
An adaptive memetic algorithm for the
bidirectional loop layout problem

Wen Sun a,b, Jin-Kao Hao c, Wenlong Li a, Qinghua Wu d,∗

aSchool of Cyber Science and Engineering, Southeast University, 2 Road Southeast
University, 211189 Nanjing, China

bFrontiers Science Center for Mobile Information Communication and Security,
Southeast University, 2 Road Southeast University, 211189 Nanjing, China
cLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

dSchool of Management, Huazhong University of Science and Technology, 1037 Road
Luoyu, 430074 Wuhan, China

Knowledge-Based Systems, https://doi.org/10.1016/j.knosys.2022.110002, 2022

Abstract

Given a set of facilities, a set of positions arranged in a loop configuration and a
flow cost matrix, the bidirectional loop layout problem (BLLP) is to find a facility-
to-position assignment with the minimum sum of the products of flow costs and
facility distances. The flow cost between two facilities is the unit cost of transport-
ing items between two facilities, and the distance between two positions is shorter
in the clockwise or counterclockwise direction in the loop. The BLLP is a relevant
model for manufacturing systems; however, as the problem is known to be NP-
hard, solving the problem is computationally challenging. This paper presents a
memetic algorithm for BLLP that features an adaptive crossover selection and a
dedicated 3-phase local search. Experiments of the proposed algorithm are con-
ducted on 65 benchmarks, demonstrating a competitive performance compared
with the current best algorithms. Additional experiments are conducted to study
the impacts of the essential components of the algorithm.

Keywords: Memetic algorithm; heuristics; quadratic optimization; facility layout.

∗ Corresponding author.
Email address: qinghuawu1005@gmail.com (Qinghua Wu).

Preprint submitted to Elsevier 22 October 2022

1 Introduction

Given a flow cij from facility i to facility j for all i, j ∈ {1, . . . , n} and a
distance dqp between positions q and p for all q, p ∈ {1, . . . , n}, the pop-
ular quadratic assignment problem (QAP) is to determine a minimal cost
assignment of n facilities to n positions. Let Π denote the set of permuta-
tion functions π : {1, . . . n} → {1, . . . , n}. Then, NP-hard QAP [1] can be
formulated as

minπ∈Π f (π) =
n

∑
i=1

n

∑
j=1

cijdπiπj (1)

where c and d are the flow and distance matrices, respectively, and πi rep-
resents the position chosen for facility i in permutation π ∈ Π. Then, the
objective is to find a permutation π∗ in Π that minimizes the sum of the
products of the flow and distance matrices, i.e., f (π∗) ≤ f (π), ∀π ∈ Π.

One typical application of the QAP is in flexible manufacturing systems,
where an automated guided vehicle transports materials in a loop layout
path, and one wants to assign the facilities to suitable positions to minimize
the transportation cost. The transportation cost refers to the sum of the flow
times the distance of each pair of facilities. Other applications include back-
board wiring in electronics, design of typewriter keyboards, campus plan-
ning, analysis of chemical reactions for organic compounds, and balancing
turbine runners [2].

The bidirectional loop layout problem (BLLP) can be considered as a vari-
ant of the QAP with the following considerations [3]: all materials enter
into and leave from the manufacturing system at the Load/Unload (LUL)
station (the first position) and the first facility is placed at the first position;
a closed material handling loop goes through each facility exactly once; an
automated guided vehicle transports materials along the loop in one or the
other direction, depending on which route is shorter. The flow and distance
matrices are symmetric, implying that the flows and distances from i to j
and from j to i are the same. The BLLP can be expressed as:

minπ∈Π f (π) =
n−1

∑
i=1

n

∑
j=i+1

cijdπiπj , (2)

subject to

π1 = 1, (3)

2

dπiπj =

 min{∑
πj−1
k=πi

dkk+1, ∑n−1
k=πj

dkk+1 + d1n + ∑πi−1
k=1 dkk+1}, πi < πj;

min{∑πi−1
k=πj

dkk+1, ∑n−1
k=πi

dkk+1 + d1n + ∑
πj−1
k=1 dkk+1}, πi > πj.

(4)

where constraint (3) ensures that the first facility is fixed in the first place,
and constraint (4) indicates that dπiπj is the length of the shortest route be-
tween two positions (πi and πj) along the loop. In fact, the BLLP problem
is a variant of the constrained facility layout problem [4,5].

Figure 1 shows an example of the BLLP with 9 positions and 9 facilities. Fig-
ure 1(a) presents the flow matrix between facilities, and Figure 1(b) presents
the distance matrix whose values are either piling up clockwise or counter-
clockwise. For example, suppose πi = 1, πj = 5, the sum of d12 + d23 +
d34 + d45, i.e., 20, is less than that of d19 + d98 + d87 + d76 + d65, i.e., 25.
Therefore, the distance d15 between πi and πj equals 20. For any position
p, let i (i = 0, 1, 2 . . . n− 1) be the number of positions between p and q in
the clockwise (or counterclockwise) direction. As positions are placed in a
loop, the distance dpq from position p to q first increases with the increase
of i and then decreases with the increase of i after reaching the maximum
value. For example, suppose p = 1, q ≤ 5, and dpq is equal to {6, 10, 13, 20},
which increases with the increase of i. On the contrary, when q ≥ 6, dpq is
equal to {20, 14, 12, 5}, which decreases with the increase of i. Figure 1(c)
and 1(d) show a random permutation with the objective value of 2094 and
an optimal permutation with the objective value of 1797, respectively.

The BLLP was first formulated by Bozer and Rim [3], where they also proved
the NP-hardness of the problem. Consequently, it is computationally chal-
lenging to solve this problem.

In practice, BLLP arises naturally in circumstances such as the design of
flexible manufacturing systems (FMS) [6], tool indexing [7,8,9] and broad-
cast scheduling [10].

In the last few decades, the QAP has been studied intensively, while BLLP
has received much less attention. Bozer and Rim [3] presented an exact solu-
tion procedure for the BLLP based on the branch-and-bound (B&B) method,
which outperformed the best algorithm available for general QAPs as the
problem size increases. Given the NP-hard nature of the BLLP, the compu-
tational time required by exact algorithms increases exponentially, limiting
their practical use. To tackle large and difficult BLLP instances, Palubeckis
[11] proposed five heuristic approaches: one simulated annealing algorithm
(SA) and four 2-phase algorithms that adopt SA in the first phase and vari-
able neighborhood search (VNS) in the second phase. Specifically, the four
2-phase algorithms are SA-VNS-0-0 (both SA and VNS use the swap oper-

3

(a) A flow matrix (b) A distance matrix

(c) A random permutation with f=2094 (d) An optimal permutation with f=1797

Fig. 1. An example of the BLLP with its flow matrix, distance matrix, a random
permutation, and an optimal permutation

ator only), SA-VNS-0-1 (SA uses the swap operator while VNS adopts the
insertion operator), SA-VNS-1-0 (SA adopts the insertion operator while
VNS adopts the swap operator), and SA-VNS-1-1 (both SA and VNS adopt
the insertion operator). These algorithms produced state-of-the-art results
on different benchmark instances. Thus, they are used as our main reference
algorithms for the performance assessment in this study.

We observe that unlike the popular QAP for which many algorithms have
been proposed, there are few practical algorithms for effectively solving
the BLLP. The B&B exact algorithm in [3] suffers from the problem of in-
evitable exponential time complexity. It was only tested on very small in-
stances (n ≤ 10), and cannot be used in practice on large instances. The
SA heuristics were shown to be much more successful in solving many
instances up to n = 300. Still, these methods lack stability, especially on
large-scale instances (e.g., n > 160), suggesting that there is still room for
further improving their results. Thus, it is of interest to enhance the toolbox
for effectively solving BLLP. Finally, we observe that the current heuristic
algorithms for the BLLP are based on the single trajectory SA approach,
ignoring the powerful population-based memetic framework. Indeed, it
is known that hybrid memetic algorithms are among the best performing
methods for several related facility layout problems, such as the QAP [12],
single row facility layout problem [13], and distributed permutation flow-
shop scheduling problem [14]. In this study, we investigate for the first time

4

the potential of the memetic search framework for solving the BLLP.

We present the first adaptive memetic algorithm (AMA) for the BLLP that
features an adaptive strategy for dynamically choosing the most suitable
crossover among three crossover operators and a 3-phase local search that
can explore distant local optima. The algorithm also integrates an elite pop-
ulation initialization procedure and quality-based pool updating procedure.
We assess the proposed algorithm on a total of 65 benchmark instances, in-
cluding 55 existing instances with up to 300 facilities (n ≤ 300) and 10 new
large instances with 310 ≤ n ≤ 400. We report 14 new best results and 51
equivalent best results, which can be used to assess new BLLP algorithms.
We will also make the code of the AMA algorithm publicly available, which
can benefit future research on the BLLP and help solve related practical
problems.

The rest of the paper is structured as follows. Section 2 illustrates the pro-
posed algorithm. Section 3 provides computational results and compar-
isons. Section 4 analyzes the impacts of key components of the proposed
algorithm. Conclusions and future work are discussed in the last section.

2 Memetic algorithm with adaptive crossover selection

Memetic algorithm (MA) is a general metaheuristic that combines population-
based evolutionary search and single trajectory local search [15]. It aims to
exploit the advantages offered by these two complementary search frame-
works. In particular, MA uses a crossover to generate offspring solutions
and applies a local search to perform an intensified search around each
offspring solution. As such, MA favors the creation of a suitable balance
between exploration and exploitation, which is necessary to locate high-
quality solutions in the search space. As a general method, MA has been
successfully adopted to solve various difficult optimization problems such
as the quadratic assignment problem [16,17], the traveling salesman prob-
lem [18,19], scheduling problems [14,20], and many routing problems [21,22].
We introduce the first memetic algorithm applied to the BLLP.

2.1 Adaptive memetic algorithm

The proposed adaptive memetic algorithm (AMA) algorithm relies on the
general MA method and has two distinct features. First, it adopts an adap-
tive crossover selection for offspring generation. Second, it employs a 3-
phase local search for offspring improvement, which includes a dedicated

5

perturbation for local search diversification.

Algorithm 1 Adaptive memetic algorithm for the BLLP
Input: flow matrix c and distance matrix d, facility quantity n.
Output: the best permutation πglobal best found
1: P← Population initialization(c, d, n) /* Section 2.2 */
2: πglobal best ← argmin{ f (πi)|πi ∈ P}
3: for m = 1, 2, 3 do
4: γm ← 1/3 /* Initialize the m-th crossover probability γm, Section 2.3.2 */
5: end for
6: γ← {γ1, γ2, γ3} /* Initialize crossover probability array γ, Section 2.3.2 */
7: while Stopping condition is not met do
8: Randomly select 2 permutations πa, πb in P as two parents
9: (π0, t) ← Adaptive Crossover(πa, πb, γ) /* Generate an offspring permuta-

tion π0 by an adaptively selected crossover of type t according to crossover
probability, Section 2.3 */

10: πbest ← 3-phase Local Search(π0) /* Apply local search to improve the off-
spring permutation, Section 2.4 */

11: (P, πglobal best, γ) ← Update(P, πbest, πglobal best, γ, t) /* Update the popula-
tion, the global best permutation πglobal best and the crossover probability
array, Section 2.5 */

12: end while
13: return πglobal best

The general architecture of the AMA algorithm is described in Algorithm
1, which contains an initialization procedure (line 1), adaptive crossover
procedure (line 9), a local search procedure (line 10), and a procedure for
information updating (line 11).

