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Abstract. We suggest employing graph sparsification as a pre-processing
step for max cut programs using the QUBO solver. Quantum(-inspired)
algorithms are recognized for their potential efficiency in handling quadratic
unconstrained binary optimization (QUBO). Various meta-heuristic ap-
proaches, including those based on the Quantum Approximate Opti-
mization Algorithm, have been suggested for addressing QUBO chal-
lenges in this context. Given that max cut is an NP-hard problem and
can be readily expressed using QUBO, it stands out as an exemplary
case to demonstrate the effectiveness of quantum(-inspired) QUBO ap-
proaches. Here, the non-zero count in the QUBO matrix corresponds
to the graph’s edge count. Given that many quantum(-inspired) solvers
operate through cloud services, transmitting data for dense graphs can
be costly. By introducing the graph sparsification method, we aim to
mitigate these communication costs. Experimental results on classical
and quantum-inspired solvers indicate that this approach substantially
reduces communication overheads and yields an objective value close to
the optimal solution.

Keywords: quantum-inspired optimization, max cut problem · pre-processing
· graph sparsification · quadratic unconstrained binary optimization (QUBO)

1 Introduction

Quantum and quantum-inspired computing are considered to have the poten-
tial to enhance the efficiency of solving various computational problems [49, 22,
17]. Consequently, many meta-heuristics have been proposed for solving QUBO
on both quantum and quantum-inspired computers [10]. These methods include
those based on quantum annealing [47] and the Quantum Approximate Op-
timization Algorithm [39]. Given that several combinatorial and network op-
timization problems can be reformulated as QUBO, numerous researchers are
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actively exploring the most proficient methods for addressing these optimization
problems with the aid of quantum(-inspired) QUBO solvers [8, 9].

Researchers are particularly drawn to the maximum cut problem (max cut)
[41, 30] because it is an NP-hard problem [26] that can be easily expressed within
the QUBO framework [11, 46]. It has been observed that pre-processing the input
before feeding it to QUBO solvers can yield good solutions more efficiently than
using the original data directly. As a result, various studies have introduced pre-
processing strategies specifically designed for the max cut problem to enhance
the solution process [14, 13, 31].

Although minimizing computation time is important for solving the max
cut problem, there is an additional challenge in addressing the problem with
quantum or quantum-inspired QUBO solvers. Since quantum-inspired computers
will not be commercially available for the next several decades, we are compelled
to utilize these solvers through cloud services. This requires us to transmit our
problems to the service providers, a step which often results in communication
becoming a significant bottleneck [43, 28]. Therefore, our focus in this paper is
on diminishing the costs associated with this communication.

1.1 Our Contributions

The communication cost of the max cut problem is strongly related to the num-
ber of edges in the input graph. We therefore propose to use the graph sparsifica-
tion technique by the effective resistance edge sampling [25, 2, 50] to reduce the
communication cost. The effective resistance technique has been demonstrated
to significantly reduce the number of edges in a graph while preserving the cut
size [50].

Let the symbol |V | represent the total number of nodes in our input graph.
Building upon the theoretical foundations presented in [50], we demonstrate that
for any chosen ε > 0, the outcome of our sampling method can yield a solution for
the max cut problem that approximates within a factor of 1+ ε. Simultaneously,

this approach manages to decrease the edge count to O
(
|V | log |V |

ε2

)
.

