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Abstract

The disjunctively constrained knapsack problem consists in packing a subset of
pairwisely compatible items in a capacity-constrained knapsack such that the total
profit of the selected items is maximized while satisfying the knapsack capacity.
DCKP has numerous applications and is however computationally challenging
(NP-hard). In this work, we present a threshold search based memetic algorithm
for solving the DCKP that combines the memetic framework with threshold
search to find high quality solutions. Extensive computational assessments on two
sets of 6340 benchmark instances in the literature demonstrate that the proposed
algorithm is highly competitive compared to the state-of-the-art methods. In
particular, we report 24 and 354 improved best-known results (new lower bounds)
for Set I (100 instances) and for Set II (6240 instances), respectively. We
additionally apply the approach to solve a real-life daily photograph scheduling
problem of an earth observation satellite. We analyze the key algorithmic
components and shed lights on their roles for the performance of the algorithm.

Keywords: Knapsack problems; Disjunctive constraint; Threshold search;
Heuristics.

1 Introduction

As a generalization of the conventional 0-1 knapsack problem (KP) [25], the
disjunctively constrained knapsack problem (DCKP) is defined as follows. Let
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V = {1, . . . , n} be a set of n items, where each item i ∈ {1, . . . , n} has a profit
pi > 0 and a weight wi > 0. Let G = (V,E) be a conflict graph, where V is
the set of n items and an edge {i, j} ∈ E defines the incompatibility of items
i and j. Let C > 0 be the capacity of a given knapsack. Then the DCKP
involves finding a subset S of pairwisely compatible items of V to maximize
the total profit of S while ensuring that the total weight of S does not surpass
the knapsack capacity C. Let xi be a binary variable such that xi = 1 if item
i is selected, xi = 0 otherwise. Formally, the DCKP can be stated as follows.

(DCKP ) Maximize f(S) =
n∑
i=1

pixi (1)

subject to W (S) =
n∑
i=1

wixi ≤ C, S ⊆ V, (2)

xi + xj ≤ 1,∀(i, j) ∈ E, (3)

xi ∈ {0, 1}, i = 1, . . . , n. (4)

Objective function (1) commits to maximize the total profit of the selected
item set S. Constraint (2) ensures that the knapsack capacity constraint is
satisfied. Constraints (3), called disjunctive constraints, guarantee that two
incompatible items are never selected simultaneously. Constraints (4) force
that each item is selected at most once.

It is easy to observe that the DCKP reduces to the NP-hard KP when G is
an empty graph. The DCKP is equivalent to the NP-hard maximum
weighted independent set problem [24] when the knapsack capacity is
unbounded. Moreover, the DCKP is closely related to other combinatorial
optimization problems, such as multiple-choice knapsack [5,25], quadratic
knapsack [7], and the bin packing with conflicts [14,23]. In addition to its
theoretical significance, the DCKP is a useful model for practical
applications, where the resources with conflicts cannot be used
simultaneously while a given budget envelope must be respected.

Given the importance of the DCKP, a number of solution methods have
been developed including exact, approximation and heuristic algorithms. As
the literature review shown in Section 2, considerable progresses have been
continually made since the introduction of the problem. Meanwhile, given
the NP-hard nature of the problem, more powerful algorithms are still
needed to push the limits of existing methods.

In this work, we investigate for the first time the population-based memetic
framework [28] for solving the DCKP and design an effective algorithm
mixing threshold based local optimization and crossover based solution
recombination. The threshold search procedure ensures the main role of
search intensification by finding high quality local optimal solutions. The

2



specialized backbone crossover generates promising offspring solutions for
search diversification. The algorithm uses also a distance-and-quality
strategy for population management. The algorithm has the advantage of
avoiding the difficult task of parameter tuning.

From a perspective of performance assessment, we apply the proposed
algorithm to solve the two sets of DCKP benchmark instances in the
literature. The results show that for the 100 instances of Set I (optimality
still unknown) which were commonly tested by heuristic algorithms, our
algorithm discovers 24 new best-known results (new lower bounds) and
matches almost all other best-known results. For the 6240 instances of Set II
which were tested by exact algorithms, our algorithm finds 354 improved
best lower bounds on the difficult instances whose optimal values are
unknown and attains the known optimal results on most of the remaining
instances. To demonstrate its practical usefulness, we additionally apply the
approach to solve a real-life daily photograph scheduling problem of an earth
observation satellite (SPOT5).

The rest of the paper is organized as follows. Section 2 provides a literature
review on the DCKP. Section 3 presents the proposed algorithm. Section 4
shows computational results of our algorithm and provides comparisons with
the state-of-the-art algorithms. Section 5 shows how we use the proposed
approach to solve the daily photograph scheduling application. Section 6
analyzes essential components of the algorithm. Finally, Section 7
summarizes the work and provides perspectives for future research.

2 Related work

The DCKP has attracted considerable attentions in the past two decades.
In this section, we review related literature for solving the DCKP. Existing
solution methods can be roughly classified into two categories as follows.

(1) Exact and approximation algorithms : These algorithms are able to
guarantee the quality of the solutions they find. In 2002, Yamada et al.
[42] introduced the DCKP and proposed the first implicit enumeration
algorithm, where the disjunctive constraints are relaxed. In 2007, Hifi
and Michrafy [21] introduced three versions of an exact algorithm based
on a local reduction strategy. In 2009, Pferschy and Schauer [29]
proposed a pseudo-polynomial time and space algorithm for solving
three special cases of the DCKP and proved the DCKP is strongly
NP-hard on perfect graphs. In 2016, Salem et al. [34] developed a
branch-and-cut algorithm that combines a greedy clique generation
procedure with a separation procedure. In 2017, Bettinelli et al. [3]
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presented a branch-and-bound algorithm by combining a upper
bounding procedure that considers both the capacity constraint and the
disjunctive constraints with a branching procedure that employs a
dynamic programming to presolve the 0-1 KP. They generated 4800
DCKP instances with conflict graph densities between 0.001 and 0.9
(see Section 4.1). Also in 2017, Pferschy and Schauer [30] applied the
approximation methods of modular decompositions and clique
separators to the DCKP, and showed complexity results on special
graph classes. In 2019, Gurski and Rehs [17] designed a dynamic
programming algorithm and achieved pseudo-polynomial solutions for
the DCKP. In 2020, Coniglio et al. [8] presented another
branch-and-bound algorithm based on an n-ary branching scheme and
solved the integer linear programming formulations of the DCKP by the
CPLEX solver. They introduced 1440 new and challenging DCKP
instances (see Section 4.1).

(2) Heuristic algorithms : These algorithms aim to find good near-optimal
solutions with a given time. In 2002, Yamada et al. [42] proposed a
greedy algorithm to generate an initial solution and a 2-opt
neighborhood search algorithm to improve the obtained solution. In
2006, Hifi and Michrafy [20] reported a local search algorithm, which
combines a complementary constructive procedure to improve the initial
solution and a degrading procedure to diversify the search. They
generated a set of 50 DCKP instances with 500 and 1000 items (see
Section 4.1), which was widely tested in later studies. In 2012, Hifi and
Otmani [22] studied two scatter search algorithms. In 2014, Hifi [19]
devised an iterative rounding search-based algorithm that uses a
rounding strategy to perform a linear relaxation of the fractional
variables. In 2017, Salem et al. [33] designed a probabilistic tabu search
algorithm (PTS) that explores multiple neighborhoods in a probabilistic
way. In the same year, Quan and Wu investigated two parallel
algorithms: the parallel neighborhood search algorithm (PNS) [32] and
the cooperative parallel adaptive neighborhood search algorithm
(CPANS) [31]. They also designed a new set of 50 DCKP large
instances with 1500 and 2000 items (see Section 4.1).

Existing studies have significantly contributed to better solving the DCKP.
According to the computational results reported in the literature, the
parallel neighborhood search algorithm [32], the cooperative parallel
adaptive neighborhood search algorithm [31], and the probabilistic tabu
search algorithm [33] can be regarded as the state-of-the-art methods for the
instances of Set I. For the instances of Set II, the branch-and-bound
algorithms presented in [3,8] and the integer linear programming
formulations solved by the CPLEX solver [8] showed the best performance.

In this work, we aim to advance the state-of-the-art of solving the problem by
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proposing the first threshold search based memetic approach, which proves to
be effective on the two sets of DCKP instances tested in the literature.

3 Threshold search based memetic algorithm for the DCKP

Our threshold search based memetic algorithm (TSBMA) for the DCKP is a
population-based algorithm combining evolutionary search and local
optimization. In this section, we first present the general procedure of the
algorithm and then describe its components.

3.1 General procedure

The TSBMA algorithm relies on the general memetic algorithm framework
[28] and follows the design principles recommended in [18]. The flowchart of
TSBMA and its pseudo-code are shown in Figure 1 and Algorithm 1,
respectively.

Initialize the population and 

record the best solution S*

Randomly pick two parent 

solutions from the population

Crossover operator

Threshold serach

Update the best solution S*

Output the best solution S*

Update the population

t<tmax?
yes

no

Fig. 1. Flowchart of the proposed TSBMA algorithm.