2.2 Population Initialization

The solutions of the initial population are generated in two steps: random
facility-to-position assignment, followed by local improvement.

To generate an initial permutation randomly, each unassigned facility is as-
signed to a random unassigned position, except for the first facility that is
always assigned to position 1. From this random assignment, we improve
its quality by applying a local improvement procedure using a simple de-
scent search. Let π = {π1, π2, . . . , πn} be the current permutation; the de-
scent search iteratively removes a facility i (2 ≤ i ≤ n) and inserts it af-
ter facility j (2 ≤ j ≤ n) to obtain a neighbor permutation better than the
current permutation (see Section 2.4). This process is repeated until no im-
provement is possible.

6

If the improved solution is not a clone of any other permutation in the pop-
ulation, it will be inserted into the population. Otherwise, this solution is
discarded. The population initialization procedure is iterated until the pop-
ulation is filled with p (population size) distinct permutations.

In addition to this two-step initialization, we also tested random initializa-
tion. Our experiments showed that for small and medium instances, the
two initialization methods led to quite similar best results of the AMA al-
gorithm. However, for large instance, the two-step initialization allows the
algorithm to obtain more final best results and makes the algorithm more
stable with better average results.

2.3 Crossovers and their adaptive application

One key to the success of population-based memetic approaches lies in
crossover operators, which should be able to transfer meaningful compo-
nents from parents to offspring while ensuring offspring diversity [23]. Dif-
ferent crossover operators inherit different parental genes, resulting in dif-
ferences in offspring performance and population diversity. In addition,
different instances may need the transmission of particular features, or even
one instance needs the transmission of specific features at different search
stages. As a result, a single crossover operator is not suitable for all in-
stances and different search stages. Thus, it is an interesting strategy to
employ an ensemble of crossover operators that are applied adaptively ac-
cording to specific conditions, as shown in [18,24,25].

2.3.1 Crossovers

The proposed AMA algorithm applies adaptively, according to a proba-
bilistic learning technique, three types of permutation crossover: one-point
order crossover (OPOX) [26] (line 3, Algorithm 2), linear order crossover
(LOX) [27] (line 6, Algorithm 2) and order-based crossover (OBX) [28] (line
9, Algorithm 2).

One-point order crossover’s offspring inherits the positions of the left-half
facilities of parent πa and the relative order of the remaining facilities of
parent πb. Linear order crossover’s offspring inherits the positions of the
middle facilities of parent πa and the relative order of the remaining facil-
ities of parent πb; Order-based crossover’s offspring inherits the positions
of n/2 random facilities of parent πa and the relative order of the remain-
ing facilities of parent πb. These three crossover operators can inherit elite
components of different parts of parent πa and the relative order of the re-
maining facilities of parent πb; thus, they can complement each other to fit

7

different situations. The details of these operators are as follows.

OPOX: The one-point order crossover is widely applied to problems related
to the traveling salesman problem (TSP) (e.g., [18,29]). OPOX randomly se-
lects one crossing point between 2 and n and passes the sub-sequence from
one parent on one side of the crossing point to the offspring. The remain-
ing parts are copied to the offspring in the same sequence as they appear
in the other parent. Figure 2 shows an example where the selected cross-
ing point is between positions 5 and 6. The subsequence to the left of πa

is copied first, and then the remaining assignments of πb are copied in the
same order to generate the offspring π0.

Fig. 2. An example of the one-point order crossover

LOX: The linear order crossover is widely used to solve problems related to
the TSP [30]. Our experimental results (Section 4.1) show that LOX is suit-
able for BLLP. In this operator, two crossing points are randomly selected.
The offspring π0 is obtained by first transferring the sub-sequence between
the two cutting points from one parent to the offspring, and then copying
the remaining parts from the other parent in the same order. Figure 3 shows
an example of generating an offspring solution with this crossover. The first
crossing point is between positions 3 and 4, and the second crossing point
is between positions 7 and 8. The subsequence of πa between the crossing
points is copied to π0, and then the remaining assignments of πb are copied
in the same order to generate the offspring π0.

Fig. 3. An example of the linear order crossover

OBX: The order-based crossover are quite successful on scheduling prob-
lems [28], where the objective is to obtain the best order (sequence) in which
jobs are processed. The basic feature of this crossover is that it preserves the
relative order of assignments. OBX operates as follows. First, it randomly
selects k (k = n/2 in this paper) facility-to-position assignments and passes

8

them from parent πa to offspring. Then, it copies the remaining assignments
to the offspring according to their orders in πb. Figure 4 gives an example
of the order-based crossover operator.

Fig. 4. An example of the order-based crossover

As shown in Section 4.1, the adaptive application of these three crossovers
constitutes an important component of the proposed algorithm.

2.3.2 Learning-based adaptive application of crossovers

The crossover probability array γ records the possibility γt of the t-th type
of crossovers being selected, and ∑3

t=1 γt = 1. Initially, the selection prob-
ability of each type of crossover is equal; i.e., γt = 1/3 (lines 3-5, Algo-
rithm 1). First, a random number rand between 0 and 1 is generated. Then,
if rand < γ1, the one-point order crossover (the 1st type of crossover) is
selected; if γ1 ≤ rand < γ1 + γ2, the linear order crossover (the 2nd type of
crossover) is selected; otherwise, the order-based crossover (the 3rd type of
crossover) is selected.

Algorithm 2 Learning-based adaptive crossover application
Input: parent permutations πa and πb, the crossover probability array γ.
Output: offspring permutation π0, type of crossover t
1: rand← random number between 0 and 1
2: if rand < γ1 then
3: π0 ← OnePointOrderCrossover(πa, πb)
4: t← 1 /* t is the type of the applied crossover */
5: else if rand < γ1 + γ2 then
6: π0 ← LinearOrderCrossover(πa, πb)
7: t← 2
8: else
9: π0 ← OrderBasedCrossover(πa, πb)

10: t← 3
11: end if
12: return

If an improved offspring is successfully inserted into the population dur-
ing the updating procedure presented in Section 2.5, the applied crossover
of type t is rewarded by increasing its selection probability γt, while the

9

other crossovers are penalized by decreasing their probability, according to
the learning strategy described in Section 2.5. From the use of adaptively
learned probabilities, it is expected that the most suitable crossover is se-
lected at each generation of the algorithm to create promising offspring so-
lutions.

2.4 3-phase local search

It is known that local search can be trapped in local optimal solutions. To
cope with this difficulty, multi-phase local search framework is one possible
remedy. In this work, we adopt a 3-phase local search procedure whose key
idea is illustrated in Figure 5, where the X-axis indicates feasible solutions
π, and the Y-axis indicates the corresponding objective values f (π). In Fig-
ure 5, B, C, D, E, F, H and I are local optima of different quality. Starting
from an initial solution, say A, the search calls Descent Search (phase 1) to
reach the first local optimum B and then uses Simulated Annealing (phase
2) to discover nearby local optima C and D. At this point, phase 3 starts.
Since D is the current local optimal solution, the Perturbation procedure is
executed to jump from D to a distant solution J, which is subsequently op-
timized by Descent Search (J→ I). Suppose that I is better than D; the next
Perturbation will be executed from I (I → G), which is subsequently opti-
mized by Descent Search (G→ H), to obtain a high-quality solution H. We
now explain each of these three local search phases.

Fig. 5. An example of the 3-phase local search

1) Phase 1 (Descent search, line 1, Algorithm 3): The first local search phase
is based on fast descent search. Starting from the given input permutation,
this phase iteratively improves the solution until no further improvement
is possible. At each iteration, facility i (2 ≤ i ≤ n) is removed and inserted
after facility j (2 ≤ j ≤ n) such that the new (neighbor) solution is better
than the current permutation.

2) Phase 2 (Simulated annealing, line 3, Algorithm 3): From the local opti-

10

mal solution π obtained in the first phase, we invoke a simulated annealing
(SA) algorithm to further improve the solution. Specifically, each iteration
of SA adopts the same insertion operator as in the first phase but accepts a
new (neighbor) solution π′ under two different conditions. If π′ is no worse
than π, the former is accepted to replace the current solution. Otherwise, π′

will be accepted with probability P(δ f , T) where δ f = f (π′) − f (π), and
T is the temperature parameter that starts with a high value and progres-
sively decreases according to T = α ∗ T (α is a parameter called the cooling
factor) when the maximum number of iterations at the current temperature
exceeds parameter Q (called the search depth of SA). This second phase
terminates when the temperature T is below 0.01.

3) Phase 3 (Iterated descent search, lines 6-15, Algorithm 3): Finally, when
SA falls into a deep local optimal trap, the third phase is invoked, which
alternates between the descent search of phase 1 and the perturbation pre-
sented in Section 2.6. This phase stops if the best-found solution cannot be
improved for L consecutive search rounds (L is discussed in Section 3.2.1).
Owing to the dedicated perturbation, this iterated descent search phase al-
lows to explore more distant local optimal solutions.

Algorithm 3 Local search for solving BLLP
Input: flow matrix c and distance matrix d, facilities n, and input permutation π0.
Output: the best improved permutation πbest

/* Phase 1: descent-based local search without diversification */
1: π0 ← Descent Search(c, d, n, π0) /* Reach the first local optimum quickly */
2: πbest ← π0 /* The best permutation found so far during 3-phase local search

*/
/* Phase 2: SA-based local search with limited degree of diversification */

3: π0 ← Simulated Annealing(c, d, n, π0)/* Further improve the quality of the
permutation */

4: πbest ← argmin{ f (πbest), f (π0)} /* Record the best permutation πbest found */
/* Phase 3: iterated descent search with high degree of diversification */

5: ω ← 0 /* Record the consecutive non-improvement descent searches */
6: while Stopping condition is not met do
7: π0 ← Perturbation(ω, πbest) /* Escape from the local optimum, Section 2.6

*/
8: π0 ← Descent Search(c, d, n, π0)
9: if f (π0) < f (πbest) then

10: π0 ← πbest

11: ω ← 0
12: else
13: ω ← ω + 1
14: end if
15: end while
16: return πbest

These three phases are based on the insertion operator [11], which is de-

11

scribed formally here. Let π be a given permutation, and π′ ← π⊕ insert(πi, πj)
be the new (neighbor) permutation obtained by deleting the facility i from
the position πi and inserting i to the position πj. Thus, the neighborhood
NI(π), i.e., the set of neighbor solutions induced by applying the insertion
operator to π is given by

NI(π) = {π ⊕ insert(πi, πj) : πi, πj ∈ {2, . . . , n}, πi 6= πj} (5)

whose size is O((n− 1)2).

