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Abstract Given an undirected graph G = (V, E) and a positive integer k, a k-
vertex-critical subgraph (k-VCS) of G is a subgraph H such that its chromatic
number equals k (i.e., χ(H) = k), and removing any vertex causes a decrease
of χ(H). The k-VCS problem (k-VCSP) is to find the smallest k-vertex-critical
subgraph H∗ of G. This paper proposes an iterated backtrack-based removal
(IBR) heuristic to find k-VCS for a given graph G. IBR extends the popular
removal strategy that is intensification-oriented. The proposed extensions in-
clude two new diversification-oriented search components – a backtracking
mechanism to reconsider some removed vertices and a perturbation strategy
to escape local optima traps. Computational results on 80 benchmark graphs
show that IBR is very competitive in terms of solution quality and run-time
efficiency compared with state-of-the-art algorithms in the literature. Specif-
ically, IBR improves the best-known solutions for 9 graphs and matches the
best results for other 70 instances. We investigate the interest of the key com-
ponents of the proposed algorithm.
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1 Introduction

Given a simple undirected graph G = (V, E) with vertex set V = {1, 2, . . . , n}
and edge set E ⊂ V × V, a legal k-coloring of G is a mapping c : V →
{1, . . . , k}, such that c(i) 6= c(j) for all edges (i, j) in E. The graph k-coloring
problem (K-COL) is to determine if a legal k-coloring of G exists for a given
k. The classical graph coloring problem (COL) is to find the minimum integer
k (chromatic number χ(G)) for which a legal k-coloring of G exists. K-COL
is known to be NP-complete while the optimization problem COL is NP-
hard [11].

A graph is a vertex-critical graph if removing any vertex from the graph
decreases its chromatic number [5]. Given an integer k, a k-vertex-critical sub-
graph (k-VCS) of G is a vertex-critical subgraph H such that χ(H) = k. Note
that each graph G contains at least one k-VCS for 1 ≤ k ≤ χ(G). Finally, a
subgraph H∗ is a minimum k-VCS if no other k-vertex-critical subgraph with
fewer vertices than in H∗ exists in G. The k-VCS problem (k-VCSP) is to find
a minimum k-vertex-critical subgraph of G. k-VCSP is a NP-hard problem
and thus computationally challenging [5]. For simplicity, if H = (A, EA) is a
k-VCS, we also use its vertex set A to denote the k-VCS.

As an example, consider the graph G of Figure 1(a) with χ(G) = 4. Fig-
ure 1(b) shows a 4-vertex-critical subgraph of G since removing any vertex
decreases its chromatic number to 3. Moreover, this 4-VCS is also minimum
since no other 4-critical subgraph with fewer vertices exists in G. Note that a
k-VCS of G provides a lower bound of χ(G), and a k-VCS with a larger k thus
leads to a better (tighter) bound (eg., the 4-VCS of Figure 1(b) corresponds to
a better lower bound with respect to any 3-VCS formed by a clique of size 3
like {1,2,7}).
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(b) A 4-vertex-critical subgraph

Fig. 1 An example of k-vertex-critical subgraph.

It is worth noting that k-VCSP is tightly related to the problem of finding
irreducible inconsistent sets in linear programs (IIS) [1–4,21,26], minimal un-
satisfiable sets (MUSes) in infeasible propositional satisfiability problems [19,
23,24] and constraint satisfaction problems [8,15,20].
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In the context of graph coloring, some effective approaches have been pro-
posed to extract k-VCS in a graph. In [16], Herrmann and Hertz suggested a
vertex removal algorithm combined with an insertion algorithm to find the
chromatic number of a graph. In [5], Desrosiers et al. proposed the neigh-
borhood weight heuristic algorithm which is combined with classical critical
subgraph detection algorithms, leading to several effective k-VCS detection
heuristics including the Ins + h algorithm that we will use as our main refer-
ence algorithm for our computational studies.

This paper extends previous studies by proposing an Iterated Backtrack
Removal Search (IBR) for finding k-VCS in a graph. IBR reinforces the gen-
eral and classical removal approach [5,16] with a backtracking scheme and
a perturbation strategy. The removal approach reduces the current graph by
tentatively moving vertices to the set of uncritical vertices (see Section 3.2).
The backtracking procedure expands the current subgraph by adding back
some vertices which are incorrectly removed (see Section 3.4). The perturba-
tion procedure provides a means of reconsidering some vertices which would
have been incorrectly identified as critical ones (see Section 2). While the basic
removal procedure can be considered as an intensification-oriented compo-
nent, backtracking and perturbation provides two complementary means for
search diversification.

We assess the proposed approach on 80 popular DIMACS and COLOR02-
04 benchmark instances. We show that our IBR algorithm competes favor-
ably with the state-of-the-art results. Specifically, our algorithm improves the
best-known solutions for 9 graphs and matches the best results for other 70
instances. Only in one case, IBR obtains a slightly worse result.

The remainder of this paper is organized as follows. Section 2 introduces
some useful notations. Section 3 presents the components of the IBR algo-
rithm, including the basic removal algorithm, the backtrack-based removal
algorithm and the perturbation procedure. Section 4 shows computational
evaluation and comparisons with state-of-the-art results. Section 5 investi-
gates the key components of the proposed algorithm, followed by conclu-
sions in Section 6.

2 Notations

Let G = (V, E) be an input graph, we introduce the following notations,
which are useful for the description of the proposed approach.