While a graph with O
(
|V | log |V |

ε2

)
edges is typically considered sparse in

many applications, our experimental findings with both classical and quantum-
inspired solvers demonstrate that setting the number of edges to fewer than
5|V | can still yield a viable approximate solution. Our study encompassed tests
on 17 distinct networks, with node counts ranging from 100 to 12912 and edge
numbers varying from 2124 to 807535. Moreover, these networks have a variety
of topological structures. Remarkably, we have been able to reduce the number
of edges – and consequently, the communication cost – by as much as 90%,
while consistently achieving solutions where the cut size is at most 10% smaller
than the maximum cut. Furthermore, we extracted subgraphs of varying sizes
from two of the networks and verified that similar experimental outcomes are
achievable in each of these subgraphs. This consistently suggests that our findings
can be scaled up to larger networks, for which it is not feasible to upload all
information to the cloud service.
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We have also noticed a decrease in computation time when using classical
QUBO solvers like Gurobi [20] on max cut instances where the edges have been
sparsified using our sampling technique. For instance, while Gurobi could not
complete the task on the original, dense max cut problem within two hours, it
was able to finish in under two seconds after the sparsification has eliminated
90% of the edges. However, we do not consider this improvement as significant,
because these solvers can still quickly find a reasonably good solution for both
the original and the sparsified max cut instances. The reason Gurobi does not
terminate with dense input graphs is primarily due to the extensive time required
to prove the optimality of its solution.

As a pre-processing, our technique can benefit all solvers for max cut. The
solvers which would have the biggest benefit from our pre-processing is the al-
gorithm designed for addressing max cut on sparse graphs such as McSparse [7].
We believe that our pre-processing technique could improve the computation
time of the McSparse algorithm, particularly when applied to dense graphs.

1.2 Related Works

The max cut problem has garnered widespread interest among researchers, lead-
ing to the development of numerous approximation and exact algorithms. Promi-
nent among these are the well-known SDP relaxation algorithm [18, 37, 6] and
algorithms for specific graph types [40, 19, 36, 48]. In this paper, however, our
focus is not on the algorithms for solving the max cut problem itself, but rather
on its pre-processing. Consequently, our algorithm is designed to be compatible
with all these various algorithms.

As outlined in [45], several pre-processing techniques for QUBO solvers have
been developed. Among the most significant are those based on autarkies and
persistencies, which enable the determination of some binary variable values in
the optimal solution [42, 21]. Additionally, there are methods that utilize the up-
per bound of the relaxed program to enhance solver efficiency [5, 12], as well as
approaches centered around variable fixing [3]. These methods have been shown
to yield smaller QUBO instances that can exactly solve the original problems.
In contrast, our paper introduces a pre-processing technique aimed at generat-
ing approximate QUBO instances. Importantly, our approach is designed to be
compatible with these existing pre-processing methods.

The graph sparsification by edge sampling technique has been introduced
to give an efficient algorithm for the maximum flow problem and the sparsest
cut problem [27]. Also, it has been used as a pre-processing of the maximum
cut problem in [1]. The goal of using the sparsification in that paper is not to
reduce the communication cost as in this paper but to increase the precision
of publishing the maximum cut results under differential privacy. Consequently,
the sampling technique in [1] is different from the effective resistance sampling,
which we have used in this paper.
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2 Preliminaries

2.1 Max Cut Problem

Consider a weighted graph (V,E,w), where V represents the set of nodes in
the graph. The set of edges is denoted as E ⊆ {{u, v} : u, v ∈ V, u 6= v}, and
w : E → R≥0 is the weight function assigning a non-negative weight w(e) to each
edge e ∈ E. A cut in graph G is defined as any subset S ⊆ V , with the weight of
the cut S being wG(S) =

∑
{u,v}∈E:u∈S,v/∈S

w({u, v}). The max cut problem aims

to find the cut in G that has the highest weight.

2.2 QUBO Formulation for the Max Cut Problem

The quadratic unconstrained binary optimization (QUBO) is the following math-
ematical programming problem

max
∑
u

∑
v

Qu,vxuxv

subject to xi ∈ {0, 1} for all i.
To express the max cut problem stated in the previous section using QUBO,

we let xu = 1 if u ∈ S and xu = 0 otherwise. Also, let w′({u, v}) = w({u, v})
when {u, v} ∈ E and w′({u, v}) = 0 otherwise. Since x2u = xu when xu ∈ {0, 1},
the weight of a cut S is then

w(S) =
∑

{u,v}∈E:xu=1,xv=0

w({u, v}) =
∑

{u,v}∈E

w({u, v})xu(1− xv)

=
∑
u,v

w′({u, v})xu(1− xv)

=
∑
u

[∑
v

w′({u, v})

]
xu −

∑
u 6=v

w′({u, v})xuxv

=
∑
u

[∑
v

w′({u, v})

]
x2u −

∑
u 6=v

w′({u, v})xuxv.

