) = {S ′ ∶ S ′ = S ⊕flip(p), p ∈ S,
m
∑

i=1
wixi ⩽ C} (8)

N2(S) = {S ′ ∶ S ′ = S⊕swap(q, p), q ∈ V , p ∈ V̄ ,
m
∑

i=1
wixi ⩽ C}

(9)

where V and V̄ denote the selected and non-selected item
set, respectively.

The TS procedure explores the constrained union
neighborhood N1 ∪ N2. Given a neighbor solution S′ in
N1 ∪N2, the time complexity of calculating the total profit
P (S′) is O(mn). However, we can easily obtain the weight
W (S′) of S′ in O(1), i.e., W (S′) = W (S) + wp − wq . To
speed up the examination of the neighborhoodN1 ∪N2, we
adopt a weight-based filtering strategy to avoid calculating
the total profit of infeasible neighbor solutions. Specifically,
at each iteration of TS(line 7, Alg. 3), we calculate the total
weight W (S′) rather than the total profit P (S′) at first.
Then, only feasible neighbor solutions S′ that satisfy the
budget constraint (i.e., W (S′) ≤ C) will be further
considered. This filtering strategy considerably reduces the
effort for evaluating the union neighborhoodN1 ∪N2.

To further increase the computational efficiency when
calculating the total profit P (S′), we adopt a dedicated
gain_updating strategy inspired by a streamlining
technique designed for SUKP (Lin et al., 2019; Wei and
Hao, 2020). For each neighboring solution S′, we employ
an n-vector G to count the frequencies of elements in S′. In
this way, we can quickly obtain P (S′) by checking only the
elements whose value changes in vector G. Let P (S) be the
total profit of S. For each changed element j in S′, the
gain_updating strategy covers three different cases.

P (S ′) =

⎧

⎪

⎨

⎪

⎩

P (S) + pj , if Gj changes from zero to non-zero;
P (S) − pj , if Gj changes from non-zero to zero;
P (S), otherwise.

(10)

Let di =
n
∑

j=1
Mij be the number of elements covered by

item i, where M is the binary relationship matrix of the
given instance. Suppose that dmax = maxi=1,2,…,m{di}
represents the maximum number of elements. Then the
time complexity of calculating P (S′) is reduced from
O(mn) (calculating P (S′) from scratch) to O(|dmax|).

Although the general union neighborhood N1 ∪N2 has
been employed in (Li et al., 2021), the proposed IHS
algorithm adopts a different way to explore N1 ∪N2 much

more efficiently. First, IHS uses a filtering strategy to
exclude some unpromising solutions directly. Second, the
gain_updating strategy is adopted to accelerate the
evaluation of each neighbor solution in the union
neighborhood. Third, IHS employs the aspiration criterion
to accept conditionally a best neighbor solution forbidden
by the tabu list (see Section 2.4.2), while such a rule was
not applied in (Li et al., 2021).

2.4.2. Tabu list management
The TS procedure uses the tabu list T to avoid

revisiting previously seen solutions. Usually, when a move
operation (flip or swap) is performed, the involved items
are recorded in T and forbidden to be changed in the next
several consecutive iterations. In our case, the reverse move
is forbidden throughout the current round of tabu search.
Particularly, for the swap operator, we use a m × m matrix
to record the paired items i and j. A performed swap(i, j)
or swap(j, i) move is forbidden to take part in a move
again. For the flip move involving only one item i, the
item will be prohibited to move back to its original
(selected or non-selected) set in the current round of the TS
procedure. Thus, item i is not allowed to take part in a flip
move again, but remains eligible for the swap operation.
Our preliminary experiment indicates that this tabu list
management is more effective than the previous technique
applied in (Li et al., 2021). Moreover, we also employ the
aspiration criterion (Glover and Laguna, 1997) to allow a
forbidden move if the move leads to a solution better than
the best solution Sb.