To ensure a fast evaluation of neighbor permutations, an incremental eval-
uation technique [11] is adopted for the BLLP. The main idea is to main-
tain a special data structure to record the move gains of the neighbor so-
lutions. Particularly, each insertion move is decomposed into several swap
moves. Let swap(πi, πj) be the swap operation which exchanges the po-
sitions of two facilities in permutation π, πS ← π ⊕ swap(πi, πj) be the
neighbor solution obtained by applying swap(πi, πj) to π. Then the move
gain ∆(πi, πj) of the insertion move insert(πi, πj) can be calculated by,

∆(πi, πj) =

 ∑
πj
πk=πi+1 ∆S(πk − 1, πk), πi < πj;

∑
πj
πk=πi−1 ∆S(πk + 1, πk), πi > πj.

(6)

where ∆S(πk − 1, πk) and ∆S(πk + 1, πk) are the move gains of the swap
moves when facility i is swapped from position πk − 1 and πk + 1 to its
neighboring position πk.

∆S(πk − 1, πk) = −dπk−1πk ∑r∈A (cir − ckr) + dπk−1πk ∑r∈B (cir − ckr)

+∑r∈C (dπk−1πr − dπkπr)(cir − ckr)

∆S(πk + 1, πk) = dπk+1πk ∑r∈A (cir − ckr)− dπk+1πk ∑r∈B (cir − ckr)

−∑r∈C (dπk+1πr − dπkπr)(cir − ckr)

(7)

where A = Kπi\{k}, B = K\Kπk and C = Kπk\Kπi . K = {1, . . . , n}\{i, k}
and Kπi is a facility set in which the clockwise distance from the position of
a facility to πi is shorter than its counterclockwise distance.

The 3-phase local search procedure is applied to each offspring. We discuss
the complexity of this local search procedure in Section 2.7.

12

2.5 Update

After the 3-phase local search, the population, the best permutation ever
found, and the probability array of crossovers are updated.

Algorithm 4 Update
Input: Population P, new permutation πbest, best permutation πglobal best, the

crossover probability array γ, type of applied crossover t.
Output: Updated population P, best permutation πglobal best, the crossover proba-

bility array γ.
1: πworst ← argmax{ f (π1), f (π2), . . . , f (πp)} /* Identify the worst permutation

πworst in P */
/* Update the Population */

2: if f (πbest) ≤ f (πworst) then
3: P← P ∪ {πbest}\{πworst}
4: qt = qt + 1;
5: end if

/* Update the best permutation πglobal best */
6: πglobal best ← argmin{ f (πbest), f (πglobal best)}

/* Update the probability of each applied crossover */
7: Update γ by calculate each γm according to equation (8)
8: return

1) Update the population and the best permutation ever found (lines 2-6,
Algorithm 4). The quality-based population updating strategy is adopted
to update the population, which has been successfully applied to the QAP
[17] and the traveling repairman problem with profits [25]. Since the local
search already guarantees the diversity of descendants through perturba-
tions and SA, pool replacement only needs to consider the quality of de-
scendants. Specifically, if the objective value (quality) of the input permuta-
tion πbest is no worse than the worst permutation πworst of the population,
then πbest replaces πworst. Otherwise, πbest is ignored and the population
remains unchanged.

2) Update the crossover probability array (line 7, Algorithm 4). The crossover
probability array γ = {γ1, γ2, γ3} is updated according to a probability
learning method (Equation (8)). Our probabilistic updating scheme is in-
spired by learning automata [31], which helps to determine the optimal
strategy in the space of candidate strategies [32]. Similar probability up-
dating schemes were used to solve the traveling repairman problem with
profits [30], the orienteering problem [33], feature selection in classification
[34], and the traveling salesman problem with hotel selection [18].

γm =
1 + qm

3 + q1 + q2 + q3
(m ∈ {1, 2, 3}) (8)

13

where m is the crossover type and qm is the number of times that an im-
proved offspring is successfully inserted into the population by adopting
the crossover of type m. If qm increases in the current generation, both nu-
merator and denominator of the equation (8) will increase by the same
amount. Their total γm will rise, while the selection probability of other
crossovers will decrease correspondingly.

2.6 Perturbation for iterated descent search

As explained in Section 2.4, the third local search phase iterates descent
search and perturbation to explore additional local optimal solutions start-
ing from the deep local optimum reached by the SA procedure. To make
the perturbation as effective as possible, two types of perturbation (random
and symmetric-based) (line 2 and line 4, Algorithm 5) are employed and ap-
plied according to the number of consecutive iterations during which πbest

is not improved during the 3rd phase of the local search.

Algorithm 5 The perturbation phase for the 3rd-phase local search
Input: the number of consecutive iterations ω during which πbest is not improved.
Output: the permutation π′ after perturbation
1: if ω < β× L then
2: π′ ← random perturbation(πbest)
3: else
4: π′ ← symmetric perturbation(πbest)
5: end if
6: return π′

Recalled that the 3rd phase of the local search iterates the perturbation and
the descent search. If the iteration is slightly stagnating, i.e., no better per-
mutation can be found during β × L consecutive descent searches (β is a
parameter, L is the allowed maximum number of descent searches), the first
type of perturbation is adopted to slightly modify the current permutation
πbest. If the search is trapped in a deep local optimum (i.e., no improve-
ment is reached after β× L consecutive descent searches), the perturbation
strategy applies the second perturbation to enable a stronger modification.

To perform a perturbation, two types of moves, both are based on the swap
operator (see Section 2.4) are adopted according to ω. The first type is called
random tabu perturbation that randomly selects performs η (a random num-
ber in [0.1× n, ηmax]) random swap(i, j) moves, where ηmax is discussed in
Section 3.2.1. Each time a perturbation move is performed, the swapped fa-
cilities i and j are recorded in the tabu list and will not be considered during
the current perturbation procedure. The second type is the symmetric per-
turbation that swaps 0.45 ∗ n facilities i from their positions πi with their

14

symmetric positions (defined as position n + 1− πi).

(a) An example of random perturbation (b) An example of symmetric perturbation

Fig. 6. Two types of perturbation with descent search

Figure 6(a) gives a permutation π = {1, 9, 7, 4, 2, 6, 8, 5, 3}with the objective
value of 1959. A new permutation π′ = {1, 5, 7, 3, 2, 6, 8, 9, 4} is obtained af-
ter randomly swapping two pairs of facilities {9, 5} and {4, 3} of π. The ob-
jective value of the random perturbed permutation π′ is 1996, which is im-
proved by the descent search, leading to an improved permutation with the
objective value of 1797. Figure 6(b) illustrates the symmetric permutation
applied to permutation π = {1, 9, 2, 8, 4, 6, 3, 7, 5} with the objective value
of 2038. This permutation relocates three pairs of facilities, {9, 5}, {2, 7} and
{8, 3} to their symmetrical positions, leading to the perturbed permutation
π′ = {1, 5, 7, 3, 4, 6, 8, 2, 9} with the objective value of 2040. This objective
value is reduced to 1797 by the descent search, which is much better than
that of initial solution.

Finally, during the perturbation procedure, the best solution ever found is
updated each time an even better solution is found. The permutation re-
sulting from the perturbation procedure is then used as the new starting
permutation of the next round of the descent search procedure.

2.7 Computational complexity and discussion

We first consider the population initialization procedure, which can be di-
vided into two steps. The first step of randomly assigning facilities can
be achieved in O(n). The complexity of one iteration of descent search is
O(n2). Then, the second step of applying the descent search is bounded
by O(K1 × n2), where K1 is the number of iterations of the descent search.
Thus, the time complexity of the population initialization procedure is O(p×
K1 × n2), where p is the population size.

15

We now consider the four procedures in the main loop of the AMA algo-
rithm: parent selection, crossover operator, the 3-phase local search, and
updating procedure. The parent selection procedure is realized in O(1).
The crossover operator requires time O(n). The complexity of the 3-phase
local search procedure is O(n × Q × τ + K1 × K2 × n2), where Q is the
search depth of SA, τ is the number of temperature levels, and K2 is the
number of runs of descent search. Because Q is linearly related to n ac-
cording to Section 3.2.1, the complexity expression can be simplified to
O((τ + K1 × K2) × n2). The updating procedure can be achieved in O(n).
Then, the complexity of one iteration of the main loop of the AMA algo-
rithm is O((τ + K1× K2)× n2). This complexity is quite similar to the com-
plexity of one iteration of the main loop of the SA-VNS-1-1 algorithm of
[11], which is O((τ + K1 × K3) × n2), where K3 is the number of runs of
VNS.

3 Experimental results and comparisons

We evaluate the proposed AMA algorithm by studying 65 benchmark in-
stances and comparing it with the best-performing algorithms.

3.1 Benchmark instances

We use 65 benchmark instances, which are classified into four categories 1 .
The first three categories (55 instances with up to 300 facilities) are from
the literature and in particular are thoroughly tested in [11]. The last cate-
gory introduced in this study includes 10 very large instances with 310–400
facilities.

(1) The first category contains 20 instances with sko* in their names. These
instances came from the unified testing platform QAPlib proposed by
J. Skorin-Kapov [35] 2 . The flow is the same as those in QAP and ranges
from 0 to 10. The distance between adjacent positions are random inte-
ger numbers from the intervals [1, 101]. These sko* instances were tai-
lored for the single row facility layout problem [36], and largely tested
in the literature on the facility layout problem [37,38,39,40,41].

(2) The second category contains 20 randomly generated large scale in-
stances with 110 to 300 facilities [11]. These instances have p* in their
names. The flow between two facilities and the distances between ad-

1 https://github.com/sunseu2022/Instances-of-BLLP
2 https://www.opt.math.tugraz.at/qaplib/inst.html#Sk

16

jacent positions were random integer numbers in the intervals [0, 10]
and [1, 10], respectively.

(3) The third category contains 15 instances with 100, 150, and 200 facilities
[11]. They are generated in the same way as the second category. Each
size includes 5 instances. Names of these instances begin with p* and
end with -*.

(4) The fourth category contains 10 instances with 310 to 400 facilities (one
instance per size), generated in the same way as the second and the
third categories. These instances also have p* in their names.

3.2 Experiment settings

The proposed AMA algorithm is programmed in C++ and compiled by
GNU g++ 4.1.2 with the -O3 flag. Experiments are conducted on a computer
with an Intel (R) Core (TM) 2 Duo CPU T7700 2.40GHz processor running
Ubuntu CentOS Linux release 7.9.2009 (Core). We will make the code of the
algorithm available upon the publication of the paper at the link of footnote
1.

3.2.1 Parameters

The main parameters are related to the population initialization, simulated
annealing algorithm and the iterated descent search (see Sections 2.2, 2.4
and 2.6). The AMA algorithm requires 6 parameters: the population size p,
the number of iterations Q at which the temperature is kept constant, the
cooling factor α, the search depth L of iterated descent search, The threshold
of applying random perturbation β, and the maximum length of random
perturbation ηmax. To tune these parameters, we used the “irace” package
[42], which implements the Iterated F-Race method to determine automati-
cally the most suitable parameter settings from a set of possible parameter
configurations. The irace is run on 7 randomly selected instances, and the
tuning budget is set to be 200 executions under the normal cutoff time. Ta-
ble 1 presents the range of parameter values and final values recommended
by the “irace”. All experiments adopted the final values.

