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Abstract

This paper presents a hybrid metaheuristic approach (HMA) for solving the Un-
constrained Binary Quadratic Programming (UBQP) problem. By incorporating a
tabu search procedure into the framework of evolutionary algorithms, the proposed
approach exhibits several distinguishing features, including a diversification-based
combination operator and a distance-and-quality based replacement criterion for
pool updating. The proposed algorithm is able to easily obtain the best-known
solutions for 31 large random instances up to 7000 variables (which no previous
algorithm has done) and find new best solutions for 3 of 9 instances derived from
the set partitioning problem, demonstrating the efficacy of our proposed algorithm
in terms of both solution quality and computational efficiency. Furthermore, some
key elements and properties of the HMA algorithm are also analyzed.
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1 Introduction

The objective of the unconstrained binary quadratic programming problem is
to maximize the function:
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f(x) = x′Qx =
n∑

i=1

n∑

j=1

qijxixj (1)

where Q = (qij) is an n×n matrix of constants and x is an n-vector of binary
(zero-one) variables, i.e., xi ∈ {0, 1}, i = 1, . . . , n.

Besides its theoretical significance as a canonical NP-hard problem [13], the
UBQP is notable for its ability to formulate a wide range of important prob-
lems, including those from computer aided design [28], social psychology [21],
traffic management [12,45], financial analysis [29,34], machine scheduling [1]
and cellular radio channel allocation [10]. Moreover, the application poten-
tial of UBQP is much greater than might be imagined, due to the ability to
incorporate quadratic infeasibility constraints into the objective function in
an explicit manner. This re-formulation process enables UBQP to serve as a
common model for a wide range of combinatorial optimization problems. A
review of additional applications and the re-formulation procedures can be
found in [26] demonstrating the utility of UBQP for a variety of applications,
such as the vertex coloring problem [27], the set packing problem [2], the
set-partitioning problem [30] and the linear ordering problem [31].

Given the relevance of the UBQP across a broad spectrum of problems, a
large number of procedures for solving this model have been reported in the
literature. Among them are several exact methods using branch and bound or
branch and cut (see, e.g., [8,22,23,42]), but the high computational complexity
of UBQP and the breadth of applications it embraces has led to the finding
that, apart from isolated cases, problems of sizes larger than n = 100 cannot
be solved by these exact methods in a reasonable time.

For larger instances, the exact methods become prohibitively expensive to ap-
ply. By contrast, variants of metaheuristic algorithms have been extensively
used to solve UBQP and shown to be effective to find high-quality solutions
in an acceptable time. Some representative metaheuristic methods include
local search based approaches, both direct [9] and using Simulated Anneal-
ing [3,6,24]; adaptive memory approaches based on Tabu Search [6,16,40,41];
population-based approaches such as Evolutionary Algorithms [7,25,32,35],
Scatter Search [4] and Memetic Algorithms [37]; and specially designed one
pass heuristics [17].

This paper presents a hybrid metaheuristic algorithm for the UBQP, which
integrates a tabu search procedure with an evolutionary approach, hence plac-
ing it in the category of a memetic algorithm (see, e.g., [38,39]). Our proposed
algorithm is characterized by several features that enhance its effectiveness.
First, we introduce a diversification-guided combination operator based on
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path-relinking, called DG/PR operator to produce a combination scheme that
more fully exploits the problem structure within the present context. Second,
the proposed DG/PR operator is jointly employed with the conventional uni-
form crossover operator of genetic algorithms to generate a diversified set of
new solutions. Finally, our algorithm relies on a quality-and-distance replace-
ment strategy for population updates to maintain the population diversity.
These features distinguish our algorithm from previous population-based al-
gorithms reported in [7,25,35,37].

To assess the performance and the competitiveness of our memetic algorithm
in terms of both solution quality and efficiency, we provide computational
results on the 31 large random benchmark instances with up to 7000 variables
as well as 9 instances derived from the set partitioning problem, comparing
our outcomes with the best results of the literature.

The remaining part of the paper is organized as follows. In Section 2, the in-
gredients of our algorithm are described, including the tabu search procedure,
the diversification-guided combination operator and the pool updating rule.
Sections 3 is dedicated to the computational results. Section 4 investigates
several essential components of the proposed HMA algorithm and concluding
remarks are given in Section 5.

2 Hybrid Evolutionary Algorithm

2.1 Main Scheme

Hybrid (memetic) evolutionary algorithms are known to be highly effective for
solving a large number of constraint satisfaction and optimization problems.
By combining the more global recombinant search and the more intensive local
search, the memetic framework offers a useful balance between intensification
and diversification as a means of exploiting the search space.

In principle, our hybrid metaheuristic algorithm (HMA) repeatedly alternates
between a combination operator that is used to generate new offspring so-
lutions and a tabu search procedure that optimizes the newly generated off-
spring solutions. As soon as an offspring solution is improved by tabu search,
the population is accordingly updated based on two criteria: solution quality
and population diversity.

