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Abstract. The Steiner tree problem aims to determine a minimum 
edge-weighted tree that spans a given set of terminal vertices from a 
given graph. In the past decade, a considerable number of algorithms 
have been developed to solve this computationally challenging problem. 
However, existing algorithms typically encounter difficulties for solving 
large instances, i.e., graphs with a high number of vertices and termi-
nals. In this paper, we present a novel partition-and-merge algorithm to 
effectively solve this problem in large graphs. The algorithm breaks the 
input network into small subgraphs and then merges the subgraphs in a 
bottom-up manner. In the merging procedure, partial Steiner trees in the 
subgraphs are also created and optimized by efficient local optimization. 
When the merging procedure ends, the algorithm terminates and reports 
the final solution for the input graph. We evaluated the algorithm on a 
wide range of benchmark instances, showing that the algorithm out-
performs the best-known algorithms on large instances and competes
favorably with them on small or medium-sized instances.

Keywords: Steiner tree problem · Network Design · Local search · 
Partition-and-merge · Large graphs

1 Introduction 

The Steiner tree problem (STP) is a fundamental network design problem to 
determine the topology of optical networks [14], telephone networks [ 7], or even 
multimedia networks [ 17]. The input of the classic STP consists of an undirected 
edge-weighted graph (or network) . G with a vertex s et .V (G), an edge s et .E(G),  a  
non-negative weight function on its edges .cG : E(G) → R

+, and a s et of terminals
.A ⊆ V (G). The problem is to determine a minim um Steiner tree, that is, a
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tree . T spanning all terminals in .A (and possibly other vertices) and minimizes 
.
∑

e∈E(T ) cG(e). In fact, this optimization problem has also been studied in many 
comm unities, including operations research a nd theoretical computer science.

The decision version of STP is one of Karp’s 21 NP-Complete problems. In 
recent decades, a rich number of theoretical studies have been devoted to t his 
problem. For instance, it is known that STP can be solved in time . O(2tn2 +
nm) [ 3] where .n,m and . t denote the number of vertices, edges, and terminals, 
respectively. The current best approximation ratio is 1.39 [5], and there is no 
1.01 approximation algorithm (unless P = NP) [9]. In practice, except in the area 
of network design, STP is also m odeled in many other fields lik e computational
biology [8], VLSI design [ 13], and social network analysis [18]. Notably, two 
international competitions, the 11th DIMACS Implementation Challenge in 2014
[15] and the 3rd Parameterized Algorithms and Computational Experiments 
(PACE) Challenge in 2018 [4] have been dedicated to solving STP practically, 
which demonstrates the interest of the research community for this challenging 
problem and its v ariants such as the directed Steiner tree problem, the prize-
collecting Steiner tree problem, etc.

Due to the great importance of STP, there exists a considerable number 
of both exact and heuristic solution algorithms for the problem. Exact algo-
rithms typically rely on two search frameworks, dynamic programming and inte-
ger linear programming. To our knowledge, exact algorithms can solve problem 
instances with up to thousands of vertices or hundreds of terminals in a reason-
able time, mostly thanks to some new ILP t echniques like vertex formulation
and local branching [6,10]. However, to deal with larger instances whose opti-
mality cannot be determined by exact algorithms, heuristic algorithms b ecome
indispensable [10,11,20– 22]. For example, for some VLSI graphs with up to ten 
thousand vertices, no exact algorithms can produce a feasible solution. A ccord-
ing to the final report of the 11th DIMACS Challenge, PUW [20] and Stay nerd 
[ 10] are considered the best global heuristics compared to other competing algo-
rithms (AB [1], mozartballs [ 10], polito [ 2], and scipjack [ 12]) in the heuristic 
track. Interestingly, the exact algorithm mozartballs, which also uses some search 
techniques of Staynerd, is the winner in the exact track during the 11th DIMACS 
Challenge. As for the more recen t PACE Competition, an evolutionary algorithm 
developed by the CIMAT Team ranked first in the heuristic track [4]. Consider-
ing that PUW and Staynerd were absent from PACE, we consider that PUW, 
Staynerd and CIMAT are among the most competitive heuristics for STP s o far. 
Notably, all these heuristic algorithms use local searc h as their key optimization
component.