3.2.2 Reference algorithms

To evaluate the performance of the AMA algorithm, the state-of-the-art
heuristic algorithm SA and its variants (SA-VNS-0-0, SA-VNS-0-1, SA-VNS-
1-0, and SA-VNS-1-1) from [11] are used as the main reference algorithms,
where SA-VNS is a 2-phase algorithm that combines the SA algorithm with
a variable neighborhood search (VNS). These reference algorithms are run

17

Table 1
Settings of important parameters

Parameters Section Description Candidate values Final value

p 2.2 Population size {7, 10, 12, 15} 10

Q 2.4 The number of iterations at each temperature in SA {50n, 100n, 150n, 200n} 100n

α 2.4 Cooling factor of SA {0.8, 0.85, 0.9, 0.95} 0.95

L 2.4 Search depth of iterative descent search {50, 75, 100, 125} 75

β 2.6 The threshold of applying random perturbation {0.33, 0.5, 0.67, 0.75} 0.67

ηmax 2.6 The maximum length of random perturbation {0.25n, 0.3n, 0.35n, 0.4n} 0.25n

on a computer with an Intel Core i5-6200U CPU (2.30GHz) [11]. We ex-
tracted the results of these reference algorithms from [11] for comparisons.

Following the common practice of reporting comparative results, perfor-
mance assessment focuses on the best permutation found by an algorithm
with the minimum objective value. For the conventional 55 instances, we
cite the best-known objective value (BKV), which was reported in [11] un-
der a relaxed cutoff time (see Section 3.2.3). It is worth noting that, accord-
ing to the results reported in [11], no single existing reference algorithm
could obtain all BKVs for these conventional 55 instances. Even the best-
performing algorithm SA-VNS-1-1 misses 16 BKVs. As shown in Section
3.3, under the same relaxed cutoff time as in [11], our AMA algorithm
reaches all BKVs and improves 4 BKVs. Under the normal cutoff time (see
Section 3.2.3), AMA is still able to improve 4 BKVs and match other 46 BKVs
while missing only 5 BKVs.

3.2.3 Stopping condition

The algorithms of [11] (coded in C++) were tested with different cutoff time
limits (given below) and each algorithm was run to solve each instance 10
times independently. The experiments in [11] were performed on a com-
puter with an Intel Core i5-6200U CPU running at 2.30GHz, which is com-
parable to our Intel computer running at 2.40GHz. To ensure a meaningful
comparison, we adopted the same experimental protocol to report our re-
sults for the proposed AMA algorithm (coded in C++) and used the same
cutoff time as in [11] to solve each instance 10 times.

Normal cutoff time: The five reference algorithms (SA, SA-VNS-0-0, SA-
VNS-0-1, SA-VNS-1-0 and SA-VNS-1-1) [11] were run to solve the 55 bench-
mark instances of the first three categories under the following cutoff times:
30 seconds for n ≤ 80, 60 seconds for 80 < n ≤ 100, 300 seconds for 100 <
n ≤ 150, 600 seconds for 150 < n ≤ 200, 1200 seconds for 200 < n ≤ 250,
1800 seconds for 250 < n ≤ 300. Similarly, AMA was run 10 times to solve
each instance. Besides, for the 10 newly generated very large instances, we
use the following cutoff times: 3600 seconds for 300 < n ≤ 350 and 5400

18

seconds for 350 < n ≤ 400.

Relaxed cutoff time: SA-VNS-1-1 (the best reference algorithm) was also
run under much relaxed cutoff time in [11], that is, 30 times each of the
above-mentioned normal cutoff times. Under these relaxed stopping condi-
tions, SA-VNS-1-1 reported the current best objective values for the bench-
mark instances of categories 1 to 3 (the BKV values as shown in Table 2-4).

3.3 Comparison with state-of-the-art algorithms

The results of AMA on the three categories of instances are presented and
compared with those of the reference algorithms.

Table 2 reports the results of our AMA algorithm on the 20 instances of the
first category, as well as the results of the reference algorithms. The first col-
umn of Table 2 indicates the name of each instance and the second column
indicates its BKV reported in the literature. Recalled that the BKV values
were obtained by the representative algorithm SA-VNS-1-1 under relaxed
time conditions. The next 15 columns report the best results (fbest), aver-
age results (favg), and average running time (tavg) of SA, SA-VNS-0-0, SA-
VNS-0-1, SA-VNS-1-0, and SA-VNS-1-1 over 10 independent runs. The last
3 columns show the results of AMA for each instance over 10 runs: the best
results, average results, and average computation time (tavg) in seconds of
the successful runs to obtain the best results. The best results among the
compared values are indicated in bold. Entries with “-” mean that the cor-
responding results are not available in the literature. Additionally, the row
“Avg.” indicates the average values of the columns. In [11], no timing in-
formation is indicated for each specific instance, but the average time for
each group of instances (i.e., instances with the same n) is provided, which
is shown in row Avg. in Table 2.

Table 2 indicates that SA-VNS-0-1, SA-VNS-1-1, and AMA can easily find
the best-known results for these 20 instances, while SA, SA-VNS-0-0, and
SA-VNS-1-0 miss at least 1 best-known result. Moreover, in terms of favg,
AMA has better or equal favg values in all instances compared with the ref-
erence algorithms, which shows that the AMA algorithm is highly stable
compared to the reference algorithms. Finally, among the compared algo-
rithms, AMA needs the least time to reach the BKVs.

Table 3 reports the comparative results of the reference algorithms and the
AMA algorithm on 20 instances of the second category with the same in-
formation as in Table 2. It can be seen from Table 3 that AMA improves
the BKV values of 4 instances (p180, p280, p290, and p300, indicated by
the ’*’ symbol) and reaches the BKV values of other 12 instances. Besides,

19

AMA dominates the reference algorithms SA, SA-VNS-0-0, SA-VNS-0-1,
SA-VNS-1-0, and SA-VNS-1-1, with 15, 17, 14, 13, and 11 better results, re-
spectively. As to the computation time, we note that for the 4 instances for
which all algorithms can obtain the BKVs, AMA is the fastest to reach the
best–known results. For the remaining instances except two, AMA spends

20

Table 2
Comparison of AMA with the reference algorithms [11] on the 20 instances of the first category

Instance BKV
SA SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1 AMA

fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg

sko 64 1 74,067 74,067 74,067.1 - 74,067 74,069.3 - 74,067 74,067.0 - 74,067 74,067.3 - 74,067 74,067.0 - 74,067 74,067.0 1.9

sko 64 2 573,458 573,458 573,528.7 - 573,458 573,531.1 - 573,458 573,460.9 - 573,458 573,495.0 - 573,458 573,498.0 - 573,458 573,458.0 9.2

sko 64 3 363,994 363,994 364,005.1 - 363,994 364,005.1 - 363,994 364,004.0 - 363,994 363,994.0 - 363,994 363,994.2 - 363,994 363,994.0 2.1

sko 64 4 243,966 243,966 243,974.0 - 243,966 243,984.8 - 243,966 243,966.0 - 243,966 243,970.8 - 243,966 243,966.0 - 243,966 243,966.0 2.8

sko 64 5 430,063 430,063 430,177.6 - 430,063 430,171.2 - 430,063 430,086.0 - 430,178 430,207.0 - 430,063 430,101.4 - 430,063 430,086.0 14.4

sko 72 1 107,431 107,431 107,434.2 - 107,431 107,483.1 - 107,431 107,431.0 - 107,431 107,431.0 - 107,431 107,431.0 - 107,431 107,431.0 6.3

sko 72 2 609,044 609,044 609,129.3 - 609,044 609,125.4 - 609,044 609,073.7 - 609,044 609,121.3 - 609,044 609,070.2 - 609,044 609,044.0 9.8

sko 72 3 1,009,747 1,009,747 1,009,764.3 - 1,009,747 1,009,768.0 - 1,009,747 1,009,747.0 - 1,009,747 1,009,847.5 - 1,009,747 1,009,847.5 - 1,009,747 1,009,747.0 3.8

sko 72 4 853,106 853,106 853,191.7 - 853,106 853,350.0 - 853,106 853,245.7 - 853,106 853,183.2 - 853,106 853,160.4 - 853,106 853,112.9 7.7

sko 72 5 351,489 351,489 351,570.7 - 351,489 351,586.1 - 351,489 351,494.4 - 351,489 351,582.9 - 351,489 351,552.2 - 351,489 351,489.0 5.8

sko 84 1 155,730 155,730 155,730.0 - 155,730 155,730.6 - 155,730 155,730.0 - 155,730 155,730.0 - 155,730 155,730.0 - 155,730 155,730.0 1.5

sko 84 2 447,633 447,633 447,635.4 - 447,633 447,640.2 - 447,633 447,633.0 - 447,633 447,633.8 - 447,633 447,633.0 - 447,633 447,633.0 5.1

sko 84 3 848,904 848,904 848,917.3 - 848,904 848,908.5 - 848,904 848,904.0 - 848,904 848,908.4 - 848,904 848,908.4 - 848,904 848,904.0 11.8

sko 84 4 1,768,175 1,768,175 1,768,188.6 - 1,768,175 1,768,186.1 - 1,768,175 1,768,175.0 - 1,768,175 1,768,178.5 - 1,768,175 1,768,177.5 - 1,768,175 1,768,175.0 10.9

sko 84 5 1,175,705 1,175,705 1,175,715.5 - 1,175,705 1,175,705.1 - 1,175,705 1,175,705.0 - 1,175,705 1,175,705.0 - 1,175,705 1,175,705.0 - 1,175,705 1,175,705.0 1.5

sko 100 1 288,678 288,678 288,693.9 - 288,698 288,742.3 - 288,678 288,698.4 - 288,678 288,709.3 - 288,678 288,699.4 - 288,678 288,678.0 20.1

sko 100 2 1,806,738 1,806,879 1,807,173.7 - 1,806,959 1,807,521.2 - 1,806,738 1,807,210.6 - 1,806,738 1,807,311.2 - 1,806,738 1,807,130.4 - 1,806,738 1,806,991.9 18.9

sko 100 3 14,871,217 14,871,217 14,872,537.5 - 14,871,260 14,873,074.1 - 14,871,217 14,872,263.2 - 14,871,217 14,872,719.9 - 14,871,217 14,872,558.4 - 14,871,217 14,871,596.4 24.1

sko 100 4 2,980,012 2,980,038 2,980,282.1 - 2,980,090 2,980,666.9 - 2,980,012 2,980,423.5 - 2,980,012 2,980,434.1 - 2,980,012 2,980,262.8 - 2,980,012 2,980,051.6 22.8

sko 100 5 879,038 879,038 879,296.3 - 879,038 879,324.7 - 879,038 879,233.5 - 879,038 879,324.4 - 879,038 879,297.4 - 879,038 879,177.7 22.7

Avg. 1,491,910 1,491,918 1,492,050.7 17.8 1,491,928 1,492,128.7 19.7 1,491,910 1,492,027.6 14.6 1,491,916 1,492,077.7 17.4 1,491,910 1,492,039.5 15.7 1,491,910 1,491,951.9 10.2

21

Table 3
Comparison of AMA with the reference algorithms [11] on the 20 instances of the second category

