
A Partition-and-Merge Algorithm
for Solving the Steiner Tree Problem

in Large Graphs

Ming Sun1, Xinyu Wu1, Yi Zhou1(B), Jin-Kao Hao2 , and Zhang-Hua Fu 3,4

1 University of Electronic Science and Tec hnology of China, Chengdu, China
{sunm,zhou.yi}@uestc.edu.cn, wu.xinyu@outlook.com

2 LERIA, Université d’Angers, 2 Boulevard Lavo isier, 49045 Angers, France
jin-kao.hao@univ-angers.fr

3 Shenzhen Institute of Artificial Intelligence and Robotics for Society,
Shenzhen, China

4 The Chinese University of Hong Kong, Shenzhen, China
fuzhanghua@cuhk.edu.cn

Abstract. The Steiner tree problem aims to determine a minimum
edge-weighted tree that spans a given set of terminal vertices from a
given graph. In the past decade, a considerable number of algorithms
have been developed to solve this computationally challenging problem.
However, existing algorithms typically encounter difficulties for solving
large instances, i.e., graphs with a high number of vertices and termi-
nals. In this paper, we present a novel partition-and-merge algorithm to
effectively solve this problem in large graphs. The algorithm breaks the
input network into small subgraphs and then merges the subgraphs in a
bottom-up manner. In the merging procedure, partial Steiner trees in the
subgraphs are also created and optimized by efficient local optimization.
When the merging procedure ends, the algorithm terminates and reports
the final solution for the input graph. We evaluated the algorithm on a
wide range of benchmark instances, showing that the algorithm out-
performs the best-known algorithms on large instances and competes
favorably with them on small or medium-sized instances.

Keywords: Steiner tree problem · Network Design · Local search ·
Partition-and-merge · Large graphs

1 Introduction

The Steiner tree problem (STP) is a fundamental network design problem to
determine the topology of optical networks [14], telephone networks [7], or even
multimedia networks [17]. The input of the classic STP consists of an undirected
edge-weighted graph (or network) . G with a vertex s et .V (G), an edge s et .E(G), a
non-negative weight function on its edges .cG : E(G) → R

+, and a s et of terminals
.A ⊆ V (G). The problem is to determine a minim um Steiner tree, that is, a
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Chen et al. (Eds.): COCOON 2024, LNCS 15162, pp. 128–139, 2025.
https://doi.org/10.1007/978-981-96-1093-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1093-8_11&domain=pdf
https://doi.org/10.1007/978-981-96-1093-8_11

A Partition-and-Merge Algorithm for the Steiner Tree Problem 129

tree . T spanning all terminals in .A (and possibly other vertices) and minimizes
.
∑

e∈E(T) cG(e). In fact, this optimization problem has also been studied in many
comm unities, including operations research a nd theoretical computer science.

The decision version of STP is one of Karp’s 21 NP-Complete problems. In
recent decades, a rich number of theoretical studies have been devoted to t his
problem. For instance, it is known that STP can be solved in time . O(2tn2 +
nm) [3] where .n,m and . t denote the number of vertices, edges, and terminals,
respectively. The current best approximation ratio is 1.39 [5], and there is no
1.01 approximation algorithm (unless P = NP) [9]. In practice, except in the area
of network design, STP is also m odeled in many other fields lik e computational
biology [8], VLSI design [13], and social network analysis [18]. Notably, two
international competitions, the 11th DIMACS Implementation Challenge in 2014
[15] and the 3rd Parameterized Algorithms and Computational Experiments
(PACE) Challenge in 2018 [4] have been dedicated to solving STP practically,
which demonstrates the interest of the research community for this challenging
problem and its v ariants such as the directed Steiner tree problem, the prize-
collecting Steiner tree problem, etc.