By defining Qu,u =
∑
v
w′({u, v}) and Qu,v = −w′({u, v}) for u 6= v, we establish

that the objective value of the QUBO corresponds to the cut size, which is
also the objective value of the max cut problem. Consequently, maximizing this
objective value leads to an optimal solution for the max cut problem.

In the context of solving the max cut problem with QUBO solvers available
through cloud services, it becomes necessary to transmit the values of Qu,v for
every pair of u, v. Consequently, the quantity of real numbers required to be
sent is on the order of O(|V |2). This count becomes substantially large for large
graphs, turning the communication cost into a critical bottleneck for the max
cut solver.
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By opting to submit only the non-zero entries of Qu,v, we can significantly
reduce the communication cost. This means sending the QUBO problem in the
format (u, v,Qu,v) where Qu,v 6= 0. From our definition of Qu,v, it is evident
that for u 6= v, Qu,v is non-zero if and only if {u, v} ∈ E. Therefore, the commu-
nication cost with this method of submission is O(|E|), which is substantially
more efficient for scenarios where |E| � |V |2, or in other words, when the input
graph is sparse.

2.3 Graph Sparsification by Effective Resistances [50]

In this section, we explore the concept of graph sparsification through effective
resistances. Consider the input graph denoted as G = (V,E,w). Our objective
is to construct a graph G = (V, E ,w) in such a way that for any cut S ⊆ V ,
the relationship wG(S) ≈ wG(S) holds true. This approach aims to ensure that
the weight of any given cut S in the original graph G closely approximates the
weight of the same cut in the sparsified graph G.

Given a parameter q, this method begins with an initially empty set E . The
process involves selecting edges from the graph G a total of q times to be added
to E . During each selection, every edge e ∈ E has a chance of being chosen, with
this probability denoted as pe and to be detailed in the following paragraph.
If an edge e that is not already in E is selected, we assign its weight in G
as w(e) = w(e)/(q · pe). In cases where e is already in E , we increase w(e)
by w(e)/(q · pe). This approach ensures that each edge’s contribution to the
total weight is adjusted based on its probability of selection and the number of
selections, thereby maintaining the graph’s structure in G.

To establish the probability distribution (pe)e∈E , we start by defining the
concept of effective resistance for each edge e in E, denoted as Re. We treat
the graph G as if it was an electrical circuit, where each edge e is equivalent
to a resistor, the resistance of which is inversely proportional to the weight of
the edge, given as 1/we. In this analogy, the effective resistance Re of an edge
e = {u, v} is understood as the electrical resistance experienced between nodes
u and v.

Subsequently, the probability pe for each edge e is defined as

pe = weRe/
∑
e′∈E

(weRe′).

This formulation assigns higher probabilities to edges with greater effective re-
sistance, reflecting their relative importance in the electrical flow analogy of the
graph.

The following theorem is shown in [50].

Theorem 1. If q = 9|V | · log |V |/ε2, then, for all S ⊆ V , wG(S) ≤ wG(S) ≤
(1 + ε)wG(S).

We have from the theorem that we would obtain a sparse graph with |E| =
O(|V | log |V |) that preserves the cut size by the sparsification technique.
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3 Proposed Method

Our approach is depicted in Figure 1. Rather than directly sending the original
graph G to the QUBO solver provided by cloud services, we initially apply ef-
fective resistance sampling to sparsify the graph. The resultant sparsified graph,
denoted as G, is then submitted to the solver.

Fig. 1: Outline of our proposal

The following theorem is directly followed from Theroem 1.

Theorem 2. Given that S′ is a cut derived from the QUBO solver using our
method, and S∗ represents the optimal maximum cut, we can establish that:

wG(S′) ≤ wG(S∗) ≤ (1 + ε)wG(S′).

Consequently, our algorithm is a (1 + ε)-approximation algorithm for the max
cut problem.