We define three working sets of vertices A, B and C that are used by the
algorithm. For each vertex of V, we first define its status (critical, unknown,
uncritical).

A critical vertex is a vertex that belongs to a k-VCS. We use A to denote the
set of critical vertices that have been detected. A is also called the critical set.

An unknown vertex is a vertex whose status is still unknown. We use B to
denote the set of unknown vertices, which is also called the unknown set.
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An uncritical vertices refers to a vertex that does not belong to a k-VCS. We
use C to denote the set of uncritical vertices, which is also called the uncritical
set.

Given the critical set A and the unknown set B, the subgraph induced by
A, H = GA = (A, EA) (EA = A× A ∩ E), is called the critical subgraph of G.
The subgraph induced by A ∪ B, GA∪B = (A ∪ B, EA∪B) (EA∪B = ((A ∪ B)×
(A ∪ B)) ∩ E), is the remaining subgraph of G.

As explained in the next section, the proposed approach operates on these
three sets of vertices, which are initially set as A = ∅, B = V, C = ∅. Then
the algorithm searches a k-VCS by moving vertices from one set to another
according to the temporarily identified status of each vertex.

For any vertex i, we also associate a weight w(i), which is defined as fol-
lows:

w(i) =

|E|, i f i ∈ set A.
1, i f i ∈ set B;
0, i f i ∈ set C;

(1)

At the beginning of the search, we set w(i) = 1 for each vertex i of V
(since A = ∅, B = V, C = ∅). The weight of a vertex is updated each time
the vertex changes its status (critical, unknown, uncritical) (see Section 3).
The dynamically learned weight information is mainly used by the removal
algorithm for vertex selection [5].

3 The Iterated Backtrack-based Removal Algorithm

In this section, we present the iterated backtrack-based removal algorithm
(IBR) for detecting k-VCS in a graph, which extends the classical removal
algorithm with a backtracking scheme and a perturbation procedure.

3.1 General Structure of the IBR Algorithm

Given a graph G = (V, E) and an integer k ≤ K (K being χ(G) or the smallest
number of colors for which a k-coloring is known to exist), the proposed IBR
algorithm (see Figure 2 and Algorithm 1) aims to find a small k-VCS, i.e., a
small set of critical vertices A ⊆ V such that the induced subgraph H =
(A, EA) has a chromatic number of χ(H) = k, and removing any vertex from
H decreases χ(H).

The IBR algorithm operates with three working sets of vertices, initialized
as A = ∅, B = V, C = ∅. Basically, according to the coloring results on the
remaining graph provided by a heuristic coloring algorithm, IBR uses three
main procedures to move vertices among these sets in order to find a k-VCS.

Recall that each graph G contains at least one k-VCS for 1 ≤ k ≤ χ(G).
Furthermore, a graph G is (k− 1)-colorable if and only if G does not contain
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Fig. 2 Flow chart of the iterated backtrack-based removal algorithm for finding k-VCS in a graph.

a k-VCS. Note that the problem of deciding whether a graph G is (k − 1)-
colorable is itself NP-hard. For this reason, we adopt a heuristic coloring al-
gorithm Color (see Section 3.3) to judge whether G is (k− 1)-colorable.

1. The removal procedure inspects, one by one, the vertices of set B of un-
known vertices to determine their status (Algorithm 1, lines 7-16). Specif-
ically, at each iteration, a vertex i from B is first selected and moved to C
(i.e., i is supposed to be uncritical, line 8). If the graph GA∪B after remov-
ing i does not contains a k-VCS any longer, i.e., becomes (k− 1)-colorable,
(checked with a heuristic coloring algorithm, see Section 3.3), then vertex
i is identified as critical and moved from C to A (lines 9-10, see Section
3.2). We check again with the heuristic coloring algorithm whether the
graph GA∪B contains a k-VCS (line 12). If the graph GA∪B after adding
i back still does not contain a k-VCS, then certain critical vertices were
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Algorithm 1 The IBR algorithm for solving k-VCSP
1: Input: Graph G = (V, E), integer k ≤ K (K being χ(G) or the smallest number of colors for

which a k-coloring exists), R maximum allowed perturbations.
2: Output: H the smallest k-colorable subgraph

/*Initialization*/
3: H1 = ∅, · · · , HR = ∅ /* each Hr records a detected candidate k-VCS*/
4: A = ∅, B = V, C = ∅, H = (A, EA) /*A is set of critical vertices, B is set of unknown

vertices, C is set of uncritical vertices*/
5: r = 0 /*r is the number of performed perturbations*/
6: while r < R do
7: while H does not contains a k-VCS do
8: Choose a vertex i ∈ B, move i from B to C /*vertex removal, Section 3.2*/
9: if GA∪B does not contains a k-VCS then
10: move i from C to A /*i is detected as a critical vertex*/
11: H = (A, EA)

/*Backtracking, Section 3.4*/
12: while GA∪B does not contains a k-VCS do
13: Choose a vertex l ∈ C, move l from C to B
14: end while
15: end if
16: end while
17: r = r + 1
18: Hr = H

/*Perturbation operator for the critical subgraph*/
19: H′ ← Perturbation(Hr) /*Section 2*/

/*Update the set A, B and C*/
20: {A, B, C} ← Update set(H′) /*Section 3.6*/
21: H = (A, EA)
22: end while
23: H ← the smallest k-colorable subgraph

incorrectly classified into the uncritical set C, a backtracking procedure is in-
voked (line 12). This process is repeated until the subgraph induced by
set A of critical vertices is such that its chromatic number equals k (line 7).
One notices that the removal procedure is both greedy (guided by its vertex
selection rule) and intensification-oriented (aiming to minimize the set of
critical vertices). In order to diversify the search, we introduce two specific
strategies based on the ideas of backtracking and perturbation.

