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Abstract

Given an undirected graph G = (V, E) and a positive integer k, an equitable
legal k-coloring of G is a partition of the vertex set V into k disjoint independent
sets such that the cardinalities of any two independent sets differ by one at most.
The equitable coloring problem is to find the smallest k for which an equitable
legal k-coloring exists. The problem has a number of applications. However, it is
known to be NP-hard and thus computationally challenging. In this work, we
present the first population-based memetic algorithm for solving the problem.
The proposed algorithm combines a backbone-based crossover operator (to
generate promising offspring solutions), a 2-phase tabu search procedure (to seek
high-quality local optima) as well as a quality-and-distance based pool updating
strategy (to maintain a healthy population). The computational results on 73
benchmark instances demonstrate that the proposed algorithm competes
favorably with the state-of-the-art algorithms in the literature. Specifically, our
algorithm attains the optimal results for all 41 instances with known optima and
discovers improved upper bounds for 9 out of the 32 instances whose optimal
solutions are still unknown. We investigate the benefits of the 2-phase tabu search
procedure and the crossover operator with the memetic framework.
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1 Introduction1

Given a simple undirected graph G = (V, E) with vertex set2

V = {1, 2, . . . , n} and edge set E ⊂ V × V, a legal k-coloring of G is a3

partition of the vertex set V into k color classes or disjoint independent4

sets, where an independent set is a set of vertices of V such that no pair of5

vertices are linked by an edge. Equivalently, a legal k-coloring can be6

defined as a mapping c : V → {1, . . . , k} such that c(i) 6= c(j) for all edges7

(i, j) in E (this is called the coloring constraint). The graph k-coloring8

problem (k-GCP) is to determine if a legal k-coloring of G exists for a given9

k. The classical graph coloring problem (GCP) is to find the minimum10

integer k (chromatic number χ(G)) for which a legal k-coloring of G exists.11

k-GCP is known to be NP-complete while the optimization problem GCP12

is NP-hard [15].13

An equitable k-coloring is a legal k-coloring verifying the condition that14

the sizes of any two color classes differ by at most one (this is called the15

equity constraint of the coloring). The equitable k-coloring problem (k-ECP)16

involves finding an equitable legal k-coloring of the given graph G while17

the equitable coloring problem (ECP) is to determine the smallest integer18

k (equitable chromatic number χe(G)) for which an equitable k-colorable19

exists. Obviously, for any graph G, χe(G) ≥ χ(G), that is, χ(G) is a lower20

bound of χe(G).21

As a variant of the conventional graph coloring problem, the decision22

problem of the ECP is NP-complete [11,27]. Polynomial algorithms are23

known only for split graphs, trees, outerplanar graphs [4,5], cubic24

graphs [6] and some corona graphs [12].25

The notion of an equitable coloring was first introduced in [33] and26

motivated by scheduling problems with load balancing requirements. In27

such applications, a graph can be defined where a vertex represents a task28

and an edge linking two vertices indicates that the two underlying tasks29

cannot be performed at the same time. Then the number of colors required30

to color the vertices of the graph corresponds to the time steps needed to31

perform the given tasks. Moreover, the load balancing requirement asks32

that equal or nearly-equal numbers of tasks are performed in each time33

step. A coloring satisfying this additional balancing requirement is then an34

equitable coloring. Other practical applications arise from garbage35

collection [33,39], memory allocation in parallel systems [9], scheduling36

computer and manufacturing processes with load balancing [3], and37

timetabling [10,26]. In general, the equity constraint aims to ensure a38
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balanced occupation of the given resources and improve their utilization. 1

As such, given that existing methods for the classical graph coloring 2

problem do not guarantee the equity constraint, they cannot be used to 3

solve the equitable coloring problem. Instead, they can be usefully applied 4

to provide lower bounds of the equitable chromatic number of a graph. 5

Much effort has been devoted to theoretical studies of the ECP. For instance, 6

Hajnal and Szemerédi [18] showed that χe(G) ≤ ∆(G) + 1 for every graph, 7

where ∆(G) is the maximal vertex degree of G. Meyer [33] conjectured that 8

χe(G) ≤ ∆(G) for any connected graph except the complete graphs and the 9

odd circuits. This conjecture has been verified to be true for many cases as 10

listed in [11]. 11

From a perspective of solution methods for the ECP in the general case, 12

several exact algorithms have been proposed. Specifically, Méndez-Dı́az et 13

al. developed a cutting plane algorithm by devising an integer 14

programming formulation based on the polyhedral structure of the ECP 15

[31]. Bahiense et al. presented a branch-and-cut algorithm for the ECP 16

based on two new integer programming formulations [1]. Méndez-Dı́az et 17

al. adopted the Dsatur coloring algorithm to the ECP [32] and presented 18

computational results for a subset of benchmark instances from the 19

DIMACS and COLOR competitions. 20

Given the computational challenge of the ECP, heuristic algorithms are 21

often used to find sub-optimal solutions for problem instances that can not 22

be solved exactly. Furmanczyk and Kubale presented two constructive 23

heuristics called Naive and SubGraph that generate greedily an equitable 24

coloring of a graph [13]. Méndez-Dı́az et al. adapted for the first time the 25

well-known TabuCol algorithm for the classical GCP [14,20] to the 26

ECP [29]. Lai et al. improved TabuEqCol by combining a backtracking 27

scheme and tabu search under the iterated local search framework [25]. 28

Sun et al. presented a feasible and infeasible local search algorithm called 29

FISA that is based on an extended penalty-based fitness function [37]. 30

Wang et al. introduced another mixed approach that explores both feasible 31

and infeasible solutions and integrates a novel cyclic exchange 32

neighborhood [40]. 33

We observe that the most effective heuristic algorithms are all based on the 34

local search framework and explores both feasible and infeasible solutions. 35

Meanwhile, it is known that for other graph coloring problems, 36

population-based memetic algorithms are among the best performing 37

methods [14,22,28,34]. Until now, the memetic approach remains 38

unexplored for the ECP. In this work, we fill the gap and investigate for the 39

first time the potential of the memetic search framework for solving the 40

ECP. The contributions of the work are highlighted as follows. 41
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First, we present the first memetic algorithm for the ECP (MAECP) that1