Today, large STP instances with at least several thousand vertices appear 
ubiquitously in many applications. For example, the well-known GEO instances 
have more than 100,000 vertices or up to 5,000 terminals. We observed that 
existing heuristic algorithms, including the aforementioned DIMACS and PACE 
winners, attain their limit when they are applied to such large instances, leading 
to large gaps to the best lower bounds. In this work, our aim is to propose a
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novel heuristic algorithm that is able to better solve large-scale STP instances. 
The contributions can be summarized as follows.

– We design a partition-and-merge (PM) algorithm to deal with the large-scale 
nature of the given instance. PM first breaks the input graph into a number 
of smaller subgraphs. Then it finds partial solutions for these subgraphs and 
pairwise merges the subgraphs and solutions at the same time. The algorithm 
provides a high-quality complete solution when all the subgraphs are merged 
into the input graph. Meanwhile, we investigate different merging heuristics.

– We conduct extensive experiments, with a focus on very large instances, to 
evaluate the PM algorithm and different techniques. We show that our algo-
rithm is very competitive in solving large and hard instances. Remarkably, for 
the largest publicly available STP i nstances, the EFST family, PM outper-
forms the known heuristic solvers including the winners of the 11th DIMACS
and 3rd PACE competitions.

2 Basic Notations 

A STP instance is composed of an edge-weighted undirected graph .G and a 
subset of terminal vertex . A.  We  use  .V (G) to denote the vertex set, .E(G) to 
denote the edge set, and .cG : E(G) → R

+ to denote the edge-weight function of 
. G.  S  o  .A ⊆ V (G). When the context is clear, we use . n, .m and . t to denote the 
number of vertices, edges, and terminals, respectively. For two arbitrary vertices
.u, v ∈ V (G),  the  distanc e .dG(u, v) between them is the smallest total weight 
among the paths between . u and . v in . G. For a vertex subset .S ⊆ V (G), . G[S]
denotes the subgraph induced b y . S. 

A partition of the graph . G, .P = {H1, ...,H|P|}, is a set of vertex-induced 
subgraphs of .G such that .V (Hi) ∩ V (Hj) = ∅ for an y .1 ≤ i < j ≤ |P| and 
.
⋃

1≤i≤|P| V (Hi) = V (G). .(u, v) ∈ E(G) is a cutting edge of .P if . u and . v are in 
different subgraphs of . P. 

Give an input instance with graph .G and terminal set .A ⊆ V (G),  a  Voronoi 
diagram .D = {G1, ..., Gt} is a special partition of .G such that each sub-
graph .Gi contains exactly one terminal, denoted b y . ai, and for all other vertex 
.u ∈ V (Gi) \ {ai}, .ai is the nearest terminal of . u in . G,  that  i  s,  . dG(u, ai) =
mina∈AdG(u, a). Clearly, the number of subgraphs in a Voronoi diagram is
exactly . t. For an undirected graph .G = (V,E), the Voronoi diagram can be 
computed by Dijkstra’s shortest path algorithm in .O(m + n log n) time (with 
ties breaking randomly) [22]. 

3 The Partition-and-Merge Algorithm 

Our Partition-and-Merge (PM) algorithm is described in Alg. 1. The input of 
PM consists of an input graph .G = (V,E), a terminal set .A ⊆ V , two parameters 
.ρ ≤ |A| and .γ > 1, and two maximum iteration numbers .Ishort and .Ilong.
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PM maintains a partition of . G,  that  i  s,  .P = {H1, ...,H|P|}. As PM runs, t he 
subgraphs in .P are merged in pairwise. The merge operation concatenates . Hi

and .Hj into a larger graph .H ′ by adding the cutting edges between .Hi and .Hj . 
In .H ′, the edge weights are the same as their weights in .E(Hi) and .E(Hj) from 
.Hi and .Hj , respectively, but the weights of the cutting edges between .Hi and 
.Hj are the same as in the original input graph . G. It is important to notice that 
the weight of the edge . e in .E(Hi) is possibly different from its weight i n .E(G). 
The reason is that PM modifies the weights of the edges of the subgraphs in . P
as the search runs. 