2. Since the algorithm used to judge whether the remaining graphs GA∪B
contains a k-VCS is not an exact algorithm (see Section 3.3), a critical ver-
tice can be incorrectly classified into the uncritical set C. To remedy this
problem, we introduce a backtracking procedure which reconsiders the ver-
tices of C (i.e., moving them back to the unknown set B, see Section 3.4).
This procedure extends the removal procedure by continually moving un-
critical vertices from C to B until the chromatic number of GA∪B increases
to k again (lines 12-14, see Section 3.4). Once χ(GA∪B) = k (which means
the graph GA∪B once again contains a k-VCS), the backtracking phase
stops and resumes the removal phase.

3. The perturbation procedure is used to remedy the problem of some mis-
classified critical vertices. It moves vertices from set A to B (line 19, see
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Section 2) and updates the sets A, B and C and the subgraph H (lines 20-
21, see Section 3.6). Then, the removal algorithm is applied on the graph
G with the updated sets. This phase terminates once the allowed number
of perturbations is reached (line 6).

We observe that Algorithm 1 becomes the conventional removal algo-
rithm of [5] when the backtrack procedure (lines 12-14) and perturbation pro-
cedure (lines 17-21) are disabled.

In the remainder of this section, we explain the main procedures of the
IBR algorithm: the removal procedure, the heuristic coloring procedure, the
backtracking procedure and the perturbation procedure.

3.2 The Removal Algorithm

Our removal procedure is based on the removal heuristic algorithm presented
in [5], which can be conveniently described using the notion of critical, un-
known and uncritical sets of vertices.

After initialization, B = V, A = ∅, C = ∅, H = (A, EA). We note that
GA∪B = G is not (k− 1)-colorable, thus contains a k-VCS (see Section 3.1 and
Algorithm 1). In each iteration, the removal algorithm tentatively moves one
vertex i from the unknown set B to the uncritical set C. If GA∪B without vertex
i is always not (k − 1)-colorable (i.e., GA∪B contains a k-VCS), the removed
vertex i is considered as an uncritical vertex and is kept in C. Otherwise, if
GA∪B without vertex i becomes (k− 1)-coloring (i.e., GA∪B does not contain
a k-VCS), vertex i is considered as a critical vertex and thus transferred from
set C to set A. In both cases, we update the sets A, B, C, the graphs H, GA∪B
and the weights of vertices accordingly. The removal algorithm repeats this
process until χ(H) increases to k, which occurs when a k-VCS is detected.

In the removal algorithm, the rule used to select the next vertex from
B impacts the critical subgraphs generated. In order to favor small critical
subgraphs, the removal algorithm adopts the neighborhood weight heuristic
strategy proposed in [5], which uses dynamically learned information con-
tained in the weights of vertices.

Recall that when a vertex i is placed in the set A, B and C, its weight is set
as |E|, 1 and 0 correspondingly. The neighborhood weight W(i) of a vertex i
is defined as the sum of the weights of the vertices that are adjacent to this
vertex. When all weights of vertices are equal to 1 (e.g., after initialization),
the neighborhood weight of a vertex equals its degree and can be consid-
ered as an indicator on the density of the region surrounding this vertex. The
neighborhood weight heuristic strategy moves the vertices with the small-
est neighborhood weight firstly, and preserves the denser ones. This strategy
proved to be effective to detect a k-VCS with a small size [5].
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3.3 Heuristic Coloring Algorithm

We adopt a heuristic coloring algorithm Color to judge whether a graph G is
(k − 1)-colorable (i.e., whether G contains a k-VCS). The removal algorithm
can guarantee that the extracted subgraph H = (A, EA) is a k-VCS when
the coloring algorithm Color is an exact algorithm (i.e., able to verify that the
given remaining graph is colorable with a given k). However, given that the
general k-coloring problem is itself NP-complete, exact methods can be too
time consuming even for graphs of relatively small sizes (with several tens of
vertices). For this reason and like [5], we adopt a heuristic coloring algorithm
(i.e., TabuCol [17,7,9]). Contrary to an exact algorithm, the heuristic algo-
rithm may fail to find a legal coloring with a given k, even if such a coloring
exists.

Recall that at each iteration of the removal procedure, we move one un-
known vertices i from B to C. Then, one needs to know whether there is a
legal (k − 1)-coloring on graph H = (A, EA) (the stopping condition is met
or not) and on graph GA∪B = (A ∪ B, EA∪B) (the last moved vertex is critical
or not).

To solve the (k − 1)-coloring problem, TabuCol iteratively explores par-
titions of V in k − 1 classes. Each partition c is attributed to a fitness value
f (c) which is the number of edges of the graph that have both endpoints
in the same class. Therefore, if f (c) = 0, the partition c corresponds to a
proper (k − 1)-coloring. The purpose of the tabu search coloring algorithm
is then to minimize the fitness function f . The tabu coloring process stops
when f (c) = 0 or when the fitness function cannot be improved within a
given number of iterations.