Due to the great importance of STP, there exists a considerable number
of both exact and heuristic solution algorithms for the problem. Exact algo-
rithms typically rely on two search frameworks, dynamic programming and inte-
ger linear programming. To our knowledge, exact algorithms can solve problem
instances with up to thousands of vertices or hundreds of terminals in a reason-
able time, mostly thanks to some new ILP t echniques like vertex formulation
and local branching [6,10]. However, to deal with larger instances whose opti-
mality cannot be determined by exact algorithms, heuristic algorithms b ecome
indispensable [10,11,20– 22]. For example, for some VLSI graphs with up to ten
thousand vertices, no exact algorithms can produce a feasible solution. A ccord-
ing to the final report of the 11th DIMACS Challenge, PUW [20] and Stay nerd
[10] are considered the best global heuristics compared to other competing algo-
rithms (AB [1], mozartballs [10], polito [2], and scipjack [12]) in the heuristic
track. Interestingly, the exact algorithm mozartballs, which also uses some search
techniques of Staynerd, is the winner in the exact track during the 11th DIMACS
Challenge. As for the more recen t PACE Competition, an evolutionary algorithm
developed by the CIMAT Team ranked first in the heuristic track [4]. Consider-
ing that PUW and Staynerd were absent from PACE, we consider that PUW,
Staynerd and CIMAT are among the most competitive heuristics for STP s o far.
Notably, all these heuristic algorithms use local searc h as their key optimization
component.

Today, large STP instances with at least several thousand vertices appear
ubiquitously in many applications. For example, the well-known GEO instances
have more than 100,000 vertices or up to 5,000 terminals. We observed that
existing heuristic algorithms, including the aforementioned DIMACS and PACE
winners, attain their limit when they are applied to such large instances, leading
to large gaps to the best lower bounds. In this work, our aim is to propose a

130 M. Sun et al.

novel heuristic algorithm that is able to better solve large-scale STP instances.
The contributions can be summarized as follows.

– We design a partition-and-merge (PM) algorithm to deal with the large-scale
nature of the given instance. PM first breaks the input graph into a number
of smaller subgraphs. Then it finds partial solutions for these subgraphs and
pairwise merges the subgraphs and solutions at the same time. The algorithm
provides a high-quality complete solution when all the subgraphs are merged
into the input graph. Meanwhile, we investigate different merging heuristics.

– We conduct extensive experiments, with a focus on very large instances, to
evaluate the PM algorithm and different techniques. We show that our algo-
rithm is very competitive in solving large and hard instances. Remarkably, for
the largest publicly available STP i nstances, the EFST family, PM outper-
forms the known heuristic solvers including the winners of the 11th DIMACS
and 3rd PACE competitions.

2 Basic Notations

A STP instance is composed of an edge-weighted undirected graph .G and a
subset of terminal vertex . A. We use .V (G) to denote the vertex set, .E(G) to
denote the edge set, and .cG : E(G) → R

+ to denote the edge-weight function of
. G. S o .A ⊆ V (G). When the context is clear, we use . n, .m and . t to denote the
number of vertices, edges, and terminals, respectively. For two arbitrary vertices
.u, v ∈ V (G), the distanc e .dG(u, v) between them is the smallest total weight
among the paths between . u and . v in . G. For a vertex subset .S ⊆ V (G), . G[S]
denotes the subgraph induced b y . S.

A partition of the graph . G, .P = {H1, ...,H|P|}, is a set of vertex-induced
subgraphs of .G such that .V (Hi) ∩ V (Hj) = ∅ for an y .1 ≤ i < j ≤ |P| and
.
⋃

1≤i≤|P| V (Hi) = V (G). .(u, v) ∈ E(G) is a cutting edge of .P if . u and . v are in
different subgraphs of . P.