Algorithm 1: The Partition-and-Merge Algorithm 
Input:  Graph  G, terminal set A ⊆ V (G), parameters ρ ∈ [0, |A|], γ ∈ [1, ∞), 

the maximum iteration numbers Ishort and Ilong for local search. 
Output: Steiner tree T 

1 Compute a Voronoi diagram P = {H1, ..., H|P|} with respect to G and A. 
2 Initially, level ← 1 
3 while |P| >  ρ  do 
4 P  ←−  OneRoundMerge(G, P, �nγlevel 

t
�) 

5 level ← level +  1  
6 while |P| > 1 do 
7 for each Hi ∈  P  do 
8 Ti ←− LocalOptimize(G[V (Hi)], Hi, A ∩ V (Hi), Ishort ) 
9 H ′

i ← SolutionStoring(Hi,Ti) 
10 P  ←  P  \  {Hi}  ∪  {H ′

i} 

11 P  ←−  OneRoundMerge(G, P, �nγlevel 

t
�). 

12 level ← level +  1  
13 There is o nly one graph H1 in P.
14 T ←− LocalOptimize(G, H1, A, Ilong)
15 return T

3.1 Two-Phase Merging Procedure 

Initially, as shown in line 1 of Alg. 1, PM builds .P by computing the Voronoi 
diagram, so each subgraph in . P contains one terminal vertex. The algorithm then 
performs a two-phase merging p rocedure, which gradually merges the subgraphs
of .P into a whole graph. The parameter . ρ is used to set the time to start the 
second phase and . γ controls the size gap between different subgraphs in . P. 

In the first phase (lines 3–5), OneRoundMerge is used to pairwise merge the 
graphs in . P. In general, OneRoundMerge selects two subgraphs by a specific 
heuristic rule and joins them to form a larger graph. We introduce different 
merging rules in Sect. 3.2. OneRoundMerge also makes sure that the subgraph 
after a round of merge has no more than .�nγlevel

t 	 vertices (so that the subgraphs
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in . P have roughly the same scale). Clearly , .�nγlevel

t 	 increases geometrically with 
a factor of . γ as .level increases. For example, if .γ = 2, this value doubles at ev ery 
leve l.

The second phase, as in lines 6–12, begins when there are no more than . ρ
subgraphs in . P. In this phase, for each subgraph .Hi, we additionally carry out 
a local search algorithm, LocalOptimize, to find a (high-quality) Steiner tree
in .G[V (Hi)]. It is worth noting that LocalOptimize finds a starting s olution
from .Hi, but improves the solution in .G[V (Hi)]. Assume .Ti is a Steiner tree 
obtained by LocalOptimize(.G[V (Hi)], .Hi, .A∩V (Hi), .Ishort). .Ti spans t erminals 
.A∩V (Hi) in both .Hi and .G[V (Hi)]. Our intuition is to k eep the i nformation that
.Ti is a high-quality solution of graph .Hi, so that the further search will benefit 
from this information. This is implemented by SolutionStoring m ethod, which 
essentially changes the edge weights of .Hi. We will introduce two different ways 
for SolutionStoring in Sect. 3.3. After local optimization and solution storing for 
each subgraph, we continue using OneRoundMerge with the same heuristic in 
the first phase to merge the subgraphs.
Example. We consider the example in Fig. 1, which describes the partition-
and-merge procedure. We set .γ = 2 and .ρ = 6. The size of each subgraph 
approximately doubles after each level of merging. The Steiner tree solution is 
computed when there are no more than 6 subgraphs.

level 1(Voronoi diagram) 
first phase 

second phase 

bottom-up 

input instance 

level 2 

level 3 

level 4 

level 5 

Fig. 1. The bottom-up partition-and-merge procedure. Terminal vertices are marked 
by black dots. The sub-solutions c omputed for subgraphs are marked b y bold lines.

3.2 Merging Heuristics 

As mentioned, the OneRoundMerge procedure repeatedly selects a pair of sub-
graphs (.Hi, .Hj)  from  . P and merges them into one subgraph. In Alg. 2, we show 
the general procedure of OneRoundMerge using the so-called random rule.  We  
will also discuss the random-edge and min-distance rules afterward.
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Algorithm 2: One round of merging by random heuristic 
Input:  Graph  G, a partition P, subgraph size limit ω 
Output: A new partition of G 

1 while true do 

2 

Random rule: 
From all pairs (Hk,  Hl) ∈  P  ×  P  such that |V (Hk)| + |V (Hl)|  ≤  ω and 
cutP (Hk,  Hl) �= ∅, randomly pick one (Hi,  H  j). 

3 Merge Hi and Hj to H ′. 
4 P  ←  P  \  {Hi,  Hj}  ∪  {H ′} 
5 if none of the pairs of graphs in P meet the random heuristic then
6 break

7 return P

Random Rule. By this rule, we randomly select two subgraphs that are adja-
cent, that is, there is at least one cutting edge between them, and the total 
number of vertices in the two subgraphs does not exceed . ω. Then we merge 
the two subgraphs and repeat the procedure until no such pair of graphs exits. 
The intuition behind this heuristic is to keep each subgraph in . P connected and 
balanced in terms of vertex n umber after merging.