explores the synergy between a dedicated crossover operator for equitable2

colorings and a 2-phase infeasible tabu search. The algorithm also3

integrates an elite population initialization procedure and a4

quality-and-distance pool updating procedure.5

Second, we show extensive computational results on 73 benchmark graphs6

from the DIMACS and COLOR competitions, which confirm the7

competitiveness of the proposed algorithm compared to the8

state-of-the-art results in the literature. Specifically, MAECP consistently9

reaches the optimal solutions for the 41 instances with known optima and10

finds 9 improved best solutions (new upper bounds) for the 32 remaining11

instances whose optimal solutions are still unknown. These new bounds12

are valuable for the assessment of new ECP algorithms.13

Finally, given that the ECP is a convenient model for a number of practical14

applications, the proposed algorithm can help to better solve these real15

world problems.16

The rest of the paper is organized as follows. Section 2 gives some basic17

definitions. Section 3 presents the proposed algorithm. Section 4 shows18

computational results and comparisons with state-of-the-art algorithms.19

Section 5 analyzes the impacts of key components of the proposed20

algorithm. Conclusions and future work are discussed in the last section.21

2 Notations22

We introduce the following definitions which are useful for the description23

of the proposed approach. Let G = (V, E) be a given graph.24

Definition 1 A candidate coloring of G is any partition of the vertex set V into k25

subsets V1, V2, . . . , Vk, where each Vi is called a color class. We use26

s = {V1, V2, · · · , Vk} to represent a candidate solution.27

Definition 2 A legal coloring is a conflict-free coloring composed of independent28

sets, i.e., any pair of vertices of any color class are not linked by an edge in E.29

Otherwise, it is an illegal or conflicting coloring. A conflicting edge in an illegal30

coloring is an edge whose endpoints belong to the same color class. The endpoints31

of a conflicting edge are called conflicting vertices.32

Definition 3 An equitable solution or equity-feasible solution is any candidate33

coloring satisfying the equity constraint, i.e., the cardinalities of any two color34

classes differ by at most one. Otherwise, it is an equity-infeasible solution.35
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Definition 4 Let W+ = d|V|/ke and W− = b|V|/kc represent respectively the 1

theoretical cardinality of the largest and smallest color classes in an equitable 2

k-coloring. We define the “equity penalty function” of a coloring 3

s = {V1, V2, · · · , Vk} as the sum of the gaps between |Vi| and the theoretical 4

cardinalities. 5

g(s) =
k

∑
i=1

ρi, 1 ≤ i ≤ k (1)

where the equity-infeasibility value ρi (i = 1, · · · , k) for each color class Vi of 6

solution s is the gap between |Vi| and the theoretical cardinalities W+ and W−. 7

ρi =

|Vi| −W+, i f |Vi| ≥W+

W− − |Vi|, i f |Vi| ≤W−
(2)

Definition 5 We define the ”conflict penalty function” of a coloring 8

s = {V1, V2, · · · , Vk} as the total number of conflicting edges induced by solution 9

s. 10

f (s) =
k

∑
i=1
|C(Vi)|, 1 ≤ i ≤ k (3)

where C(Vi) is the set of conflicting edges in color class Vi. 11

3 Memetic algorithm for the ECP 12

Like [25,29,37], we handle the ECP by solving a series of k-ECP for 13

decreasing k values. For a given k, if an equitable legal k-coloring is found, 14

we continue to solve the new k-ECP problem by setting k = k − 1. This 15

process is repeated until no equitable legal k-coloring can be found. The 16

last k for which an equitable legal k-coloring is found corresponds to an 17

upper bound of the equitable chromatic number of G (k > χe(G)). 18

The MAECP algorithm is designed to solve the k-ECP. To fix the initial k, 19

we use the binary search method proposed in [25] where we set k = |V| to 20

determine an appropriate k value that admits an equitable legal k-coloring. 21
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Given that k corresponds to the number of available resources, it is easy to1

understand that finding an equitable k-coloring with decreasing k becomes2

more and more difficult. This is particularly true when k approaches the3

equitable chromatic number χe(G) or when k is set to a value smaller than4

the current well-known upper bound (i.e., the smallest k for which an5

equitable k-coloring has even been found).6

3.1 General approach7

Memetic algorithms (MAs) are hybrid search methods that combine the8

population-based search framework and local search framework [30].9

Indeed, it is generally believed that population-based search offers more10

facilities for exploration while local search provides more capabilities for11

exploitation. A hybrid method mixing these two approaches is expected to12

take advantage of complementary search strategies offered by the13

composing approaches. Since their introduction, MAs have been applied14

to solve many problems [7,36], including graph coloring [14,23,28,34] and15

other graph optimization problems (e.g., [2,35,42]).16

As a general optimization framework, MAs need to be carefully adapted17

to the given problem to achieve a high performance [19]. The required18

adaptation generally concerns the crossover operator and the local19

optimization procedure. The memetic algorithm for the ECP (MAECP)20

presented in this work adopts a backbone-based crossover operator, a21

2-phase infeasible local search procedure based on tabu search [16] as well22

as a diversity preservation pool updating procedure. It is worth23

mentioning that MAECP also shares ideas from scatter search (SS) [17] in24

the sense that 1) both maintain a pool (called reference set in SS) of25

high-quality solutions from which new solutions are generated by26

recombination; 2) local optimization is used to improve each new solution;27

and 3) the pool management considers both quality and diversity. As a28

result, MAECP can also be considered as a simplified SS algorithm where29

the subset generation method of SS (parent selection in MAs) applies the30

simple random selection rule.31

MAECP starts with an initial population P of p elite solutions generated32

by the procedure presented in Section 3.2. Then MAECP repeats a number33

of generations until a stopping condition is met. At each generation, two34

solutions are randomly selected and then recombined by the35

backbone-based crossover described in Section 3.3 to generate an offspring36

solution. The offspring is then further improved by the 2-phase tabu37

search procedure presented in Section 3.4. The improved solution is finally38

used to update the population by considering both its quality and its39
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distance with respect to the solutions of P (see Section 3.5). The algorithm 1

terminates when a predefined stopping condition (e.g., maximum number 2

of generations, fixed cutoff time limit) is reached. In this work, the 3

stopping condition corresponds to a time limit. 4

Algorithm 1 The MAECP algorithm for solving the k-ECP
1: Input: Graph G = (V, E), number of colors k, population size p
2: Output: A legal and equitable k-coloring if found
3: P ← Population initialization(G, k, p) /* Initial population generation, Section

3.2 */
4: S∗ ← best(P) /* S∗ records the best solution found so far */
5: while Stopping condition is not met do
6: Choose randomly 2 solutions Si, Sj f rom P
7: S0 ← Crossover(Si, Sj) /* Offspring generation by backbone based crossover,