Give an input instance with graph .G and terminal set .A ⊆ V (G), a Voronoi
diagram .D = {G1, ..., Gt} is a special partition of .G such that each sub-
graph .Gi contains exactly one terminal, denoted b y . ai, and for all other vertex
.u ∈ V (Gi) \ {ai}, .ai is the nearest terminal of . u in . G, that i s, . dG(u, ai) =
mina∈AdG(u, a). Clearly, the number of subgraphs in a Voronoi diagram is
exactly . t. For an undirected graph .G = (V,E), the Voronoi diagram can be
computed by Dijkstra’s shortest path algorithm in .O(m + n log n) time (with
ties breaking randomly) [22].

3 The Partition-and-Merge Algorithm

Our Partition-and-Merge (PM) algorithm is described in Alg. 1. The input of
PM consists of an input graph .G = (V,E), a terminal set .A ⊆ V , two parameters
.ρ ≤ |A| and .γ > 1, and two maximum iteration numbers .Ishort and .Ilong.

A Partition-and-Merge Algorithm for the Steiner Tree Problem 131

PM maintains a partition of . G, that i s, .P = {H1, ...,H|P|}. As PM runs, t he
subgraphs in .P are merged in pairwise. The merge operation concatenates . Hi

and .Hj into a larger graph .H ′ by adding the cutting edges between .Hi and .Hj .
In .H ′, the edge weights are the same as their weights in .E(Hi) and .E(Hj) from
.Hi and .Hj , respectively, but the weights of the cutting edges between .Hi and
.Hj are the same as in the original input graph . G. It is important to notice that
the weight of the edge . e in .E(Hi) is possibly different from its weight i n .E(G).
The reason is that PM modifies the weights of the edges of the subgraphs in . P
as the search runs.

Algorithm 1: The Partition-and-Merge Algorithm
Input: Graph G, terminal set A ⊆ V (G), parameters ρ ∈ [0, |A|], γ ∈ [1, ∞),

the maximum iteration numbers Ishort and Ilong for local search.
Output: Steiner tree T

1 Compute a Voronoi diagram P = {H1, ..., H|P|} with respect to G and A.
2 Initially, level ← 1
3 while |P| > ρ do
4 P ←− OneRoundMerge(G, P, �nγlevel

t
�)

5 level ← level + 1
6 while |P| > 1 do
7 for each Hi ∈ P do
8 Ti ←− LocalOptimize(G[V (Hi)], Hi, A ∩ V (Hi), Ishort)
9 H ′

i ← SolutionStoring(Hi,Ti)
10 P ← P \ {Hi} ∪ {H ′

i}

11 P ←− OneRoundMerge(G, P, �nγlevel

t
�).

12 level ← level + 1
13 There is o nly one graph H1 in P.
14 T ←− LocalOptimize(G, H1, A, Ilong)
15 return T

3.1 Two-Phase Merging Procedure

Initially, as shown in line 1 of Alg. 1, PM builds .P by computing the Voronoi
diagram, so each subgraph in . P contains one terminal vertex. The algorithm then
performs a two-phase merging p rocedure, which gradually merges the subgraphs
of .P into a whole graph. The parameter . ρ is used to set the time to start the
second phase and . γ controls the size gap between different subgraphs in . P.

In the first phase (lines 3–5), OneRoundMerge is used to pairwise merge the
graphs in . P. In general, OneRoundMerge selects two subgraphs by a specific
heuristic rule and joins them to form a larger graph. We introduce different
merging rules in Sect. 3.2. OneRoundMerge also makes sure that the subgraph
after a round of merge has no more than .�nγlevel

t 	 vertices (so that the subgraphs

132 M. Sun et al.

in . P have roughly the same scale). Clearly , .�nγlevel

t 	 increases geometrically with
a factor of . γ as .level increases. For example, if .γ = 2, this value doubles at ev ery
leve l.