2.5. Hyperplane search
From the best feasible solution Sb = (x1,… , xm) from

the TS procedure, we obtain the starting hyperplane

dimension k =
m
∑

i=1
xi (i.e., the number of selected items in

S) (line 7, Alg. 1). Then as shown in Algorithm 4), several
hyperplanes k, k + 1,… , k + 
 (
 is the limit of hyperplane
search) are successively explored (lines 8-30, Alg. 4). For a
given hyperplane, the hyperplane search procedure
examines both feasible and infeasible solutions in the
associated space. When the search on the current
hyperplane terminates, the last solution is extended with a
new random item (line 29, Alg. 4), which is used to seed
the search on the next hyperplane k + 1. This process stops
when the last hyperplane k + 
 is examined.

For a given hyperplane dimension, the hyperplane
search procedure performs the inner “while” loop (lines
8-27, Alg. 4) to examine candidate solutions. For this, it
explores the following unconstrained swap neighborhood,
which includes both feasible and infeasible solutions.

N3(S) = {S ′ ∶ S ′ = S⊕swap(q, p), q ∈ V , p ∈ V̄ , 1 ≤ i ≤ m}
(11)
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where V and V̄ represent selected and non-selected items
in S, respectively.

To perform a transition from S to a neighbor solution
S′ in N3(S), the hyperplane search procedure follows the
following steps (lines 9-19, Alg. 4). First, the minimum
overweight value Womin and the maximum objective value
fmax are initialized at first (line 12, Alg. 4). Then, a subset
N ′(S) ⊆ N(S) of neighbor solutions are identified
satisfying one of two conditions (lines 13-15, Alg. 4): (1)
the overweight value WS′ is smaller than the minimum
overweight Womin; (2) WS′ is equal to Womin, while f (S′)
is better than the maximum objective value fmax found so
far. Considering that there may be several neighbor
solutions with an equal WS′ value and f (S′) value in the
neighborhood, we use the set N ′(S) to save these equal
neighbor solutions. Finally, the best neighbor solution S′
with the largest f (S′) value or the least Wo(S′) value in
N ′(S) is selected (ties breaking randomly) to replace the
current solution S (line 19, Alg. 4). As a result, the total
weight W (S) of S always remains near the given budget,
which favors the finding of high-quality feasible solutions
within the feasible region and not-too-bad infeasible
solutions close to the feasibility boundary. After each
solution transition, the best solution sb encountered during
hyperplane search and the counter i are updated if needed
(lines 20-24, Alg. 4).

Note that our hyperplane search does not require an
additional penalty function for evaluating infeasible
solutions, making our approach simpler compared to the
conventional penalty function approach such as (Hamida
and Schoenauer, 2000; Sun, Hao, Lai and Wu, 2018).

To prevent search cycling, the hyperplane search
procedure uses the same tabu list technique as presented in
Section 2.4.2.

Finally, during the hyperplane search, only feasible
neighbor solution S′ better than Sb that satisfies the budget
constraint is accepted to update the best feasible solution
found Sb (lines 21-22, Alg. 4). As a result, the IHS
algorithm always returns a feasible solution Sb at the end of
the hyperplane search procedure.

2.6. Greedy randomized perturbation procedure
After the hyperplane search phase, the IHS algorithm

diversifies its search process by performing a greedy
randomized perturbation. Basically, this perturbation
procedure modifies the last solution S from hyperplane
search by dropping some items and then adding some other
items. The selection of the dropped and added items is
based on the contribution CT and the associated dynamic
density DD of each item (see Section 2).