Section 3.3 */
8: S0 ← 2-Phase Search(S0) /* Offspring improvement by 2-phase tabu search,

Section 3.4 */
9: if S0 is better than S∗ then

10: S∗ ← S0
11: end if
12: P← Pool Update(S0, P)
13: end while
14: return S∗

3.2 Population initialization 5

The initial population is generated according to the following steps: 1) 6

create an equitable, but conflicting k-partition S with the greedy algorithm 7

of [25]; 2) improve S by using the first phase of the 2-phase search of 8

Section 3.4 to obtain a new solution S+; 3) insert the improved solution S+
9

in the population; 4) randomly perturb S+ and assign the perturbed 10

solution to S; 5) repeat steps 2)-4) p times (p is the population size). To 11

create an initial population of high-quality with a good diversity, step 4) 12

adopts the following perturbation procedure [25]. With probability of 0.3, 13

the procedure perturbs S+ by exchanging the colors of 0.3 ∗ N randomly 14

selected vertices. With probability of 0.7, the procedure performs 5 ∗ 103
15

One move or Swap moves according to the neighborhood exploration rule 16

of Section 3.4.1. Thanks to the stochastic perturbation step and the 17

subsequent solution improvement step, we obtain an initial population 18

composed of diversified and high-quality solutions. 19
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3.3 Backbone-based crossover1

As an important component of evolutionary algorithms, the crossover2

operator should be designed with care in order to favor transmissions of3

useful information from parents to offspring [19]. The proposed crossover4

for the ECP follows the general backbone principle for designing5

meaningful recombination operators. The basic idea is to preserve6

common elements shared by parent solutions (backbone) in the offspring7

solution [2,41]. The proposed crossover consists of the following two steps8

(see Algorithm 2).

Algorithm 2 The backbone-based crossover for the k-ECP
1: Input: Two parent solutions Sm = {Vm

1 , Vm
2 , . . . , Vm

k } and Sn = {Vn
1 , Vn

2 , . . . , Vn
k }.

2: Output: An offspring solution S0 = {V0
1 , V0

2 , . . . , V0
k }

/* Match the color classes of the parents to find the shared common vertices */
3: Create a complete bipartite graph H = (V

′
, E
′
) with V

′
= {Vm

1 , Vm
2 , . . . , Vm

k } ∪
{Vn

1 , Vn
2 , . . . , Vn

k }} and E
′
= {Vm

1 , Vm
2 , . . . , Vm

k } × {Vm
1 , Vm

2 , . . . , Vm
k })

4: Find a maximum matching in H and put the matched color classes (Vm
i , Vn

j ) in J
/* Create k color classes of the offspring from the matched color classes */

5: for each (Vm
i , Vn

j ) ∈ J do

6: Use the common vertices o f Vm
i and Vn

j to create a color class o f o f f spring S0
7: end for

/* Handle unassigned vertices */
8: for each unassigned vertex missing in S0 do
9: Assign the vertex to a color classe with the smallest con f licts

10: end for
11: return S0

9

Let Sm = {Vm
1 , Vm

2 , . . . , Vm
k } and Sn = {Vn

1 , Vn
2 , . . . , Vn

k } be two parent10

solutions. The first step aims to identify for each color class the largest set11

of vertices shared by both parents. Due to the symmetry of colorings, it is12

common that the color classes from Sm and Sn that share the most common13

vertices have different class numberings. For example, color class Vi of Sm14

might correspond to a different color class Vj of Sn. Therefore, the first step15

of the crossover is to properly identify a color class matching with the16

largest number of common vertices between a class of Sm and a class of Sn.17

This task can conveniently be achieved by finding a maximum weight18

matching in an edge weight complete bipartite graph H = (V
′
, E
′
) where19

V
′
= {{Vm

1 , Vm
2 , . . . , Vm

k } ∪ {V
n
1 , Vn

2 , . . . , Vn
k }} and (Vm

i , Vn
j ) ∈ E

′
for all20

i, j = 1, 2, . . . , k with an edge weight ωVm
i ,Vn

j
, which is the number of21

identical vertices in Vm
i of Sm and Vn

j of Sn. The maximum weight22

matching problem can be solved by the classical Hungarian algorithm [24].23

However, this will be too expensive in our case since we need to find a24

maximum weight matching for each crossover application. Therefore, we25
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Sm Vm
1 Vm

2
. . . Vm

i
. . . Vm
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1 Vn

2
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k

(a)

Sm Vm
1

ωVm
i ,Vn

2

Vm
2

. . . Vm
i

. . . Vm
k

Sn Vn
1 Vn

2
. . . Vn

j . . . Vn
k

(b)

Sm Vm
1

ωVm
2 ,Vn

1

Vm
2

. . . Vm
k

Sn Vn
1

. . . Vn
j . . . Vn

k

(c)

Fig. 1. Class matching via an edge weight complete bipartite graph H. (a) A
complete bipartite graph H with edge weight ω. (b) Choosing an edge with the
largest ω and deleting all edges incident to the endpoints of the edge. (c) Repeating
step (b) until H becomes an empty.

apply a fast greedy algorithm to find a near-optimal weight matching, 1

which iteratively chooses an edge (Vm
i , Vn

j ) ∈ H with the largest edge 2

weight, and then deletes from H all edges linked to Vm
i and Vn

j . This 3

procedure is repeated until H becomes empty, that is, when all color 4

classes are matched. Figure 1 illustrates the color class matching process. 5

From the edge weight complete bipartite graph (Figure 1 (a)) created from 6

solutions Sm and Sn, we first identify the ‘heaviest’ edge having the 7

highest weight (shown in red, Figure 1 (b)). This edge indicates that the ith 8

color class of Sm and the 2nd color class of Sn share the largest number of 9

vertices and thus are matched. A reduced graph (Figure 1 (c)) is obtained 10

by deleting the two matched vertices together with all the edges adjacent 11
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to them. This matching process continues from the reduced graph to1