Instance BKV
SA SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1 AMA

fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg

p110 4,121,976 4,121,976 4,121,977.8 77.3 4,121,976 4,122,028.8 197.9 4,121,976 4,121,976.0 60.7 4,121,976 4,121,976.0 53.3 4,121,976 4,121,976.0 46.2 4,121,976 4,121,976.0 9.8

p120 5,712,477 5,712,477 5,712,479.4 110.4 5,712,477 5,712,829.7 161.0 5,712,477 5,712,503.1 101.0 5,712,477 5,712,477.8 86.5 5,712,477 5,712,477.0 64.1 5,712,477 5,712,477.0 36.3

p130 7,163,273 7,163,273 7,163,581.9 130.8 7,163,273 7,163,645.6 104.0 7,163,273 7,163,424.5 128.7 7,163,273 7,163,545.8 141.4 7,163,273 7,163,542.9 151.0 7,163,273 7,163,340.3 155.2

p140 8,531,830 8,531,878 8,532,073.6 132.0 8,531,885 8,532,407.3 176.4 8,531,830 8,532,217.5 193.1 8,531,830 8,532,131.5 144.3 8,531,830 8,532,102.4 144.0 8,531,830 8,531,884.9 148.7

p150 10,223,765 10,223,765 10,223,909.3 108.4 10,224,061 10,224,957.7 154.2 10,223,765 10,223,978.8 130.7 10,223,765 10,223,848.7 154.3 10,223,765 10,223,814.0 102.5 10,223,814 10,223,815.8 105.4

p160 13,831,552 13,831,552 13,831,705.0 327.3 13,832,078 13,832,671.9 338.2 13,831,552 13,832,315.0 359.5 13,831,552 13,831,763.9 378.0 13,831,552 13,831,658.8 345.3 13,831,552 13,831,603.5 320.4

p170 15,765,986 15,766,043 15,766,846.2 265.9 15,766,299 15,767,515.4 211.1 15,766,014 15,766,619.8 290.0 15,766,049 15,767,071.2 343.2 15,766,049 15,766,894.3 306.2 15,765,986 15,766,148.5 343.5

p180 17,879,424 17,879,893 17,880,274.8 274.6 17,879,718 17,880,254.0 315.7 17,879,454 17,879,953.1 334.5 17,879,655 17,880,405.0 220.3 17,879,681 17,880,299.5 249.5 17,879,398* 17,879,702.1 474.5

p190 22,570,679 22,570,709 22,570,856.3 219.9 22,570,801 22,571,928.0 276.7 22,570,724 22,571,183.2 306.9 22,570,709 22,570,785.6 249.7 22,570,679 22,570,712.0 206.8 22,570,679 22,570,680.1 326.2

p200 25,948,640 25,948,749 25,949,075.1 288.8 25,949,406 25,951,403.3 364.2 25,948,857 25,950,692.7 312.4 25,948,749 25,949,144.3 293.5 25,948,647 25,948,933.5 298.9 25,948,647 25,948,777.5 466.2

p210 28,275,043 28,275,129 28,275,264.3 607.1 28,275,289 28,275,975.7 497.7 28,275,071 28,275,242.3 484.2 28,275,070 28,275,396.4 611.9 28,275,062 28,275,219.9 581.9 28,275,043 28,275,238.2 988.2

p220 34,618,625 34,618,795 34,619,312.0 468.4 34,619,072 34,621,239.5 695.7 34,618,750 34,620,209.5 644.5 34,618,697 34,619,191.6 502.5 34,618,653 34,619,108.0 630.9 34,618,625 34,618,754.8 834.0

p230 42,559,657 42,560,001 42,560,285.2 465.7 42,559,966 42,560,963.9 804.3 42,559,959 42,560,313.8 905.8 42,559,773 42,560,176.6 839.6 42,559,770 42,560,017.8 824.7 42,559,657 42,559,756.3 792.0

p240 43,876,137 43,876,455 43,877,660.6 767.6 43,877,232 43,878,940.3 611.6 43,876,518 43,878,050.4 582.6 43,876,414 43,878,105.5 592.6 43,876,644 43,877,989.9 488.1 43,876,137 43,876,729.1 740.8

p250 50,981,493 50,981,829 50,982,127.1 511.3 50,982,667 50,985,643.3 612.7 50,981,760 50,982,845.4 583.0 50,981,493 50,981,974.5 693.0 50,981,543 50,981,821.8 645.3 50,981,496 50,981,655.8 919.8

p260 58,694,312 58,694,376 58,694,655.3 959.9 58,696,442 58,699,841.0 760.5 58,695,090 58,698,410.1 1088.0 58,694,322 58,694,882.0 1321.7 58,694,312 58,694,793.5 1172.5 58,694,312 58,694,567.0 1036.9

p270 64,033,556 64,033,642 64,034,117.1 411.2 64,035,059 64,037,662.2 1028.8 64,034,235 64,035,914.4 1059.6 64,033,630 64,034,165.1 578.2 64,033,592 64,033,893.5 559.0 64,033,558 64,033,985.5 1182.0

p280 69,343,736 69,344,215 69,344,961.9 932.4 69,344,451 69,347,417.5 808.4 69,344,455 69,346,128.8 998.2 69,344,150 69,345,159.3 730.7 69,343,780 69,344,754.5 759.6 69,343,717* 69,343,872.2 1198.3

p290 80,334,743 80,335,259 80,336,907.9 1087.7 80,338,235 80,340,459.0 965.3 80,336,224 80,339,177.9 890.0 80,335,793 80,337,038.7 1049.5 80,335,278 80,336,667.1 1172.6 80,334,587* 80,335,870.3 1288.8

p300 89,325,779 89,326,209 89,328,369.7 976.3 89,328,004 89,334,459.3 925.2 89,327,323 89,332,625.3 1059.6 89,326,100 89,329,428.8 1032.8 89,325,801 89,328,908.9 966.5 89,325,729* 89,328,162.0 1253.1

Avg. 34,689,634 34,689,811 34,690,322.0 456.2 34,690,420 34,692,112.2 500.5 34,689,965 34,691,189.1 525.6 34,689,774 34,690,433.4 500.9 34,689,718 34,690,279.3 485.8 34,689,625 34,689,949.8 631.0

22

slightly more time finding better solutions, including one record-breaking
result, for instance p180.

According to [11], SA-VNS-1-1 is most representative among the reference
algorithms. Therefore, Table 4 focuses on a comparison between AMA and
SA-VNS-1-1 on the 15 instances of the third category. The results show that
AMA can reach 14 BKV values (against 12 for SA-VNS-1-1), and a slightly
worse result than BKV in only one case (p200-5) (against 3 for SA-VNS-1-1).
AMA performs better than SA-VNS-1-1 on 3 instances in terms of fbest and
reports 15 better favg results.

Table 4
Comparison of AMA with the reference algorithm SA-VNS-1-1 [11] on the 15 in-
stances of the third category

Instance BKV
SA-VNS-1-1 AMA

fbest favg tavg fbest favg tavg

p100-1 3,003,926 3,003,926 3,003,945.8 - 3,003,926 3,003,926.9 15.2

p100-2 3,148,061 3,148,061 3,148,147.8 - 3,148,061 3,148,061.2 27.5

p100-3 2,995,405 2,995,405 2,995,424.5 - 2,995,405 2,995,407.6 24.3

p100-4 2,709,226 2,709,226 2,709,227.8 - 2,709,226 2,709,226.2 26.9

p100-5 3,081,967 3,081,967 3,082,212.1 - 3,081,967 3,082,064.7 25.6

p150-1 11,209,802 11,209,802 11,210,555.5 - 11,209,802 11,210,503.8 198.6

p150-2 9,592,147 9,592,147 9,592,258.1 - 9,592,147 9,592,173.8 182.6

p150-3 10,363,199 10,363,199 10,363,401.5 - 10,363,199 10,363,269.9 216.7

p150-4 10,306,319 10,306,319 10,306,364.9 - 10,306,319 10,306,319.0 147.9

p150-5 10,345,363 10,345,363 10,345,380.5 - 10,345,363 10,345,363.0 71.9

p200-1 26,003,404 26,003,406 26,006,396.1 - 26,003,404 26,004,820.2 392.3

p200-2 25,812,802 25,812,802 25,812,921.4 - 25,812,802 25,812,802.8 357.0

p200-3 25,047,165 25,047,231 25,047,987.8 - 25,047,165 25,047,267.1 340.4

p200-4 24,982,077 24,982,092 24,984,932.1 - 24,982,077 24,983,098.1 406.6

p200-5 26,576,831 26,576,846 26,577,150.3 - 26,576,846 26,577,011.2 392.8

Avg. 13,011,846 13,011,853 13,012,420.4 - 13,011,847 13,012,087.7 188.4

Table 5 summarizes the comparison results of AMA with SA-VNS-1-1 on
the 10 (very large) instances of the fourth category. Since these instances
have not been previously tested by any BLLP algorithm, we use the most
representative algorithm, SA-VNS-1-1, as our reference. We run both SA-
VNS-1-1 and AMA under the above-mentioned normal and relaxed cutoff
time, respectively. Column 1 of Table 5 indicates the name of each instance.
Columns 2-4 and 7-9 report respectively the best results (fbest), average re-
sults (favg), and average computation time (tavg) of SA-VNS-1-1 and AMA
over 10 runs for each instance under the cutoff time. Columns 5-6 and 10-11
report the best results fbest and the computation time (t(s)) of SA-VNS-1-1
and AMA over 1 run for each instance under the relaxed cutoff time. We
observe that under the normal cutoff time, AMA obtains better results than
SA-VNS-1-1 for all the instances except one at the expense of more compu-
tation time (3076 seconds against 2467 seconds for SA-VNS-1-1). Under the
relaxed cutoff time, AMA dominates SA-VNS-1-1 by finding better results
for all 10 instances with significantly less computation time (53577 seconds
against 63321 seconds for SA-VNS-1-1).

23

Table 5
Comparison of AMA with the reference algorithm SA-VNS-1-1 [11] on the 10 in-
stances of the fourth category

SA-VNS-1-1 AMA

Instance Normal cutoff time Relaxed cutoff time Normal cutoff time Relaxed cutoff time

fbest favg tavg fbest t(s) fbest favg tavg fbest t(s)

p310 99,529,965 99,532,406.4 1658.2 99,529,350 20675 99,528,408 99,530,164.6 2615.2 99,528,408 96751

p320 108,737,431 108,739,789.2 2003.1 108,737,281 59649 108,737,085 108,738,522.4 2192.1 108,736,979 2823

p330 113,536,558 113,536,665.0 1740.0 113,536,517 14358 113,536,498 113,536,614.4 2646.8 113,536,422 15263

p340 130,119,157 130,119,568.9 2168.4 130,118,943 29045 130,118,946 130,119,296.9 2781.8 130,118,929 4829

p350 142,089,722 142,091,475.3 1905.9 142,089,276 51001 142,089,171 142,090,468.7 2057.8 142,089,169 33286

p360 155,414,925 155,416,967.4 2915.2 155,415,318 28548 155,414,562 155,417,613.2 3673.2 155,414,558 6997

p370 172,403,126 172,403,521.6 2130.5 172,403,080 145811 172,403,103 172,403,409.6 4303.4 172,402,930 38398

p380 184,233,263 184,235,600.2 2715.6 184,230,214 78816 184,234,412 184,236,844.3 3205.0 184,229,058 148063

p390 185,318,447 185,322,050.8 3317.1 185,318,069 93098 185,317,425 185,323,757.6 4187.0 185,317,344 31239

p400 208,908,971 208,913,084.0 4118.3 208,909,374 112218 208,908,761 208,912,600.8 3107.1 208,908,967 158130

Avg. 150,029,157 150,031,112.9 2467.2 150,028,742.2 63321.9 150,028,837 150,030,929.3 3076.9 150,028,276.4 53577.9

Table 6 summarizes the results of the proposed AMA algorithm compared
to each reference algorithm under the above-mentioned cutoff time, to-
gether with the p-values of the non-parametric Wilcoxon signed-rank test.
p-values smaller than 0.05 are shown in bold and indicate statistically sig-
nificance differences. From these results, one observes that AMA signifi-
cantly dominates each reference algorithm on at least one category in terms
of the best or/and average results.