Proof. Because S′ is the optimal max cut solution for the graph G, we have that
wG(S′) ≥ wG(S∗). Applying Theorem 1, we obtain

wG(S′) ≥ 1

1 + ε
wG(S′) ≥ 1

1 + ε
wG(S∗) ≥ 1

1 + ε
wG(S∗).

Hence, wG(S∗) ≤ (1 + ε)wG(S′).

Theorem 1 reveals that |E| = O(|V | log |V |), indicating that the communica-
tion cost associated with sending the sparsified graph G to cloud servers is also
O(|V | log |V |). Therefore, our method can achieve an asymptotic improvement
in communication costs for dense input graphs where the number of edges is
on the order of O(|V |2). However, when dealing with sparse input graphs, our
approach does not yield a significant reduction in communication costs.

In Theorem 2, we assume that our QUBO solver is exact, meaning it al-
ways delivers the optimal solution. However, this result can be extended to sce-
narios where the solver is approximate. If the QUBO solver functions as an
α-approximation algorithm, then the outcome produced by our method can be
demonstrated to be an α(1 + ε)-approximation.
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4 Experimental Results

We conduct experiments on the proposed method and give the experimental
results in this section.

All experiments were carried out on a personal computer running Windows
11, equipped with an 11th Gen Intel(R) Core(TM) i7-1165G7 @2.80GHz CPU
and 16 GB of RAM. The code for these experiments was written in Python.
Furthermore, we utilized publicly available datasets as provided in [38]. How-
ever, as it is assumed by the effective resistance samplings that all weights are
non-negative, the weights used in our experiments are absolute values of those
provided in the publicly available datasets. The values presented in this paper
represent the mean of ten separate replications.

4.1 Gap in Solutions Due to Graph Sparsification

(a) (b)

(c)

Fig. 2: Comparisons of the optimal values derived from the original max cut
instances against the objective values from the sparsified graphs for (a) be120.3.1,
(b) be250.1, and (c) mannino k487.c

In this subsection, we examine the extent to which the optimal solutions
are changed by effective resistance sampling. While our primary focus is on
developing an algorithm suitable for quantum-inspired optimization, for these
experiments, we have opted to use a classical solver, specifically Gurobi [20]. The
rationale behind this choice is Gurobi’s ability to guarantee the optimality of the
solutions it generates. We employ the QUBO optimization feature available in
Gurobi Optimods of Gurobi version 10.0.3.
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(a) (b)

(c)

Fig. 3: Comparisons of the computation time of Gurobi when the inputs are
sparsified graphs for (a) be120.3.1, (b) be250.1, and (c) mannino k487.c

We initially evaluated our proposed methods using three distinct instances,
each varying in node count and type. These instances are “be120.3.1”, “be250.1”,
and “mannino k487c”. The datasets “be120.3.1” and “be250.1” are synthetic
and were utilized in [3]. They were created using generators described in [44].
Specifically, “be120.3.1” comprises 121 nodes and 2242 edges, whereas “be250.1”
contains 251 nodes and 3269 edges. The “mannino k487c” dataset, on the other
hand, is rooted in real-world data concerning radio frequency interferences among
major Italian cities, as detailed in [4]. This dataset features 487 nodes and 8511
edges.

In these experiments, we focus on the variable q, which represents the number
of times edges are sampled from the input graph. We experiment with varying
the value of q. It is crucial to understand that q does not directly correspond to
the number of edges in the sparsified graph, denoted as |E|, since an edge can be
selected multiple times during sampling. However, it is evident that |E| ≤ q, and
generally, a larger q tends to result in a higher number of edges in the sparsified
graph.

Theorem 1 suggests setting q to 9|V |·log |V |
ε2 . While this value is theoretically

smaller than the edge count for dense graphs in an asymptotic sense, the sizeable
constant factor 9

ε2 can lead to a q that exceeds the actual number of edges,
especially when the input graphG is relatively small. Take, for instance, when ε is
0.1, this results in approximately 522261 for “be120.3.1”, 1248200 for “be250.1”,
and 2712316 for “mannino k487c”. Because of this, we have opted to use a
reduced q value for our experimental evaluations.