3.4 Backtrack-based Removal Approach

The purpose of the backtracking phase is to cope with the problem caused by
the heuristic coloring algorithm, that some critical vertices may be mistakenly
moved to C. This situation happens as follows. When a critical vertex i is
moved from B to C, Color should find a legal (k− 1)-coloring in GA∪B with
fA∪B = 0 (Algorithm 1, line 9), and the vertex i should be moved from C to A
(Algorithm 1, line 10). However, since our coloring algorithm is not an exact
method, it may fail to find a (k − 1)-coloring in GA∪B. In this circumstance,
the critical vertex is unexpectedly classified to set C and χ(GA∪B) decreases
to k− 1. To alleviate this problem, we calls for a backtracking scheme. When
we find a legal (k − 1)-coloring for graph GA∪B, we invoke the backtrack
procedure, i.e., we move vertices from C to set B, until χ(GA∪B) increases to
k again. The key issue concerns the way to select vertices of C that are moved
back to the unknown set B.

To make the choice, we consider two strategies: (1) according to the re-
verse order by which the vertices have been moved from the set B to the set
C; (2) according to the non-increasing order of neighborhood weights (see
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Fig. 3 Illustration of the removal procedure.
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Section 3.2). Experiments indicated that the first strategy performs quite well
and is thus used in the paper (see Section 5.3 for a computational analysis).
This can be explained by the removal heuristic algorithm which prefers ver-
tices with a small neighborhood weight. Thus, the last moved vertex (with a
larger sum of neighborhood weights) has more chance to be a critical vertex
compared to a vertex that was moved since long time. While in rare cases,
there are also erroneous movements such that some uncritical vertices are
moved to the critical set A.

To illustrate the procedure, we consider the graph G of Figure 1(a) (χ(G) =
4) and the 4-VCS shown in Figure 1(b) (with vertices {1, 2, 3, 4, 5, 6, 7}). Figure
3 shows a possible situation in the removal procedure: suppose that the color-
ing algorithm Color fails to find a legal 3-coloring for GA∪B when the vertices
2, 3 were moved to the uncritical set C, then the vertices 2, 3 are retained in
the set C. In this case, A = {1, 4, 5, 6, 7}, B = ∅, C = {2, 3, 8, 9, 10, 11, 12}. Sup-
pose that after adding back the last removed vertex 6 to the graph GA∪B, we
detected that GA∪B becomes 3-colorable (GA∪B does not contain a 4-VCS) us-
ing the heuristic coloring algorithm, the backtracking phase is invoked. This
involves moving vertices from set C to set A according to the reverse order
by which the vertices have been moved from set B to set C, until χ(GA∪B)
increases to 4 again (GA∪B contains a 4-VCS again). Figure 4 illustrates this
backtracking procedure for the given graph G. However, if the uncritical ver-
tex 11 is moved before the last critical vertex was moved, the uncritical vertex
11 will also be moved into the critical set A. Thus A = {1, 2, 3, 4, 5, 6, 7, 11},
B = ∅, C = {8, 9, 10, 12}. We note that this backtracking procedure is effec-
tive for repairing the misjudgments that misclassify critical vertices as uncrit-
ical vertices. Meanwhile, this procedure may unfortunately classify uncritical
vertices into the critical set A.

3.5 Perturbation Operator of Backtrack-based Removal algorithm

As illustrated in Section 3, the backtrack-based removal procedure ends up
with a k-VCS (Algorithm 1, lines 6-16). However, it may happen that some
uncritical vertices are misclassified as critical vertices (always due to the use
of a heuristic coloring algorithm). To overcome this problem, we introduce a
perturbation procedure, which partially reconfigures A, B and C by moving
some vertices from set A to set B. This procedure also provides new oppor-
tunities of finding k-VCS of smaller sizes.

The perturbation procedure (Algorithm 2) is inspired by the techniques
proposed by [22,14], which is decomposed into two parts:

1. Scoring the vertices in set A. We define a function score(i) to score each
vertex i. Let FlipFreq(i) be the number of times vertex i has been dis-
placed among sets A, B and C, EliteSol = [H1, · · · , HR] a set of R critical
subgraphs discovered so far (R is the size of EliteSol), EliteFreq(i) the to-
tal number of times vertex i appears in EliteSol, the scoring function is
then defined as:
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Algorithm 2 Perturbation
1: Input: a k-critical-vertex-subgraph H, a probability threshold p
2: Output: a perturbed solution H′ /*Score the vertices in the set A*/
3: for i ∈ A do
4: calculate score(i) with Equation 2
5: end for
6: A

′← η vertices with the highest scores

7: A
′← sort A

′
in descending order of the scores /*Choose and move the perturbed vertices*/

8: for i ∈ A
′
do

9: i is the jth element in A
′
, calculate the possibility Pj using Equation 3

10: if Pj > p then
11: move i from A to B
12: end if
13: end for
14: H′ = (A, EA)

sorce(i) = EliteFreq(i)(l−EliteFreq(i))/r2 +(1− FliteFreq(i)/Max Freq)
(2)

where 1 ≤ r ≤ R and Max Freq = maxi∈{1...,|V|}{FlipFreq(i)}.

2. Choosing and moving the perturbed vertices. We sort all vertices in non-
increasing order according to their scores and then choose probabilisti-
cally certain vertices from set A. The possibility of the jth highly-scored
vertex being selected is given by:

Pj =
j−1

∑
η
z=1 z−1

(3)

where η is usually set as |A|/2. Then we move the chosen vertices from
set A to set B and update the sets A, B and C (see Section 3).