As shown in Algorithm 5, the perturbation procedure
includes two “while” loops. The first “while” loop (lines
4-10, Alg. 5) is devoted to remove some unpromising items
from the solution. For this, we calculate for each selected
item u in S, its contribution value CT , dynamic density
value DDu and probability Pu. Then, we iteratively drop
items u from S according to the probability Pu until

Algorithm 4 Hyperplane search procedure
1: Input: Input solution S, starting hyperplane k, limit of hyperplane

search 
 , search depth for one hyperplane Imax2, neighborhoodN3.
2: Output: The best feasible solution Sb found during the hyperplane

search and the last local optimum Sl found by the hyperplane search.
3: Sb ← S
4: K ← k + 


/* The hyperplane search explores hyperplanes k, k + 1,… , k + 
 */
5: while k ≤ K do
6: i ← 0
7: Initialize tabu_list
8: while iter ≤ Imax2 do
9: (Womin, fmax)← (∞,−∞)
10: N ′(S)← ∅
11: for Each admissible neighbor solution S′ inN3(S) do
12: Calculate the overweight valueWo(S′) by Equation 7
13: if (Wo(S′) < Womin) ∨ (Wo(S′) = Womin ∧ f (S′) > fmax)

then
14: (Womin, fmax)← (Wo(S′), f (S′))
15: N ′(S)← S′
16: end if
17: end for
18: Select the best neighbor solution S′ ∈ N ′(S) with the least

Wo(S′) or with the largest f (S′)
19: S ← S′
20: if (f (S) > f (Sb)) ∧ (W (S) ≤ C) then
21: Sb ← S
22: i← 0
23: else
24: i← i + 1
25: end if
26: Update tabu_list
27: end while
28: k ← k + 1 /* Move to the next hyperplane */
29: S ← Random_add_one_item(S) /* Create the starting solution of

next hyperplane search */
30: end while
31: return Sb

|S| × �max items are removed, where �max is a parameter.
The second “while” loop (lines 11-18, Alg. 5) adds
non-selected items randomly until the given budget is met.

Algorithm 5 Greedy randomized perturbation procedure
1: Input: Input solution S.
2: Output: The perturbed solution S, perturb strength �max.
3: � ← 0
4: while � < |S| × �max do
5: CT ← Calculate_contribution(S)
6: DD ← Calculate_dynamic_density(CT )
7: P ← Calculate_probability(DD)
8: S ← Drop_one_item(P , S)
9: � ← � + 1
10: end while
11: whileW (S) ≤ C do
12: Random choose one non-selected item i
13: if w(i) +W (S) ≤ C then
14: S ← Add_item(i, S)
15: else
16: break;
17: end if
18: end while
19: return S

2.7. Complexity analysis
For the dynamic greedy initialization procedure, the

main “while” loop (lines 5-14, Alg. 2) can be achieved in
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O(m2n). Given the maximum iterations Ii of the
initialization procedure, the corresponding time complexity
is O(m2n × Ii). Given the selected and non-selected item
sets V and V̄ , the main iteration of the TS procedure can be
achieved in O((m + |V | × |V̄ |) × n). Then the time
complexity of the TS procedure is
O((m + |V | × |V̄ |) × n × Imax1), where Imax1 is its
maximum iterations. Since only the swap operator is
adopted in the hyperplane search procedure, the
corresponding time complexity can be expressed by
O(|V | × |V̄ | × n × Imax2), where Imax2 is the search depth
for one hyperplane. The greedy randomized perturbation
procedure can be achieved in O(m2n× |V |). Let Imax be the
maximum iterations of IHS, the overall time complexity of
our algorithm is O(m2n × (Imax1 + Imax2) × Imax).

3. Results and comparisons
We now evaluate the IHS algorithm by testing it on

benchmark instances and comparing its results with the
literature.

3.1. Benchmark instances and experimental
settings

Benchmark. The 30 benchmark instances1 were
proposed in (Li et al., 2021) with a range of 585 to 1000
items and elements. Given a relationship matrix, where
Mij = 1 indicates that the item i covers the element j. Let
� = (

∑m
i=1

∑n
j=1Mij)∕(mn) be the density of Mij = 1 in

the relationship matrix and C be the given budget. Then the
BMCP instance can be denoted by m_n_�_C . For the 30
instances, � is set to 0.05 or 0.075 and C is set to 1500 or
2000.