The second phase, as in lines 6–12, begins when there are no more than . ρ
subgraphs in . P. In this phase, for each subgraph .Hi, we additionally carry out
a local search algorithm, LocalOptimize, to find a (high-quality) Steiner tree
in .G[V (Hi)]. It is worth noting that LocalOptimize finds a starting s olution
from .Hi, but improves the solution in .G[V (Hi)]. Assume .Ti is a Steiner tree
obtained by LocalOptimize(.G[V (Hi)], .Hi, .A∩V (Hi), .Ishort). .Ti spans t erminals
.A∩V (Hi) in both .Hi and .G[V (Hi)]. Our intuition is to k eep the i nformation that
.Ti is a high-quality solution of graph .Hi, so that the further search will benefit
from this information. This is implemented by SolutionStoring m ethod, which
essentially changes the edge weights of .Hi. We will introduce two different ways
for SolutionStoring in Sect. 3.3. After local optimization and solution storing for
each subgraph, we continue using OneRoundMerge with the same heuristic in
the first phase to merge the subgraphs.
Example. We consider the example in Fig. 1, which describes the partition-
and-merge procedure. We set .γ = 2 and .ρ = 6. The size of each subgraph
approximately doubles after each level of merging. The Steiner tree solution is
computed when there are no more than 6 subgraphs.

level 1(Voronoi diagram)
first phase

second phase

bottom-up

input instance

level 2

level 3

level 4

level 5

Fig. 1. The bottom-up partition-and-merge procedure. Terminal vertices are marked
by black dots. The sub-solutions c omputed for subgraphs are marked b y bold lines.

3.2 Merging Heuristics

As mentioned, the OneRoundMerge procedure repeatedly selects a pair of sub-
graphs (.Hi, .Hj) from . P and merges them into one subgraph. In Alg. 2, we show
the general procedure of OneRoundMerge using the so-called random rule. We
will also discuss the random-edge and min-distance rules afterward.

A Partition-and-Merge Algorithm for the Steiner Tree Problem 133

Algorithm 2: One round of merging by random heuristic
Input: Graph G, a partition P, subgraph size limit ω
Output: A new partition of G

1 while true do

2

Random rule:
From all pairs (Hk, Hl) ∈ P × P such that |V (Hk)| + |V (Hl)| ≤ ω and
cutP (Hk, Hl) �= ∅, randomly pick one (Hi, H j).

3 Merge Hi and Hj to H ′.
4 P ← P \ {Hi, Hj} ∪ {H ′}
5 if none of the pairs of graphs in P meet the random heuristic then
6 break

7 return P

Random Rule. By this rule, we randomly select two subgraphs that are adja-
cent, that is, there is at least one cutting edge between them, and the total
number of vertices in the two subgraphs does not exceed . ω. Then we merge
the two subgraphs and repeat the procedure until no such pair of graphs exits.
The intuition behind this heuristic is to keep each subgraph in . P connected and
balanced in terms of vertex n umber after merging.

Random-Edge Rule. The random-edge rule, as shown in below, resembles the
random rule except that it picks a cutting edge randomly rather than a pair of
adjacent subgraphs randomly. Clearly, this rule concerns the n umber of cutting
edges between every pair of adjacent subgraphs. U sing this rule to replace line 3
in Alg. 2, we can obtain another version of OneRoundMerg e with the r andom-
edge heuristic.

Random-edge rule:
From all cutting edges (x, y) such that x ∈ V (Hk), y ∈ V (Hl) and
|V (Hk)| + |V (Hl)| ≤ ω, randomly pick one edge (u, v).
Suppose u ∈ V (Hi) and v ∈ V (H j) without loss of generality.

We note that this rule is inspired by Karger’s minimum-cut randomized algo-
rithm [16]. As we know, Karger’s algorithm finds the minimum cut of a graph
with high probability by repeatedly merging a randomly selected edge. Thus, it
is believed that this heuristic gives preference to the pair of adjacent subgraphs
that are closely connected, that is, there are more cutting edges between them.