Random-Edge Rule. The random-edge rule, as shown in below, resembles the 
random rule except that it picks a cutting edge randomly rather than a pair of 
adjacent subgraphs randomly. Clearly, this rule concerns the n umber of cutting 
edges between every pair of adjacent subgraphs. U sing this rule to replace line 3
in Alg. 2, we can obtain another version of OneRoundMerg e with the r andom-
edge heuristic.

Random-edge rule: 
From all cutting edges (x, y) such that x ∈ V (Hk), y ∈ V (Hl)  and  
|V (Hk)| + |V (Hl)|  ≤  ω, randomly pick one edge ( u, v). 
Suppose u ∈ V (Hi)  and  v ∈ V (H j) without loss of generality.

We note that this rule is inspired by Karger’s minimum-cut randomized algo-
rithm [16]. As we know, Karger’s algorithm finds the minimum cut of a graph 
with high probability by repeatedly merging a randomly selected edge. Thus, it 
is believed that this heuristic gives preference to the pair of adjacent subgraphs 
that are closely connected, that is, there are more cutting edges between them.

Min-Distance Rule. Let .Ai = A∩V (Hi) and .Aj = A∩V (Hj) where . A is the 
input terminal set, .Hi and .Hj are two subgraphs in . P. For each pair of .Hi and .Hj , 
we compute .dG(Ai, Aj), the minimum value over all the shortest lengths of path 
between any two terminals in .Ai×Aj , i.e., .dG(Ai, Aj) = min(u,v)∈Ai×Aj

dG(u, v). 
Then, the min-distance is shown as follows. Using this rule to replace line 3 in
Alg. 2, we obtain OneRoundMerge with the min-distance heuristic.
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Min-distance rule: 
Find all pairs (Hk,  Hl) ∈  P  ×  P  such that |V (Hk)| + |V (Hl)|  ≤  ω and 
cutP(Hk,  Hl) 
= ∅, pick a pair (Hi,  Hj) with smallest dG(Ai , Aj), ties
breaking randomly

The running time of the min-distance rule bounded b y .O(|E|) due to the 
early computation of the Voronoi diagram. For each non-terminal vertex . u ∈
Hi ⊆ Ai, we already know its nearest terminal .au = argmina∈Ai

dG(a, u) after 
computing the Voronoi diagram. Thus, for each cutting edge .(u, v) ∈ EP ,  we  
first obtain .d(u, v) = dG(u, au) + cG(u, v) + dG(v, av) where .au and .av are the 
nearest terminals of . u and . v, respectively. Then, we randomly pick up an . (u, v)
of the smallest values .d(u, v) and merge its corresponding subgraphs .Hi and .Hj . 
Because we only iterate over the edges in .EP , the above running time follo ws.

Fig. 2. Example for three merging rules. .G1 −G4 are four subgraphs. Lines connecting 
the subgraphs represent the cutting edges between subgraphs. The minimum distance 
between the terminals of eac h two subgraphs is shown in the righ t-side of the figure.

Example. In Fig. 2, there are currently four subgraphs .G1, ..., G4 and any two 
subgraphs have fewer than . ω vertices. Now, we need to select a pair of adjacent 
subgraphs to merge. If the random rule is used, the probability that each pair of 
adjacent subgraphs is selected is the same. If the random-edge rule is u sed, the
probability of selecting subgraphs .(G1, G3) is the highest, followed b y .(G2, G4), 
.(G1, G2) and .(G3, G4). If the min-distance rule is used, .(G3, G4) is definitely 
selected for merging. 

3.3 Solution Storing 

The motivation of solution storing is to guide future search by the fact that .Ti is 
a high-quality solution in .Hi. To achieve this, we simply change the edge weigh t
of .Hi so that we can apply the same local search algorithm. Here, we introduce 
a random way to reweight the edges in .Hi. 

For any edge .e ∈ E(Hi), we score the edge weigh t .cHi
(e) as follows, where . α

is a random real number from .[0, 0.75]. 