The general architecture of the HMA algorithm is described in Algorithm
1. It is composed of four main components: population initialization, a tabu
search procedure, a combination operator and a population updating rule
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Algorithm 1 Pseudo-code of our memetic algorithm for UBQP
1: Input: matrix Q

2: Output: the best binary n-vector x∗ found so far
3: P = {x1, . . . , xp} ← Population Initialization( ) /∗ Section 2.3 ∗/
4: for i = {1, . . . , p} do

5: xi ← Tabu Search(xi) /∗ Section 2.4 ∗/
6: end for

7: x∗ = arg max{f(xi)|i = 1, . . . , p}
8: repeat

9: randomly choose two individuals xj and xk from P

10: x0 ← Combination Operator(xj , xk) /∗ Section 2.5 ∗/
11: x0 ← Tabu Search(x0) /∗ Section 2.4 ∗/
12: if f(x0) > f(x∗) then

13: x∗ = x0

14: end if

15: {x1, . . . , xp} ← Pool Updating(x0, x1, . . . , xp) /∗ Section 2.6 ∗/
16: until a stop criterion is met

. Starting from an initial random population, HMA uses the TS procedure
to optimize each individual to reach a local optimum (lines 4-6). Then, the
combination operator is employed to generate new offspring solutions (line
10), whereupon a new round of TS is again launched to optimize the objective
function. Subsequently, the population updating rule decides whether such an
improved solution should be inserted into the population and which existing
individual should be replaced (line 15). In the following subsections, the main
components of our memetic algorithm are described in details.

2.2 Search Space and Evaluation Function

The search space of our algorithm consists of all the binary n-vectors. Thus,
the size of the whole search space equals 2n. The evaluation function that the
HMA algorithm employs is just the objective function f(x) in Eq. (1).

2.3 Initial Population

In HMA, the individuals of initial population are generated randomly, i.e.,
each variable of an individual solution is assigned a value 0 or 1 with equal
probability. Then, each individual is further optimized by a TS procedure.
Moreover, we take advantage of the initialization step to build a diversified
population. A new individual is added to the population only if it is not
too close to any of the existing solutions of the population. Otherwise, the
individual is discarded and another new individual is generated. The distance
threshold for executing this rule is discussed in Section 2.6. Let us mention that
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in general the initial solutions have limited influence on the solution quality
obtained by the HMA algorithm.

2.4 Tabu Search Procedure

As demonstrated in [16] and more recently in [20,40,41], TS is one of the most
successful approaches for the UBQP. In this paper, we employ a TS algorithm
based on a simple one-flip move neighborhood. The one-flip move consists of
changing (flipping) the value of a single variable xi to its complementary value
1− xi. It is clear that the size of this neighborhood is bounded by O(n), i.e.,
at most n moves are required to go from any solution to any other solution.

For large problem instances, it is necessary to be able to rapidly determine
the effect of a move on the objective function f(x). In our implementation,
this neighborhood uses a fast incremental evaluation technique introduced in
[16] and enhanced in [18] to calculate the cost (move value) of transitioning
to each neighboring solution. The procedure maintains a data structure that
stores the move value (change in f(x)) for each possible move, and employs a
streamlined calculation for updating this data structure after each iteration.

More formally, let N = {1, . . . , n} denote the index set for components of the
x vector. We preprocess the matrix Q to put it in lower triangular form by
redefining (if necessary) qij = qij+qji for i > j, which is implicitly accompanied
by setting qji = 0 (though these 0 entries above the main diagonal are not
stored or accessed). Let ∆i be the move value of flipping the variable xi, and
let q(i,j) be a shorthand for denoting qij if i > j and qji if j > i. Then each
move value can be calculated in linear time using the formula:

∆i = (1− 2xi)(qii +
∑

j∈N,j 6=i,xj=1

q(i,j)) (2)

Once a move is performed, one needs just to update a subset of move values
affected by the move. Specifically, the following abbreviated calculation can
be performed to update the move values upon flipping a variable xi:

(1) ∆i = −∆i

(2) For each j ∈ N − {i},
if xj = xi, ∆j = ∆j + q(i,j)

if xj = 1− xi, ∆j = ∆j − q(i,j)

We employ the convention that xi represents xi’s value before being flipped.

TS typically incorporates a tabu list as a “recency-based” memory structure
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to assure that solutions visited within a certain span of iterations, called the
tabu tenure, will not be revisited [14]. In our implementation, each time a
variable xi is flipped, a value is assigned to an associated record TabuTenure(i)
(identifying the “tabu tenure” of xi) to prevent xi from being flipped again for
the next TabuTenure(i) iterations. For the current study, we elected to set

TabuTenure(i) = tt + rand(10) (3)

where tt is a given constant and rand(10) takes a random value from 1 to 10.

Our TS algorithm then restricts consideration to variables not currently tabu,
and selects a variable to flip that produces the best (largest) ∆i value. In the
case that two or more moves have the same best move value, ties are broken
randomly.

Accompanying this rule, a simple aspiration criterion is applied that permits
a move to be selected in spite of being tabu if it leads to a solution better than
the current best solution. Our TS method stops when the best solution cannot
be improved within a given number α of moves and we call this number the
improvement cutoff.

2.5 Combination Operator

In HMA, we jointly use two kinds of combination operators to generate both
suitable and diversified offspring: one is the uniform crossover widely used
in the literature; the other is a diversification-guided combination operator
proposed in this paper. At each iteration, we randomly choose one of these
two operators with equal probability to generate new offspring solutions.

2.5.1 Parent selection

The application of both combination operators used in our algorithm is con-
trolled by the Hamming distance hij between two parent solutions xi and xj

(i.e., hij equals the number of variables that receive different values in the par-
ents). We require that two solutions chosen as parents must satisfy hij > h,
where h denotes the average distance between pairs of solutions in the pop-
ulation. Therefore, we have h = 2

p(p−1)

∑p
i=1

∑p
j=i+1 hij, where p denotes the

population size.
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2.5.2 Uniform crossover

The main idea of uniform crossover is to assign values to the variables of
offspring that represent assignments made in common by both parents, and
to randomly assign values to remaining variables of the offspring solution [44].
However, the fitness landscape analysis conducted in [37] has shown that in
some cases uniform crossover may not be effective for the UBQP problem, since
the probability that the offspring is identical to one of the parents after the
crossover and local search is high. In order to fix this drawback, we propose the
following DG/PR combination procedure to generate offspring whose solution
quality and diversity are both reasonably respected.