The algorithm starts from a set of feasible solutions of good quality that are
generated by the population initialization procedure (line 4, Alg. 1, and Section
3.3). The best solution is identified and recorded as the overall best solution S∗

(line 5, Alg. 1). Then the algorithm enters the main “while” loop (lines 6-15,
Alg. 1) to perform a number of generations. At each generation, two solutions
are randomly picked and used by the crossover operator to create an offspring
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solution (line 7-8, Alg. 1, and Section 3.5). Afterwards, the threshold search
procedure is triggered to perform local optimization with three neighborhoods
N1, N2 and N3 (line 9, Alg. 1, and Section 3.4). After conditionally updating
the overall best solution S∗ (lines 11-13, Alg. 1), the diversity-based pool
updating procedure is applied to decide whether the best solution Sb found
during the threshold search should be inserted into the population (line 14,
Alg. 1, and Section 3.6). Finally, when the given time limit tmax is reached,
the algorithm returns the overall best solution S∗ found during the search and
terminates.

Algorithm 1 Main framework of threshold search based memetic algorithm
for the DCKP
1: Input: Instance I, cut-off time tmax, population P , the maximum number of

iterations IterMax, neighborhoods N1, N2, N3.
2: Output: The overall best solution S∗ found.
3: S∗ ← ∅ /* Initialize S∗ (i.e., f(S∗) = 0)*/
4: POP = {S1, . . . , S|P |} ← Population Initialization(I) /* Section 3.3 */
5: S∗ ← argmax{f(Sk)|k = 1, . . . , p}
6: while Time ≤ tmax do
7: Randomly pick two solutions Si and Sj from the population POP
8: So ← Crossover Operator(Si, Sj) /* Section 3.5 */
9: Sb ← Threshold Search(So, N1−3, IterMax) /* Section 3.4 */

10: /* Record the best solution Sb found during threshold search */
11: if f(Sb) > f(S∗) then
12: S∗ ← Sb /* Update the overall best solution S∗ found so far */
13: end if
14: POP ← Pool Updating(Sb, POP ) /* Section 3.6 */
15: end while
16: return S∗

3.2 Solution representation, search space, and evaluation function

The DCKP is a subset selection problem. Thus, a candidate solution for a
set V = {1, . . . , n} of n items can be conveniently represented by a binary
vector S = (x1, . . . , xn), such that xi = 1 if item i is selected, and xi = 0
otherwise. Equivalently, S can also be represented by S =< A, Ā > such that
A = {q : xq = 1 in S} and Ā = {p : xp = 0 in S}.

Let G = (V,E) be the given conflict graph and C be the knapsack capacity.
Our TSBMA algorithm explores the following feasible search space ΩF

satisfying both the disjunctive constraints and the knapsack constraint.
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ΩF = {x ∈ {0, 1}n :
n∑
i=1

wixi ≤ C;xi + xj ≤ 1,∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i 6= j}

(5)

The quality of a solution S in ΩF is determined by the objective value f(S)
of the DCKP (Equation 1).

3.3 Population initialization

As shown in Algorithm 2, the TSBMA algorithm builds each of the |P | initial
solutions of the population P in two steps. First, it randomly adds one by
one non-selected items into an individual solution Si (i = 1, . . . , |P |) until the
capacity of the knapsack is reached, while keeping the disjunctive constraints
satisfied (line 5, Alg. 2). Second, to obtain an initial population of reasonable
quality, TSBMA improves the solution Si by a short run of the threshold search
procedure presented in Section 3.4 (line 5, Alg. 2) by setting the maximum
consecutive iterations IterMax = 2n, where n is the number of items in the
instance. The population initialization procedure terminates when |P | initial
solutions are generated and added into the population P .

Algorithm 2 Population initialization procedure
1: Input: Instance I, population size |P |, maximum number of iterations IterMax,

neighborhoods N1, N2, N3.
2: Output: Initial population P .
3: 0← i
4: while i ≤ |P | do
5: Si ← Random Initial(I) /* Si is the initial solution */
6: Si ← Threshold Search(Si, N1−3, IterMax) /* Improve the solution Si */
7: Add the improved solution Si into the population P
8: i← i+ 1
9: end while

10: return P

It is worth mentioning that the population size |P | is determined according
to the number of candidate items n of the given instance, i.e.,
|P | = n/100 + 5. This strategy is based on two considerations. First, since
the TSBMA algorithm is powerful enough to solve the instances of small
size, a smaller population size can help to reduce the initialization time.
Second, the instances of large size are more challenging, a larger population
size helps to diversify the search.
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3.4 Local optimization using threshold search

The local optimization procedure of the TSBMA algorithm relies on the
threshold accepting method [12]. To explore a given neighborhood, the
method accepts both improving and deteriorating neighbor solutions so long
as the solution satisfies a quality threshold. One notices that this method has
been successfully applied to solve several knapsack problems (e.g., quadratic
multiple knapsack problem [6], multi-constraint knapsack problem [13] and
multiple-choice knapsack problem [44]) and other combinatorial optimization
problems (e.g., [4,35]). In this work, we adopt for the first time this method
for solving the DCKP and devise a multiple neighborhood threshold search
procedure reinforced by an operation-prohibiting mechanism.

3.4.1 Main scheme of the threshold search procedure

As shown in Algorithm 3, the threshold search procedure (TSP) starts its
process from an input solution and three empty hash vectors (used for the
operation-prohibiting mechanism, lines 3-5, Alg. 3). It then performs a
number of iterations to explore three neighborhoods (Section 3.4.2) to
improve the current solution S. Specifically, for each “while” iteration (lines
9-25, Alg. 3), the TSP procedure explores the neighborhoods N1, N2 and N3

in a deterministic way as explained in the next section. Any sampled
non-prohibited neighbor solution S ′ (i.e., H1[h1(S

′)] ∧H2[h2(S
′)] ∧H3[h3(S

′)]
= 0, see Section 3.4.3) is accepted immediately if the quality threshold T is
satisfied (i.e., f(S ′) ≥ T ). Then the hash vectors are updated for solution
prohibition and the best solution found during the TSP procedure is
recorded in Sb (lines 18-20, Alg. 3). The main search (“while” loop)
terminates when 1) no admissible neighbor solution (i.e., non-prohibited and
satisfying the quality threshold) exists in the neighborhoods N1, N2 and N3,
or 2) the best solution Sb cannot be further improved during IterMax
consecutive iterations. Specifically, the quality threshold T is determined
adaptively by f(Sb)− n/10 (n is the number of items of each instance) while
IterMax is set to (n/500 + 5)× 10000.

3.4.2 Neighborhoods and their exploration

The TSP procedure examines candidate solutions by exploring three
neighborhoods induced by the popular move operators: add, swap and drop.
Let S be the current solution and mv is one of these operators. We use
S ′ = S ⊕mv to denote a feasible neighbor solution obtained by applying mv
to S and Nx (x = 1, 2, 3) to represent the resulting neighborhoods. To avoid
the examination of unpromising neighbor solutions, TSP employs the
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Algorithm 3 Threshold search procedure
1: Input: Input solution So, threshold T , the maximum number of iterations
IterMax, hash vectors H1, H2, H3, hash functions h1, h2, h3, length of hash
vectors L, neighborhoods N1, N2, N3.

2: Output: The best feasible solution Sb found by threshold search procedure.
3: for i← 0 to L− 1 do
4: H1[i]← 0; H2[i]← 0; H3[i]← 0; /* Initialization of hash vectors */
5: end for
6: Sb ← So /* Sb record the best solution found */
7: S ← So /* S record the current solution */
8: iter ← 0
9: while iter ≤ IterMax do

10: /* Examine the neighborhoods N1(S), N2(S), N3(S) in a token-ring way;
Section 3.4.2 */

11: for Each non-prohibited S′ of N1(S) or N2(S) or N3(S) do
12: if f(S′) ≥ T then
13: S ← S′

14: /* Update the hash vectors with S, Section 3.4.3 */
H1[h1(S)]← 1; H2[h2(S)]← 1; H3[h3(S)]← 1

15: break;
16: end if
17: end for
18: if f(S) > f(Sb) then
19: Sb ← S /* Update the best solution Sb found during threshold search */
20: iter ← 0
21: else
22: iter ← iter + 1
23: end if
24: end while
25: return Sb

following dynamic neighborhood filtering strategy inspired by [27,39]. Let S ′

be a neighbor solution in the neighborhood currently under examination,
and Sc be the best neighbor solution encountered during the current
neighborhood examination. Then S ′ is excluded for consideration if it is no
better than Sc (i.e., f(S ′) ≤ f(Sc)). By eliminating the unpromising
neighbor solutions, TSP increases the efficiency of its neighborhood search.

Specifically, the associated neighborhoods induced by add, swap and drop are
defined as follows.