As an example, we consider the graph in Figure 5 with a chromatic num-
ber of 4 and one 4-VCS, i.e., {1, 2, 3, 4, 5, 6, 7}. Following Section 3.4, after the
backtrack-based removal procedure, A = {1, 2, 3, 4, 5, 6, 7, 11} as critical ver-
tices and other ones are uncritical vertices (C = {8, 9, 10, 12}, B = ∅}), while
the vertex 11 is mistaken for a critical vertex. The perturbation procedure
moves certain vertices from set A to set B according to Algorithm 2. Figure
5(a) and Figure 5(b) respectively present two situations where the uncritical
vertex 2 and the uncritical vertex 11 are moved from the set A to the set B by
the perturbation procedure.

3.6 Update Procedure

Before invoking a next round of the backtrack-based removal procedure
after the perturbation operation, an additional update operation is applied
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Fig. 5 Illustration of the perturbation procedure.
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Algorithm 3 Update Set
1: Input: a perturbed graph H′ ;
2: Output: updated sets A, B, C
3: fH′ = Color(H′, k− 1)
4: if fH′ = 0 then
5: move all vertices from C to B /*in order to re-detect each vertex of (B ∪ C) is uncritical

or not*/
6: else
7: move all vertices from B to C /*all the vertices in set B are uncritical vertices*/
8: move all vertices from A to B /*in order to rejudge each vertex of A is critical or not*/
9: end if

(Algorithm 3). According to whether the perturbed solution contains a k-
VCS, we use different strategies to update sets A, B and C. If the subgraph
H′ = (A, EA) does not contain a k-VCS (see Algorithm 3, line 4), which means
certain critical vertices are misclassified in set B or even in set C, we move all
vertices of C to B in order to re-examine each vertex of B ∪ C in the next step.
Otherwise, we come to the conclusion that all vertices in set B are uncritical
and move all vertices from B to C. Then, in order to determine whether the
vertices of set A are uncritical or not, we move all vertices of A to B.

In Figure 5, after the backtracking procedure and the perturbation proce-
dure, two cases are possible according to whether the subgraph H′ = (A, EA)
contains a 4-VCS. As shown in Figure 6(a), H′ = (A, EA) does not con-
tain a k-VCS. Then the update procedure moves all vertices from C to B
in order to re-consider each vertex in B ∪ C in the next step. Accordingly,
A = {1, 3, 4, 5, 6, 7, 11}, B = {2, 8, 9, 10, 12} and C = ∅. Figure 6(b) shows a
subgraph H′ = (A, EA) that contains a 4-VCS. In this case, the update proce-
dure moves all vertices from B to C and all vertices from A to B, leading to
A = ∅, B = {1, 2, 3, 4, 5, 6, 7} and C = {8, 9, 10, 11, 12}.

4 Experimental Results and Analysis

In this section, we assess the performance of the proposed IBR algorithm on
a collection of benchmark graphs from the DIMACS1 and COLOR02/03/04
competitions2.

4.1 Experiment Settings

The proposed algorithm was programmed in C and compiled by GNU g++
with the -O3 flag (option). The experiments were conducted on a computer
with Xeon E5440 (2.83GHz CPU and 2GB RAM) and Ubuntu Linux system

1 http://www.dimacs.rutgers.edu/
2 http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
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12.04. Running the DIMACS machine benchmark program dfmax.c3, our com-
puter requires 0.23, 1.42 and 5.42 seconds to solve graphs r300.5, r400.5, and
r500.5, respectively.

For our comparative study, we used the best performing heuristic algo-
rithm Ins + h [5] as our main reference. The Ins + h algorithm was run on an
Athlon processor (1.6 GHz and 512 Mb of RAM). The comparison was per-
formed mainly by considering the quality criterion of the solutions found. We
note that our processor is about 1.8 times faster than that used by the refer-
ence algorithm. Thus, in all the experiments, our recorded CPU times were
multiplied by 2 in order to make a reasonable comparison. Given that the
compared algorithms were tested on different computing platforms and the
runtime of an algorithm depends also on other factors (programming lan-
guage, data structures, etc), it is difficult to strictly compare the runtimes.
Thus, timing information was just provided for indicative purposes.

4.2 Instances and Experimental Settings

Test instances. We considered the set of 80 popular benchamrk graphs which
were tested in [5]. These graphs are divided into four categories.

1. The first category contains 17 instances that are probably critical them-
selves. Graphs having myciel∗, mug∗ or Insertions∗ in their name fall into
this category. The reference algorithm (Ins + h) extracts the minimum k-
VCS for all graphs in this category at k = χ(G).

2. The second category contains instances which have cliques as minimum
k-VCS, for k = χ(G). This category of graphs includes le450∗, f pso∗,
inithx∗, mulsol∗, zeroin∗, school1∗, miles∗, anna, david, homer, huck, jean
graphs. The Ins + h algorithm also detects the optimum k-VCS at k =
χ(G) for all graphs in this category.

3. The third category contains the instances which have DSJC in their name.
According to [5], these graphs are harder than other graphs for which a
k-VCS is difficult to detect. In fact, the Ins + h algorithm fails to find a
k-VCS for most of graphs in this category.

4. The last category is composed of all the instances falling in none of the
above three categories.

Parameters. Following [5], we ran our IBR algorithm 5 times to solve reach
instance, and reported the best values of the successful runs.

Stopping condition. The IBR algorithm stops once the number of the per-
turbation reaches the given limit R = 20.