2.5.3 Diversification-guided path-relinking

Due to the disadvantages of uniform crossover mentioned above, we attempt to
design a combination procedure that is able to diversify the search trajectory
even after the local search improvement. For this we draw on an instance of the
evolutionary path-relinking type of combination (see, e.g., [15]). The design of
our procedure is guided by two main objectives inherent in path-relinking: one
is to diversify the search trajectory; the other is to explore new search regions
that are promising. For this purpose, we construct an offspring solution by
considering both the solution quality and its distance to its parent solutions.

On the one hand, if we could control the distance between an offspring solution
and its two parents, it would be possible to generate a diversified offspring
relative to its parents. On the other hand, it is useful to take into account the
objective function during the construction of the offspring such that it might
be able to visit search regions which are different from those containing their
parent solutions. Path-relinking is a natural mechanism for integrating these
two types of control.

Our DG/PR procedure begins by exploiting the connection between path-
relinking and scatter search, by first producing a basic scatter search com-
bination x0 = {x0

1, . . . , x
0
n} to yield the initiating solution for path-relinking,

setting

x0 = .5(xi + xj) (4)

where xi = {xi
1, . . . , x

i
n} and xj = {xj

1, . . . , x
j
n} are two selected parent solu-

tions. (This commonly used instance of a scatter search combination is also
implicitly used as a starting point in [37].)

Let C and NC denote respectively the index set of the common and uncommon
variables, i.e. C = {t|t ∈ N, xi

t = xj
t} and NC = {t|t ∈ N, xi

t 6= xj
t} and let xc
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denote either of the two parent solutions; hence c = i or c = j. Then we may
equivalently identify x0 by

x0
t =





xc
t , t ∈ C;

0.5, t ∈ NC.
(5)

We now take xi and xj as the guiding solutions for x0 using the customary
path-relinking design, where at each step we replace a selected component of
x0 by the corresponding component of xc for c = i or j. By the usual choice
rule, we select the component xc

t for t ∈ NC that produces a new x0 with the
best objective function evaluation. In addition, we alternate the choice of the
guiding solution so that c = i on odd steps and c = j on even steps.

In particular, we first calculate, for each xt, t ∈ NC, a move value gc
t of

changing x0
t from 0.5 to xc

t . Then we sequentially fix, in k (1 ≤ k ≤ |NC|)
steps, each variable in NC by changing its value from 0.5 to 0 or 1, where
xc = xi or xj according to whether k is odd or even. Then, we select xt∗ having
the best move value gc

t (i.e., t∗ = arg max{gc
t |t ∈ NC}) and assign xc

t∗ to x0
t∗ .

After this assignment NC = NC − {t∗} and the move values gc
t are updated

for the new NC.

The Pseudo-code of this offspring construction procedure is presented in Al-
gorithm 2. One observes that offspring x0 generated by this procedure has
essentially the same Hamming distance |NC|/2 to its two parents (referring
here to the original NC, and rounding |NC|/2 down for one parent and up
for the other, as appropriate). Because of the path-relinking choice of a best
component to transfer from the chosen xc to x0 at each step, the resulting
offspring x0 is of relatively high solution quality, and its final separation of
|NC|/2 from xi and xj reduces the possibility of repeating its parent solutions
after the tabu search procedure.

2.6 Population Updating

In the HMA algorithm, when an offspring x0 is obtained by the combination
operator, we improve x0 by the tabu search algorithm and then decide whether
the offspring should be inserted into the population, replacing the worst so-
lution in the population according to a distance-and-quality goodness score
function. The main idea is to favor the inclusion of x0 in the population if x0

is “good enough” (in terms of its objective function evaluation) and is not too
similar to any current solution in the population. The approach of account-
ing for (and hence avoiding) similarity in population updating is commonly
employed in scatter search and path-relinking methods. (See, e.g., the survey
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Algorithm 2 Pseudo-code of the DG/PR Combination Procedure

1: Input: Two parents xi and xj

2: Output: One offspring x0

% lines 3–4: create the initial x0

% lines 5-13: update x0 by path-relinking
3: Identify the sets of common and uncommon variables C and NC

4: Initialize the value assignments of x0 according to Eq. (5)
5: Calculate the move values for changing x0

t from 0.5 to xi
t (gi

t) or x
j
t (gj

t )
6: for k = 1, . . . , |NC| do

7: Select parent xc to be considered: if k is odd, then c = i, else c = j

8: Rank all gc
t values in a decreasing order, where t ∈ NC

9: Select xt∗ with the best move value gc
t

10: Copy the value assignment in xc to variable xt∗ : x0
t∗ = xc

t∗

11: Update all gc
t values (t ∈ NC) affected by the move

12: NC :← NC − {t∗}
13: end for

[43].)