• add(p): This move operator expands the selected item set A by one non-
selected item p from the set Ā such that the resulting neighbor solution
is feasible. This operator induces the neighborhood N1.

N1(S) = {S ′ : S ′ = S ⊕ add(p), p ∈ Ā} (6)
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• swap(q, p): This move operator exchanges a pair of items (q, p), where
item q belongs to the selected item set A and p belongs to the non-
selected item set Ā such that the resulting neighbor solution is feasible.
This operator induces the neighborhood N2.

N2(S) = {S ′ : S ′ = S ⊕ swap(q, p), q ∈ A, p ∈ Ā, f(S ′) > f(Sc)} (7)

• drop(q): This operator displaces one selected item q from the set A to
the non-selected item set Ā and induces the neighborhood N3.

N3(S) = {S ′ : S ′ = S ⊕ drop(q), q ∈ A, f(S ′) > f(Sc)} (8)

One notices that the add operator always leads to a better current solution
with an additional eligible item, and thus the neighborhood filtering is not
needed for N1. The drop operator always deteriorates the quality of the current
solution, and the feasibility of a neighbor solution is always ensured. The swap
operator may either increase or decrease the objective value and the feasibility
of a neighbor solution needs to be verified. For N2 and N3, neighborhood
filtering excludes uninteresting solutions that can in no way be accepted during
the TSP process.

The TSP procedure examines the neighborhoods N1, N2, and N3 in a
sequential way to explore different local optimal solutions. For N1, as long as
there exists a non-prohibited neighbor solution, TSP selects such a neighbor
solution to replace the current solution (ties are broken randomly). Once N1

becomes empty, TSP moves to N2, if there exists a non-prohibited neighbor
solution S ′ satisfying f(S ′) ≥ T , TSP selects S ′ to become the current
solution and immediately returns to the neighborhood N1. When N2

becomes empty, TSP continues its search with N3 and explores N3 exactly
like with N2. When N3 becomes empty, TSP terminates its search and
returns the best solution found Sb. TSP may also terminate if its best
solution remains unchanged during IterMax consecutive iterations.

3.4.3 Operation-prohibiting mechanism

During the TSP procedure, it is important to prevent the search from revisiting
a previously encountered solution. For this purpose, TSP utilizes an operation-
prohibiting (OP) mechanism that is based on the tabu list strategy [16]. To
implement the operation-prohibiting (OP) mechanism, we adopt the solution-
based tabu search technique [41]. Specifically, we employ three hash vectors
Hv (v = 1, 2, 3) of length L (|L| = 108) to record previously visited solutions.

Given a solution S = (x1, . . . , xn) (xi ∈ {0, 1}), we pre-compute the weights
Wv

i (v = 1, 2, 3) for each item i by W1
i = i1.2,W2

i = i1.6, and W3
i = i2.0. Then

the hash values of solution S are given by the following hash functions hv
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(v = 1, 2, 3).

h1(S) = (
n∑
i=1

bW1
i × xic) mod |L| (9)

h2(S) = (
n∑
i=1

bW2
i × xic) mod |L| (10)

h3(S) = (
n∑
i=1

bW3
i × xic) mod |L| (11)

The hash values of a neighbor solution S ′ from the add(p), swap(q, p) or
drop(q) operator (see Section 3.4.2) can be efficiently computed as follows.

hv(S
′) =


hv(S) +Wv

p , for add(p)

hv(S)−Wv
q +Wp, for swap(q, p)

hv(S)−Wv
q , for drop(q)

(12)

where v is equal to 1, 2, 3, Wv
q and Wv

p are the pre-computed weights of items
p and q involved in the move operations.

Starting with the hash vectors set to 0, the corresponding positions in the
three hash vectors Hv (v = 1, 2, 3) are updated by 1 whenever a new neighbor
solution S ′ is accepted to replace the current solution S (lines 12-16, Alg. 3).
For each candidate neighbor solution S ′, its hash values hv(S

′) (v = 1, 2, 3)
are calculated with Equation (12) in O(1). Then, this neighbor solution S ′ is
previously visited if H1[h1(S

′)] ∧ H2[h2(S
′)] ∧ H3[h3(S

′)] = 1 and is prohibited
from consideration by the TSP procedure.

Fig. 2. An example of the operation-prohibiting mechanism [40].

Fig. 2 from [40] illustrates the hash based operation-prohibiting mechanism. In this
example, applying the three hash functions to the given solution S leads to hash
values h1(S) = 3, h2(S) = 1 and h3(S) = 5. Checking the three hash vectors with
these hash values indicates that S is a prohibited solution since H1[3] ∧ H2[1] ∧
H3[5] = 1.
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Note that a hashing-memory list was adopted in [20] to distinguish solutions with the
same objective value. This method is clearly different from our operation-prohibiting
mechanism because we use the hash vectors to record all the solutions encountered
during the TSP procedure, rather than just the solutions with the same objective
value. Moreover, unlike [20] that requires another move-memory list to prevent the
search from revisiting previously encountered solutions, our approach does not need
such an additional structure.

3.5 Crossover operator

The crossover operator generally creates new solutions by recombining two existing
solutions. For the DCKP, we adopt the idea of the double backbone-based crossover
(DBC) operator [43] and adapt it to the problem.

Given two solutions Si and Sj , we use them to divide the set of n items into
three subsets: the common items set X1 = Si ∩ Sj , the unique items set X2 =
(Si ∪ Sj) \ (Si ∩ Sj) and the unrelated set X3 = V \ (Si ∪ Sj). The basic idea of
the DBC operator is to generate an offspring solution So by selecting all items in
set X1 (the first backbone) and some items in set X2 (the second backbone), while
excluding items in set X3.

As shown in Algorithm 4, from two randomly selected parent solutions Si and Sj ,
the DBC operator generates So in three steps. First, we initialize So by setting all
the variables xoa (a = 1, . . . , n) to 0 (line 3, Alg. 4). Second, we identify the common
items set X1 and the unique items set X2 (line 4-10, Alg. 4). Third, we add all items
belonging to X1 into So and randomly add items from X2 into So until the knapsack
constraint is reached (line 11-17, Alg. 4). Note that the knapsack and disjunctive
constraints are always satisfied during the crossover process.

Since the DCKP is a constrained problem, the DBC operator adopted for TSBMA
has several special features to handle the constraints, which is different from the
DBC operator introduced in [43]. First, we iteratively add an item into So by
selecting one item from the unique items set X2 randomly until the knapsack
constraint is reached, while each item in X2 is considered with a probability p0
(0 < p0 < 1) in [43]. Second, unlike [43], where a repair operation is used to
achieve a feasible offspring solution, our DBC operator ensures the satisfaction of
the problem constraints during the offspring generation process.

3.6 Population updating

Once a new offspring solution is obtained by the DBC operator in the last section, it
is further improved by the threshold search procedure presented in Section 3.4. Then
we adopt a diversity-based population updating strategy [26] to decide whether the
improved offspring solution should replace an existing solution in the population.
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Algorithm 4 The double backbone-based crossover operator

1: Input: Two parent solutions Si = (xi1, x
i
2, . . . , x

i
n) and Sj = (xj1, x

j
2, . . . , x

j
n).

2: Output: An offspring solution So = (xo1, x
o
2, . . . , x

o
n).

3: So ← ∅ /* Initialize So (i.e., f(So) = 0)*/
4: for a← 1 to n do
5: if xia = 1 and xja = 1 then
6: X1 ← a /* X1 is the common items set */
7: else if xia = 1 or xja = 1 then
8: X2 ← a /* X2 is the unique items set */
9: end if

10: end for
11: So ← X1 /* Add all items belonging to X1 into So */
12: Randomly shuffle all items in X2;
13: for each a ∈ X2 do
14: if So ∪ (xoa = 1) is a feasible solution then
15: xoa ← 1 /* The second backbone */
16: end if
17: end for
18: return So

This strategy is beneficial to balance the quality of the offspring solution and its
distance from the population.

To accomplish this task, we temporarily insert the improved offspring solution into
the population and compute the distance (Hamming distance) between any two
solutions in the population. Then we obtain the goodness score of each solution in
the same way as proposed in [26]. Finally, the worst solution in the population is
identified according to the goodness score and deleted from the population.

3.7 Time complexity of TSBMA

As shown in Section 3.3, the population initialization procedure includes two steps.
Given a DCKP instance with n items, the first step of random selection takes time
O(n). Given an input solution S =< A, Ā > (see Section 3.2), the complexity of
one iteration of the TSP procedure is O((n + |A| × |Ā|)). Then the second step
of the initialization procedure can be realized in O([(n + |A| × |Ā|)] × IterMax),
where IterMax is set to 2n in the initialization procedure. The complexity of the
population initialization procedure is O(n3).