Computing platform. Our algorithm is written in C++
and compiled using the g++ compiler with the -O3 option.
The experiments are performed on an Intel Xeon E5-2670
computer with 2.5 GHz CPU and 2 GB RAM running
Linux.

Parameter settings. IHS requires four parameters:
depth of tabu search Imax1, depth of hyperplane search
Imax2, limit of hyperplane search 
 , perturbation strength �.
Intuitively, the value of 
 should not be too large due to the
budget constraint. In our case, 
 is set to 2 and we analyze
the influence of 
 in Section 4.1. For the other three
parameters, we employ the “Irace” tool (López-Ibáñez,
Dubois-Lacoste, Cáceres, Birattari and Stützle, 2016) to
automatically determine their values. Our tuning
experiment is based on 7 representative instances (See
Section 4) with a cut-off time of 200s. Table 1 shows the
candidate values and the final values of the parameters
recommended by “Irace”.

Reference algorithms. For the comparative studies, we
employ the best approximate algorithm (AA) (Khuller
et al., 1999) and the most recent probability learning based
tabu search algorithm (PLTS) (Li et al., 2021). As shown in

1The 30 benchmark instances are available at: https://github.com/

Zequn-Wei/BMCP.

Table 1

Parameter settings of IHS.

Para.Sect.Description Considered values Value
Imax1 2.4 depth of tabu search {1000, 1500, 2000, 2500, 3000)}2000
Imax2 2.5 depth of hyperplane search{100, 150, 200, 250, 300} 250
� 2.6 perturbation strength {0.3, 0.4, 0.5, 0.6, 0.7} 0.6

 2.5 limit of hyperplane search - 2

(Li et al., 2021), PLTS is the current best heuristic
algorithm for BMCP. We additionally include the best
lower bounds (LB) and upper bounds (UB) from (Li et al.,
2021) from the CPLEX solver under the running time of 5
hours. Note that IHS and PLTS use the same computing
platform, which ensures a fair comparison.

Stopping condition. The cut-off time of the IHS
algorithm is set to 600s, which is consistent with the
reference algorithms. Considering the stochastic nature of
the algorithm, each instance is independently solved 30
times by IHS with different random seeds, like (Li et al.,
2021).

3.2. Computational results
Table 2 summarizes our results and shows a

comparison with the reference algorithms on the 30 BMCP
benchmark instances2. Columns 1 presents the instance
name of BMCP. The following two columns provide the
lower bounds (LB) and upper bounds (UB) obtained by
CPLEX. The remaining columns provide the detailed
results of the compared algorithms, based on four
performance indicators: the best objective value (fbest), the
average objective value (favg), the standard deviations
(std) and the average run time tavg (seconds) to reach fbest.
To highlight the very best results, the dominating values for
the performance indicators fbest and favg are indicated in
bold and the equal results are marked in italic. Moreover,
the last row presents the average value of each column.

Table 2 indicates that IHS surpasses the reference
algorithms according to all the performance indicators. IHS
discovers 18 new lower bounds (fbest values) and obtains
equal fbest results for the 12 remaining instances.
Compared to the AA algorithm, IHS obtains better fbest
values for the 30 instances without exception. When
compared with the main reference algorithm PLTS, our
IHS algorithm is still highly competitive, according to both
the fbest and the favg values. Moreover, we observe that
IHS is highly robust since it can achieve 100% success rate
for 26 instances (with std = 0). Furthermore, The small
values of average run time tavg in the last row reveal that
our algorithm is computationally efficient.

To better illustrate the results of the compared
algorithms, we report the summarized comparisons of IHS
against each reference algorithm in Table 3. This table
provides the number of instances for which IHS achieves a
better, equal or worse result compared to each reference
algorithm (corresponding to columns 3 to 5). We also

2The solution certificates are available at the GitHub link of footnote
1. The code of IHS will also be available upon the publication of the paper.
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Table 2

Computational results and comparisons of the IHS algorithm with the reference algorithms.