identify the next ‘heaviest’ edge (indicated in green, Figure 1 (c)),2

matching thus the 2nd color class of Sm and the 1st color class of Sn. This3

matching process is repeated until the graph becomes empty (the whole4

matching process repeats k times).5

Second, from this matching, we create a new color class of the offspring S06

with each of the k matched class. Then we greedily assign the unassigned7

vertices to a color class as follows. According to the decreasing order of the8

degrees, we assign each unassigned vertex to the color class such that the9

assignment leads to the smallest number of conflicts. At this point we obtain10

the offspring solution and submit it to the 2-phase tabu search described11

below for further improvement.12

Figure 2 illustrates the crossover operator with a graph of 10 vertices and13

3 colors (red, olive and azure). Parent solutions Sm and Sn are combined to14

generate the offspring S0. The color classes of Sm and Sn are first matched:15

the olive class of Sm matches the red class of Sn, the red class of Sm matches16

the olive class of Sn, the two azure classes of Sm and Sn are matched. The17

shared vertices of each matched class are used to create a new color class18

of the partial offspring solution, leading to the partial coloring shown in19

the middle of Figure 2 with the three uncolored vertices (3,8,9) indicated in20

white. Finally, the uncolored vertices (3,8,9) are greedily assigned to obtain21

the complete offspring solution S0 (bottom part of the figure).22

3.4 The 2-phase tabu search23

Local optimization is another critical component of a memetic algorithm24

and plays the key role of search intensification. In our case, we employ a25

2-phase tabu search procedure. The first phase performs a large26

exploration of the search space by considering candidate solutions where27

both the coloring constraint and the equity constraint are relaxed, while28

the second phase makes a particular effort to satisfy the coloring constraint29

which is somewhat more difficult to resolve.30

The relaxed search space: For a given k-ECP instance, the search space Ωk31

explored by our algorithm is composed of all possible k-colorings which32

may or may not satisfy the coloring constraint and the equity constraint.33

Ωk = {{V1, V2 : · · · , Vk},∪k
i=1Vi = V, Vi ∩Vj = ∅} (4)

where i 6= j, 1 ≤ i, j ≤ k.34
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S0

V1m V2m
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10

10

Sm Sn
1 3
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8 9

4

5

2

10

1 3

67

8 9

4

5

2

10

Fig. 2. The procedure of generating a new offspring solution from parent solutions
Sm and Sn. For clarity reason, we only indicate the conflicting edges within the
color classes: {8, 10} and {6, 9} in Sm; {1, 8}, {2, 3} and {3, 10} in Sn. Color classes
of the parents Sm and Sn are first matched. The matched classes {1,4,6} {2,10} and
{5,7} are then used to form the color classes of the offspring. The unassigned
vertices (3,8,9) are finally allocated to color classes azure, red, and olive of the
offspring.

3.4.1 First phase 1

Fitness function in the first phase: To explore the above search space, the 2

first phase uses the following fitness function F (to be minimized). 3

F(s) = f (s) + g(s) (5)

where f (s) is the conflict penalty function and g(s) is the equity penalty 4

function defined by Equations (3) and (1) in Section 2. 5
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Note that for a solution s, F(s) = 0 implies that s satisfies both the coloring1

and equity constraints and is thus a solution for the given k-ECP instance.2

Move operators in the first phase: Following [37], we apply two move3

operators to generate neighbor solutions to explore the search space Ωk.4

Let s be the incumbent solution and let OP be a move operator to5

transform s. We use s ⊕ OP to denote the neighbor solution obtained by6

applying OP to s.7

(1) One move operator: The one move(v, Vi, Vj) operator displaces a8

conflicting vertex v from its color class Vi to another color class Vj. The9

neighborhood N1 induced by this operator is given by10

N1(s) = {s⊕ one move(v, Vi, Vj) : v ∈ {Vi ∩ C(s)}, 1 ≤ i, j ≤ k, i 6= j}
(6)

where C(s) is the set of conflicting vertices of s.11

Clearly N1 is bounded by O(|C(s)| × k) in size. To effectively12

calculate the move gain that identifies the change in the fitness13

function F (Equation (5)), we adopt the fast incremental evaluation14

technique of [25]. We maintain a matrix A of size n× k with elements15

A[v][i] recording the number of vertices adjacent to v in color class16

Vi(1 ≤ i ≤ k). We maintain another n × k matrix B with elements17

B[v][i] representing the equity-infeasibility value ρi (see Equation (2))18

of vertex v assigned to color class Vi in the current solution. Then, the19

move gain of each one move in terms of the variation of F can be20

conveniently computed by21

∆F = A[v][j]− A[v][i] + B[v][j]− B[v][i] (7)

Each time an one move involving vertex v is performed, we just need22

to update a subset of values affected by this move as follows. For each23

vertex u adjacent to vertex v, A[u][i] ← A[u][i] − 1, and A[u][j] ←24

A[u][j] + 1. For any vertex w, B[w][j] ← ∑k
i=1 ρi, 1 ≤ j ≤ k. B[w][j] =25

B[u][j], if w and u belong to the same color class.26

(2) Swap operator: The swap(v,u) operator exchanges a pair of vertices27

(u, v) from different color classes where at least one of them is a28

conflicting vertex. The resulting swap neighborhood N2 is thus given29

as follows.30

N2(s) = {s⊕ swap(v, u) : v ∈ Vi, u ∈ Vj, i 6= j, {v, u} ∩ C(s) 6= ∅} (8)

It can be noted that the swap operation has no impact on the equity31
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(b) Case 2 Swap operator

Fig. 3. Move operators in the first phase

constraint of the neighbor solution and can only change the number 1

of conflicting edges. Then the move gain of a swap operation can be 2

computed by, 3

∆F = A[u][i]− A[u][j] + A[v][j]− A[v][i]− 2ev,u (9)