.cHi
(e) =

{
(1 − α)cG(e) e ∈ E(Ti)
(1 + α)cG(e) otherwise
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Clearly, the weights of edges in .E(Ti) are reduced, while the weights of edges 
not i n .E(Ti) are increased, implying that the edges of .E(Ti) are p referred. 

3.4 Local Optimization 

The local optimization procedure, LocalOptimize.(G,H,A, Imax) is a population-
based search algorithm modified from the state-of-the-art PUW solver [20]. The 
original graph . G, the edge reweighted graph . H, terminal set . A, maximum num-
ber of iterations .Imax. 

In summary, LocalOptimize follows the scheme of genetic programming. It 
maintains a pool of elite solutions . Q. In each generation, it produces new solu-
tions to update the elite pool – It first builds a new Steiner tree .T from . H
(Note that .H is a graph with biased edge weigh ts by solution storing). Then,
.T is improved by local search, but the local searc h runs on the initial graph
.G without biased edge weights. Afterward, the improved solution . T exchanges 
information with another solution from the pool by c ombination, resulting in a 
new solution . T ′. Finally , . T and .T ′ are used to update the pool. 

For detailed description of the local optimization algorithm, please refer to 
the f ull version.

4 Experiments 

4.1 Settings 

Our algorithm is programmed in C++ and compiled in g ++ with the optimiza-
tion option ’-O3’. 1 All experiments were conducted on a Linux server with In tel 
Xeon Gold 6130 (2.10 GHz) processor.

Parameters Setting. In the experiments, . ρ is set to 64 and . γ is set to 2. For all 
test instances, we set the total time limit .ttotal = 3600 seconds (1h). The two 
parameters for controlling the number of iterations in LocalOptimize, .Ishort and 
.Ilong, are set to 256 and 2048, respectively. However, with these configurations, 
it is possible that we may not obtain a complete solution after 3600 s for some 
graphs. This happens when there are still more than one subgraph in . P after this 
time frame. Thus, we additionally require that eac h LocalOptimize runs at most
.
0.7(γ−1)
γ(ρ−1) × ttotal seconds for each subgraph. This implies that at least . 0.3 × ttotal

seconds are allocated for running LocalOptimize with the final graph, that is, 
line 14 in Alg. 1. 

4.2 Performance Assessment 

Results on the Set of 113 Large Instance s We first test the algorithm i n 113 Large 
Instances2. They are grouped in 8 datasets shown in Table 1, which indicates

1 Source codes are publicly available a t https://github.com/xyu03/PM.git. 
2 All instances are downloaded from site http://dimacs11.zib.de/downloads.html. 

https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
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the number of instances, average vertex number, average edge number, average 
terminal number, and source of the dataset. GEO, I and EFST c ontain larger 
instances (with more vertices, edges, and terminals) c ompared to ES, VLSI and
TSPFST.

Table 1. Information about the 8 large d atasets

Dataset Num ave..n ave..m ave..t Source 
ES 16 4245 6235 1563 GeoSteiner g enerator 
TSPFST 10 4687 7043 1871 TSPLIB 
VLSI 10 17926 30973 452 VLSI applications 
GEO 22 105906 150767 1845 Telecommunication netw orks 
I 10 65120 106450 3211 Telecommunication netw orks 
EFST(R25K) 15 39483 47893 25000 GeoSteiner g enerator 
EFST(R50K) 15 79128 96293 50000 GeoSteiner g enerator 
EFST(R100K) 15 158147 192190 100000 GeoSteiner g enerator 

For this set of instances, we adopt the following best STP heuristic algorithms 
as our reference algorithms.

– PUW [ 20], a multi-start local search algorithm which ranks first at Formula 
1 in the single-thread heuristic track of the 11th DIMACS Competition.

– Staynerd [ 10], a winner of most category of instances in the single-thread 
heuristic track of the 11th DIMA CS Competition.

– CIMAT [ 4], the champion of the heuristic track of the PACE Challenge (2018).
– MPCH [ 19], a partition-based algorithm focusing o n solving large graphs.

For each instance, we perform each of the above algorithms (except MPCH3) 
10 times independently. For each algorithm and each instance, we take the best 
solution obtained in the 10 t rials. We summarize these results for each dataset in
Table 2. Detailed results of these 113 instances are provided in the full version of 
the paper. For each dataset and each algorithm, we indicate the average solution 
gaps of the algorithm4 and the number of instances for which the algorithm finds 
the best solution. In terms of solution gap, our PM algorithm performs better 
than other algorithms on the largest instances of the GEO, I, and EFST family 
datasets. It is also remarkable that PM is the best on all I and EFST instances 
and 16/22 on the GEO instances. Meanwhile, for the relatively smaller instances
in this group, the algorithms compete with each other.