For the UBQP problem, the similarity between two solutions is generally mea-
sured by the Hamming distance between two solutions, which is defined as the
number of positions at which the corresponding values are different. In other
words, it measures the minimum number of flip moves required to change one
solution into the other. In this paper, we propose a different type of distance
definition for estimating the similarity between two solutions. The basic idea
is that, in contrast to treating each variable the same as in the Hamming
distance, we account for the importance of the variables when calculating the
distance. It is reasonable to think that a variable xi associated with large val-
ues of |qii| and |

∑n
j=1 qij| is more important than another variable associated

with small values of these quantities. This idea is also in accordance with the
spirit of the basic one-pass heuristic of [17]. In order to make things clearer,
we make use of the following definitions:

Definition 1. Variable’s Importance: The importance of the ith variable
xi of a solution x is defined as:

V Ii = (|qii|+ ϕ
n∑

j=1

|qij|)
1

2 (6)

where ϕ is a small constant parameter. In this paper, we empirically set ϕ =
0.2.

Definition 2. Distance Between two Solutions: Given two solutions xa =
{xa

1, . . . , x
a
n} and xb = {xb

1, . . . , x
b
n}, the distance between xa and xb is defined

as the total sum of the importance of the variables having different values in
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the two solutions, denoted by dab:

dab =
n∑

i=1,xa
i
6=xb

i

V Ii (7)

Definition 3. Distance Between one solution and a Population: Given
a population P = {x1, . . . , xp} and the distance dij between any two solutions
xi and xj (i, j = 1, . . . , p, i 6= j), the distance between a solution xi (i =
1, . . . , p) and the population P is defined as the minimum distance between
xi and any other solution in P , denoted by Di,P :

Di,P = min{dij|x
j ∈ P, j 6= i} (8)

Definition 4. Goodness Score of a solution for a Population: Given a
population P = {x1, . . . , xp} and the distance Di,P for any solution xi (i =
1, . . . , p), the goodness score of solution xi for population P is defined as:

g(i, P ) = βÃ(f(xi)) + (1− β)Ã(Di,P ) (9)

where f(xi) is the objective function value of solution xi and Ã(·) represents
the normalized function:

Ã(y) =
y − ymin

ymax − ymin + 1
(10)

where ymax and ymin are respectively the maximum and minimum values of y
in the population P . The number “1” is used to avoid the possibility of a 0
denominator. β is a constant parameter and we empirically set β = 0.6 in this
paper.

It is clear that the greater the goodness score g(i, P ), the better solution xi.
This goodness score function simultaneously considers the factors of solution
quality and diversity of the population. On the one hand, we should maintain
a pool of elite solutions. On the other hand, we have to emphasize the impor-
tance of the diversity of the solutions to avoid a premature convergence of the
population.

The Pseudo-code of our pool updating strategy is presented in Algorithm
3. Given an offspring x0 optimized by tabu search and a population P =
{x1, . . . , xp}, we use the following rule to decide whether x0 should be inserted
into the population. First of all, x0 is temporarily inserted into the population
P (line 3). Then, the goodness score for each solution xi ∈ P ′ is calculated
according to Eq. (9) (lines 4–7) and the worst solution in the original popula-
tion P (with the smallest value of goodness score) is identified, denoted by xw
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(line 8). If the goodness score of the offspring solution x0 is no smaller than
that of the worst solution xw, then x0 will be inserted into the population and
replace xw. Otherwise, the worst solution xw is replaced by x0 with a small
probability wp = 0.3 (lines 9–11). This strategy is used to avoid the premature
of the population.

Algorithm 3 Pseudo-code of the Pool Updating Strategy

1: Input: Population P = {x1, . . . , xp} and offspring solution x0

2: Output: Updated Population P = {x1, . . . , xp}
3: Tentatively add x0 to Population P : P ′ = P ∪ {x0}
4: for i = 0, . . . , p do

5: Calculate the distance between xi and P ′ according to Eq. (8)
6: Calculate the goodness score of xi (g(i, P ′)) according to Eq. (9)
7: end for

8: Identify the solution with the worst goodness score in the original population P :
xw = arg min{g(i, P ′)|i = 1, . . . , p}

9: if g(0, P ′) ≥ g(w, P ′) or rand(0, 1) < 0.3 then

10: Replace xw with x0: P = P ∪ {x0}\{xw}
11: end if

3 Computational Results

In this section, we report intensive experimental results of the HMA algorithm
on 40 large and difficult instances available in the literature and compare them
with those of the best performing algorithms 1 .

3.1 Test Instances

Three sets of test problems are considered in the experiments, in total con-
stituting 40 instances. The first set of benchmarks is composed of 10 large
instances of size n = 2500 introduced in [6] and available in the ORLIB [5].
They all have a density of 0.1 and are named by b2500.1,. . .,b2500.10. These
instances are frequently used in the literature by many authors, see for in-
stance [6,24,36,37,40,41]. Note that the small test instances from the ORLIB
whose sizes range from n=50 to 1000 and the similarly small instances from
[16] are not considered here, since they present no challenge for the HMA
algorithm. Specifically, all their best known objective values can be obtained
within 2 seconds by our algorithm.

1 Our results are available at: http://www.info.univ-angers.fr/pub/hao/HMA U
BQP.html.
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Table 1
Settings of important parameters

Values
Parameters Section Description

Random SPP

tt 2.4 tabu tenure constant n/150 n/50

α 2.4 improvement cutoff of TS 5 n 15 n

ϕ 2.6 variable importance coefficient 0.2 0.2

β 2.6 goodness score coefficient 0.6 0.6

p 2.6 population size 20 20

The second set of benchmarks consists of a set of 21 randomly generated
large problem instances named p3000.1,. . .,p7000.3 with sizes ranging from
n=3000 to 7000 and with densities from 0.5 to 1.0 [40,41]. The sources of the
generator and input files to replicate these problem instances can be found at:
http://www.soften.ktu.lt/∼gintaras/ubqop its.html. Experiments reported in
[40,41] showed that these large instances are particularly challenging UBQP
problems.