Quality criteria. The experiments have two goals. The first one is to com-
pare the quality of the detected k-VCS for the given k. In this case, a smaller
k-VCS represents a better solution. The second goal concerns the quality of
the lower bound of χ(G) that an algorithm can reach [5]. In this case, we try

3 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 1 Comparative results of IBR with state-of-the-art algorithm on the first category of in-
stances.

Instance Ins + h [5] IBR
name |V| |E| k UB k |V| |E| time(s) k |V| |E| time(s)

myciel5 47 236 6∗ 6∗ 47∗ 236∗ 0.1 6∗ 47∗ 236∗ 0.00
myciel6 95 755 7∗ 7∗ 95∗ 755∗ 0.2 7 95 755 0.01
myciel7 191 2360 8∗ 8∗ 191∗ 2360∗ 30.65 8∗ 191∗ 2360∗ 11.46
mug88 1 88 146 4∗ 4∗ 88∗ 146∗ 0.05 4∗ 88∗ 146∗ 0.03
mug88 25 88 146 4∗ 4∗ 88∗ 146∗ 0.05 4∗ 88∗ 146∗ 0.02
mug100 1 100 166 4∗ 4∗ 100∗ 166∗ 0.05 4∗ 100∗ 166∗ 0.03
mug100 25 100 166 4∗ 4∗ 100∗ 166 0.05 4∗ 100∗ 166∗ 0.03
1 Insertion 4 67 232 5∗ 5∗ 67∗ 232∗ 0.05 5∗ 67∗ 232∗ 0.3
1 Insertion 5 202 1227 6 6 202 1227 0.05 6 202 1227 0.23
1 Insertion 6 607 6337 7 7 607 6337 49.85 7 607 6337 390.24
2 Insertion 4 149 541 5 5 149 541 0.15 5 149 541 0.04
2 Insertion 5 597 3936 6 6 597 3936 8.0 6 597 3936 14.67
3 Insertion 3 56 110 4∗ 4∗ 56∗ 110∗ 0.2 4 56∗ 110∗ 0.02
3 Insertion 4 281 1046 5 5 281 1046 0.4 5 281 1046 0.58
3 Insertion 5 1406 96,957 6 6 1406 96, 957 257.4 6 1406 96, 957 1580.37
4 Insertion 3 79 156 4 4 79 156 0.3 4 79 156 0.02
4 Insertion 4 475 1795 5 5 475 1795 0.75 5 475 1795 0.95

to find k-VCS with increasing k values (so a k-VCS with a larger k is better,
which corresponds to a tighter lower bound of χ(G)).

Finally, like [5], we verify the validity of a candidate k-VCS returned by the
IBR algorithm with an exact coloring algorithm. Indeed, since the returned k-
VCS is usually of small size, its chromatic number can be determined exactly
by a modern exact coloring algorithm within a time frame of several hours.
In our case, we used the recent algorithm presented in [29].

4.3 Comparison with State of the Art Algorithm

Tables 1, 2, 3 and 4 summarize the computational results of our IBR algorithm
on the four categories of DIMACS benchmark graphs, respectively. In these
tables, the first 4 columns show the name of each instance, the number of
vertices V, the number of edges E and the best-known upper bound k UB
of the chromatic number reported in the literature. Values followed by an
asterisk ∗ indicate that they correspond to χ(G). The following four columns
indicate the results of the Ins + h algorithm [5]: the k value for which a k-
VCS is detected (i.e., lower bound of χ(G)), the number of vertices and the
number of edges of the detected k-VCS, and the CPU time in seconds needed
to find the k-VCS. The last four columns show the results obtained by our
IBR algorithm. In Table 3, we show some improved lower bounds obtained
by the IBR algorithm compared to the lower bounds obtained by the Ins + h
algorithm. For each of these cases, we list the best lower bound that IBR can
achieve and its corresponding k-VCS in an additional row.

Table 1 displays the results of Ins + h and the results of IBR for the 17
instances of the first category, which are probably critical graphs themselves
[5]. Both algorithms can obtain the optimal subgraphs, but IBR is faster than
Ins + h for 10 graphs. The same observation can be made for the 39 instances
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of the second category which have maximum cliques as minimum k-VCS for
k = χ(G).

Table 2: Comparative results of IBR with state-of-the-art algorithm on the second category of
instances.

Instance Ins + h [5] IBR
name |V| |E| k UB k |V| |E| time(s) k |V| |E| time(s)