Instance
CPLEX (5 hours) AA (Khuller et al., 1999) PLTS (Li et al., 2021) IHS (this work)

LB UB fbest fbest favg Std tavg fbest favg std tavg
585_600_0.05_2000 70742 74224.94 70494 71102 71065.17 82.36 309.602 71102 71097.23 5.45 13.454
585_600_0.075_1500 69172 76716.90 68475 70677 70677.00 0.00 61.242 71025 71025 0 28.006
600_600_0.05_2000 68477 72880.93 66095 68738 68472.00 71.09 95.638 68738 68738 0 0.162
600_600_0.075_1500 71018 76337.67 70445 71746 71746.00 0.00 27.975 71904 71904 0 17.295
600_585_0.05_2000 66452 71094.27 67256 67636 67460.80 350.40 202.660 67636 67636 0 0.041
600_585_0.075_1500 70113 76332.85 68005 70588 70406.63 105.09 584.205 70588 70588 0 82.744
685_700_0.05_2000 80783 88447.67 79778 81227 80585.73 508.37 522.060 81227 81227 0 47.099
685_700_0.075_1500 81639 91378.98 80457 82955 82951.40 19.39 109.670 83286 83175.67 156.03 234.167
700_700_0.05_2000 77056 84855.44 76552 78028 77859.27 75.16 127.445 78458 78458 0 4.958
700_700_0.075_1500 81645 92151.99 83400 84576 84375.70 550.91 196.995 84576 84576 0 0.029
700_685_0.05_2000 77176 82815.11 76600 78054 78037.00 51.00 197.590 78054 78054 0 7.403
700_685_0.075_1500 76033 86566.79 75224 78869 78869 0 46.987 78869 78869 0 5.199
785_800_0.05_2000 91319 101585.69 90975 92608 92587.60 34.30 252.589 92740 92740 0 175.372
785_800_0.075_1500 92358 106842.67 90786 94245 94245.00 0.00 248.128 95221 95221 0 0.017
800_800_0.05_2000 89872 100373.77 89582 91795 91576.27 309.05 307.274 91795 91795 0 5.292
800_800_0.075_1500 94049 108005.62 93115 95533 95509.60 70.20 239.146 95995 95995 0 33.042
800_785_0.05_2000 86813 97477.34 86750 89138 88581.20 103.40 204.141 89138 89138 0 0.116
800_785_0.075_1500 89229 102867.98 90548 91021 91010.20 25.67 297.211 91856 91856 0 0.314
885_900_0.05_2000 99845 113746.97 99498 102162 101331.53 174.95 206.025 102277 102277 0 4.427
885_900_0.075_1500 102933 122093.51 105793 106577 105942.43 334.18 489.396 106940 106940 0 4.378
900_900_0.05_2000 100412 114551.09 98893 101265 101231.17 62.94 325.683 102055 101727.73 277.52 348.347
900_900_0.075_1500 101035 119626.49 103795 104521 104521.00 0 176.865 105081 105081 0 0.623
900_885_0.05_2000 96945 109948.52 98337 98840 98718.00 151.34 227.976 99590 99590 0 0.359
900_885_0.075_1500 99888 118554.77 100359 105141 104397.93 691.61 229.644 105141 105141 0 55.619
985_1000_0.05_2000 107488 124487.37 108105 109567 109408.77 227.85 212.193 110669 110669 0 29.281
985_1000_0.075_1500 111177 133789.78 113137 114969 113838.07 509.34 485.677 115505 115505 0 27.238
1000_1000_0.05_2000 111155 128583.63 111786 112802 111897.07 636.78 577.668 113331 113316.20 29.60 61.536
1000_1000_0.075_1500 115824 137900.40 118869 120246 118467.87 546.67 279.220 120246 120246 0 0.307
1000_985_0.05_2000 110134 125574.84 107548 111859 111228.80 828.72 244.920 112057 112057 0 155.882
1000_985_0.075_1500 108801 130981.38 111778 112250 112125.87 143.22 234.614 113615 113615 0 0.251
#Avg 89986.10 102359.84 90081.17 91957.83 91637.47 222.13 257.348 92290.50 92275.26 15.62 44.765