The third set of benchmarks include 9 instances derived from the set parti-
tioning problem, named spp1,. . .,spp9, with variable sizes ranging from 600 to
1000. This set of instances and the best results obtained by CPLEX solver are
available at: http://academic.missouriwestern.edu/mlewis14/ProblemSets/su
mmary table.htm. For the approach to convert a set partitioning problem into
a UBQP problem, interested readers are referred to [30].

3.2 Experimental Protocol

Our algorithm is programmed in C and compiled using GNU GCC on a PC
running Windows XP with Pentium 2.66GHz CPU and 512M RAM. All com-
putational results were obtained without special tuning of the parameters, i.e.,
all the parameters used in our algorithm are fixed (constant) for all instances
considered. Table 1 gives the descriptions and settings of the parameters used
in the HMA algorithm, where the last two columns respectively denote the
settings for the set of 31 random instances and the set of 9 set partitioning
instances. Given the stochastic nature of the HMA algorithm, each problem
instance is independently solved 20 times.

3.3 Computational Results on the Random Instances

Our first experiment aims to evaluate the HMA algorithm on the 31 random
instances with 2500 to 7000 variables (the first two sets). The results of this
experiment are summarized in Tables 2 and 3. The stop condition for the 10
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Table 2
Computational results on the 10 large Beasley instances with 2500 variables

HMA Algorithm
Instance dens fprev

fbest gbest gavr suc tbest tavr

b2500.1 0.1 1515944 1515944 0 0.0 20/20 1.41 2.56

b2500.2 0.1 1471392 1471392 0 20.2 18/20 1.87 20.6

b2500.3 0.1 1414192 1414192 0 0.0 20/20 1.72 12.7

b2500.4 0.1 1507701 1507701 0 0.0 20/20 0.86 1.23

b2500.5 0.1 1491816 1491816 0 0.0 20/20 0.49 1.56

b2500.6 0.1 1469162 1469162 0 0.0 20/20 1.21 3.45

b2500.7 0.1 1479040 1479040 0 0.0 20/20 1.77 13.2

b2500.8 0.1 1484199 1484199 0 0.0 20/20 1.19 5.34

b2500.9 0.1 1482413 1482413 0 0.0 20/20 2.76 15.9

b2500.10 0.1 1483355 1483355 0 0.0 20/20 1.37 17.6

Average 0 2.02 19.8/20 1.47 9.41

Beasley instances is set to be 40 seconds. For the instances with 3000, 4000,
5000, 6000 and 7000 variables, the time limit for a single run is respectively
set to be 5, 10, 20, 30 and 50 minutes on our computer. Note that this time
cutoff is the same as in [41], which uses a Pentium III 800 PC and the time
limit in [41] was set to be 3 times of the above values (since our computer is
about 3 times faster than theirs) 2 .

Tables 2 and 3 respectively show the computational statistics of the HMA
algorithm on the 10 ORLIB instances with 2500 variables and the 21 large
random instance with 3000 to 7000 variables. In both tables, columns 2 and
3 respectively give the density (dens) and the previous best objective values
(fprev). Note that in Table 3, the best objective values fprev are compiled from
Tables 4 and 7 in [41] and Table 8 in [20]. They are the current best known
results for these 21 problem instances.

Columns 4 to 9 give our results: the best objective value (fbest), the best
solution gap to the previous best known objective values gbest (i.e., fprev −
fbest), the average solution gap to the previous best objective values gavr (i.e.,
fprev − favr) (where favr represents the average objective value over 20 runs),

2 We tested a benchmark program on our computer and a Pentium
III 800 PC with 512M memory and found that the exact speed ra-
tio of these two computers is 2.92. This benchmark program is used
by the second International Timetabling Competition and available at:
http://www.cs.qub.ac.uk/itc2007/benchmarking/benchmark machine.zip.
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Table 3
Computational results on the 21 larger random instances with 3000 to 7000 variables