Min-Distance Rule. Let .Ai = A∩V (Hi) and .Aj = A∩V (Hj) where . A is the
input terminal set, .Hi and .Hj are two subgraphs in . P. For each pair of .Hi and .Hj ,
we compute .dG(Ai, Aj), the minimum value over all the shortest lengths of path
between any two terminals in .Ai×Aj , i.e., .dG(Ai, Aj) = min(u,v)∈Ai×Aj

dG(u, v).
Then, the min-distance is shown as follows. Using this rule to replace line 3 in
Alg. 2, we obtain OneRoundMerge with the min-distance heuristic.

134 M. Sun et al.

Min-distance rule:
Find all pairs (Hk, Hl) ∈ P × P such that |V (Hk)| + |V (Hl)| ≤ ω and
cutP(Hk, Hl)
= ∅, pick a pair (Hi, Hj) with smallest dG(Ai , Aj), ties
breaking randomly

The running time of the min-distance rule bounded b y .O(|E|) due to the
early computation of the Voronoi diagram. For each non-terminal vertex . u ∈
Hi ⊆ Ai, we already know its nearest terminal .au = argmina∈Ai

dG(a, u) after
computing the Voronoi diagram. Thus, for each cutting edge .(u, v) ∈ EP , we
first obtain .d(u, v) = dG(u, au) + cG(u, v) + dG(v, av) where .au and .av are the
nearest terminals of . u and . v, respectively. Then, we randomly pick up an . (u, v)
of the smallest values .d(u, v) and merge its corresponding subgraphs .Hi and .Hj .
Because we only iterate over the edges in .EP , the above running time follo ws.

Fig. 2. Example for three merging rules. .G1 −G4 are four subgraphs. Lines connecting
the subgraphs represent the cutting edges between subgraphs. The minimum distance
between the terminals of eac h two subgraphs is shown in the righ t-side of the figure.

Example. In Fig. 2, there are currently four subgraphs .G1, ..., G4 and any two
subgraphs have fewer than . ω vertices. Now, we need to select a pair of adjacent
subgraphs to merge. If the random rule is used, the probability that each pair of
adjacent subgraphs is selected is the same. If the random-edge rule is u sed, the
probability of selecting subgraphs .(G1, G3) is the highest, followed b y .(G2, G4),
.(G1, G2) and .(G3, G4). If the min-distance rule is used, .(G3, G4) is definitely
selected for merging.

3.3 Solution Storing

The motivation of solution storing is to guide future search by the fact that .Ti is
a high-quality solution in .Hi. To achieve this, we simply change the edge weigh t
of .Hi so that we can apply the same local search algorithm. Here, we introduce
a random way to reweight the edges in .Hi.

For any edge .e ∈ E(Hi), we score the edge weigh t .cHi
(e) as follows, where . α

is a random real number from .[0, 0.75].

.cHi
(e) =

{
(1 − α)cG(e) e ∈ E(Ti)
(1 + α)cG(e) otherwise

A Partition-and-Merge Algorithm for the Steiner Tree Problem 135

Clearly, the weights of edges in .E(Ti) are reduced, while the weights of edges
not i n .E(Ti) are increased, implying that the edges of .E(Ti) are p referred.

3.4 Local Optimization

The local optimization procedure, LocalOptimize.(G,H,A, Imax) is a population-
based search algorithm modified from the state-of-the-art PUW solver [20]. The
original graph . G, the edge reweighted graph . H, terminal set . A, maximum num-
ber of iterations .Imax.

In summary, LocalOptimize follows the scheme of genetic programming. It
maintains a pool of elite solutions . Q. In each generation, it produces new solu-
tions to update the elite pool – It first builds a new Steiner tree .T from . H
(Note that .H is a graph with biased edge weigh ts by solution storing). Then,
.T is improved by local search, but the local searc h runs on the initial graph
.G without biased edge weights. Afterward, the improved solution . T exchanges
information with another solution from the pool by c ombination, resulting in a
new solution . T ′. Finally , . T and .T ′ are used to update the pool.

For detailed description of the local optimization algorithm, please refer to
the f ull version.