Now we consider the four procedures in the main loop of the TSBMA algorithm:
parent selection, crossover operator, the TSP procedure and population updating.
The parent selection procedure is realized in O(1). The crossover operator takes
time O(n). The complexity of the TSP procedure is O([(n+ |A|× |Ā|)]× IterMax),
where IterMax is determined in Section 3.4.1. The population updating procedure
can be achieved in O(n|P |), where |P | is the population size. Then, the complexity
of one iteration of the main loop of the TSBMA algorithm is O(n2 × IterMax).
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3.8 Discussions

The proposed algorithm is based on the general memetic search and threshold search
methods, and integrates a number of carefully designed problem-specific features.
In what follows, we highlight the novelties and contributions of the presented work.

First, compared to the existing DCKP algorithms reviewed in Section 2, the
primary novelty of our approach concerns the design of the threshold search
procedure detailed in Section 3.4. This is the first local optimization procedure
that adapts the general threshold accepting method to the DCKP. In particular, it
employs an original neighborhood exploration strategy that relies on 1) a
neighborhood filtering to eliminate non-promising neighboring solutions, 2) a hash
function based prohibiting technique to avoid revisiting already encountered
solutions, and 3) a token-ring policy to examine the three neighborhoods.

Second, the proposed algorithm reinforces its search capacity by adopting a
specifically designed crossover operator (see Section 3.5), which is able to cope
with the disjunctive constraints of the DCKP. It additionally adopts a
distance-and-quality based population management method to maintain a healthy
population.

Third, as the extensive computational results on two sets of 6340 benchmark
instances indicate shown in Section 4, the algorithm integrating the above features
reaches a high performance that no existing algorithm can compete. In particular,
it reports a number of new lower bounds that are valuable for future research on
the DCKP.

Fourth, we demonstrate the practical usefulness of our approach for solving
real-life problems. For this, we present in Section 5 a real application, i.e., the
daily photograph scheduling problem (DPSP) of an earth observation satellite
(SPOT5). This application can be formulated as a logically-constrained knapsack
problem whose key model corresponds to the DCKP and can thus be solved with
our approach. The computational results on the set of 21 DPSP benchmark
instances indicate that our approach can find optimal solutions or solutions close
to the best-known results obtained by specific algorithms specially designed for
this application.

Finally, although a number of DCKP algorithms exist in the literature, none of these
algorithms has published the underlying code, making it difficult to apply them in
practice. The publicly available code of our algorithm can help advance the research
on the DCKP and better solve related problems as well.
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4 Computational results and comparisons

In this section, we assess the proposed TSBMA algorithm by performing extensive
experiments and making comparisons with state-of-the-art DCKP algorithms. We
report computational results on two sets of 6340 benchmark instances.

4.1 Benchmark instances

The benchmark instances of the DCKP tested in our experiments were widely used
in the literature, which can be divided into two sets 1 (see Tables 1 and 2 for the
main characteristics of these instances).

Set I (100 instances): These instances are grouped into 20 classes (each with
5 instances) and named by xIy (x = {1, . . . , 20} and y = {1, . . . , 5}). The first
50 instances (1Iy to 10Iy) were introduced in 2006 [20] and have the following
features: number of items n = 500 or 1000, capacity C = 1800 or 2000, and density
η going from 0.05 to 0.40. Note that the density is given by 2m/n(n − 1), where
m is the number of disjunctive constraints (i.e., the number of edges of the conflict
graph). These instances have an item weight wi uniformly distributed in [1, 100]
and a profit pi = wi + 10. For the instance classes 11Iy to 20Iy introduced in 2017
[31], the number of items n is set to 1500 or 2000, the capacity C is set to 4000,
and the density η ranges from 0.04 to 0.20. These instances have an item weight wi
uniformly distributed in [1, 400] and a profit pi equaling wi + 10.

Set II (6240 instances): This set of instances was introduced in 2017 [3] and
expanded in 2020 [8]. For the four correlated instance classes C1 to C15 (denoted
by CC) and four random classes R1 to R15 (denoted by CR), the number of items
n is from 60 to 1000, the capacity C is from 150 to 15000, and the density η is from
0.10 to 0.90. Each of these eight classes contains 720 instances. For the correlated
instance class SC and the random instance class SR of the sparse graphs, the
number of items n is from 500 to 1000, the capacity C is from 1000 to 2000, and
the density η is from 0.001 to 0.05. Each of these two classes contains 240 DCKP
instances. More details about this set of instances can be found in [8].

4.2 Experimental settings

Reference algorithms. For the 100 DCKP instances of Set I that were widely
tested by heuristic algorithms, we adopt as our reference methods three state-
of-the-art heuristic algorithms: parallel neighborhood search algorithm (PNS)
[32], cooperative parallel adaptive neighborhood search algorithm (CPANS)

1 The benchmark instances are available from the Mendeley Data repository at:
http://dx.doi.org/10.17632/gb5hhjkygd.1
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Table 1
Summary of main characteristics of the 100 DCKP instances of Set I.

Class Total n C η Class Total n C η

1Iy 5 500 1800 0.10 11Iy 5 1500 4000 0.04

2Iy 5 500 1800 0.20 12Iy 5 1500 4000 0.08

3Iy 5 500 1800 0.30 13Iy 5 1500 4000 0.12

4Iy 5 500 1800 0.40 14Iy 5 1500 4000 0.16

5Iy 5 1000 1800 0.05 15Iy 5 1500 4000 0.20

6Iy 5 1000 2000 0.06 16Iy 5 2000 4000 0.04

7Iy 5 1000 2000 0.07 17Iy 5 2000 4000 0.08

8Iy 5 1000 2000 0.08 18Iy 5 2000 4000 0.12

9Iy 5 1000 2000 0.09 19Iy 5 2000 4000 0.16

10Iy 5 1000 2000 0.10 20Iy 5 2000 4000 0.20

Table 2
Summary of main characteristics of the 6240 DCKP instances of Set II.

Class Total
n C η

Min Max Min Max Min Max

C1 720 60 1000 150 1000 0.10 0.90

C3 720 60 1000 450 3000 0.10 0.90

C10 720 60 1000 1500 10000 0.10 0.90

C15 720 60 1000 15000 15000 0.10 0.90

R1 720 60 1000 150 1000 0.10 0.90

R3 720 60 1000 450 3000 0.10 0.90

R10 720 60 1000 1500 10000 0.10 0.90

R15 720 60 1000 15000 15000 0.10 0.90

SC 240 500 1000 1000 2000 0.001 0.05

SR 240 500 1000 1000 2000 0.001 0.05

[31], and probabilistic tabu search algorithm (PTS) [33]. Note that PTS only
reported results of the 50 instances 1Iy to 10Iy, since the other 50 instances
of 11Iy to 20Iy were designed later. For the 6240 DCKP instances of Set II
that were only tested by exact algorithms until now, we cite the results of
three best performing methods: branch-and-bound algorithms BCM [3] and
CFS [8]) as well as the integer linear programming formulations solved by the
CPLEX solver (ILP) [8].

Computing platform. The proposed TSBMA algorithm was written in
C++ 2 and compiled using the g++ compiler with the -O3 option. All
experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz
CPU and 2 GB RAM) under the Linux operating system. The results of the
main reference algorithms have been obtained on computing platforms with

2 The code of our TSBMA algorithm will be available at: http://www.info.

univ-angers.fr/pub/hao/DCKP_TSBMA.html
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the following features: an Intel Xeon processor with 2×3.06 GHz for CPANS
and PNS, an Intel Pentium i5-6500 processor with 3.2 GHz and 4 GB RAM
for PTS, and an Intel Xeon E5-2695 processor with 3.00GHz for CFS. Note
that the parallel algorithms PNS and CPANS used 10 to 400 processors to
obtain the results.

Parameter setting. The TSBMA algorithm has three parameters whose
values are self-tuned according to the test instance or the best objective value
reached during the search. Table 3 summarizes the parameter setting, where
n is the number of items of the test instance, MinP is the minimum profit
in the instance, and f(Sb) is the objective value of the best solution found
during the TSP procedure. These parameter settings can be considered as the
default settings and are consistently used in our experiments.

Table 3
Summarized parameter settings of the TSBMA algorithm.

Parameter Section Setting Description Comment

|P | 3.3 n/100 + 5 Population size -

IterMax
3.3 2n Maximum consecutive iterations For population initialization

3.4.1 (n/500 + 5)× 10000 of the TSP procedure For local optimization

T 3.4.1
f(Sb)− n/10

Threshold
For instances of Set I

MinP + rand(20) For instances of Set II

Stopping condition. For the 100 DCKP instances of Set I, the TSBMA
algorithm adopted the same cut-off time as the reference algorithms (PNS,
CPANS and PTS), i.e., 1000 seconds. Note that for the instances 11Iy to
20Iy, PNS used a much longer limit of 2000 seconds. Given its stochastic
nature, TSBMA was performed 20 times independently with different random
seeds to solve each instance. For the 6240 instances of Set II, the cut-off time
was set to 600 seconds as in the CFS algorithm and the number of repeated
runs was set to 10.