Table 3

Summarized comparisons of IHS against each reference
algorithm.

Algorithm pair Indicator #Wins #Ties #Losses p-value
IHS vs. AA (Khuller et al., 1999) fbest 30 0 0 1.73e-06
IHS vs. PLTS (Li et al., 2021) fbest 18 12 0 1.96e-04

favg 29 1 0 2.56e-06

perform the Wilcoxon signed-rank test to assess the
statistical difference between the compared algorithms.
From Table 3, we observe that IHS fully dominates AA.
IHS also performs better than PLTS, by reporting 18 better
fbest values and 29 better favg values. Moreover, the small
p-values (≪ 0.05) in the last column confirm the
differences of IHS against the reference algorithms are
statistically significant.

Furthermore, Figure 1 completes the comparison with
the performance profiles (see (Dolan and Moré, 2002) for
more details) of the compared algorithms according to the
fbest values (top) and the favg values (bottom). Given the
set  of instances tested and the set  of compared
algorithms, the performance ratio can be denoted by
rp,a =

fp,a
max{fp,a∶a∈}

, where fp,a is the objective value (fbest
or favg) of instance p attained by algorithm a. In Figure 1,
the intersection of each curve with the Y -axis indicates the
fraction of the corresponding algorithm a can achieve the
best results among all the algorithms in . From Figure 1,
we can clearly observe that the curve of IHS lies strictly
above the curves of AA and PLTS. This indicates that
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Figure 1: Performance pro�les of the compared algorithms
according to the fbest values (top) and the favg values
(bottom).

compared to AA and PLTS, the IHS algorithm obtains a
greater cumulative probability of attaining the best results
for the tested instances. This comparison confirms that IHS
is highly effective and robust compared to AA and PLTS.

4. Analysis and discussions
This section provides several experiments to study the

key components of the IHS algorithm.
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Figure 2: Performances of the IHS algorithm with di�erent 

values in terms of the favg values (top) and the tavg values
(bottom).

4.1. Analysis of parameters
We perform a 2-level full factorial experiment

(Montgomery, 2017) to study the interaction effects of the
main parameters of IHS: depth of tabu search Imax1
(Section 2.4), depth of hyperplane search Imax2 (Section
2.5), and perturbation strength � (Section 2.6). This study is
based on seven selected instances of different sizes and
features: 585_600_0.05_2000, 685_700_0.075_1500,
785_800_0.05_2000, 900_900_ 0.05_2000,
985_1000_0.075_1500, 1000_985_0.05_2000,
1000_1000_0.05_2000.

Specifically, the boundary values of each parameter
tested in Table 1 are adopted as the high level and low level
of this experiment. Thus, we obtain 8 (23 = 8)
combinations of the parameters. For each instance, we run
IHS with each combination 30 times. Then the average
results of fbest on the seven instances are used for the
analysis. The p-value of 0.695 from the analysis of variance
discloses that there are no statistically significant
interaction effects among the three parameters.

Now we investigate the impacts of the parameter 
 . Due
to the budget constraint of BMCP, a too large value of 

will always guide IHS to infeasible spaces, which is
obviously unsuitable. For this experiment, 
 ranges from 1
to 5 with a step size of 1. We run IHS with these five 

values to solve the seven selected instances with the default
settings of Section 3.1. The results shown in Figure 2
indicate that IHS reports similar average result favg and
average run time tavg with 
 = 2, 3, 4 and obtains worse
results with 
 = 1, 5. Without surprise, when 
 = 5, IHS
takes a longer time to get worse results. This experiment
justifies the choice of 
 = 2 as the default setting of this
parameter.