4 Experiments

4.1 Settings

Our algorithm is programmed in C++ and compiled in g ++ with the optimiza-
tion option ’-O3’. 1 All experiments were conducted on a Linux server with In tel
Xeon Gold 6130 (2.10 GHz) processor.

Parameters Setting. In the experiments, . ρ is set to 64 and . γ is set to 2. For all
test instances, we set the total time limit .ttotal = 3600 seconds (1h). The two
parameters for controlling the number of iterations in LocalOptimize, .Ishort and
.Ilong, are set to 256 and 2048, respectively. However, with these configurations,
it is possible that we may not obtain a complete solution after 3600 s for some
graphs. This happens when there are still more than one subgraph in . P after this
time frame. Thus, we additionally require that eac h LocalOptimize runs at most
.
0.7(γ−1)
γ(ρ−1) × ttotal seconds for each subgraph. This implies that at least . 0.3 × ttotal

seconds are allocated for running LocalOptimize with the final graph, that is,
line 14 in Alg. 1.

4.2 Performance Assessment

Results on the Set of 113 Large Instance s We first test the algorithm i n 113 Large
Instances2. They are grouped in 8 datasets shown in Table 1, which indicates

1 Source codes are publicly available a t https://github.com/xyu03/PM.git.
2 All instances are downloaded from site http://dimacs11.zib.de/downloads.html.

https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
https://github.com/xyu03/PM.git
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html
http://dimacs11.zib.de/downloads.html

136 M. Sun et al.

the number of instances, average vertex number, average edge number, average
terminal number, and source of the dataset. GEO, I and EFST c ontain larger
instances (with more vertices, edges, and terminals) c ompared to ES, VLSI and
TSPFST.

Table 1. Information about the 8 large d atasets

Dataset Num ave..n ave..m ave..t Source
ES 16 4245 6235 1563 GeoSteiner g enerator
TSPFST 10 4687 7043 1871 TSPLIB
VLSI 10 17926 30973 452 VLSI applications
GEO 22 105906 150767 1845 Telecommunication netw orks
I 10 65120 106450 3211 Telecommunication netw orks
EFST(R25K) 15 39483 47893 25000 GeoSteiner g enerator
EFST(R50K) 15 79128 96293 50000 GeoSteiner g enerator
EFST(R100K) 15 158147 192190 100000 GeoSteiner g enerator

For this set of instances, we adopt the following best STP heuristic algorithms
as our reference algorithms.

– PUW [20], a multi-start local search algorithm which ranks first at Formula
1 in the single-thread heuristic track of the 11th DIMACS Competition.

– Staynerd [10], a winner of most category of instances in the single-thread
heuristic track of the 11th DIMA CS Competition.

– CIMAT [4], the champion of the heuristic track of the PACE Challenge (2018).
– MPCH [19], a partition-based algorithm focusing o n solving large graphs.

For each instance, we perform each of the above algorithms (except MPCH3)
10 times independently. For each algorithm and each instance, we take the best
solution obtained in the 10 t rials. We summarize these results for each dataset in
Table 2. Detailed results of these 113 instances are provided in the full version of
the paper. For each dataset and each algorithm, we indicate the average solution
gaps of the algorithm4 and the number of instances for which the algorithm finds
the best solution. In terms of solution gap, our PM algorithm performs better
than other algorithms on the largest instances of the GEO, I, and EFST family
datasets. It is also remarkable that PM is the best on all I and EFST instances
and 16/22 on the GEO instances. Meanwhile, for the relatively smaller instances
in this group, the algorithms compete with each other.

3 Because the code of MPCH is unavailable, we extract its results from [19].
4 For an instance, the gap of a solution .T is .

∑
e∈E(T) cG(e)−lb

lb
× 100%, .lb being the

best-known lower bound for the instance.

A Partition-and-Merge Algorithm for the Steiner Tree Problem 137

Table 2. The best solutions found by each algorithms on the set of 113 large instances.
The smallest average gaps are mark ed in bold.