4.3 Computational results and comparisons

In this section, we first present summarized comparisons of the proposed
TSBMA algorithm against each reference algorithm on the 100 instances of
Set I, and then show the comparative results on the 6240 DCKP instances of
Set II. The detailed computational results of our algorithm and the reference
algorithms on the instances of Set I are shown in the Appendix, while our
solution certificates for these 100 instances are available at the webpage
indicated in footnote 2. For the 6240 instances of Set II, we report their
objective values at the same website.

17



4.3.1 Comparative results on the 100 benchmark instances of Set I

The comparative results of the TSBMA algorithm and each reference
algorithm are summarized in Table 4. Column 1 indicates the pairs of
compared algorithms and column 2 gives the names of instance class.
Column 3 shows the quality indicators: the best objective value (fbest) and
the average objective value (favg) (when the average results are available in
the literature). To analyze the performance of our algorithm, we carried out
the Wilcoxon signed-rank test to verify the statistical significance of the
compared results between TSBMA and each compared algorithm in terms of
the fbest and favg values (when the average results are available in the
literature). Columns 4 and 5 give the additional sum of ranks for the results,
where TSBMA performs better (R+) or worse (R−) in terms of the
performance indicators. The outcomes of the Wilcoxon p-values are shown
in last column, where NA means that the two sets of compared results are
exactly the same.

From Table 4, one observes that the TSBMA algorithm competes very
favorably with all the reference algorithms by reporting improved or equal
results on all the instances. Compared to the probabilistic tabu search
algorithm (PTS) [33] which reported results only on the first 50 instances of
classes 1Iy to 10Iy, TSBMA finds 8 (45) better fbest (favg) values, while
matching the remaining results. Compared to the two parallel algorithms
(PNS) [32] and (CPANS) [31] that reported only the fbest values, TSBMA
obtained 35 and 29 better fbest results, respectively. The small p-values
(< 0.05) from the Wilcoxon tests between TSBMA and its competitors
indicate that the performance differences are statistically significant. Finally,
it is remarkable that our TSBMA algorithm discovered 24 new lower bounds
on the instances 11Iy to 20Iy (see the detailed results shown in the
Appendix).

Table 4
Summarized comparisons of the TSBMA algorithm against each reference algorithm
with the p-values of the Wilcoxon signed-rank test (significance level 0.05) on the
100 DCKP instances of Set I.

Algorithm pair Instance Indicator R+ R− p-value

TSBMA vs. PTS [33] 1Iy − 10Iy (50) fbest 8 0 1.40e-2

favg 45 0 5.34e-9

TSBMA vs. PNS [32] 1Iy − 10Iy (50) fbest 9 0 8.91e-3

11Iy − 20Iy (50) fbest 26 0 8.25e-6

TSBMA vs. CPANS [31] 1Iy − 10Iy (50) fbest 0 0 NA

11Iy − 20Iy (50) fbest 29 0 2.59e-6

To complete the assessment, we provide the performance profiles [11] of the
four compared algorithms on the 100 instances of Set I. Basically, the
performance profile of an algorithm shows the cumulative distribution for a
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given performance metric, which reveals the overall performance of the
algorithm on a set of instances. In our case, the plots concern the best
objective values (fbest) of the compared algorithms since the average results
of some reference algorithms are not available in the literature. Given a set
of algorithms (solvers) S and an instance set P , the performance ratio is
given by rp,s = fp,s

min{fp,s:s∈S} , where fp,s is the fbest value of instance p of P
obtained by algorithm s of S. The performance profiles are shown in Figure
3, where the performance ratio and the percentage of instances solved by
each compared algorithm are displayed on the X-axis and Y -axis,
respectively. When the value of X-axis is 1, the corresponding value of
Y -axis indicates the fraction of instances for which algorithm s can reach
the best fbest value of the set S of the compared algorithms.

From Figure 3, we observe that our TSBMA algorithm has a very good
performance on the 100 benchmark instances of Set I compared to the
reference algorithms. For the 50 instances 1Iy to 10Iy, TSBMA and CPANS
are able to reach 100% best fbest values on these 50 instances, while PTS and
PNS fail on around 15% of the instances. When considering the 50 instances
11Iy to 20Iy, the plot of TSBMA strictly runs above the plots of PNS and
CPANS, revealing that our algorithm dominates the reference algorithms on
these 50 instances. These outcomes again confirm the high performance of
our TSBMA algorithm.
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Fig. 3. Performance profiles of the compared algorithms on the 100 DCKP instances
of Set I.

4.3.2 Comparative results on the 6240 benchmark instances of Set II

Table 5 summarizes the comparative results of our TSBMA algorithm on
the 6240 instances of Set II, together with the three reference algorithms
mentioned in 4.2. Note that three ILP formulations were studied in [8], we
extracted the best results of these formulations in Table 5, i.e., the results on
instances CC and CR (conflict graph density from 0.10 to 0.90) with ILP2 and
the results on very sparse instances SC and SR (conflict graph density from
0.001 to 0.05) with ILP1. Columns 1 and 2 of Table 5 identify each instance
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class and the total number of instances of the class. Columns 3 to 5 indicate the
number of instances solved to optimality by the three reference algorithms.
Column 6 shows the number of instances for which our TSBMA algorithm
reaches the optimal solution proved by exact algorithms. The number of new
lower bounds (denoted by NEW LB in Table 5) found by TSBMA is provided
in column 7. The best results of the compared algorithms are highlighted
in bold. In order to further evaluate the performance of our algorithm, we
summarize the available comparative results between MSBTS and the main
reference algorithm CFS in columns 8 to 10. The columns #Wins, #Ties and
#Losses present the number of instances for which TSBMA achieves a better,
equal and worse result on the corresponding instance class. The last three rows
provide an additional summary of the results for each column.

From Table 5, we observe that TSBMA performs globally very well on the
instances of Set II. For the 5760 CC and CR instances, TSBMA reaches
most of the proved optimal solutions (5381 out of 5389) and discovers new
lower bounds for 323 difficult instances whose optima are still unknown. For
the 240 very sparse SC instances, TSBMA matches 195 out of 200 proved
optimal solutions and finds 24 new lower bounds for the remaining instances.
Although TSBMA successfully solves only 9 out of the 229 solved very
sparse SR instances, it discovers 7 new lower bounds. The high performance
of TSBMA is further evidenced with the comparison with the best exact
algorithm CFS (last three columns).

Notice that the performance of CPLEX with ILP1 is better than TSBMA as
well as the two reference algorithms BCM and CFS on the two classes of very
sparse instances (SC and SR). As analyzed in [8], one of the main reasons is
that the LP relaxation of ILP1 provides a very strong upper bound, which
makes the ILP1 formulation very suitable for solving very sparse instances.
The disjunctive constraints become very weak when the conflict graph is very
sparse. For these two classes of instances, the pure branch-and-bound CFS
algorithm is more effective on extremely sparse instances with densities up to
0.005. On the contrary, our TSBMA algorithm is more suitable for solving
sparse instances with densities between 0.01 and 0.05. In fact, the new lower
bounds found by TSBMA all concern instances with a density of 0.05.
Finally, the TSBMA algorithm remains competitive on the 240 correlated
sparse instances SC, even if the density is the smallest (0.001), which means
that only the random sparse instance class SR is challenging for TSBMA.

In summary, our TSBMA algorithm is computational efficient on a majority
of the 6240 benchmark instances of Set II and is able to discover new lower
bounds on 354 difficult DCKP instances, whose optimal solutions are still
unknown.
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Table 5
Summarized comparisons of the TSBMA algorithm against each reference algorithm
on the 6240 DCKP instances of Set II.

Class Total
ILP1,2 [8] BCM [3] CFS [8] TSBMA (this work) TSBMA vs. CFS

Solved Solved Solved Solved New LB #Wins #Ties #Losses

C1 720 720 720 720 720 0 0 720 0

C3 720 584 720 720 716 0 0 716 4

C10 720 446 552 617 617 91 91 629 0

C15 720 428 550 600 600 117 117 603 0

R1 720 720 720 720 717 0 0 717 3

R3 720 680 720 720 720 0 0 720 0

R10 720 508 630 670 669 37 37 681 2

R15 720 483 590 622 622 78 78 641 1

SC 240 200 109 156 195 24 70 165 5

SR 240 229 154 176 9 7 43 8 189

Total on CC and CR 5760 4569 5201 5389 5381 323 323 5427 10

Total on SC and SR 480 429 263 332 204 31 113 173 194

Grand total 6240 4998 5424 5721 5585 354 436 5600 204

5 A real-world application

To demonstrate the practical usefulness of the DCKP model and the proposed
TSBMA algorithm, this section shows how our approach can be applied to
solve a real-world daily photograph scheduling problem (DPSP) of the earth
observation satellite SPOT5.

5.1 SPOT5 daily photograph scheduling and its knapsack formulation

SPOT5 is the fifth earth optical observation satellite developed by the CNES
(French National Space Agency), which was launched in May 2002.
Informally, the SPOT5 daily photograph scheduling problem is to select a
subset of photographs among the candidate photographs that will be taken
by SOPT5, such that the total profit of the selected photographs is
maximized while a knapsack-type constraint (i.e., a capacitated recording
memory) and a large number of physical constraints (such as
non-overlapping trials, minimal transition times between trials and bounded
instantaneous data flow) are satisfied [1].