where ev,u = 1 if v and u are adjacent vertices, otherwise ev,u = 0. 4

Exploration of the neighborhoods in the first phase: The tabu search 5

procedure selects, at each iteration, a best admissible neighbor solution in 6

N1 and N2 with the smallest fitness gain ∆F and uses the solution to 7

replace the current solution. A neighbor solution is admissible if it is not 8

forbidden by the tabu list or is the best solution ever found. The 9

underlying move (one move(v, Vi, Vj), swap(v, u)) is recorded in the 10

13



so-called tabu list in order to forbid the reverse move for a fixed number of1

next iterations. The procedure iteratively makes transitions between2

various candidate k-colorings while minimizing the function F. This3

process continues until one of the two following conditions is met. First, a4

legal and equitable k-coloring s with F(s) = 0 is found. In this case, the5

given k-ECP problem is solved for the current k and we continue to solve6

the next k-ECP problem with k decreased by one. Second, a fixed number7

of β1 consecutive iterations (β1 is a parameter called the search depth)8

have been performed without updating the best recorded solution S∗. In9

this case, we move to the second search phase described below.10

3.4.2 Second phase11

Fitness function in the second phase: The second phase aims to further12

explore the search space by focusing on minimizing the conflicting edges.13

For this, we use the conflict penalty function f (s) (Equation (3) of Section14

2) as our fitness function.15

Move operators in the second phase: In order to enhance the search16

ability, the second phase jointly employs three neighborhoods: the17

one move neighborhood (N1) and the swap neighborhood (N2) (both used18

in the first phase) as well as the constrained-three-cyclic-exchange19

neighborhood (N3).20

Constrained-three-cyclic-exchange neighborhood (N3) [40]: This21

neighborhood is induced by the three-cyclic-exchange operator22

cyclic(v, u, w) that displaces three vertices u ∈ Vi, v ∈ Vj and w ∈ Vh to23

another color classes Vj, Vh and Vi in a cyclic way. With no restriction, the24

three-cyclic-exchange operator leads to a very large neighborhood (whose25

size is bounded by O(|V|3)). In order to reduce the computational burden26

of this operator, we impose the following constraints: 1) vertex v is a27

conflicting vertex; 2) before and after moving the vertex v, the difference of28

the conflicting edges induced by the vertex v is no more than 2; for the29

movement of the vertex u and w, the sum of the changes of the conflicting30

edges induced by u and w is at most 2. The31

constrained-three-cyclic-exchange neighborhood N3 is given as follows.32

N3(s) = {s⊕ cyclic(v, u, w) : v ∈ Vi, u ∈ Vj, w ∈ Vh, i 6= j, i 6= h, j 6= h, v ∩ C(s) 6= ∅,
A[v][j]− A[v][i] ≤ 2, A[u][h]− A[u][j] + A[w][i]− A[w][h] ≤ 2}

(10)

where A is a matrix of size n × k where each element A[v][i] records the33

number of vertices adjacent to v in color class Vi (1 ≤ i ≤ k).34

14



The move gain of exchanging three vertices u, v and w (suppose u ∈ Vi,
v ∈ Vj and w ∈ Vh) can be calculated by

∆ f = A[w][i]− A[w][h] + A[u][h]− A[u][j] + A[v][j]− A[v][i]− l{v, u, w}
(11)

where l ∈ {0, 1, 2, 3} is the number of edges between vertices u, v and w. 1

Tabu search in the second phase: At each iteration, a best admissible 2

solution with the smallest fitness gain ∆ f is taken among the neighbor 3

solutions of N1, N2 and N3 to replace the current solution. Then, the 4

corresponding move (one move(v, Vi, Vj), swap(v, u) or cyclic(v, u, w)) is 5

recorded in the tabu list. This process continues until a legal and equitable 6

solution s is found (i.e., both f (s) = 0) and g(s) = 0 hold), or the best 7

solution found so far cannot be improved during β2 consecutive iterations 8

(β2 is the search depth of the second phase). To cope with the equity 9

constraint during the second phase, a vertex from the largest color class is 10

displaced to the smallest color class every α iterations (set to be 1000 in this 11

work). 12

3.5 Pool updating strategy 13

To maintain a healthy diversity of the population, we adopt the 14

quality-and-distance based pool updating method introduced in [28]. To 15

decide whether a new offspring solution is added in the population, we 16

consider its distance to the population and its quality relative to the 17

solutions of the population. The interested reader is referred to [28] for a 18

detailed description of this updating method. With this pool updating 19

method, we ensure that not only is the population composed of 20

high-quality solutions, but also the solutions of the population are well 21

separated among them. This feature makes it possible to apply a simple 22

random selection to choose the parent solutions for the crossover operator 23

(as shown in Algorithm 1). 24

4 Experimental results and comparisons 25

We assess the performance of our proposed memetic approach on the set 26

of 73 benchmark instances 1 , 2 which are commonly used in the literature. 27

1 http://www.dimacs.rutgers.edu/
2 http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
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For 41 instances, their equitable chromatic number is known, while the1