le450 5a 450 5714 5∗ 5∗ 5∗ 10∗ 5.35 5∗ 5∗ 10∗ 2.24
le450 5b 450 5734 5∗ 5∗ 5∗ 10∗ 7.7 5∗ 5∗ 10∗ 2.48
le450 5c 450 9803 5∗ 5∗ 5∗ 10∗ 8.9 5∗ 5∗ 10∗ 2.33
le450 5d 450 9757 5∗ 5∗ 5∗ 10∗ 8.35 5∗ 5∗ 10∗ 3.67
le450 15a 450 8168 15∗ 15∗ 15∗ 105∗ 5.4 15∗ 15∗ 105∗ 1.39
le450 15b 450 8169 15∗ 15∗ 15∗ 105∗ 3.0 15∗ 15∗ 105∗ 1.4
le450 15c 450 16680 15∗ 15∗ 15∗ 105∗ 22.25 15∗ 15∗ 105∗ 6.8
le450 15d 450 16750 15∗ 15∗ 15∗ 105∗ 14.65 15∗ 15∗ 105∗ 5.39
le450 25a 450 8260 25∗ 25∗ 25∗ 300∗ 7.2 25∗ 25∗ 300∗ 3.34
le450 25b 450 8263 25∗ 25∗ 25∗ 300∗ 6.6 25∗ 25∗ 300∗ 3.14
le450 25c 450 17343 25∗ 25∗ 25∗ 300∗ 9.1 25∗ 25∗ 300∗ 4.07
le450 25d 450 17425 25∗ 25∗ 25∗ 300∗ 8.95 25∗ 25∗ 300∗ 6.65
school1 385 19,095 14∗ 14∗ 14∗ 91∗ 6.25 14∗ 14∗ 91∗ 1.94
school1 nsh 385 19,095 14∗ 14∗ 14∗ 91∗ 15.1 14∗ 14∗ 91∗ 1.19
miles250 128 387 8∗ 8∗ 8∗ 28∗ 0.1 8∗ 8∗ 28∗ 0.04
miles500 128 1170 20∗ 20∗ 20∗ 190∗ 0.1 20∗ 20∗ 190∗ 0.09
miles750 128 2113 31∗ 31∗ 31∗ 465∗ 1.05 31∗ 31∗ 465∗ 0.41
miles1000 128 3216 42∗ 42∗ 42∗ 861∗ 1.5 42∗ 42∗ 861∗ 1.33
miles1500 128 5198 73∗ 73∗ 73∗ 2628∗ 1.6 73∗ 73∗ 2628∗ 0.64
anna 138 493 11∗ 11∗ 11∗ 55∗ 0.15 11∗ 11∗ 55∗ 0.07
david 87 406 11∗ 11∗ 11∗ 55∗ 0.15 11∗ 11∗ 55∗ 0.04
homer 561 1629 13∗ 13∗ 13 78∗ 0.4 13∗ 13∗ 78∗ 0.23
huck 74 301 11∗ 11∗ 11∗ 55∗ 0.1 11∗ 11∗ 55∗ 0.04
jean 80 254 10∗ 10∗ 10∗ 45∗ 7.1 10 10∗ 45∗ 0.09
games120 120 638 9∗ 9∗ 9∗ 36∗ 0.2 9∗ 9∗ 36∗ 0.07
fpsol2.i.1 496 11654 65∗ 65∗ 65∗ 2080∗ 104.95 65∗ 65∗ 2080∗ 21.93
fpsol2.i.2 451 8691 30∗ 30∗ 30∗ 435∗ 10.0 30∗ 30∗ 435∗ 3.33
fpsol2.i.3 451 8691 30∗ 30∗ 30∗ 435∗ 26.25 30∗ 30∗ 435∗ 4.34
mulsol.i.1 197 3925 49∗ 49∗ 49∗ 1176∗ 2.2 49∗ 49∗ 1176∗ 0.47
mulsol.i.2 188 3885 31∗ 31∗ 31∗ 465∗ 3.2 31∗ 31∗ 465∗ 0.5
mulsol.i.3 184 3916 31∗ 31∗ 31∗ 465∗ 3.25 31∗ 31∗ 465∗ 0.47
mulsol.i.4 185 3946 31∗ 31∗ 31∗ 465∗ 3.4 31∗ 31∗ 465∗ 0.37
mulsol.i.5 186 3973 31∗ 31∗ 31∗ 465∗ 3.45 31∗ 31∗ 465∗ 1.86
zeroin.i.1 211 4100 49∗ 49∗ 49∗ 1176∗ 2.2 49 49∗ 1176∗ 0.45
zeroin.i.2 211 3541 30∗ 30∗ 30∗ 435∗ 5.7 30∗ 30∗ 435∗ 1.69
zeroin.i.3 206 3540 30∗ 30∗ 30∗ 435∗ 2.8 30∗ 30∗ 435∗ 1.68
inithx.i.1 864 18707 54∗ 54∗ 54∗ 1431∗ 448.85 54∗ 54∗ 1431∗ 38.13
inithx.i.2 645 13979 31∗ 31∗ 31∗ 465∗ 5.1 31 31∗ 465∗ 0.99
inithx.i.3 621 13969 31∗ 31∗ 31∗ 465∗ 7.1 31∗ 31∗ 465∗ 1.9

The most interesting results concern the 8 random instances of the third
category. When comparing IBR and Ins + h for this category, one observes
that IBR improves the lower bound for 6 instances (DSJC125.5, DSJC250.1,
DSJC250.5, DSJC500.1, DSJR500.1c, DSJR500.5). Moreover, at the same k, IBR
obtains a better solution (smaller size of k-VCS) for 5 instances (DSJC125.5,
DSJC250.1, DSJC250.5, DSJC500.1, DSJR500.1c). IBR is also faster than Ins + h
on all instances when using the same k.

The results on the instances of the fourth category are shown in Table 4.
One observes that IBR improves the best-known results for 3 instances while
matching the best-known results for other 12 instances. Only in one case, IBR
obtains a worse result.
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Table 3 Comparative results of IBR with state-of-the-art algorithm on the third category of in-
stances. Improved results are indicated in bold.