Let P = {p1, . . . , pn} be the set of n candidate photographs including mono
and stereo photographs, where each photograph ρi ∈ P has a profit pi > 0 and
a weight wi > 0 (memory consumption). Each mono photograph can be taken
by any of the three cameras of the satellite (front-camera1, middle-camera2
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and rear-camera3), while each stereo photograph can only be obtained by
the front and rear cameras simultaneously. A legal schedule must satisfy the
following constraints.

• Knapsack constraint (C1): This constraint indicates that the photographs
that are taken and recorded on board cannot excess the recording memory
Max Capacity of the satellite.
• Binary constraints (C2): These constraints forbid the simultaneous

selection of two pairs (photo, camera) and express the non overlapping
of two trials and the minimal transition time between two successive
trials of a camera, as well as some constraints involving limitations on
instantaneous data flow relating two pairs (photo, camera).
• Ternary constraints (C3): These constraints forbid the simultaneous

presence of three pairs (photo, camera) and concern limitations on
instantaneous data flow that cannot be expressed in the form of binary
constraints (C3 1). Additionally, for a mono photograph, a ternary
constraint is defined to ensure that the photograph can be scheduled to
at most one camera (C3 2).

In [36], the DPSP was formulated as a “logic-constrained” 0/1 knapsack
problem, which is highly related to the DCKP, where a binary variable is
used to represent a pair (photo, camera). Let P = P1 ∪ P2, where P1 and P2

are the set of mono and stereo photographs, respectively. Let ρ ∈ P be a
candidate photograph. If ρ ∈ P1, three pairs (ρ, camera1), (ρ, camera2) and
(ρ, camera3) are associated to three binary variables to enumerate the three
possibilities of shooting the mono photograph. If ρ ∈ P2, one binary variable
is used to indicate the only shooting possibility (ρ, camera13) for the stereo
photograph ρ. Then a photograph schedule can be represented by a binary
l-vector x = (x1, x2, . . . , xl) (l = 3 ∗ |P1| + |P2|), where xi = 1 if the
corresponding pair (photo, camera) is selected, and xi = 0 otherwise.

The DPSP corresponds to the following “logic-constrained” 0/1 knapsack
problem [36].

(SPOT5) Maximize
l∑

i=1

pixi (13)

subject to
l∑

i=1

wixi ≤Max Capacity (C1)

xi + xj ≤ 1, ∀i, j ∈ {1, . . . , l}, i 6= j (C2)

xi + xj + xk ≤ 2,∀i, j, k ∈ {1, . . . , l}, i 6= j 6= k (C3 1)

xi + xj + xk ≤ 1,∀i, j, k ∈ {1, . . . , l}, i 6= j 6= k (C3 2)

xi ∈ {0, 1}, i = 1, . . . , l (14)
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5.2 Solving DPSP as the DCKP model

It is easy to observe that the “logic-constrained” 0/1 knapsack model for the
DPSP without the ternary constraints C3 1 and C3 2 is strictly equivalent to
the DCKP. Moreover, one notes that each C3 2 ternary constraint xi+xj+xk ≤
1 can be converted to three binary constraints, i.e., xi + xj ≤ 1, xi + xk ≤ 1,
xj + xk ≤ 1, and thus integrated into the DCKP model.

Thus, to solve the DPSP via the DCKP model, we adopt the following
strategy. For each DPSP instance, we apply our TSBMA algorithm to solve
the corresponding DCKP instance integrating constraints C1, C2 and C3 2
and temporarily ignore the ternary constraint C3 1. Let s be the final result
returned by TSBMA. If solution s doesn’t violate any C3 1 ternary
constraint, s is a feasible solution to the DPSP. Otherwise, we employ a very
simple two-step repairing procedure to satisfy the C3 1 constraints.

Suppose that the C3 1 constraint xi + xj + xk ≤ 2 is violated. This implies
necessarily xi + xj + xk = 3. Thus, to satisfy this violated C3 1 constraint,
the first step identifies among xi, xj, xk the variable with the smallest profit
value and changes its value to zero, i.e., drops the corresponding (photo,
camera) pair (break ties randomly). Since this step releases knapsack
capacity, the second step uses the liberated capacity to accommodate
additional photographs. For this, we add photographs with the largest profit
value without violating any C1–C3 constraints until no more photograph can
be added or the knapsack capacity is reached.

5.3 Computational results on the DPSP benchmark instances

We used the 21 real-life DPSP benchmark instances 3 provided by the CNES
(see [1] for more details), which have been used to test a number of exact
and heuristic algorithms [2,36,37,38]. For the experiment, we ran our TSBMA
algorithm 10 times on each DPSP instance under the stopping condition of
one hour per run. The computational results are shown in Table 6. The first
column presents the name of each instance, while the asterisk (*) indicates
that the optimal result is known [1]. The second column gives the number
of photographs in each instance. Columns 3 to 5 show the number of C2,
C3 1 and C3 2 constraints in each instance. Column BKV gives the best-
known values from [1], which are compiled from the literature [2,36,38]. The
remaining columns present the best fbest and average favg objective values
obtained by our algorithm as well as the gap gap(%) between our best result

3 The benchmark instances are available at the Mendeley Data repository at: http:
//dx.doi.org/10.17632/2kbzg9nw3b.1
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and BKV calculated as gap = (fbest - BKV) / BKV). The best values (fbest)
of our algorithm reaching the optimal results are highlighted in bold.

Table 6
Computational results of the TSBMA algorithm and comparison with the best-
known values (BKV) on the 21 real-life instances of the SPOT5 daily photograph
scheduling problem.

Instance Photographs
Number of constraints

BKV
TSBMA (this work)

C2 C3 1 C3 2 fbest favg gap(%)

8* 8 17 0 4 10 10 10 0.000

54* 67 389 23 29 70 70 69.6 0.000

29* 82 610 0 19 12032 12032 12031.4 0.000

42* 190 1762 64 57 108067 108067 108067.0 0.000

28* 230 6302 590 58 56053 56053 56053.0 0.000

5* 309 13982 367 250 115 111 107.4 -3.478

404* 100 919 18 29 49 49 47.8 0.000

408* 200 2560 389 64 3082 3075 3074.2 -0.227

412* 300 6585 389 122 16102 16094 16092.4 -0.050

11* 364 9456 4719 164 22120 22111 22109.1 -0.041

503* 143 705 86 58 9096 9096 8994.6 0.000

505* 240 2666 526 104 13100 13096 12995.4 -0.031

507* 311 5545 2293 131 15137 15132 15127.3 -0.033

509* 348 7968 3927 152 19215 19113 19110.6 -0.531

1401 488 11893 2913 213 176056 170056 167960.5 -3.408

1403 665 14997 3874 326 176140 170146 167848.8 -3.403

1405 855 24366 4700 480 176179 168185 167882.4 -4.537

1021 1057 30058 5875 649 176246 170247 168049.7 -3.404

1502* 209 296 29 102 61158 61158 61158.0 0.000

1504 605 5106 882 324 124243 124238 124135.5 -0.004

1506 940 19033 4775 560 168247 164241 161639.3 -2.381

Table 6 shows that the TSBMA algorithm is able to match eight optimal
results. For seven other instances, its results are very close to the best-known
results with a very small gap(%) value (−0.004% to −0.531%). One notices
that TSBMA reports a gap value ranging from −2.381% to −4.537% on
most instances with more C3 1 constraints. This is because our approach
first relaxes the C3 1 constraints and then only employs a simple procedure
to repair these constraints. These outcomes can be considered to be
remarkable because we just applied the TSBMA algorithm designed for the
general DCKP model to this real-life problem, unlike previous algorithms for
the DPSP that are specially designed for the problem.

To sum up, this real-world application shows the practical significance of the
DCKP model and the proposed TSBMA algorithm.
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6 Analysis and discussions

In this section, we analyze two essential components of the TSBMA
algorithm: the importance of the threshold search and the contribution of
the operation-prohibiting mechanism. The studies in this section are based
on the 50 benchmark instances 11Iy to 20Iy of Set I.

6.1 Importance of the threshold search

The threshold search procedure of the TSBMA algorithm is the first
adaptation of the threshold accepting method to the DCKP. To assess the
importance of this component, we compare TSBMA with two TSBMA
variants by replacing the TSP procedure with the first-improvement
descent procedure and best-improvement descent procedure. In other words,
these variants (named as MA1 and MA2) use, in each iteration, the first and
the best improving solution S ′ in the neighborhood to replace the current
solution, respectively. We carried out an experiment by running the two
variants to solve the 50 instances 11Iy to 20Iy with the same experimental
settings of Section 4.2. The performance profiles of TSBMA and these
TSBMA variants are shown in Figure 4 based on the best objective values
(left sub-figure) and the average objective values (right sub-figure).