Table 6
Summary of comparative results between AMA and five reference algorithms un-
der the normal cutoff time

Algorithm pair Category/Instance Indicator Better Equal Worse p-value

AMA vs. SA I/20 fbest 2 18 0 3.71E-1

favg 19 1 0 1.43E-4

II/20 fbest 15 4 1 8.52E-4

favg 20 0 0 1.91E-6

AMA vs. SA-VNS-0-0 I/20 fbest 4 16 0 1.00E-1

favg 20 0 0 1.43E-4

II/20 fbest 17 3 0 3.21E-4

favg 20 0 0 1.91E-6

AMA vs. SA-VNS-0-1 I/20 fbest 0 20 0 1.0

favg 10 10 0 5.92E-3

II/20 fbest 14 5 1 1.62E-3

favg 19 1 0 1.43E-4

AMA vs. SA-VNS-1-0 I/20 fbest 1 19 0 1.0

favg 16 4 0 4.82E-4

II/20 fbest 13 5 2 2.37E-3

favg 19 1 0 1.43E-4

AMA vs. SA-VNS-1-1 I/20 fbest 0 20 0 1.0

favg 14 6 0 1.10E-3

II/20 fbest 11 8 1 8.56E-3

favg 15 2 3 7.98E-4

III/15 fbest 3 12 0 1.81E-1

favg 15 0 0 6.10E-5

IV/10 fbest 9 0 1 6.45E-2

favg 7 0 3 5.57E-1

Finally, as in [11], to assess the long-run behavior of the algorithm, we
run our AMA algorithm under relaxed conditions on four sets of bench-

24

mark instances. Table 7 summarizes AMA’s results under the relaxed cut-
off time (AMA relaxed) compared with the results under the normal cut-
off time (AMA) (detailed results in the Appendix), together with the p-
values of the non-parametric Wilcoxon signed-rank test. One observes that
AMA relaxed can further improve its best results for 7 instances among the
55 conventional benchmarks and for 8 instances among the 10 new large
instances. In addition, 4 new BKV results (p180, p280, p290, and p300) are
obtained (Table 8). Among these 4 new BKV results, two of them (p180 and
p290) were also reached by AMA under the normal cutoff time, as shown in
Table 3, while for p280 and p300, AMA relaxed further improves the new
BKV results established by AMA under the normal cutoff time.

Table 7
Summary of comparative results between AMA under the relaxed cutoff time
(AMA relaxed) and AMA under the normal cutoff time (AMA)

Algorithm pair Category/Instance Indicator Better Equal Worse p-value

AMA relaxed vs. I/20 fbest 0 20 0 1.0

AMA II/20 fbest 6 14 0 3.60E-2

III/15 fbest 1 14 0 1.0

IV/10 fbest 8 1 1 8.50E-2

Table 8
Improved upper bounds discovered by AMA under the relaxed cutoff times

Instance
SA-VNS-1-1 AMA relaxed

fbest (BKV) fbest

p180 17,879,424 17,879,398

p280 69,343,736 69,343,678

p290 80,334,743 80,334,587

p300 89,325,779 89,325,647

To sum, the hybrid AMA algorithm competes very favorably with the state-
of-the-art reference algorithms under identical stopping conditions. Unlike
the reference algorithms, which are all based on local optimization, AMA
combines the population-based approach and local optimization approach.
As such, AMA benefits from the advantages of both search approaches
to achieve a better balance between search exploration (visiting new and
promising regions by the use of crossovers) and exploitation (locating high-
quality solutions in a given region by the 3-phase local search).

4 Additional investigations

Additional experiments are performed on a selection of 15 instances to an-
alyze two features of the proposed AMA algorithm: the adaptive crossover
selection and the 3-phase local search. Then, we perform a sensitivity anal-
ysis to show the impact of parameters.

25

Table 9
Impact of the adaptive crossover selection

Instance BKV
MA-OPOX MA-LOX MA-OBX MA-Random AMA

fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg

sko 100 1 288,678 288,678 288,683.7 27.3 288,678 288,691.9 33.0 288,678 288,682.4 25.4 288,678 288,678.0 19.1 288,678 288,678.0 20.1

sko 100 2 1,806,738 1,806,738 1,806,873.2 26.7 1,806,738 1,806,881.7 25.7 1,806,738 1,806,897.9 31.0 1,806,738 1,806,904.7 23.0 1,806,738 1,806,991.9 18.9

sko 100 3 14,871,217 14,871,217 14,871,799.6 32.3 14,871,217 14,871,219.8 28.2 14,871,217 14,871,609.9 16.6 14,871,217 14,871,599.2 30.1 14,871,217 14,871,596.4 24.1

sko 100 4 2,980,012 2,980,012 2,980,051.7 28.2 2,980,012 2,980,019.8 15.9 2,980,012 2,980,031.5 20.6 2,980,012 2,980,067.2 30.3 2,980,012 2,980,051.6 22.8

sko 100 5 879,038 879,038 879,129.2 26.6 879,038 879,129.3 34.4 879,038 879,116.7 28.9 879,038 879,104.1 19.9 879,038 879,177.7 22.7

p210 28,275,043 28,275,043 28,275,064.2 815.8 28,275,043 28,275,093.9 759.8 28,275,043 28,275,258.5 801.3 28,275,043 28,275,060.9 843.8 28,275,043 28,275,238.2 988.2

p220 34,618,625 34,618,625 34,618,933.9 893.6 34,618,625 34,618,834.4 756.4 34,618,625 34,618,699.6 827.2 34,618,625 34,618,833.9 705.9 34,618,625 34,618,754.8 834.0

p230 42,559,657 42,559,657 42,559,737.2 787.2 42,559,657 42,559,711.3 736.7 42,559,657 42,559,727.6 861.8 42,559,657 42,559,779.5 818.1 42,559,657 42,559,756.3 792.0

p240 43,876,137 43,876,357 43,877,665.0 934.7 43,876,138 43,877,108.1 840.0 43,876,184 43,876,902.5 833.0 43,876,137 43,877,175.9 717.5 43,876,137 43,876,729.1 740.8

p250 50,981,493 50,981,493 50,981,609.6 990.8 50,981,493 50,981,777.0 741.9 50,981,555 50,981,725.4 806.7 50,981,496 50,981,743.7 785.2 50,981,496 50,981,655.8 919.8

p260 58,694,312 58,694,312 58,694,467.2 1293.4 58,694,312 58,694,372.2 1276.6 58,694,312 58,694,641.6 1243.4 58,694,312 58,694,495.5 1323.5 58,694,312 58,694,567.0 1036.9

p270 64,033,556 64,033,576 64,033,790.9 1246.5 64,033,576 64,033,851.6 1383.2 64,033,563 64,033,809.8 1446.5 64,033,565 64,033,766.2 1329.8 64,033,558 64,033,985.5 1182.0

p280 69,343,736 69,343,722 69,344,098.7 1182.7 69,343,722 69,343,975.6 1300.6 69,343,678 69,344,023.0 1166.3 69,343,678 69,343,810.5 1334.4 69,343,717 69,343,872.2 1198.3

p290 80,334,743 80,334,729 80,336,870.7 1224.5 80,335,159 80,337,267.2 1063.0 80,334,625 80,336,135.7 1072.1 80,335,160 80,336,580.7 1137.2 80,334,587 80,335,870.3 1288.8

p300 89,325,779 89,325,808 89,327,931.0 1089.2 89,325,660 89,328,196.8 1182.6 89,325,929 89,328,444.4 1094.3 89,325,797 89,327,708.7 1307.6 89,325,729 89,328,162.0 1253.1

26

4.1 Impacts of adaptive crossover selection

To assess the influences of the adaptive crossover selection mechanism (Sec-
tion 2.3.2), we compare the AMA with four AMA variants: MA-OPOX,
MA-LOX, MA-OBX, which respectively use only one crossover, and MA-
Random, which randomly selects one crossover among OPOX, LOX and
OBX at each generation. For this experiment, each algorithm is run 10 times
to solve each instance under the normal cutoff time given in Section 3.2.3.
The best results among the compared values are indicated in bold.

Table 9 presents the results of this experiment with the same information
as before. Compared with MA-OPOX/MA-LOX/MA-OBX/MA-Random,
the AMA algorithm obtains respectively 5/4/5/3 better results, 9/9/9/11
equal results, and 1/2/1/1 worse results. Thus, the adaptive crossover se-
lection globally contributes to the performance of the AMA algorithm.