Utilizing Graph Sparsification for Pre-processing in Max Cut QUBO Solver 9

Figure 2 presents the outcomes for the three specified instances. Examina-
tion of the figure reveals that the objective function improves as more edges
are sampled and the value of q increases. Our method achieves a cut size that
exceeds 90% of the optimal cut size for q ≥ 500 in “be120.3.1”, for q ≥ 1500 in
”be250.1”, and for q ≥ 2000 in “mannino k487c”. Correspondingly, these thresh-
olds yield edge counts of 424 for “be120.3.1”, 1092 for “be250.1”, and 1231 for
“mannino k487c”. These results indicate that our approach not only secures a
0.9-approximation to the solution but also facilitates a substantial reduction
in communication costs—81% for “be120.3.1”, 67% for “be250.1”, and 86% for
“mannino k487c”.

Table 1: The reduction in communication costs and the approximation ratios
achieved by our algorithms across various graph types are detailed in [38]

Dataset Name |V | |E| |E| Reduction Optimal Value Our Objective Value Approx. Ratio
in Comm. Cost

bqp250-1 251 3339 1163.6 0.65151 143669 129863 0.90390
gka1e 201 2124 810.7 0.61831 48263 42829 0.88741
ising2.5-150 6666 150 10722 387.3 0.96388 9067341 8502808 0.93774
g05 100.0 100 2475 452.3 0.81725 1430 1309 0.91538
w05 100.0 100 2343 432.3 0.81549 7737 7033.9 0.90912
G 1 800 19176 3598.3 0.8124 11598 10412.3 0.8978

Our experiment results with these three datasets yield a 0.9-approximation
solution when setting q to roughly 5|V |. Consequently, we extrapolate this find-
ing to additional instance types in [38]. As demonstrated in Table 1, a similar
approximation ratio is achieved for all tested instance types with q set at 5|V |.
Notably, there is a substantial decrease in communication cost particularly when
the original graph G is dense.

4.2 Computation Time in Classical Solver

Because graph sparsification techniques are often employed to reduce compu-
tation time, it is worth investigating whether our sparsification method also
reduces the computational times for classical solvers.

Figure 3 demonstrates that sparsification does indeed have a significant effect
on reducing the computational time for Gurobi. For the original “be120.3.1” and
“be250.1” inputs, the solver requires more than three hours to find a solution,
whereas with the sparsified graphs at q ≈ 5|V |, the computation times drop
dramatically to 2.18 seconds and 16.6 seconds, respectively. There is also a clear
pattern where larger values of q and increased edge counts correlate with longer
computation times.

Despite this, it is noteworthy that Gurobi is able to quickly find reasonably
good solutions for denser graphs. In every test conducted, solutions surpassing
those of the sparsified graphs were obtained in under five seconds using the orig-
inal graphs. A large part of the time that the solver spends on the dense graphs
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is devoted to proving that its solutions are optimal. This leads us to conclude
that reduced computation time may not be a decisive advantage of sparsifica-
tion techniques. Gurobi is capable of providing viable solutions for larger graphs.
Nevertheless, given our focus on quantum-inspired solvers in this paper, we opt
to limit our experiments with Gurobi to cases where it can assure the optimality
of its results.

4.3 Experiments on Quantum-Inspired Solvers

We employed the Fixstars Amplify Annealing Engine [16] to corroborate our
findings with QUBO quantum-inspired solvers. For all instances, whether origi-
nal or sparsified, we imposed a solver time constraint of 10 seconds. Consistent
with the methodology outlined in the preceding section, we set the value of q to
be 5|V | in this experiment.

Table 2: Reduction in communication cost and changes in objective value by
the graph sparsification technique when conducting experiments on QUBO
quantum-inspired solver

Dataset Name Reduction in Changes in
Comm. Cost Objective Value

be120.3.1 0.779 0.911
be250.1 0.704 0.891
mannino k487.c 0.835 0.92
bqp250-1 0.71 0.895
gka1e 0.65 0.909
ising2.5-150 6666 0.964 0.947
g05 100.0 0.816 0.908
w05 100.0 0.812 0.902
G 1 0.812 0.897

Table 2 shows that the outcomes obtained using quantum-inspired solvers
align closely with those presented in Table 1, confirming consistency across all
datasets tested with the classical solver.