From Figure 4, we can clearly observe that TSBMA dominates MA1 and
MA2 according to the cumulative probability obtained by the fbest and favg
values. The plots of TSBMA strictly run above the plots of MA1 and MA2,
indicating TSBMA performs always better than the two variants. This
experiment implies that the adopted threshold search procedure of TSBMA
is relevant for its performance.
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Fig. 4. Performance profiles of the compared algorithms on the 50 DCKP instances
11Iy to 20Iy.
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6.2 Contribution of the operation-prohibiting mechanism

TSBMA avoids revisiting previously encountered solutions with the OP
mechanism introduced in Section 3.4.3. To assess the usefulness of the OP
mechanism, we created a TSBMA variant (denoted by TSBMA−) by
disabling the OP component and keeping the other components unchanged.
We ran TSBMA− to solve the 50 11Iy to 20Iy instances according to
experimental settings given in Section 4.2 and reported the results in Table
7. The first column gives the name of each instance and the remaining
columns show the best objective values (fbest), the average objective values
(favg) and the standard deviations (std). Row #Avg presents the average
value of each column and row #Best indicates the number of instances for
which an algorithm obtains the best values between the two sets of results.
The last row shows the p-values from the Wilcoxon signed-rank test. The
best results of the compared algorithms are highlighted in bold.

From Table 7, we observe that TSBMA− performs worse than TSMBA.
TSBMA− obtains worse fbest values for 35 out of the 50 instances and worse
favg values for 48 instances. Considering the std values, TSBMA− shows a
much less stable performance than TSMBA. Moreover, the small p-values
(< 0.05) from the Wilcoxon tests confirm the statistically significant
difference between the results of TSMBA and TSBMA−. This experiment
demonstrates the effectiveness and robustness of the operation-prohibiting
mechanism employed by the TSMBA algorithm.

7 Conclusions

The disjunctively constrained knapsack problem is a well-known NP-hard
model. Given its practical significance and intrinsic difficulty, a variety of
exact and heuristic algorithms have been designed for solving the problem.
We proposed the threshold search based memetic algorithm that combines
for the first time threshold search with the memetic framework. The primary
novelty of our approach concerns the design of the threshold search
procedure that relies on three complementary neighborhoods and an original
neighborhood exploration strategy. This intensification oriented component
is reinforced by the specially designed crossover operator and the
distance-and-quality based population update strategy.

Extensive evaluations on a large number of benchmark instances in the
literature (6340 instances in total) showed that the algorithm performs
competitively with respect to the state-of-the-art algorithms. Our approach
is able to discover 24 new lower bounds out of the 100 instances of Set I and
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Table 7
Comparison between TSBMA− (without the OP mechanism) and TSBMA (with
the OP mechanism) on the instances 11Iy to 20Iy.

Instance
TSBMA− TSBMA

fbest favg std fbest favg std

11I1 4960 4960 0.00 4960 4960 0.00

11I2 4940 4940 0.00 4940 4940 0.00

11I3 4950 4949.45 2.18 4950 4950 0.00

11I4 4930 4924 4.42 4930 4930 0.00

11I5 4920 4916.35 4.68 4920 4920 0.00

12I1 4685 4676.95 4.99 4690 4687.65 2.22

12I2 4670 4668.70 3.10 4680 4680 0.00

12I3 4690 4685.45 4.20 4690 4690 0.00

12I4 4680 4669.80 6.36 4680 4679.50 2.18

12I5 4670 4664.50 4.57 4670 4670 0.00

13I1 4525 4511.20 8.55 4539 4534.80 3.60

13I2 4521 4509.25 7.29 4530 4528 4.00

13I3 4520 4515.40 4.55 4540 4531 3.00

13I4 4520 4507.10 6.94 4530 4529.15 2.29

13I5 4530 4513.65 6.51 4537 4534.20 3.43

14I1 4429 4413.55 7.41 4440 4440 0.00

14I2 4420 4413.55 4.47 4440 4439.40 0.49

14I3 4420 4415.20 4.70 4439 4439 0.00

14I4 4420 4412.40 4.57 4435 4431.50 2.06

14I5 4420 4413.85 4.27 4440 4440 0.00

15I1 4359 4346.15 5.06 4370 4369.95 0.22

15I2 4359 4344.10 6.22 4370 4370 0.00

15I3 4359 4341.85 6.54 4370 4369.25 1.84

15I4 4350 4341.05 7.78 4370 4369.85 0.36

15I5 4360 4346.10 5.47 4379 4373.15 4.29

16I1 5020 5013.75 4.93 5020 5020 0.00

16I2 5010 5003.30 5.60 5010 5010 0.00

16I3 5020 5010.65 5.33 5020 5020 0.00

16I4 5020 5008.95 8.24 5020 5020 0.00

16I5 5060 5052.85 8.37 5060 5060 0.00

17I1 4730 4707.50 7.51 4730 4729.70 0.64

17I2 4716 4704.50 6.27 4720 4719.50 2.18

17I3 4720 4705.10 6.68 4729 4723.60 4.41

17I4 4722 4701.20 9.68 4730 4730 0.00

17I5 4720 4706.20 8.37 4730 4726.85 4.50

18I1 4555 4539.75 6.31 4568 4565.80 3.40

18I2 4540 4532.20 4.64 4560 4551.40 3.01

18I3 4570 4545.20 8.58 4570 4569.40 2.20

18I4 4550 4539.30 6.75 4568 4565.20 3.12

18I5 4550 4542.50 5.32 4570 4567.95 3.46

19I1 4432 4424.65 4.71 4460 4456.65 3.48

19I2 4443 4430.85 6.06 4460 4453.25 4.17

19I3 4440 4428.15 6.01 4469 4462.05 4.04

19I4 4450 4431.25 5.63 4460 4453.20 3.89

19I5 4449 4435.65 5.42 4466 4460.75 1.61

20I1 4364 4358.95 2.80 4390 4383.20 3.36

20I2 4360 4356.85 4.25 4390 4381.80 3.78

20I3 4370 4360.45 5.11 4389 4387.90 2.77

20I4 4370 4359.75 5.78 4389 4380.40 1.98

20I5 4366 4357.45 4.78 4390 4386.40 4.05

#Avg 4603.08 4593.13 5.56 4614.14 4611.83 1.80

#Best 15/50 2/50 - 50/50 50/50 -

p-values 2.51e-7 1.68e-9 - - - -
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354 new lower bounds out of the 6240 instances of Set II. These new lower
bounds are useful for future studies on the DCKP. The algorithm also
attains the best-known or known optimal results on most of the remaining
instances. We carried out additional experiments to investigate the two
essential ingredients of the algorithm (the threshold search technique and the
operation-prohibiting mechanism). The disjunctively constrained knapsack
problem is a useful model to formulate a number of practical applications.
The algorithm and its code (that we will make available) can contribute to
solving these problems. In this regards, we presented an application of our
approach to deal with the real-life daily photograph scheduling problem of
the earth observation satellite SPOT5.

There are at least two possible directions for future work. First, TSBMA
performed badly on random sparse instances of SR. It would be interesting to
improve the algorithm to better handle such instances. Second, given the good
performance of the adopted approach, it is worth investigating its underlying
ideas to solve related problems mentioned in the introduction as well as other
knapsack problems such as multiple knapsack [10], knapsack with setups [15]
and multiple non-linear separable knapsack [9].
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A Computational results on the 100 DCKP instances of Set I

Tables A.1 and A.2 report the detailed computational results of the TSBMA
algorithm and the reference algorithms (PNS [32], CPANS [31] and PTS [33])
on the 100 DCKP instances of Set I.

The first two columns of the tables give the name of each instance and the
best-known objective values (BKV) ever reported in the literature. We employ
the following four performance indicators to present our results: best objective
value (fbest), average objective value over 20 runs (favg), standard deviations
over 20 runs (std), and average run time tavg in seconds to reach the best
objective value. However, some of the performance indicators of the reference
algorithms are not available in the literature (i.e., favg, tavg and std). Note
that for [32] (PNS) and [31] (CPANS), the authors reported several groups of
results obtained by using different numbers of processors (range from 10 to
400). To make a fair comparison, we take the best fbest value of each instance in
these groups of results as the final result. We use the average of the tavg values
in these groups as the final average run time. The last row #Avg indicates
the average value of each column. The 24 new lower bounds discovered by our
TSBMA algorithm are highlighted in bold.
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Table A.1
Computational results of the TSBMA algorithm with the reference algorithms on
the 50 DCKP instances of Set I (1Iy to 10Iy).