4.2 Influences of 3-phase local search

To evaluate the usefulness of the 3-phase local search, we compare AMA
with three algorithmic variants (GA, MA-SA and MA-IDS). These three
variants are generated from AMA by respectively: 1) replacing the 3-phase
local search with a perturbation procedure as mutation; 2) adopting only
the simulated annealing algorithm in the local search; 3) adopting the iter-
ated descent search in the local search.
Table 10
Influences of the joint use of three local search phases
Instance BKV

GA MA-SA MA-IDS AMA

fbest favg tavg fbest favg tavg fbest favg tavg fbest favg tavg

sko 100 1 288,678 289,642 290,736.2 0.0 288,678 288,698.1 22.3 288,678 288,695.1 13.6 288,678 288,678.0 20.1

sko 100 2 1,806,738 1,816,234 1,820,686.8 0.0 1,806,738 1,807,046.4 32.8 1,806,738 1,807,033.9 27.1 1,806,738 1,806,991.9 18.9

sko 100 3 14,871,217 14,889,764 14,993,863.2 0.0 14,871,217 14,872,443.4 29.3 14,871,217 14,871,786.1 26.0 14,871,217 14,871,596.4 24.1

sko 100 4 2,980,012 2,995,385 3,004,584.7 0.0 2,980,012 2,980,175.7 34.7 2,980,012 2,980,012.0 23.3 2,980,012 2,980,051.6 22.8

sko 100 5 879,038 882,889 886,493.7 0.0 879,038 879,201.1 26.6 879,038 879,125.2 20.7 879,038 879,177.7 22.7

p210 28,275,043 28,375,121 28,407,437.0 1.4 28,275,068 28,275,201.4 604.4 28,275,062 28,286,792.7 906.7 28,275,043 28,275,238.2 988.2

p220 34,618,625 34,719,083 34,756,591.5 2.1 34,618,741 34,618,877.9 557.0 34,619,795 34,632,949.3 1033.6 34,618,625 34,618,754.8 834.0

p230 42,559,657 42,616,455 42,700,031.0 2.1 42,559,875 42,560,136.2 500.3 42,560,511 42,568,651.6 1037.6 42,559,657 42,559,756.3 792.0

p240 43,876,137 43,958,923 44,035,782.6 2.4 43,876,498 43,877,118.8 335.7 43,876,647 43,882,131.9 965.9 43,876,137 43,876,729.1 740.8

p250 50,981,493 51,160,801 51,194,360.8 3.1 50,981,731 50,981,935.5 468.3 50,981,723 51,013,323.7 935.4 50,981,496 50,981,655.8 919.8

p260 58,694,312 58,839,808 58,913,836.0 2.8 58,694,367 58,694,676.8 704.8 58,694,451 58,710,273.5 1344.1 58,694,312 58,694,567.0 1036.9

p270 64,033,556 64,235,847 64,266,080.6 4.1 64,033,746 64,034,052.4 784.0 64,046,374 64,064,100.9 1457.3 64,033,558 64,033,985.5 1182.0

p280 69,343,736 69,537,155 69,614,181.9 4.4 69,343,862 69,344,654.8 783.7 69,373,064 69,397,124.9 1342.2 69,343,717 69,343,872.2 1198.3

p290 80,334,743 80,601,581 80,645,518.4 6.2 80,335,088 80,336,052.6 837.8 80,350,442 80,370,742.6 1139.4 80,334,587 80,335,870.3 1288.8

p300 89,325,779 89,556,940 89,621,990.3 8.7 89,326,143 89,327,108.3 752.5 89,334,570 89,376,313.6 1234.2 89,325,729 89,328,162.0 1253.1

Table 10 shows the results of AMA compared with the variants GA, MA-
SA, and MA-IDS. It can be seen that AMA outperforms GA with 15 better
results, MA-SA and MA-IDS with 10 better results, 5 equal results, and 0

27

worse results. These observations confirm the benefits of the 3-phase local
search strategy of the AMA algorithm.

4.3 Sensitivity analysis of the parameters

As shown in Table 1, six parameters are required in the AMA algorithm:
the population size p, the number of iterations Q at which the tempera-
ture is kept constant, the cooling factor α, the search depth L of iterated
descent search, the threshold of applying random perturbation β, and the
maximum length of random perturbation ηmax.

Firstly, the interaction among these six parameters is examined through
a 2-level full factorial experiment [43] on 7 randomly selected instances
adopted in Section 3.2.1. Each parameter has a high level and a low level,
which are the largest and smallest values in Table 1. Since each parame-
ter has two levels, this leads to 64 (26 = 64) combinations for the six pa-
rameters. Each tested instance is independently solved 10 times under the
normal cutoff time limit for each parameter combination. Then, for each
combination, we consider the average of the best objective values obtained
on the 7 instances. The Friedman test shows no statistically significant dif-
ference (p-values > 0.05) in terms of the mentioned average, which means
that there are no statistically significant interaction effects among these six
parameters.

Secondly, the influence of each parameter on the performance of AMA is
analyzed through a one-at-a-time sensitivity analysis [44], and the most
suitable value of each parameter is determined. In the analysis, each pa-
rameter value within the range of possible values as presented in Column
4 of Table 1 is tested while the values of other parameters are fixed to their
default values (Column 5) in Table 1. For each parameter value, we run the
AMA algorithm independently 10 times under the normal cutoff time limit.
The results of the best and average objective values (denoted by Φbest and
Φavg) over 10 runs on the 7 instances are presented in Figure 7, where the
value of each parameter is on the X-axis and the best/average gap to the
best-known results is on the Y-axis, which presents the best/average gaps
to the best-known results over the 7 instances. Figure 7 shows that this cali-
bration experiment leads to the same parameter values as suggested by the
irace tool.

Moreover, the Friedman test is carried out to determine whether different
values of a given parameter have statistically significant differences in so-
lution quality. The test results indicate that the AMA algorithm is only sen-
sitive to the setting of ηmax (p-value = 0.0465). The reason for its sensitivity

28

(a) p: p-value = 0.1196 (b) Q: p-value = 0.0819 (c) α: p-value = 0.1401

(d) L: p-value = 0.0851 (e) β: p-value = 0.0547 (f) ηmax: p-value = 0.0465

Fig. 7. Sensitivity analysis of the parameters with the significance level of 0.05

to ηmax is probably that a too small/large ηmax may lead to slight/strong
modification for the solution in the perturbation procedure. Hence, suit-
able values of ηmax are critical to the performance of the AMA algorithm.
To sum up, the six parameters required by AMA have no significant inter-
action effects. AMA is sensitive to the settings of ηmax. Therefore, when it is
necessary to tune the parameters, the focus should be on ηmax.

5 Conclusions and perspectives

The bidirectional loop layout problem is a variant of the well-known quadratic
assignment problem with a number of practical applications. This paper in-
troduced an effective adaptive memetic algorithm for the problem. The pro-
posed algorithm is characterized by its adaptive crossover selection strat-
egy and 3-phase local search, whose combination ensures a suitable balance
between intensification and diversification of the search process.

Extensive computational assessments on 65 benchmark instances showed
that the AMA algorithm competed favorably with the five state-of-the-art
algorithms in the literature [11] by reporting equal or improved results.

Given the NP-hard nature of the studied problem, it is no surprise that the
proposed algorithm (and any other algorithm) could fail to solve satisfacto-
rily some particular instances. In the future, more studies can be carried out
from the following aspects. First, the local search of the proposed algorithm
relies only on the insert neighborhood. To further improve the exploitation

29

capacity of the algorithm, it is worth testing other neighborhoods, in ad-
dition to the insertion neighborhood applied in this work. Second, AMA
ensures search diversification by the use of three crossovers and diversi-
fied local search. However, the algorithm could still stagnate in deep local
optima. Therefore, it is worth investigating other diversification strategies
including those guided by the learned information. Third, there are few
studies on exact algorithms in the literature. Therefore, it would be useful
to fill this gap. For this, AMA can be used to generate high quality initial
bounds, or to obtain estimates of upper bounds for subproblems during the
exact search. Finally, it will be interesting to examine the proposed frame-
work for other layout problems, such as the quadratic assignment problem
[1], unidirectional loop layout problem [45], single row facility layout prob-
lem [46], AGV scheduling problem [47,48], and the tool indexing problem
[7].

Acknowledgments

We are grateful to the reviewers for their valuable comments and sugges-
tions, which helped us improve the manuscript. This work is supported
by the National Natural Science Foundation of China [Grant No. 62101125,
72122006], Natural Science Foundation of Jiangsu Province [Grant No. SBK2020040023],
and Fundamental Research Funds for the Central Universities [Grant No.
2242022R40067, 2242022k30007].

References

[1] T. C. Koopmans, M. Beckmann, Assignment problems and the location of
economic activities, Econometrica: Journal of the Econometric Society (1957)
53–76.

[2] A. B. Mohamed, M. Gunasekaran, R. Heba, A. Zaied, A comprehensive review
of quadratic assignment problem: variants, hybrids and applications, Journal
of Ambient Intelligence & Humanized Computing (2018) 1–24.

[3] Y. A. Bozer, R. Suk-Chul, A branch and bound method for solving the
bidirectional circular layout problem, Applied Mathematical Modelling 20 (5)
(1996) 342–351.

[4] Z. Kalita, D. Datta, A constrained single-row facility layout problem, The
International Journal of Advanced Manufacturing Technology 98 (5) (2018)
2173–2184.

30

[5] Z. Kalita, D. Datta, The constrained single-row facility layout problem
with repairing mechanisms, in: Nature-Inspired Methods for Metaheuristics
Optimization, Springer, 2020, pp. 359–383.

[6] M. Saravanan, S. G. Kumar, Different approaches for the loop layout problems:
a review, The International Journal of Advanced Manufacturing Technology
69 (9) (2013) 2513–2529.

[7] T. Dereli, İ. H. Filiz, Allocating optimal index positions on tool magazines
using genetic algorithms, Robotics and Autonomous Systems 33 (2-3) (2000)
155–167.

[8] D. Ghosh, Allocating tools to index positions in tool magazines using tabu
search, Iima Working Papers (2016).

[9] S. Atta, P. R. S. Mahapatra, A. Mukhopadhyay, Solving tool indexing problem
using harmony search algorithm with harmony refinement, Soft Computing
23 (16) (2019) 7407–7423.

[10] V. Liberatore, Circular arrangements and cyclic broadcast scheduling, Journal
of Algorithms 51 (2) (2004) 185–215.

[11] G. Palubeckis, An approach integrating simulated annealing and variable
neighborhood search for the bidirectional loop layout problem, Mathematics
9 (1) (2021) 5.

[12] U. Benlic, J. K. Hao, Memetic search for the quadratic assignment problem,
Expert Systems with Applications 42 (1) (2015) 584–595.

[13] L. X. Tang, Z. C. Li, J. K. Hao, Solving the single row facility layout problem by
k-medoids memetic permutation group, IEEE Transactions on Evolutionary
Computation (2022).

[14] J. Y. Mao, Q. K. Pan, Z. H. Miao, L. Gao, S. Chen, A hash map-based memetic
algorithm for the distributed permutation flowshop scheduling problem
with preventive maintenance to minimize total flowtime, Knowledge-Based
Systems (2022) 108413.

[15] P. Moscato, Memetic algorithms: A short introduction, New Ideas in
Optimization (1999) 219–234.

[16] A. Misevicius, Genetic algorithm hybridized with ruin and recreate
procedure: application to the quadratic assignment problem, in: Research and
Development in Intelligent Systems XIX, Springer, 2003, pp. 163–176.

[17] U. Benlic, J. K. Hao, Memetic search for the quadratic assignment problem,
Expert Systems with Applications 42 (1) (2015) 584–595.

[18] Y. L. Lu, U. Benlic, Q. H. Wu, A hybrid dynamic programming and memetic
algorithm to the traveling salesman problem with hotel selection, Computers
& Operations Research 90 (2018) 193–207.

31

[19] Y. Y. Zhu, Y. Q. Chen, Z. H. Fu, Knowledge-guided two-stage memetic search
for the pickup and delivery traveling salesman problem with fifo loading,
Knowledge-Based Systems 242 (2022) 108332.

[20] G. Gong, Q. Deng, R. Chiong, X. Gong, H. Huang, An effective memetic
algorithm for multi-objective job-shop scheduling, Knowledge-Based Systems
182 (2019) 104840.

[21] R. Li, X. Zhao, X. Zuo, J. Yuan, X. Yao, Memetic algorithm with non-smooth
penalty for capacitated arc routing problem, Knowledge-Based Systems 220
(2021) 106957.

[22] C. Prins, S. Bouchenoua, A memetic algorithm solving the vrp, the carp and
general routing problems with nodes, edges and arcs, in: Recent Advances in
Memetic Algorithms, Springer, 2005, pp. 65–85.