optimum is still unknown for the 32 remaining instances.2

4.1 Setting for the computational studies3

Our MAECP algorithm was coded in C++ and compiled by GNU g++ 4.1.24

with ’-O3’ flag. Our algorithm was run on a computer with an Intel Xeon5

E5-2670 processor (2.5 GHz and 2 GB RAM) running Ubuntu 12.04.6

Parameters. The algorithm has three main parameters (Table 1):7

population size p and search depth β1 of the first phase and search depth8

β2 of the second phase. For p which is not a sensitive parameter, we follow9

the general practice of using memetic algorithms for solving combinatorial10

problems [14,23,28,34,42] and adopt a small value of p = 20. For the search11

depths which are more critical parameters, we fixed β1 to 105 and β2 to12

2 ∗ 105 which generally lead to good results according to the experiment13

reported in Section 5.1. The parameter setting shown in Table 1 can be14

considered as the default setting while fine-tuning them (in particular β115

and β2) for a particular problem instance would lead to improved results16

(see the discussion of Section 4.2).17

Table 1
Settings of important parameters

Parameters Description Value

p Population size, Section 3.2 20

β1 Search depth, Section 3.4.1 105

β2 Search depth, Section 3.4.2 2× 105

Stopping condition. Following [37,40], we present a first experiment18

where we ran our MAECP algorithm only once per instance with a cutoff19

time of 1 hour and a second experiment where we ran MAECP under a20

relaxed time condition. Specifically, the cutoff time was set to 2 × 104
21

seconds for the instances with up to 500 vertices and 4× 104 seconds for22

larger instances. Given its stochastic nature, the MAECP algorithm was23

run 20 times with different random seeds to solve each instance. The use of24

a relaxed time condition aims to verify the ultimate search limit of MAECP25

beyond which it is hopeless to obtain still better results. Indeed, given that26

memetic algorithms like MAECP involves a population and additional27

components (e.g., crossover, pool update), memetic algorithms are known28

to be more computationally intensive compared to local optimization29

approaches.30

It is worth noting that to solve a given instance, the above time budget is31

used to solve a series of k-ECP for decreasing k values (see Section 3 for the32

16



procedure used to determinate the initial k). When k decreases, the task of 1

finding a solution becomes more and more difficult. 2

4.2 Computation results and comparison with state-of-the-art algorithms 3

In this section, we present the computational results of our MAECP 4

algorithm on the set of 73 instances. For the purpose of comparison, we 5

use the results of the two most recent and best performing algorithms 6

(FISA [37] and HTS [40]) as our references. Table 2 reports the results of 7

these three compared algorithms where the results of FISA and HTS are 8

compiled from [37] and [40] respectively. The results of the reference 9

algorithms have been obtained on an Intel Xeon E5-2670 processor (2.5 10

GHz and 2 GB RAM) for FISA and on an Intel Xeon E5440 CPU (2.83 GHz 11

and 2 GB RAM), under both the short time condition (1 hour) and the long 12

time condition (104 seconds for the instances with up to 500 vertices and 13

2× 104 seconds for the instances with more than 500 vertices) 3 . 14

In Table 2, columns 1-2 give the name and the number of vertices of each 15

instance. Columns 3 shows the chromatic number or its best lower bound 16

(χ(G)). Columns 4-5 present the current best lower bound (LB) and upper 17

bound (UB) of the ECP reported in the literature [31,32]. The next 18 18

columns report detailed results of the reference algorithms (FISA and 19

HTS) and our MAECP algorithm respectively. Specifically, in addition to 20

the (best) result with the short time condition (k1), we indicate for each 21

algorithm under the respective relaxed long time condition, the best result 22

kbest, the average result kavg, the standard deviation kstd, the number of 23

successful runs over 20 runs SR/20 to achieve kbest and the average 24

computation time in seconds t(s) over the runs which attain kbest. Column 25

∆1 indicates the difference between our best result (kbest) and the lower 26

bound of the chromatic number of column χ(G), while column ∆2 is the 27

difference between our best result (kbest) and the lower bound of the 28

equitable chromatic number of column LB. So the value of 0 for ∆1 or ∆2 29

indicates an optimal result (the equitable chromatic number). In the last 30

two columns, we show the difference between our result (kbest) and the 31

result of FISA (∆3) and HTS (∆4) (a negative value indicates an improved 32

result). Finally, entries with ”-” mean that the corresponding results are 33

not available in the literature. 34

From Table 2, we can make the following comments. First, we observe that 35

among the 73 tested benchmark instances, optimal solutions are achieved 36

for 41 instances (indicated by ∗) since ∆1 = 0 or ∆2 = 0 holds. For these 37

3 We verified that FISA and HTS cannot further improve their best results even if
their long time budget is doubled.
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instances, our MAECP algorithm is able to find the optimal solutions1

without exception (like FISA and HTS).2

18
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Second, concerning the 32 instances for which optimal solutions are still1

unknown, MAECP performs very well under the short time condition.2

Specifically, MAECP finds 14 and 10 better results in terms of k1 compared3

to FISA and HTS, while MAECP reports 3 and 4 worse results respectively.4

Under the long time condition, MAECP reaches a remarkable performance5

compared to the reference algorithms. MAECP dominates FISA by6

obtaining 17 better results (see negative entries in column ∆3) and equal7

results for the remaining 16 instances. MAECP also performs better than8

HTS by reporting better results for 11 instances (see negative entries in9

column ∆4), worse result for 1 instance, and equal results for other 2110

instances. Especially, for the large graph C2000.9, MAECP significantly11

improves the best-known result by reducing the number of used colors by12

25 units. Only for 1 instance ( f lat1000 50 0.col), MAECP reports a slightly13

worse result (using one more color) relative to the current best-known14

result (reported by HTS). Finally, when comparing with the upper bounds15

obtained by the exact algorithms (Column 5), we see that the bounds of16

MAECP (Column 19) are clearly much better.17

Third, if we check the cases where MAECP achieved the same kbest as the18

reference algorithms (56 and 61 instances compared to FISA and HTS19

respectively), we can make the following comments. Compared to FISA,20

MAECP performs better in terms of kstd (11/56 cases vs 5/56 cases) and21

kavg (11/56 vs 5/56), while the result of MAECP is worse in terms of t(s)22

(10/56 cases vs 46/56 cases) and SR (4/61 vs 12/61). Compared to HTS,23

MAECP performs better in terms of kstd (14/61 cases vs 7/61 cases) and SR24

(8/61 vs 4/61). It performs worse in terms of t(s) (10/61 cases vs 51/6125

cases) and kavg (4/61 vs 8/61).26

Finally, to verify the statistical significance between the results of MAECP27

and FISA/HTS, we apply the non-parametric Wilcoxon signed-rank test28

to the kbest values. With a 95% level of confidence, the p-values of 1.46e-429

(<< 0.05) and 5.82e-3 (<< 0.05) for MAECP vs FISA and MAECP vs HTS30

confirm the dominance of MACEP over FISA and HTS in terms of kbest.31

The Wilcoxon test for the k 1 values leads to p-values of 4.61e-2 (< 0.05)32

and 1.53e-1 (> 0.05) for MAECP vs FISA and MAECP vs HTS respectively,33

indicating the dominance of MACEP is only marginally under the one hour34

time limit. Indeed, given that MACEP is a population algorithm, this cutoff35

limit is too short for MACEP to perform a sufficient search, when multiple36

k values need to be tested.37

In summary, MAECP improves the best-known solutions for 9 instances38

(new upper bounds) among the 32 instances for which optimal solutions39

are still unknown (28%) and finds all optimal results for the 41 instances40

with known optima.41
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Finally, the above results have been achieved by running MACEP from k = 1

|V| for a given graph G = (V, E) (see Section 3) and using consistently 2

the default parameter setting of Table 1. By fine-tuning some parameters 3

or just starting with an initial k value close to the best known value, better 4

results can be found. For instance, by setting k to a value around the best 5

known k value MACEP finds an equitable coloring with k = 245 (instead of 6

247 in Table 2) for R1000.5 in 27173 seconds. Similarly, MACEP also solves 7

flat 1000 50 0.col with k = 92 (instead of 93 in Table 2) in 24311 seconds. 8

5 Analysis 9

In this section, we carry out additional experiments to investigate the 10

benefits of two important ingredients of the proposed MAECP algorithm: 11

the backbone-based crossover and the 2-phase infeasible tabu search. 12

These experiments were performed on a selection of 23 instances (shown 13

in Tables 3 and 4) with unknown optimal solutions. 14

5.1 Parameter analysis 15

In this section, we show an analysis of the two main parameters β1 and β2. 16

For this analysis, we vary one parameter value among a given range while 17

fixing the other parameters to their default setting as shown in Table 1. 18

We use the following value ranges: β1 = {104, 5 × 104, 105, 5 × 105, 106} 19

and β2 = {105, 2 × 105, 3 × 105, 4 × 105, 5 × 105}. Figure 4 shows the 20

behavior of MAECP with respect to each of the parameters under the short 21

time condition (3600 seconds per run), where the X-axis indicates the 22

values of each parameter and the Y-axis shows the sum of the kbest and kavg 23

over the 23 instances and 20 runs per instance. 24

Figure 4 shows that the performance of MAECP is significantly influenced 25

by the value of the parameter β1 and β2. For β1, the best performance is 26

obtained when β1= 105, while for β2, the value of 2× 105 is the best choice. 27

The unfitting values of β1 (β2) affect negatively the performance of 28

MAECP since a too small value of β1 (β2) does not allow the local 29

optimization component to make a sufficient examination of the current 30

search zone, while a too large value of β1 (β2) implies a too long (and 31

probably repetitive) local optimization. This study justifies the default 32

parameter setting of Table 1. 33

23



(a) The influences of β1

(b) The influences of β2

Fig. 4. Analysis of the influences of the parameters (β1 and β2).