HMA Algorithm
Instance dens fprev

fbest gbest gavr suc tbest tavr

p3000.1 0.5 3931583 3931583 0 0.0 20/20 3.63 42.5

p3000.2 0.8 5193073 5193073 0 0.0 20/20 5.52 54.8

p3000.3 0.8 5111533 5111533 0 32.6 17/20 8.58 92.9

p3000.4 1.0 5761822 5761822 0 0.0 20/20 7.78 106.1

p3000.5 1.0 5675625 5675625 0 144.8 15/20 22.6 123.5

p4000.1 0.5 6181830 6181830 0 0.0 20/20 4.99 48.8

p4000.2 0.8 7801355 7801355 0 142.4 17/20 34.4 267.4

p4000.3 0.8 7741685 7741685 0 6.0 19/20 35.4 276.1

p4000.4 1.0 8711822 8711822 0 37.8 18/20 53.1 273.7

p4000.5 1.0 8908979 8908979 0 546.2 12/20 89.7 305.2

p5000.1 0.5 8559680 8559680 0 506.8 4/20 153.2 587.3

p5000.2 0.8 10836019 10836019 0 512.3 6/20 98.7 463.8

p5000.3 0.8 10489137 10489137 0 332.1 14/20 364.5 758.3

p5000.4 1.0 12252318 12252318 0 1228.2 3/20 789.6 1452.6

p5000.5 1.0 12731803 12731803 0 284.3 16/20 212.3 685.6

p6000.1 0.5 11384976 11384976 0 139.7 12/20 727.7 994.3

p6000.2 0.8 14333855 14333855 0 525.7 6/20 965.3 1332.1

p6000.3 1.0 16132915 16132915 0 2310.5 3/20 676.5 1405.6

p7000.1 0.5 14478676 14478676 0 818.5 5/20 987.3 1435.2

p7000.2 0.8 18249948 18249948 0 1322.9 2/20 1254.7 1769.8

p7000.3 1.0 20446407 20446407 0 1385.6 7/20 1868.5 2456.3

Average 0 489.4 12.2/20 418.1 746.6

the success rate (suc) for reaching the best known results fprev, the best and
the average CPU time (seconds) for reaching the best results fbest (denoted by
tbest and tavr respectively) over 20 runs. Furthermore, the last row “Average”
indicates the summary of our algorithm’s average performance.

Table 2 discloses that HMA can stably reach all the previous best objective
values for the 10 largest Beasley instances within 22 seconds on average. In par-
ticular, our algorithm can reach all the previous best objective values within
3 seconds in the best case out of the 20 runs. Table 3 shows that for the 21
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large and difficult random instances, our algorithm can also easily reach the
previous best known objective values within the given time limit. The average
gap to the previous best objective values (gavr) is 489.4 for these instances.
The average success rate is about 12 out of 20 runs for this set of benchmarks.
The average CPU time to obtain the best known objective values is 746.6 sec-
onds. It should be noticed that our computing time to reach the best known
objective values is much shorter than those reported in previous studies like
[41,20].

In order to further evaluate our HMA algorithm, we compare our results with
some best performing algorithms in the literature. For this purpose, we restrict
attention to comparisons with five methods that have reported the best results
for the more challenging problems. These methods are respectively named ITS
[41], MST1 [40], MST2 [40], SA [24] and D2TS [20].

Table 4 shows the best results of our HMA algorithm compared with the
reference algorithms. The results of the first 4 reference algorithms are directly
extracted from [41] and those of D2TS are from [20]. Note that the results of
all these algorithms are obtained under the same time limit. Table 4 displays
the solution difference between the best objective values obtained by these 6
algorithms with the best known objective values. The averaged results over
the 11 instances are presented in the last row.

¿From Table 4 it may be observed that the HMA algorithm outperforms the
4 reference algorithms, named ITS, MST1, MST2 and SA, in terms of the
quality of the best solution. Specifically, these 4 algorithms have an average
solution gap from 306.8 to 3634.9, while HMA can find all the best known
objective values within the given time limit. Moreover, HMA also performs
slightly better than our previous algorithm D2TS, which still has an average
solution gap of 20.4 to the best known objective values. These results show
the efficacy of the HMA algorithm in finding the best objective values.

3.4 Computational Results on the Structured Instances

In this section, we test the HMA algorithm on the 9 structured instances
derived from the set partitioning problem. The results of this experiment are
summarized in Table 5. The time limit for a single run is set to be 30 minutes
on our computer.

In Table 5, columns 2 to 4 respectively give the density (dens), the best ob-
jective values (fprev) obtained by CPLEX and the MIP gap to the optimal
objective value. The 6 instances marked “optimal” are solved to optimality by
CPLEX, while for the remaining three instances no optimal solutions can be
found by CPLEX when allowing a solution time of 64000 seconds. Columns
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Table 4
Best results comparison between HMA and other state-of-the-art algorithms for
larger problem instances

best solution gap (i.e., fprev − fbest)
Instance dens fprev

ITS MST1 MST2 SA D2TS HMA

p3000.1 0.5 3931583 0 0 0 0 0 0

p3000.2 0.8 5193073 0 0 0 0 0 0

p3000.3 0.8 5111533 0 357 0 0 0 0

p3000.4 1.0 5761822 0 0 0 0 0 0

p3000.5 1.0 5675625 0 478 0 0 0 0

p4000.1 0.5 6181830 0 0 0 0 0 0

p4000.2 0.8 7801355 0 1686 0 504 0 0

p4000.3 0.8 7741685 0 54 0 0 0 0

p4000.4 1.0 8711822 0 0 0 0 0 0

p4000.5 1.0 8908979 0 0 0 0 0 0

p5000.1 0.5 8559680 700 3016 325 1432 325 0

p5000.2 0.8 10836019 0 0 582 582 0 0

p5000.3 0.8 10489137 0 3277 0 354 0 0

p5000.4 1.0 12252318 934 3785 1643 444 0 0

p5000.5 1.0 12731803 0 5150 0 1025 0 0

p6000.1 0.5 11384976 0 3198 0 430 0 0

p6000.2 0.8 14333855 88 10001 0 675 0 0

p6000.3 1.0 16132915 2729 11658 0 0 0 0

p7000.1 0.5 14478676 340 7118 1607 2579 0 0

p7000.2 0.8 18249948 1651 8902 2330 5552 104 0

p7000.3 1.0 20446407 0 17652 0 2264 0 0

Average 306.8 3634.9 308.9 754.3 20.4 0

5 to 10 give the computational statistics of our algorithm, using the same
criteria as in Tables 2 and 3.

Table 5 demonstrates that HMA can reach all the previous best objective
values obtained by CPLEX within the given time limit (30 minutes). Moreover,
our algorithm can obtain new better objective values for the three instances
whose optimal objective values can not be achieved by CPLEX. The average
gap to the best known objective values over all the 9 instances is only 143.4
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Table 5
Computational results on the 9 set partitioning problem instances.