4.2. Effectiveness of the hyperplane search
We now assess the effectiveness of the hyperplane

search strategy, which is an important component of the
proposed algorithm. Specifically, we construct an IHS
variant (denoted by IHS−) by disabling the hyperplane
search component by setting 
 to 0. As a result, IHS− will
only explore the feasible and infeasible regions on the
current hyperplane k identified by the tabu search
procedure (see Alg. 1). This experiment is carried out by
running IHS and IHS− to solve the 30 instances according
to default experimental settings. Table 4 shows the results
of this experiment including the fbest, favg and std values.
In the last two rows, we provide the average value of each
column (#Avg) and the number of instances for which each
variant reaches the best results in each column (#Best).

Table 4 shows that IHS performs better with the
hyperplane search procedure. Specifically, IHS achieves
better fbest results for 8 instances (highlighted in bold) and
equal fbest values for the remaining instances. In terms of
favg , IHS performs better than IHS− on 14 instances. IHS
has also better standard deviations, implying that it is more
robust than IHS−. Finally, the p-value smaller than 0.05
discloses that there is a significant difference between IHS
and IHS−. These outcomes demonstrate the benefit of the
hyperplane search strategy of the IHS algorithm.

4.3. Convergence analysis
To investigate the running behavior of IHS with the

main reference algorithm PLTS (Li et al., 2021), we
conduct an additional convergence analysis. This
experiment is carried out on two difficult instances
685_700_0.075_1500 and 900_900_0.05_2000. We run
each algorithm 30 times to solve each instance under 600
seconds per run. The convergence graphs (i.e., the running
profiles) shown in Figure 3 are obtained by the function:
t → f where t is the running time and f is the best
objective value achieved by each algorithm at time t.

Figure 3 confirms the dominance of IHS over PLTS
since the curve of IHS strictly runs above the curve of
PLTS, implying that not only IHS converges faster than
PLTS, but also converges better. These outcomes confirm
the competitiveness of IHS compared to the leading
reference algorithm PLTS.

4.4. Time-to-target analysis
We carry out a time-to-target analysis (TTT) (Aiex,

Resende and Ribeiro, 2007; Ribeiro, Rosseti and Campos,
2012) to further compare the computational efficiency of
IHS and the main reference algorithm PLTS. Specifically,
we analyze the required time for IHS and PLTS to achieve a
given target objective value. This experiment is based on
two benchmark instances of large size (see in Figure 4).
The target value of these two instances is set to 111000 and
109400, respectively. For the experiment, we run IHS and
PLTS 100 times independently with the default
experimental settings. Each run is terminated immediately
when the given target value is reached. The corresponding
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Table 4
Comparison of the IHS algorithm with (IHS) and without (IHS−) the hyperplane search strategy.