We also conducted experiments to test the effectiveness of our pre-processing
methods on large graphs and real-world social networks. Our findings, presented
in Table 3, demonstrate that our approach yields consistent results even with
graphs exceeding 100,000 edges. We used graphs generated by a tool given in
[24]. Specifically, rnd graph1000 10 1 is a randomly generated graph with 1,000
nodes, a 10% connection density, and seed = 1. The leap xx y z graphs rep-
resent leap graphs on y-dimensional chessboards of size xx, with the “z” pa-
rameter indicating the graph type: root graphs for z = 1 and bishop graphs
for z = 2. Additionally, “facebook”, “congress”, and “wiki vote” were sourced
from the Stanford large network dataset collection, representing real social net-
works [33]. These networks have been previously analyzed in several notable
studies on social network behavior and characteristics [34, 32, 15]. The graph la-
beled “gplus 100000” represents a subgraph of the gplus network, induced by
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the initial 100,000 edges listed in the file. Given that this selection includes some
repeated edges, the resulting graph comprises 12,912 nodes and 807,535 edges.
This specific subset was chosen because the basic package of the Fixstars Amplify
Annealing Engine supports a maximum of 16,000 nodes.

Table 3: Reduction in communication costs and changes in objective values
by the graph sparsification technique when conducting experiments on QUBO
quantum-inspired solver

Dataset Name |V | |E| |E| Reduction Optimal Value Our Objective Value Reduction
in Comm. Cost in Obj. Value

rnd graph1000 10 1 1000 49950 4752 0.90486 28587 26019.8 0.91020
leap 30 2 1 900 26100 401 0.98464 202500 178281.6 0.88040
leap 30 2 2 900 17110 3739.8 0.78143 101250 89984.5 0.88874
leap 10 3 1 1000 13500 3982.2 0.70502 37500 32921.9 0.87792
leap 10 3 2 1000 17100 4148.1 0.75742 31284 27711.2 0.88579
facebook 4039 88234 15874.2 0.82009 50600 46368.3 0.91637
congress 475 13289 1940.5 0.85398 38.98 34.37 0.88173
wiki vote 7115 103689 22078.7 0.78707 73407 67675.3 0.92192
gplus 1000000 12912 807535 56175.7 0.93043 563656 400932.1 0.71131

Moreover, experiments were carried out on subgraphs of varying sizes derived
from wiki vote. These subgraphs were obtained through random walks to main-
tain the integrity of the network’s structure. The data presented in Table 4 indi-
cates that across all subgraph sizes tested, the cost reduction and approximation
ratios achieved were consistent. This consistency leads us to posit that compa-
rable outcomes are attainable for substantially larger graphs. Consequently, our
pre-processing technique has the potential to markedly diminish communication
costs in such scenarios.

Table 4: Reduction in communication costs and changes in objective values
of subgraphs of the wiki vote graph obtained from random walks on QUBO
quantum-inspired solver

Random Walk |V | |E| |E| Cost Optimal Our Objective Approx.
Length Reduction Solution Value Ratio

500 411 6523 1640.8 74.85% 4371 3749.4 85.78%
1000 755 18703 3208.6 82.84% 12563 10658.3 84.84%
1500 985 25812 4169.4 83.85% 17295 14861.8 85.93%
2000 1206 34352 5154 85.04% 23352 20100.4 86.08%
2500 1411 43040 6087.5 85.86% 29164 25123.8 86%
3000 1524 47535 6544.3 86.23% 32296 27871.2 86.30%
3500 1653 51371 7099.4 86.18% 35361 30478.3 86.19%
4000 1807 56964 7742.6 86.41% 39199 34066.9 86.91%
4500 1928 61425 8207.1 86.64% 42419 37179.1 87.65%
5000 2038 63534 8679.2 87.26% 43846 38260.9 87.26%

Table 5 displays the results for the Facebook network’s subgraphs. It is ev-
ident that there’s a variation in cost reduction among these subgraphs. This
variation is likely a consequence of the network’s multi-cluster structure, with
each cluster possessing a distinct edge density, leading to differing levels of cost
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reduction. The random walk method does not uniformly sample nodes across
clusters, resulting in varied cost reduction outcomes for the graphs generated by
the algorithm. Although the cost reduction figures exhibit some fluctuation, they
consistently fall within the range of 75% to 90%. On the other hand, despite the
varied structures of each subgraph, the approximation ratio remains consistent
across all experiments, lying within the 91% to 93% bracket.