Dataset ave.gap(%) #best
MPCH PUW Staynerd CIMAT PM MPCH PUW Staynerd CIMAT PM

ES 0.84 0.0082 0.0069 0.0987 0.0078 – 0 3 0 1
TSPFST 0.96 0.0100 0.0203 0.1068 0.0380 – 2 2 0 0
VLSI 1.64 0.0292 0.3963 0.0665 0.0730 – 2 0 1 1
GEO - 0.8136 1.0044 1.0753 0.7744 – 4 0 0 16
I 0.02 0.0130 0.0154 0.0394 0.0107 – 0 0 0 10
EFST(R25K) – 0.0798 0.0347 0.2761 0.0101 – 0 0 0 15
EFST(R50K) – 0.1131 – 0.3387 0.0188 – 0 0 0 15
EFST(R100K) – 0.1344 – 0.3644 0.0353 – 0 0 0 15

Results on the Set of 30 DIMACS Instances. We first test 30 instances that
are used in the final ranking phase for the single thread heuristic challenge of
the 11th DIMACS Implementation Challenge5. They are representative instances
from the well-known SteinLib, Vienna, Copenhagen, PUCN, and GAPS libraries.

For this set of instances, we compare o ur results with those of six best per-
forming reference algorithms: AB [1], mozartballs [10], polito [2], PUW [20],
scipjack [12] and Staynerd [10], which participated in the final heuristic track of
the 11th DIMACS Challenge. Following the time constraints in the competition
results of the DIMACS challenge heuristic track (1 thread), all algorithms are
run under a cutoff time of 2 h.

According to Table 3, in terms of finding the best solutions, polito and PM
each have 6 solutions that outperform the remaining algorithms. Mozartballs per-
forms best on ’Average’ and ’ave. gap(%)’. In particular, a detailed data analysis
reveals that PM has the best solution for fnl4461fst-p, alue7080-p, es10000fst01-
p, cc3-12p-p, G106ac-p, I064ac-p, which are the largest instances in the group.

Table 3. The best solutions found by each algorithms on D IMACS competition
instances

Instance AB mozartballs polito PUW scipjack staynerd PM
ave.gap(%) 776.0807 0.3640 3.8920 0.4174 1.5015 0.3737 0.6219
#best 0 0 6 4 0 1 6

The Effectiveness of Different Merging Rules. We show the average solution
gaps obtained by using each rule in Table 4. We use the Fredman test to check
the statistical significance of the differences in terms of solution quality, which
5 https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html.

https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html
https://dimacs11.zib.de/contest/results/SPGp.1.7200.heur.html

138 M. Sun et al.

reveals a .p-value o f .0.00. The .p-value (.< 0.05) clearly indicates the differences
between the variants with the three different merging rules. The random-edge
and min-distance strategies perform better than the random strategy, while min-
distance shows a slight a dvantage over random-edge.

Table 4. The average gaps (%) of PM variants using different merging rules.

Dataset random random-edge min-distance
ES 0.02069 0.00922 0.00783

TSPFST 0.01832 0.01831 0.03799
VLSI 0.09954 0.08684 0.07299

GEO 0.80160 0.78055 0.77435

I 0.01144 0.01090 0.01074

EFST(R25K) 0.01423 0.00960 0.01008
EFST(R50K) 0.02740 0.01868 0.01877
EFST(R100K) 0.04900 0.03646 0.03533

5 Conclusion

In this paper, we introduced a new partition-and-merge algorithm to effectively
solve large-scale STP instances. To ensure the effectiveness of the algorithm,
we in vestigated different merging heuristics, local search algorithms, a nd new
solution storing techniques.

This is the first STP algorithm based on a multi-level merging and search
strategy. The algorithm has some attractive features for parallel computing. For
example, we can run local optimizing procedures on different threads in parallel
as they are independent.