Instance IHS IHS−

fbest favg Std fbest favg std
585_600_0.05_2000 71102 71097.23 5.45 71102 71097.23 5.45
585_600_0.075_1500 71025 71025 0 70677 70654.80 59.80
600_600_0.05_2000 68738 68738 0 68738 68738 0
600_600_0.075_1500 71904 71904 0 71746 71746 0
600_585_0.05_2000 67636 67636 0 67636 67636 0
600_585_0.075_1500 70588 70588 0 70318 70318 0
685_700_0.05_2000 81227 81227 0 81227 81084.20 218.13
685_700_0.075_1500 83286 83175.67 156.03 82955 82955 0
700_700_0.05_2000 78458 78458 0 78458 78458 0
700_700_0.075_1500 84576 84576 0 84576 84576 0
700_685_0.05_2000 78054 78054 0 78054 78043.20 58.16
700_685_0.075_1500 78869 78869 0 78869 78869 0
785_800_0.05_2000 92740 92740 0 92608 92531.27 133.10
785_800_0.075_1500 95221 95221 0 95221 95221 0
800_800_0.05_2000 91795 91795 0 91795 91795 0
800_800_0.075_1500 95995 95995 0 95533 95533 0
800_785_0.05_2000 89138 89138 0 89138 89138 0
800_785_0.075_1500 91856 91856 0 91856 91856 0
885_900_0.05_2000 102277 102277 0 102277 102277 0
885_900_0.075_1500 106940 106940 0 106940 106940 0
900_900_0.05_2000 102055 101727.73 277.52 101265 101265 0
900_900_0.075_1500 105081 105081 0 105081 105081 0
900_885_0.05_2000 99590 99590 0 99590 99590 0
900_885_0.075_1500 105141 105141 0 105141 103302.30 612.90
985_1000_0.05_2000 110669 110669 0 110669 110598.30 212.42
985_1000_0.075_1500 115505 115505 0 115505 115436.47 174.73
1000_1000_0.05_2000 113331 113316.20 29.60 113331 113308.80 33.91
1000_1000_0.075_1500 120246 120246 0 120246 120246 0
1000_985_0.05_2000 112057 112057 0 111859 111847.33 21.15
1000_985_0.075_1500 113615 113615 0 113615 113615 0
#Avg 92290.50 92275.26 15.62 92200.87 92125.23 50.99
#Best 30 30 - 22 16 -
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Figure 3: Convergence analysis of IHS and the reference
algorithm PLTS (Li et al., 2021).

running time is served as the output of the experiment. The
results of this TTT analysis are provided in Figure 4. The X
and Y axes shows the running time and the cumulative
probability to reach the given target, respectively.

As shown in Figure 4, the TTT lines of IHS lie almost
strictly above the lines of PLTS, indicating that IHS is able
to reach the given target with a significantly higher

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,( .%'/, #0 123! &45(%46,
78889:;<98=8<9>888

!"#$

%&$

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,( .%'/, #0 123! &45(%46,
789:;<<<:<=<9:><<<

!"#$

%&$

Figure 4: Time-to-target analysis of IHS and the reference
algorithm PLTS (Li et al., 2021).

cumulative probability. This experiment again indicates the
superiority of the IHS algorithm in terms of computational
efficiency.
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5. Conclusions and perspectives
The budgeted maximum coverage problem is a relevant

model for various applications. We introduced the first
iterated hyperplane search algorithm, which combines
effective tabu search within the feasible space, mixed
hyperplane search examining both feasible and infeasible
regions and perturbation-driven diversification.

The algorithm is assessed on 30 benchmark instances
commonly tested previously. Computational results
disclose that our algorithm is superior to the state-of-the-art
algorithms. Especially, the algorithm obtains new record
results (improved lower bounds) for 18 instances.
Furthermore, considering that BMCP is a relevant model to
formulate several practical problems, the proposed
algorithm and its code can help to better solve these
applications.

For future work, it would be meaningful to study other
techniques for identifying promising hyperplanes. Also,
since each hyperplane defines a subproblem of BMCP, it
would be interesting to check whether better results can be
obtained when an exact algorithm or a general mixed
integer programming solver is adopted in the hyperplane
search procedure. More generally, existing studies focused
on practical heuristic algorithms, whose solution quality
cannot be theoretically guaranteed. To obtain solutions of
guaranteed quality, exact and approximation algorithms are
needed. However, dedicated exact algorithms for BMCP,
which can theoretically provide optimal solutions, are still
missing and there is only one approximation algorithm with
an approximation ratio of (1 − 1∕e) (Khuller et al., 1999).
Therefore, research on these approaches is needed to design
practically applicable exact and approximation algorithms,
which can hopefully provide optimal solutions or tight
bounds for the benchmark instances.
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