Table 5: Reduction in communication costs and changes in objective values
of subgraphs of the facebook graph obtained from random walks on QUBO
quantum-inspired solver

Random Walk |V | |E| |E| Cost Optimal Our Objective Approx.
Length Reduction Solution Value Ratio

500 312 13305 1390.1 89.55% 7298 6772.1 92.79%
1000 684 12186 2715.3 77.72% 7043 6452.4 91.61%
1500 882 25028 3658.2 85.38% 14029 12948.9 92.30%
2000 1022 16441 4045.3 75.40% 9600 8775.5 91.41%
2500 982 35349 4238.3 88.01% 19685 18181.6 92%
3000 1355 42222 5799 86.26% 23689 21843.5 92.21%
3500 1465 30107 5968.2 80.20% 17375 15889.8 91.45%
4000 1709 50934 7285.1 85.70% 28637 26409.1 92.22%
4500 1898 47302 7949.8 83.19% 26859 24618.1 91.66%
5000 1828 57824 7851.5 86.42% 32543 29918 91.93%

4.4 Discussions on Results on Classical and Quantum-Inspired
Solvers

The argument could be made that similar or even superior approximation ra-
tios to those achieved in our research might be attainable using an approxima-
tion algorithm based on semi-definite programming, as demonstrated in previous
studies [18, 37]. This algorithm is indeed capable of providing polynomial-time
approximation solutions for max cut problems. However, a notable limitation of
semi-definite programming is its computational intensity, particularly for prob-
lems involving over 100,000 nodes [29], where local execution becomes impracti-
cal. In such scenarios, our method proves advantageous, offering a viable solution
by enabling the processing of these large instances through cloud services.

In these experiments, our primary objective is to demonstrate that edge sam-
pling can yield reasonable approximation ratios. Therefore, we confined our ex-
perimentation to smaller instances (with |V | ≤ 12912) where obtaining optimal
solutions is feasible. Nonetheless, given the consistent results across all tested
instance sizes, we are confident that similar outcomes would be achievable with
larger graphs.

5 Conclusion and Future Works

We introduce the application of graph sparsification as a pre-processing step
for solving the maximum cut problem in cloud-based environments. Our ex-
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perimental results demonstrate that this approach, when applied to classical
and quantum-inspired solvers, consistently yields solutions with an approxima-
tion ratio of about 0.9, while simultaneously achieving a significant reduction in
communication costs to cloud servers, ranging between 60% and 95%.

In our future research, we plan to expand our experiments to include quan-
tum solvers. At present, quantum solvers are limited to addressing small-scale
max cut instances. As a result, the communication overhead required to send
the max cut problem to the solvers is not significantly high at this point. On
the other hand, it is understood that a sparser graph results in shallower quan-
tum circuits, thereby reducing the noise in quantum computations. The graph
sparsification technique has already been used for solving max cut for the noisy
data published under differential privacy [1]. Additionally, a recent work [23]
highlights that an increased number of edges may result in higher complexity
during circuit optimization processes. A dense input graph reduces the likelihood
of achieving an efficient quantum circuit. In summary, we hypothesize that the
graph sparsification could improve solution quality and simplify the process of
optimizing quantum circuits.

Pre-processing techniques for combinatorial optimization problems utilizing
machine learning algorithms have been proposed in previous studies [51, 35].
However, our initial experiments suggest that directly applying these methods
to the max cut problem may not yield the best results. We observed that a
machine learning model trained on small graphs does not effectively transfer to
larger graphs within this problem domain. As a result, our future work aims to
develop a machine learning-based sparsification technique specifically tailored
for the max cut problem.
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