HMA Algorithm
Instance dens fprev gap

fbest gbest gavr suc tbest tavr

spp1 0.1 9489 70% 9520 -31 -31 20/20 10.5 211.6

spp2 0.5 9232 optimal 9232 0 42.6 4/20 51.3 358.1

spp3 0.9 9939 optimal 9939 0 0.0 20/20 8.64 123.2

spp4∗ 0.1 22095 84% 22174 -79 170.1 5/20 2.85 181.5

spp5 0.5 23032 optimal 23032 0 487.1 3/20 28.3 246.8

spp6 0.9 24776 optimal 24776 0 13.9 16/20 69.2 524.3

spp7 0.1 42927 74% 43282 -355 179.7 4/20 42.8 268.9

spp8 0.5 45656 optimal 45656 0 210.5 12/20 2.15 138.4

spp9 0.9 49372 optimal 49372 0 217.8 6/20 26.7 256.7

Average -51.7 143.4 10/20 26.9 256.6

∗: As shown in Table 6, a better value (22335) can be obtained.

and the average success rate is about 10 out of 20 runs. These results further
provide evidence of the benefit of our hybrid metaheuristic approach.

4 Discussion and Analysis

We now turn our attention to discussing and analyzing several important
features of the proposed HMA algorithm, including the diversification-guided
combination operator, the distance-and-quality population updating strategy
and the tradeoffs between the Tabu Search procedure and the combination
operations.

4.1 Uniform Crossover versus DG/PR Combination

As indicated in Section 2.5.3, the DG/PR combination operator employs a
version of path-relinking that alternates between two parent guiding solutions
to replace components of the initiating solution. In order to be sure this new
operator makes a meaningful contribution, we conduct additional experiments
to compare the performance of the DG/PR operator and the uniform crossover
operator on the 11 largest random instances with variables from 5000 to 7000
and the 6 difficult structured instances named spp4,. . .,spp9. We implement
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two variants of the HMA algorithm for this experiment, respectively denoted
as HMAdg/pr and HMAux, where the DG/PR and uniform crossover operators
are used separately and the remaining components are kept unchanged.

We run this experiment using HMAdg/pr and HMAux under exactly the same
conditions as before and the results are reported in Table 6. Once again, the
following information is provided for each instance: the best solution gap to
the previous best known objective values gbest, the average solution gap to
the previous best known objective values gavr and the success rate (suc) for
reaching the best known objective values fprev over 20 runs.

For the 11 random instances, HMAdg/pr performs better than HMAux in terms
of the best solution gap gbest (13.4 for HMAdg/pr against 188.3 for HMAux) and
the success rate suc (4.9 versus 3.5 over 20 runs) while HMAdg/pr performs
worse in terms of the average solution gap gavr (1424.1 for HMAdg/pr against
1018.5 for HMAux). In particular, HMAdg/pr fails to reach the best known
objective values for 2 instances (p5000.4 and p7000.2), while HMAux fails
for 6 instances. This indicates that HMAdg/pr is superior for finding the best
solutions but HMAux is more stable in its performance in the case of these
random problems.

For the 6 structured instances, HMAdg/pr performs better (respectively worse)
than HMAux for 4 (respectively 2) instances in terms of the best and average
solution gaps gbest and gavr. HMAdg/pr reaches or surpasses the best known ob-
jective values for 3 instances (spp4, spp8 and spp9), while HMAux reaches or
surpasses the best known objective values for 2 instances (spp6 and spp7).
In particular, it is remarkable that for spp4 whose optimum is unknown,
HMAdg/pr finds an even better objective value than HMA (fbest = 22335
against 22174), which already improves on the current best objective value
(22095).

These results demonstrate that while uniform crossover has an overall good
performance (with better average solution gaps), it may have difficulties in
finding the best solutions on both random and structured instances. The de-
sign of our DG/PR operator, by contrast, favors the creation of diversified and
promising offspring solutions in many situations, though it is less successful
in a few cases.

This experiment highlights the complementary nature of the two combination
operators and provides an empirical justification of their joint use in the HMA
algorithm. From Tables 3 and 5, we observe that employing these two operators
together proves useful for overall performance.
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Table 6
Performance comparison of the DG/PR operator with uniform crossover

HMAdg/pr HMAux
Instance fprev

gbest gavr suc gbest gavr suc

p5000.1 8559680 0 578.9 6/20 325 467.2 0/20

p5000.2 10836019 0 715.4 5/20 0 534.3 5/20

p5000.3 10489137 0 712.3 7/20 0 338.2 11/20

p5000.4 12252318 43 1434.9 0/20 608 1204.6 0/20

p5000.5 12731803 0 632.7 8/20 0 511.9 8/20

p6000.1 11384976 0 196.4 9/20 0 111.9 11/20

p6000.2 14333855 0 798.5 5/20 88 542.9 0/20

p6000.3 16132915 0 2902.6 3/20 950 2594.3 0/20

p7000.1 14478676 0 1259.5 5/20 0 958.9 3/20

p7000.2 18249948 104 1988.1 0/20 41 2010.3 0/20

p7000.3 20446407 0 4445.6 6/20 59 1928.6 0/20

Average 13.4 1424.1 4.9/20 188.3 1018.5 3.5/20

spp4 22095 -240 175.8 2/20 62 179.8 0/20

spp5 23032 293 482.2 0/20 354 485.9 0/20

spp6 24776 101 142.5 0/20 0 40.5 15/20

spp7 42927 15 383.5 0/20 -27 280.7 3/20

spp8 45656 0 184.5 5/20 37 217.1 0/20

spp9 49372 0 173.4 4/20 61 210.3 0/20

Average 101.3 330.2 1.8/20 154.3 308.9 2.5/20

4.2 Population Updating Strategy

In order to evaluate the distance-and-quality based population updating strat-
egy (denoted by DisQual), we compare it with a popular updating strategy
widely used in the literature (denoted by PoolWorst), where the new offspring
replaces the worst solution of the population only in terms of the objective
function.