5.2 Effectiveness of the 2-phase search1

As described in Section 3.4, the 2-phase tabu search is the local2

optimization procedure of our memetic algorithm. To assess its usefulness,3

we created two MAECP variants (called MA HTS and MA FISA) where4

we replace the 2-phase tabu search by the state-of-the-art algorithms HTS5

[40] and FISA [37] respectively. We ran these variants under the same long6

condition as specified in Section 4.1. That is, we ran each compared7

24



Table 3
Analysis of the influence of the 2-phase tabu search on the performance of the
MAECP algorithm.

MAECP MA HTS MA FISA
Instance kbest kavg SR t(s) kbest kavg SR t(s) kbest kavg SR t(s) ∆1 ∆2

DSJC250.5.col 29 29 20/20 1093.10 29 29 20/20 765.51 29 29.8 4/20 13323.03 0 0
DSJC500.5.col 51 51.95 1/20 20784.47 52 52 20/20 4645.58 53 53.05 19/20 5585.59 -1 -2
DSJC500.9.col 128 128.9 2/20 16170.75 128 128.8 4/20 12596.44 130 130.7 6/20 10919.48 0 -2
DSJR500.5.col 124 124.95 1/20 13266.53 125 125 20/20 7218.91 126 126 20/20 1948.05 -1 -2
DSJC1000.5.col 95 97.05 3/20 36321.49 95 96.45 6/20 29919.83 99 101.55 1/20 33887.1 0 -4
DSJC1000.9.col 251 251 20/20 963.55 251 251 20/20 10948.39 253 254 2/20 25818.87 0 -2
R250.5.col 65 65.09 3/20 11291.38 66 66 20/20 403.05 66 66.33 14/20 7652.724 -1 -1
R1000.5.col 247 247.65 8/20 41552.02 247 247.25 15/20 31595.44 249 249.95 19/20 7021.67 0 -2
wap01a.col 42 42 20/20 10304.68 43 43 20/20 1734.74 42 42.5 10/20 12329.4 -1 0
wap02a.col 41 41 20/20 14295.51 41 41.9 2/20 21858.33 41 41.8 4/20 15387.03 0 0
wap03a.col 44 45.7 2/20 34445.79 45 45.78 9/20 17666.15 45 45.05 19/20 16680.71 -1 -1
wap04a.col 43 44.25 2/20 33286.35 44 44.4 12/20 24259.4 44 44.05 19/20 18020.14 -1 -1
wap05a.col 50 50 20/20 10983.28 50 50 20/20 251.02 50 50 20/20 326.38 0 0
wap06a.col 41 41.05 19/20 13739.89 41 41.6 8/20 12376.91 41 41.3 14/20 10927.99 0 0
wap07a.col 42 42.75 5/20 11304.96 43 43.3 17/20 3123.80 43 43 20/20 59.33 -1 -1
wap08a.col 42 42.1 18/20 13821.39 43 43.1 18/20 4457.54 43 43 20/20 3202.44 -1 -1
flat300 28 0.col 32 32.65 7/20 5209.56 32 32.7 6/20 8243.73 33 33.8 4/20 9477.43 0 -1
flat1000 50 0.col 93 93.9 2/20 16779.12 93 93.45 11/20 20824.03 96 98.3 7/20 34202.33 0 -3
flat1000 60 0.col 93 93.85 3/20 14715.85 93 93.8 5/20 25844.12 96 97.7 9/20 33149.85 0 -3
flat1000 76 0.col 93 94.1 2/20 24103.23 93 94.2 1/20 25280.69 96 98.95 4/20 37222.5 0 -3
latin square 10.col 103 104.61 1/20 32403.96 104 104.95 4/20 12202.16 104 104.25 15/20 11827.37 -1 -1
inithx.i.2.col 35 35 20/20 4106.24 37 39.7 10/20 8288.66 36 36.9 3/20 18516.37 -2 -1
inithx.i.3.col 36 36 20/20 6529.65 38 40.6 6/20 6896.93 37 38 2/20 26825.67 -2 -1
p-value 2.0e-3 1.6e-4

algorithm 20 times to solve each instance under 2 × 104 seconds for the 1

instances with up to 500 vertices and 4× 104 seconds for larger instances. 2

We summarize in Table 3 the comparative results of MAECP against these 3

two variants with the same information as in Table 2. Specifically, we 4

report for each compared algorithm (MAECP, MA HTS, MA FISA), the 5

best result kbest, the average result kavg, the standard deviation kstd, the 6

number of successful runs over 20 runs SR/20 to achieve kbest and the 7

average computation time in seconds t(s) to attain kbest. The results show 8

that MAECP substantially performs better than MA HTS and MA FISA 9

in terms of best value (kbest)and average value (kavg). Specifically, for kbest, 10