Instance BKV
PNS [32] CPANS [31] PTS [33] TSBMA (this work)

fbest fbest tavg(s) fbest favg fbest favg std tavg(s)

1I1 2567 2567 2567 17.133 2567 2567 2567 2567 0.00 163.577

1I2 2594 2594 2594 12.623 2594 2594 2594 2594 0.00 19.322

1I3 2320 2320 2320 14.897 2320 2320 2320 2320 0.00 6.060

1I4 2310 2310 2310 13.063 2310 2310 2310 2310 0.00 10.969

1I5 2330 2330 2330 20.757 2330 2321 2330 2330 0.00 63.663

2I1 2118 2118 2118 21.710 2118 2115.2 2118 2117.70 0.46 330.797

2I2 2118 2112 2118 129.390 2110 2110 2118 2111.60 3.20 705.755

2I3 2132 2132 2132 23.820 2119 2112.4 2132 2132 0.00 210.108

2I4 2109 2109 2109 31.377 2109 2105.6 2109 2109 0.00 14.182

2I5 2114 2114 2114 20.040 2114 2110.4 2114 2114 0.00 99.133

3I1 1845 1845 1845 34.683 1845 1760.3 1845 1845 0.00 3.780

3I2 1795 1795 1795 107.993 1795 1767.5 1795 1795 0.00 3.029

3I3 1774 1774 1774 22.490 1774 1757 1774 1774 0.00 3.585

3I4 1792 1792 1792 27.953 1792 1767.4 1792 1792 0.00 3.275

3I5 1794 1794 1794 34.820 1794 1755.5 1794 1794 0.00 9.159

4I1 1330 1330 1330 37.307 1330 1329.1 1330 1330 0.00 1.967

4I2 1378 1378 1378 40.827 1378 1370.5 1378 1378 0.00 3.926

4I3 1374 1374 1374 100.183 1374 1370 1374 1374 0.00 2.431

4I4 1353 1353 1353 26.930 1353 1337.6 1353 1353 0.00 4.167

4I5 1354 1354 1354 81.113 1354 1333.2 1354 1354 0.00 6.196

5I1 2700 2694 2700 122.637 2700 2697.9 2700 2700 0.00 78.215

5I2 2700 2700 2700 111.160 2700 2699 2700 2700 0.00 57.300

5I3 2690 2690 2690 73.640 2690 2689 2690 2690 0.00 18.566

5I4 2700 2700 2700 130.913 2700 2699 2700 2700 0.00 52.807

5I5 2689 2689 2689 279.377 2689 2682.7 2689 2687.65 3.21 289.966

6I1 2850 2850 2850 104.623 2850 2843 2850 2850 0.00 57.997

6I2 2830 2830 2830 93.887 2830 2829 2830 2830 0.00 76.883

6I3 2830 2830 2830 203.677 2830 2830 2830 2830 0.00 157.597

6I4 2830 2824 2830 160.587 2830 2824.7 2830 2830 0.00 328.817

6I5 2840 2831 2840 112.947 2840 2825 2840 2833.10 4.22 378.393

7I1 2780 2780 2780 186.970 2780 2771 2780 2779.40 1.43 483.465

7I2 2780 2780 2780 161.117 2780 2769.8 2780 2775.50 4.97 372.935

7I3 2770 2770 2770 136.310 2770 2762 2770 2768.50 3.57 393.018

7I4 2800 2800 2800 123.957 2800 2791.9 2800 2795.50 4.97 162.060

7I5 2770 2770 2770 149.933 2770 2763.6 2770 2770 0.00 290.591

8I1 2730 2720 2730 472.153 2720 2718.9 2730 2724 4.90 484.264

8I2 2720 2720 2720 109.373 2720 2713.6 2720 2720 0.00 214.760

8I3 2740 2740 2740 112.847 2740 2731.5 2740 2739.55 1.96 207.311

8I4 2720 2720 2720 253.230 2720 2712 2720 2715.35 4.85 518.579

8I5 2710 2710 2710 115.777 2710 2705 2710 2710 0.00 67.003

9I1 2680 2678 2680 134.023 2670 2666.9 2680 2679.70 0.71 316.210

9I2 2670 2670 2670 158.397 2670 2661.7 2670 2669.90 0.44 238.149

9I3 2670 2670 2670 123.280 2670 2666.5 2670 2670 0.00 161.176

9I4 2670 2670 2670 137.690 2663 2657.3 2670 2668.90 2.49 522.294

9I5 2670 2670 2670 131.247 2670 2662 2670 2670 0.00 98.124

10I1 2624 2620 2624 244.020 2620 2613.7 2624 2621.45 1.72 348.617

10I2 2642 2630 2630 144.867 2630 2620.8 2630 2630 0.00 182.474

10I3 2627 2620 2627 198.050 2620 2614.5 2627 2621.40 2.80 326.099

10I4 2621 2620 2620 148.997 2620 2609.7 2620 2620 0.00 105.609

10I5 2630 2627 2630 170.620 2627 2617.6 2630 2629.50 2.18 307.851

#Avg 2403.68 2402.36 2403.42 112.508 2402.18 2393.26 2403.42 2402.47 0.96 179.244
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Table A.2
Computational results and comparison of the TSBMA algorithm with the reference
algorithms on the 50 DCKP instances of Set I (11Iy to 20Iy).

Instance BKV
PNS [32] CPANS [31] TSBMA (this work)

fbest fbest tavg(s) fbest favg std tavg(s)

11I1 4950 4950 4950 333.435 4960 4960 0.00 4.594

11I2 4940 4940 4928 579.460 4940 4940 0.00 14.305

11I3 4925 4920 4925 178.400 4950 4950 0.00 69.236

11I4 4910 4890 4910 320.067 4930 4930 0.00 139.197

11I5 4900 4890 4900 222.053 4920 4920 0.00 100.178

12I1 4690 4690 4690 230.563 4690 4687.65 2.22 416.088

12I2 4680 4680 4680 502.600 4680 4680 0.00 224.000

12I3 4690 4690 4690 229.116 4690 4690 0.00 215.103

12I4 4680 4680 4676 367.330 4680 4679.50 2.18 256.300

12I5 4670 4670 4670 487.563 4670 4670 0.00 79.190

13I1 4533 4533 4533 395.985 4539 4534.80 3.60 415.880

13I2 4530 4530 4530 573.718 4530 4528 4.00 361.229

13I3 4540 4530 4540 901.620 4540 4531 3.00 498.622

13I4 4530 4530 4530 315.076 4530 4529.15 2.29 366.951

13I5 4537 4537 4537 343.240 4537 4534.20 3.43 425.064

14I1 4440 4440 4440 483.156 4440 4440 0.00 205.733

14I2 4440 4440 4440 735.505 4440 4439.40 0.49 438.190

14I3 4439 4439 4439 614.733 4439 4439 0.00 146.119

14I4 4435 4435 4434 533.908 4435 4431.50 2.06 106.389

14I5 4440 4440 4440 473.448 4440 4440 0.00 160.900

15I1 4370 4370 4370 797.125 4370 4369.95 0.22 321.296

15I2 4370 4370 4370 676.703 4370 4370 0.00 181.021

15I3 4370 4370 4370 612.792 4370 4369.25 1.84 315.575

15I4 4370 4370 4370 649.398 4370 4369.85 0.36 424.873

15I5 4379 4379 4379 678.354 4379 4373.15 4.29 359.003

16I1 4980 4980 4980 286.130 5020 5020 0.00 205.964

16I2 4990 4990 4980 232.825 5010 5010 0.00 342.824

16I3 5009 5000 5009 199.880 5020 5020 0.00 155.070

16I4 5000 4997 5000 831.750 5020 5020 0.00 86.324

16I5 5040 5020 5040 982.970 5060 5060 0.00 32.837

17I1 4730 4730 4721 422.640 4730 4729.70 0.64 388.541

17I2 4710 4710 4710 248.770 4720 4719.50 2.18 300.275

17I3 4720 4720 4720 454.317 4729 4723.60 4.41 343.016

17I4 4720 4720 4720 432.900 4730 4730 0.00 288.961

17I5 4720 4720 4720 102.468 4730 4726.85 4.50 366.752

18I1 4566 4566 4566 225.010 4568 4565.80 3.40 269.545

18I2 4550 4550 4550 288.862 4560 4551.40 3.01 13.884

18I3 4570 4570 4570 328.555 4570 4569.40 2.20 466.748

18I4 4560 4560 4560 511.527 4568 4565.20 3.12 264.931

18I5 4570 4570 4570 651.887 4570 4567.95 3.46 572.589

19I1 4460 4460 4460 506.945 4460 4456.65 3.48 459.570

19I2 4459 4459 4459 666.900 4460 4453.25 4.17 307.224

19I3 4460 4460 4460 608.913 4469 4462.05 4.04 485.550

19I4 4450 4450 4450 476.755 4460 4453.20 3.89 430.824

19I5 4460 4460 4460 508.730 4466 4460.75 1.61 40.752

20I1 4389 4389 4388 957.410 4390 4383.20 3.36 929.372

20I2 4390 4390 4387 756.908 4390 4381.80 3.78 299.673

20I3 4389 4383 4389 966.010 4389 4387.90 2.77 568.988

20I4 4388 4388 4380 993.630 4389 4380.40 1.98 657.694

20I5 4389 4389 4389 772.495 4390 4386.40 4.05 646.570

#Avg 4608.54 4606.88 4607.58 513.011 4614.14 4611.83 1.80 303.390
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