The experiments are presented on the large random instance p5000.4 (which
proves to be one of the most difficult instances for most algorithms). Similar
results are observed on other random and structured instances. The stopping
criterion is the number of generations (i.e., the number of applications of the
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combination operation) which is limited to 300.

We keep other ingredients unchanged in the HMA algorithm and observe two
characteristics of the two population updating strategies: one is the best solu-
tion gap vs. the number of generations; the other is the population diversity
measured in terms of entropy vs. the number of generations. The entropy, tak-
ing into account the value of each variable in each individual of the population,
is calculated as follows [11]:

entropy(P ) =
−

∑n
i=1

∑1
j=0

nij

p
log nij

p

nlog2
(11)

where n is the number of variables and nij is the number of times the variable
xi is set to j in the population P . In this definition, entropy(P ) ∈ [0, 1].
0 indicates a population of identical individuals whereas 1 means that all
possible assignments are almost uniformly distributed in the population.
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Fig. 1. Comparison between two population updating strategies

Figure 1 shows how the best solution gap (left) and the entropy of the popula-
tion (right) evolve with the number of generations. We see that the population
converges more quickly towards high quality solutions with the distance-and-
quality based population updating strategy than with the PoolWorst strategy.
In addition, the population diversity is better preserved during the evolution
process with DisQual than with PoolWorst, which is directly correlated to the
evolution of the solution quality.

Therefore, following the theme of scatter search and path-relinking, an ef-
ficient population updating strategy is not necessarily a strategy that can
quickly improve the whole population but rather is one that ensures a good
trade-off between quality and the diversity of the population. In other words,
the diversification process introduced in our approach allows the algorithm to
benefit from a better exploration of the search space and prevents the popu-
lation from stagnating in poor local optima.
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4.3 Tradeoffs Between TS and the Combination Operations
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Fig. 2. Tradeoffs between TS and combination procedure

We study now another important aspect of the proposed hybrid algorithm,
i.e., the tradeoffs between Tabu Search and the combination operations. In
fact, the performance and the behavior of HMA are influenced by the value
of the improvement cutoff α of TS. Under a limited computational resource,
the improvement cutoff of TS α reflects the relative proportion of combination
operations and TS in the algorithm. In this section, we analyze the influence of
the parameter α on the performance of the HMA algorithm. For this purpose,
experiments are performed on various instances. We present below in detail
the results on a single instance p5000.4, but these results are valid for other
cases.

To implement this experiment, we consider 4 different values of the parameter
α: α = n, 3n, 5n and 10n. For each of these values, we perform 20 independent
runs, each run being given a total number of 107 iterations. Figure 2 shows the
average evolution of the best solution gaps during the search obtained with
these different values for α.

¿From Figure 2, we first notice that HMA performs much worse with α = n
than with other values. Specifically, the solution quality improves only very
slightly after the first 2.3× 106 iterations. For α = 3n and α = 10n, the algo-
rithm can still improve the solutions after the first 4×106 iterations, but needs
more iterations than the case with α = 5n to get the same quality solutions.
We observe also that with α = 5n, the average value of gbest decreases more
quickly at the beginning than other three cases. In addition, the algorithm can
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reach high quality solutions very quickly and this improvement can last for a
long time. Thus, this experiment shows a clear advantage to setting an appro-
priate value for α in order to achieve a desired tradeoff between intensification
and diversification.

5 Conclusion

In this paper, we have presented the HMA algorithm, a hybrid metaheuristic
method for solving the UBQP problem. The proposed algorithm integrates a
diversification-guided combination operator for generating offspring solutions
and an effective TS procedure. Based on a new definition of the distance
between two solutions, HMA uses also a pool updating strategy that considers
both solution quality and diversity of individuals.

Tested on three sets of 40 well-known random and structured benchmark in-
stances, we have shown that this hybrid algorithm obtains highly competitive
outcomes in comparison with the previous best known results from the litera-
ture. For the random instances with up to 7000 variables, the HMA algorithm
reaches easily all the previous best known objective values within a short com-
putation time (less than 13 minutes in average on a 2.66GHz PC with 512M
RAM). For the 9 SPP instances, we improve the best known objective values
for 3 instances whose optimum solutions are still unknown.

Furthermore, we investigated several essential parts of our proposed algo-
rithm, including the diversification-guided combination operator, the distance-
and-quality population updating strategy and the tradeoffs between the tabu
search procedure and the combination operations.

The success of the HMA algorithm on the UBQP problem reminds us that it
is essential to introduce meaningful diversification mechanisms, highlight the
tradeoffs between intensification and diversification and incorporate the prob-
lem specific knowledge in designing heuristic search algorithms. We anticipate
that the exploitation of additional forms of path-relinking and more advanced
tabu search mechanisms will provide further gains along these lines. Finally,
given that the ideas behind the diversification-guided path-relinking opera-
tor and the pool updating strategy introduced in this paper are independent
of the UBQP problem, there may be value in examining their application to
other binary problems.
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