[23] J. K. Hao, Memetic algorithms in discrete optimization, in: Handbook of
Memetic Algorithms, Springer, 2012, pp. 73–94.

[24] I. Sghir, J. Hao, I. B. Jaâfar, K. Ghédira, A multi-agent based optimization
method applied to the quadratic assignment problem, Expert Systems with
Applications 42 (23) (2015) 9252–9262.

[25] Y. Lu, J. K. Hao, Q. H. Wu, Hybrid evolutionary search for the traveling
repairman problem with profits, Information Sciences 502 (2019) 91–108.

[26] T. Murata, H. Ishibuchi, Positive and negative combination effects of crossover
and mutation operators in sequencing problems, in: T. Fukuda, T. Furuhashi
(Eds.), Proceedings of 1996 IEEE International Conference on Evolutionary
Computation, Nayoya University, Japan, May 20-22, 1996, IEEE, 1996, pp. 170–
175.

[27] E. Falkenauer, S. Bouffouix, A genetic algorithm for job shop, in: Proceedings
of the 1991 IEEE International Conference on Robotics and Automation,
Sacramento, CA, USA, 9-11 April 1991, IEEE Computer Society, 1991, pp. 824–
829.

[28] G. Syswerda, Schedule optimization using genetic algorithms, in: Handbook
of Genetic Algorithms, 1991, pp. 332–349.

[29] Y. Lu, J. Hao, Q. Wu, Hybrid evolutionary search for the traveling repairman
problem with profits, Information Sciences 502 (2019) 91–108.

[30] J. Ren, J.-K. Hao, F. Wu, Z.-H. Fu, An effective hybrid search algorithm for
the multiple traveling repairman problem with profits, European Journal of
Operational Research (2022).

[31] K. S. Narendra, M. A. Thathachar, Learning automata: an introduction,
Courier Corporation, 2012.

[32] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press,
2018.

32

[33] Y. L. Lu, U. Benlic, Q. H. Wu, A memetic algorithm for the orienteering
problem with mandatory visits and exclusionary constraints, European
Journal of Operational Research 268 (1) (2018) 54–69.

[34] Y. Xue, H. k. Zhu, J. Y. Liang, A. Słowik, Adaptive crossover operator based
multi-objective binary genetic algorithm for feature selection in classification,
Knowledge-Based Systems 227 (2021) 107–218.

[35] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem,
ORSA Journal on Computing 2 (1) (1990) 33–45.

[36] M. F. Anjos, G. Yen, Provably near-optimal solutions for very large single-
row facility layout problems, Optimization Methods & Software 24 (4-5) (2009)
805–817.

[37] H. Zhang, F. Liu, Y. Y. Zhou, Z. Y. Zhang, A hybrid method integrating an
elite genetic algorithm with tabu search for the quadratic assignment problem,
Information Sciences 539 (2020) 347–374.

[38] P. Hungerlaender, Single-row equidistant facility layout as a special case of
single-row facility layout, International Journal of Production Research 52 (5)
(2014) 1257–1268.

[39] H. Ahonen, A. G. de Alvarenga, A. R. S. Amaral, Simulated annealing and
tabu search approaches for the corridor allocation problem, European Journal
of Operational Research 232 (1) (2014) 221–233.

[40] R. Kothari, D. Ghosh, An efficient genetic algorithm for single row facility
layout, Optimization Letters 8 (2) (2014) 679–690.

[41] M. Dahlbeck, A. Fischer, F. Fischer, Decorous combinatorial lower bounds for
row layout problems, European Journal of Operational Research 286 (3) (2020)
929–944.

[42] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle,
The irace package: Iterated racing for automatic algorithm configuration,
Operations Research Perspectives 3 (2016) 43–58.

[43] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons,
2017.

[44] D. M. Hamby, A review of techniques for parameter sensitivity analysis of
environmental models, Environmental Monitoring and Assessment 32 (2)
(1994) 135–154.

[45] A. C. Nearchou, Meta-heuristics from nature for the loop layout design
problem, International Journal of Production Economics 101 (2) (2006) 312–
328.

[46] M. Rubio-Sánchez, M. Gallego, F. Gortázar, A. Duarte, Grasp with path
relinking for the single row facility layout problem, Knowledge-Based
Systems 106 (2016) 1–13.

33

[47] W. Q. Zou, Q. K. Pan, L. Wang, An effective multi-objective evolutionary
algorithm for solving the agv scheduling problem with pickup and delivery,
Knowledge-Based Systems 218 (2021) 106881.

[48] W. Q. Zou, Q. K. Pan, L. Wang, Z. H. Miao, C. Peng, Efficient multiobjective
optimization for an agv energy-efficient scheduling problem with release time,
Knowledge-Based Systems 242 (2022) 108334.

A Detailed results on the 65 instances

We present the results on 65 instances, including 55 classical benchmark in-
stances and 10 new large instances. Table A.1 shows the comparison results
of the proposed AMA algorithm under normal and relaxed time limits on
the 55 classical benchmark instances. One observes that AMA under the re-
laxed time improves the best results of AMA under the normal cutoff time
for 7 instances, while matching the best results of AMA under the normal
cutoff time for the remaining instances.

Table A.1: Comparison of AMA under the relaxed cutoff time with AMA under
the normal cutoff time for the 55 benchmark instances in the literature

Instance
AMA relaxed AMA

fbest t fbest favg tavg

sko 64 1 74,067 6 74,067 74,067.0 1.9

sko 64 2 573,458 6 573,458 573,458.0 9.2

sko 64 3 363,994 2 363,994 363,994.0 2.1

sko 64 4 243,966 4 243,966 243,966.0 2.8

sko 64 5 430,063 9 430,063 430,086.0 14.4

sko 72 1 107,431 < 1 107,431 107,431.0 6.3

sko 72 2 609,044 1 609,044 609,044.0 9.8

sko 72 3 1,009,747 6 1,009,747 1,009,747.0 3.8

sko 72 4 853,106 12 853,106 853,112.9 7.7

sko 72 5 351,489 1 351,489 351,489.0 5.8

sko 84 1 155,730 < 1 155,730 155,730.0 1.5

sko 84 2 447,633 5 447,633 447,633.0 5.1

sko 84 3 848,904 11 848,904 848,904.0 11.8

sko 84 4 1,768,175 22 1,768,175 1,768,175.0 10.9

sko 84 5 1,175,705 12 1,175,705 1,175,705.0 1.5

sko 100 1 288,678 26 288,678 288,678.0 20.1

sko 100 2 1,806,738 16 1,806,738 1,806,991.9 18.9

sko 100 3 14,871,217 34 14,871,217 14,871,596.4 24.1

sko 100 4 2,980,012 21 2,980,012 2,980,051.6 22.8

sko 100 5 879,038 13 879,038 879,177.7 22.7

p110 4,121,976 21 4,121,976 4,121,976.0 9.8

Continued on next page

34

Table A.1 – continued from previous page

Instance
AMA relaxed AMA

fbest t fbest favg tavg

p120 5,712,477 11 5,712,477 5,712,477.0 36.3

p130 7,163,273 379 7,163,273 7,163,340.3 155.2

p140 8,531,830 144 8,531,830 8,531,884.9 148.7

p150 10,223,765 5340 10,223,814 10,223,815.8 105.4

p160 13,831,552 230 13,831,552 13,831,603.5 320.4

p170 15,765,986 1885 15,765,986 15,766,148.5 343.5

p180 17,879,398 887 17,879,398 17,879,702.1 474.5

p190 22,570,679 180 22,570,679 22,570,680.1 326.2

p200 25,948,640 705 25,948,647 25,948,777.5 466.2

p210 28,275,043 764 28,275,043 28,275,238.2 988.2

p220 34,618,625 2298 34,618,625 34,618,754.8 834.0

p230 42,559,657 5398 42,559,657 42,559,756.3 792.0

p240 43,876,137 17073 43,876,137 43,876,729.1 740.8

p250 50,981,493 1297 50,981,496 50,981,655.8 919.8

p260 58,694,312 6387 58,694,312 58,694,567.0 1036.9

p270 64,033,556 17203 64,033,558 64,033,985.5 1182.0

p280 69,343,678 10097 69,343,717 69,343,872.2 1198.3

p290 80,334,587 28013 80,334,587 80,335,870.3 1288.8

p300 89,325,647 5323 89,325,729 89,328,162.0 1253.1

p100-1 3,003,926 38 3,003,926 3,003,926.9 15.2

p100-2 3,148,061 71 3,148,061 3,148,061.2 27.5

p100-3 2,995,405 31 2,995,405 2,995,407.6 24.3

p100-4 2,709,226 120 2,709,226 2,709,226.2 26.9

p100-5 3,081,967 49 3,081,967 3,082,064.7 25.6

p150-1 11,209,802 446 11,209,802 11,210,503.8 198.6

p150-2 9,592,147 563 9,592,147 9,592,173.8 182.6

p150-3 10,363,199 345 10,363,199 10,363,269.9 216.7

p150-4 10,306,319 71 10,306,319 10,306,319.0 147.9

p150-5 10,345,363 21 10,345,363 10,345,363.0 71.9

p200-1 26,003,404 3456 26,003,404 26,004,820.2 392.3

p200-2 25,812,802 820 25,812,802 25,812,802.8 357.0

p200-3 25,047,165 205 25,047,165 25,047,267.1 340.4

p200-4 24,982,077 9843 24,982,077 24,983,098.1 406.6

p200-5 26,576,831 971 26,576,846 26,577,011.2 392.8

Table A.2 shows the comparison results of the proposed AMA algorithm
under the normal and relaxed time limits on the 10 new instances. AMA
under relaxed time limits performs better than AMA under normal time
limits by reporting 8 better results, 1 equal result and 1 worse result.

35

Table A.2: Comparison of AMA under the relaxed cutoff time with AMA under
the normal cutoff time for the 10 new instances

Instance
AMA relaxed AMA

fbest t fbest favg tavg

p310 99528408 96751 99528408 99530164.6 2615.2

p320 108736979 2823 108737085 108738522.4 2192.1

p330 113536422 15263 113536498 113536614.4 2646.8

p340 130118929 4829 130118946 130119296.9 2781.8

p350 142089169 33286 142089171 142090468.7 2057.8

p360 155414558 6997 155414562 155417613.2 3673.2

p370 172402930 38398 172403103 172403409.6 4303.4

p380 184229058 148063 184234412 184236844.3 3205

p390 185317344 31239 185317425 185323757.6 4187

p400 208908967 158130 208908761 208912600.8 3107.1

36

	Introduction
	Memetic algorithm with adaptive crossover selection
	Adaptive memetic algorithm
	Population Initialization
	Crossovers and their adaptive application
	3-phase local search
	Update
	Perturbation for iterated descent search
	Computational complexity and discussion

	Experimental results and comparisons
	Benchmark instances
	Experiment settings
	Comparison with state-of-the-art algorithms

	Additional investigations
	Impacts of adaptive crossover selection
	Influences of 3-phase local search
	Sensitivity analysis of the parameters

	Conclusions and perspectives
	References
	Detailed results on the 65 instances