3 Because the code of MPCH is unavailable, we extract its results from [19]. 
4 For an instance, the gap of a solution .T is .

∑
e∈E(T ) cG(e)−lb

lb
× 100%, .lb being the 

best-known lower bound for the instance.
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Table 2. The best solutions found by each algorithms on the set of 113 large instances. 
The smallest average gaps are mark ed in bold.

Dataset ave.gap(%) #best 
MPCH PUW Staynerd CIMAT PM MPCH PUW Staynerd CIMAT PM 

ES 0.84 0.0082 0.0069 0.0987 0.0078 – 0 3 0 1 
TSPFST 0.96 0.0100 0.0203 0.1068 0.0380 – 2 2 0 0 
VLSI 1.64 0.0292 0.3963 0.0665 0.0730 – 2 0 1 1 
GEO - 0.8136 1.0044 1.0753 0.7744 – 4 0 0 16 
I 0.02 0.0130 0.0154 0.0394 0.0107 – 0 0 0 10 
EFST(R25K) – 0.0798 0.0347 0.2761 0.0101 – 0 0 0 15 
EFST(R50K) – 0.1131 – 0.3387 0.0188 – 0 0 0 15 
EFST(R100K) – 0.1344 – 0.3644 0.0353 – 0 0 0 15 

Results on the Set of 30 DIMACS Instances. We first test 30 instances that 
are used in the final ranking phase for the single thread heuristic challenge of 
the 11th DIMACS Implementation Challenge5. They are representative instances 
from the well-known SteinLib, Vienna, Copenhagen, PUCN, and GAPS libraries. 

For this set of instances, we compare o ur results with those of six best per-
forming reference algorithms: AB [1], mozartballs [ 10], polito [ 2], PUW [ 20], 
scipjack [ 12] and Staynerd [ 10], which participated in the final heuristic track of 
the 11th DIMACS Challenge. Following the time constraints in the competition 
results of the DIMACS challenge heuristic track (1 thread), all algorithms are 
run under a cutoff time of 2 h.

According to Table 3, in terms of finding the best solutions, polito and PM 
each have 6 solutions that outperform the remaining algorithms. Mozartballs per-
forms best on ’Average’ and ’ave. gap(%)’. In particular, a detailed data analysis 
reveals that PM has the best solution for fnl4461fst-p, alue7080-p, es10000fst01-
p, cc3-12p-p, G106ac-p, I064ac-p, which are the largest instances in the group.

Table 3. The best solutions found by each algorithms on D IMACS competition 
instances

Instance AB mozartballs polito PUW scipjack staynerd PM 
ave.gap(%) 776.0807 0.3640 3.8920 0.4174 1.5015 0.3737 0.6219 
#best 0 0 6 4 0 1 6 

The Effectiveness of Different Merging Rules. We show the average solution 
gaps obtained by using each rule in Table 4. We use the Fredman test to check 
the statistical significance of the differences in terms of solution quality, which
5 https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html. 

https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
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reveals a .p-value o f .0.00.  The  .p-value (.< 0.05) clearly indicates the differences 
between the variants with the three different merging rules. The random-edge 
and min-distance strategies perform better than the random strategy, while min-
distance shows a slight a dvantage over random-edge.

Table 4. The average gaps (%) of PM variants using different merging rules.

Dataset random random-edge min-distance 
ES 0.02069 0.00922 0.00783 

TSPFST 0.01832 0.01831 0.03799 
VLSI 0.09954 0.08684 0.07299 

GEO 0.80160 0.78055 0.77435 

I 0.01144 0.01090 0.01074 

EFST(R25K) 0.01423 0.00960 0.01008 
EFST(R50K) 0.02740 0.01868 0.01877 
EFST(R100K) 0.04900 0.03646 0.03533 

5 Conclusion 

In this paper, we introduced a new partition-and-merge algorithm to effectively 
solve large-scale STP instances. To ensure the effectiveness of the algorithm, 
we in vestigated different merging heuristics, local search algorithms, a nd new
solution storing techniques.

This is the first STP algorithm based on a multi-level merging and search 
strategy. The algorithm has some attractive features for parallel computing. For 
example, we can run local optimizing procedures on different threads in parallel 
as they are independent. 
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