MAECP dominates MA HTS and MA FISA by obtaining 11 and 18 better 11

results out of the 23 tested instances and reporting no worse result. 12

Moreover, MAECP has 12 better average results (kavg) compared to 13

MA FISA and MA HTS. To verify the statistical significance of the 14

differences between MAECP and the compared variant in terms of kbest, 15

the last row indicates the p-values from the Wilcoxon signed-rank test 16

with a 95% level of confidence. The p-values (2.0e-3 and 1.6e-4 which are 17

both smaller than 0.05) confirm that the dominance of MAECP over the 18

two compared variants is statistically significant. Since the compared 19

methods lead to solutions of different quality, it is not meaningful to 20
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compare their respective success rates and computation times. On the1

other hand, for the 12 cases where MAECP and MA HTS achieved the2

same kbest values, there is no clear dominance of one method over the3

other in terms of SR and t(s). Specifically, MAECP has 3 equal and 4 better4

SR and 5 better t(s). For the 5 cases where MAECP and MA FISA reported5

the same kbest, MAECP has a better SR in 4 cases and 3 better t(s). Finally,6

one observes that both MAECP and MA HTS dominate MA FISA7

according to all indicators. Finally, according to the results reported for8

HTS [40], for FISA [37] and for the 2-phase tabu search (see Section 5.3),9

HTS and the 2-phase tabu search are more powerful than FISA. This10

experiment thus confirms the benefit of embedding a powerful local11

optimization procedure (in our case, the 2-phase tabu search) within a12

memetic algorithm to ensure an effective search intensification.13

5.3 Effectiveness of the crossover14

The comparative study of Section 4.2 shows the advantage of our15

population-based memetic algorithm compared to the two state-of-the-art16

local search algorithms FISA and HTS. In this section, we further assess17

the usefulness of the memetic framework via the crossover operator. For18

this purpose, we compare MAECP and its 2-phase tabu search alone by19

running them under the long time condition as specified in Section 4.1. To20

avoid penalizing the 2-phase tabu search, we applied the following re-start21

technique. When the 2-phase tabu search attains its end without finding a22

solution, it is re-started if the cutoff time is not reached. By this re-start23

technique, we make sure that the 2-phase tabu search consumes the given24

time budget like MAECP.25

The comparative results of this experiment are presented in Table 4 with26

the same information as before. The last column also indicates the27

difference between the best results (kbest) of MAECP and28

2-phase tabu search. Table 4 shows that MAECP dominates the29

2-phase tabu search on the 23 instances tested, by obtaining 11 better30

results (see negative entries in column ∆1), 1 worse result and the same31

results for the remaining instances. In terms of kbest, the small p-value32

(5.6e-3 < 0.05) from the Wilcoxon signed-rank test with a 95% level of33

confidence confirms that MAECP with its crossover operator performs34

significantly better than the 2-phase tabu search alone. Incidentally, for the35

11 cases both algorithms report the same kbest, MAECP is more robust with36

a better success rate SR in all but one case. In terms of computation time,37

MAECP performs similarly compared to the 2-phase tabu search with a38

shorter time for 6 cases against 5 cases in favor of the 2-phase tabu search.39

This experiment demonstrates that the crossover operator with the40

26



Table 4
Analysis of the influence of the crossover on the performance of the MAECP
algorithm.

MAECP 2-phase tabu search
Instance kbest kavg SR t(s) kbest kavg SR t(s) ∆1

DSJC250.5.col 29 29 20/20 1093.10 29 29.22 14/20 6673.11 0
DSJC500.5.col 51 51.95 1/20 20784.47 52 52.44 10/20 8658.09 -1
DSJC500.9.col 128 128.9 2/20 16170.75 129 129.67 6/20 15590.03 -1
DSJR500.5.col 124 124.95 1/20 13266.53 125 125.19 16/20 5709.86 -1
DSJC1000.5.col 95 97.05 3/20 36321.49 95 97.72 1/20 40134.7 0
DSJC1000.9.col 251 251 20/20 963.55 251 251.22 14/20 22198.38 0
R250.5.col 65 65.09 3/20 11291.38 65 65.94 1/20 11585.85 0
R1000.5.col 247 247.65 8/20 41552.02 248 248.78 8/20 32581.50 -1
wap01a.col 42 42 20/20 10304.68 42 42.72 5/20 4782.61 0
wap02a.col 41 41 20/20 14295.51 42 42 20/20 2408.73 -1
wap03a.col 44 45.7 2/20 34445.79 45 45.55 7/20 17761.70 -1
wap04a.col 43 44.25 2/20 33286.35 44 44.13 13/20 13997.34 -1
wap05a.col 50 50 20/20 10983.28 50 50 20/20 304.16 0
wap06a.col 41 41.05 19/20 13739.89 41 41.89 2/20 1955.88 0
wap07a.col 42 42.75 5/20 11304.96 43 43 20/20 2955.55 -1
wap08a.col 42 42.1 18/20 13821.39 42 42.89 3/20 19666.34 0
flat300 28 0.col 32 32.65 7/20 5209.56 32 33.17 1/20 2241.36 0
flat1000 50 0.col 93 93.9 2/20 16779.12 92 93.5 1/20 24311.86 1
flat1000 60 0.col 93 93.85 3/20 14715.85 93 94.39 2/20 37262.49 0
flat1000 76 0.col 93 94.1 2/20 24103.23 94 94.56 10/20 30406.57 -1
latin square 10.col 103 104.61 1/20 32403.96 103 104.22 5/20 28201.09 0
inithx.i.2.col 35 35 20/20 4106.24 60 65.5 1/20 12.55 -25
inithx.i.3.col 36 36 20/20 6529.65 64 68 2/20 218.11 -28
p-value 5.6e-3

population framework positively contributes to the performance of the 1

MAECP algorithm in particularly in terms of search capacity. 2

6 Conclusions 3

We have presented the first population based memetic algorithm for the 4

NP-hard equitable graph coloring problem. The algorithm relies on a 5

backbone crossover to combine parent solutions and a dedicated 2-phase 6

tabu search for solution improvement. We have evaluated the algorithm 7

on a set of 73 popular benchmark instances in the literature and compared 8

our results with those of the state-of-the-art algorithms. For the 41 9

instances with known optima, the proposed algorithm consistently 10

achieves all the known optimal results. More significantly, among the 32 11

instances whose optima are still unknown, the proposed algorithm 12

discovers 9 improved best results which correspond to new upper bounds 13

of the equitable chromatic numbers, which can serve as new references for 14

assessment of other ECP algorithms. More generally, this work advances 15

the state-of-the-art of solving this challenging problem. Given that the ECP 16

is able to formulate a number of practical applications in the real-world, 17

27



the proposed algorithm could be usefully applied to better solve these real1

problems as well.2

For future work, several directions could be followed. First, like other3

coloring algorithms, the proposed algorithm is computation intensive. It4

would be interesting to investigate specific techniques to speed up the5

local optimization component. For this purpose, implementations of the6

proposed algorithm on GPU are worthy of studies. Second, the combined7

fitness function used in the 2-phase search could be improved by8

introducing an self-adaptive technique to balance the two composing9

penalty terms like [8,38]. Finally, it would be interesting to investigate the10

proposed solving framework for solving other graph coloring problems.11
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