Acknowledgements. We thank the authors of Staynerd, PUW, CIMAT and other
solvers in the paper for providing their codes. We also thank the organizers of the 11th
DIMACS ch allenge and the 3rd PACE competition for hosting the data. This work
is partially funded by the National Natural Science Foundation of China under grant
No. 62372093 and the Natural Science Foundation of Sichuan Province of China under
grant No. 2023NSFSC1415.

References

1. Althaus, E., Blumenstock, M.: Algorithms for the maximum weight connected
subgraph and prize-collecting Steiner tree problems (2014). http://dimacs11.cs.
princeton.edu/workshop.html

2. Biazzo, I., Braunstein, A., Zecchina, R.: Performance of a cavity-method-based
algorithm for the prize-collecting Steiner tree problem on graphs. Phys. Rev. E
86(2), 026706 (2012)

http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html
http://dimacs11.cs.princeton.edu/workshop.html

A Partition-and-Merge Algorithm for the Steiner Tree Problem 139

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: Proceedings of the 39th ACM Symposium on Theory of
Computing, pp. 67–74 (2007)

4. Bonnet, É., Sikora, F.: The pace 2018 parameterized algorithms and computational
experiment s challenge: the third iteration. In: IPEC 2018 (2018)

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterativ e randomized rounding. J. ACM 60(1), 1–33 (2013)

6. Carrabs, F., Cerulli, R., Pentangelo, R., Raiconi, A.: Minimum spanning tree with
conflicting edge pairs: a branch-and-cut approach. Ann. Oper. Res. 298(1), 65–78
(2021)

7. Cheng, X., Du, D.Z.: Steiner Trees in Industry, vol. 11. Springe (2013)
8. Cheng, X., Li, Y., Du, D.Z., Ngo, H.Q.: Steiner trees in industry. In: Handbo ok of

Combinatorial Optimization, pp. 193–216. Springer (2004)
9. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: Inapproximability

results. Theoret. Comput. Sci. 406 (3), 207–214 (2008)
10. Fischetti, M., et al.: Thinning out Steiner trees: a node-based model for uniform

edge costs. Math. Program. C omput. 9(2), 203–229 (2017)
11. Fu, Z.H., Hao, J.K.: Swap-vertex based neighborhood for Steiner tree problems.

Math. Program. Comput. 9 (2), 297–320 (2017)
12. Gamrath, G., Koch, T., Maher, S.J., Rehfeldt, D., Shinano, Y.: SCIP-jack-a solver

for STP and variant s with parallelization extensions. Math. Program. C omput.
9(2), 231–296 (2017)

13. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in
VLSI design. Combin. Optim.-Meth. Appl. 31, 33–96 (2011)

14. Hsieh, C.Y., Liao, W.: All-optical multicast routing in sparse splitting WDM net-
wo rks. IEEE J. Sel. Areas Comm un. 25(6), 51–62 (2007)

15. Johnson, D.S., Koch, T., Werneck, R.F., Zachariasen, M.: 11th Dimacs implemen-
tation challenge in collaboration with Icerm: steiner tree problems (2014)

16. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA, vol. 93, pp. 21–30. Citeseer (1993)

17. Kun, Z., Yong, Q., Hong, Z.: Dynamic multicast routing algorithm for delay and
delay v ariation-bounded Steiner tree problem. Knowl.-Based S yst. 19(7), 554–564
(2006)

18. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery a nd Data Mining, pp. 467–476 (2009)

19. Luipersbeck, M.: A new partition-based heuristic for the Steiner tree problem in
large g raphs. Ph.D. thesis, Technische Univ ersität Wien (2013)

20. Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the
Steiner problem in graphs. Math. Program. C omput. 10(1), 69–118 (2018)

21. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid grasp with perturbations for
the Steiner problem in graphs. INFORMS J. Comput. 14(3), 228–246 (2002)

22. Uchoa, E., Werneck, R.F.: Fast local search for the Steiner problem in graphs. J.
Exp. Algorithmics (JEA) 17, 1–2 (2012)