Instance Ins + h [5] IBR
name |V| |E| k UB k |V| |E| time(s) k |V| |E| time(s)

DSJC125.1 125 736 5∗ 5∗ 10 26 0.4 5∗ 10 26 2.29
DSJC125.5 125 3891 17∗ 14 70 1341 46.35 14 66 1266 11.69

15 82 1862 35.4
DSJC250.1 250 3218 8 6 64 362 27.65 6 51 290 21.45

7 120 983 134
DSJC250.5 250 15,668 28 14 74 1505 59.6 14 50 836 32.54

16 75 1742 43.92
DSJC500.1 500 12,458 12∗ 6 65 369 73.15 6 32 159 48.23

7 79 617 353.06
DSJR500.1 500 3555 12∗ 12∗ 12∗ 66∗ 1.9 12∗ 12∗ 66∗ 41.23
DSJR500.1C 500 121,275 85∗ 80 84 3477 710.75 80 80 3160 153.96

83 83 3403 1280.19
DSJR500.5 500 58,862 122 90 90 4005 373.6 90 90 4005 15.78

119 119 7,021 29.08

Table 4 Comparative results of IBR with state-of-the-art algorithm on the fourth category of
instances. Improved results are indicated in bold.

Instance Ins + h [5] IBR
name |V| |E| k UB k |V| |E| time(s) k |V| |E| time(s)

queen6 6 36 290 7∗ 7∗ 22 119 0.8 7∗ 24 140 1.24
queen8 8 64 728 9∗ 9∗ 54 538 12.6 9∗ 53 519 2.6
queen9 9 81 2112 10∗ 10∗ 74 897 13.8 10∗ 72 869 920.45
ash331GPIA 662 4185 4 4 9 16 1.6 4 7 12 287.08
1-FullIns 3 30 100 4 4 7 12 0.1 4 7 12 0.09
1-FullIns 4 93 593 5 5 15 43 0.25 5 15 43 0.32
1-FullIns 5 282 3247 6 6 31 144 7.3 6 31 144 2.10
2-FullIns 3 52 201 5 5 9 22 0.1 5 9 22 0.09
2-FullIns 4 212 1621 6 6 19 75 0.25 6 19 75 0.58
2-FullIns 5 852 12,201 7 7 39 244 13.3 7 39 244 22.4
3-FullIns 3 80 346 6 6 11 35 0.15 6 11 35 0.15
3-FullIns 4 405 3524 7 7 23 116 1.25 7 23 116 3.38
3-FullIns 5 2030 33,751 8 8 47 371 78.6 8 47 371 396.26
4-FullIns 3 114 541 7 7 13 51 0.2 7 13 51 0.25
4-FullIns 4 690 6650 8 8 27 166 12.3 8 27 166 15.35
5-FullIns 3 154 792 8 8 15 70 1.2 8 15 70 0.47

5 Analysis and Discussions

This section performs additional experiments to analyze the proposed IBR
algorithm: the backtrack strategy and the perturbation operator. These ex-
periments were performed on a selection of 13 representative instances.

5.1 Effectiveness of Different Backtrack Strategies for k-VCS Detection

This section compares the backtracking strategy adopted by IBR (i.e., using
the reverse order by which the vertices were moved from the set B to the set
C) and the backtracking rule according to the non-increase order of the sum
of neighborhood weights of the vertices in the current graph. We use IBR1 to
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denote the IBR variant using the second backtracking strategy. We ran both
IBR and IBR1 5 times to obtain the k-VCS of each instance.

Table 5 Comparative results of the IBR algorithm with two different backtrack strategies. Im-
proved results are indicated in bold.

Instance IBR1 IBR
name |V| |E| k UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 15 83 1,898 1.3 2/5 15 82 1854 35.4 5/5
DSJC250.1 250 3218 8 7 116 995 30.57 1/5 7 120 983 133.56 1/5
DSJC250.5 250 15,668 28 16 77 1675 73.37 1/5 16 75 1742 43.92 1/5
DSJC500.1 500 12,458 12 7 83 671 276.58 1/5 7 79 617 353.06 1/5
DSJR500.1C 500 121,275 85 83 83 3403 1255.93 1/5 83 83 3403 1280.19 5/5
DSJR500.5 500 58,862 122 119 119 7,021 21.91 5/5 119 119 7,021 29.08 5/5
queen6 6 36 290 7 7 24 140 1.0 2/5 7 24 140 1.24 1/5
queen8 8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9 9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 7 12 132.55 3/5 4 7 12 287.08 2/5
1-FullIns 5 282 3247 6 6 31 144 3.07 1/5 6 31 144 2.10 2/5
2-FullIns 5 852 12,201 7 7 39 244 53.07 2/5 7 39 244 22.4 5/5
3-FullIns 5 2030 33,751 8 8 48 374 800.85 1/5 8 47 371 396.26 2/5

The experimental results are presented in Table 5, including the lower
bound k, the number of vertices and edges of the k-VCS found, and the suc-
cess rate (SR) to obtain the k-VCS over 5 runs. When comparing the k-VCS
obtained by IBR and IBR1, one observes that IBR obtains better solutions for
5 instances at the same k and improves the lower bound for 1 instance. This
justifies the backtracking strategy used in our previous experiments.

5.2 Effectiveness of Perturbation for k-VCS Detection

As shown in Section 2, the proposed algorithm uses a perturbation strategy to
reconfigure the sets A, B and C. In order to show the effect of the perturbation
procedure, we compare IBR with a traditional restart strategy (denoted as
BR) where each restart begins its search with an initial configuration A =
∅, B = V, C = ∅, H = (A, EA). The two algorithms were run 5 times on the
13 selected instances and the results are provided in Table 6.

From Table 6, we observe that IBR significantly outperforms BR. IBR dom-
inates BR by finding improved lower bounds for two instances, smaller k-
VCS sizes for 6 instances at the same k and no worse result. This experiment
confirms the interest of the adopted perturbation operator.

5.3 Effectiveness of Backtrack for k-VCS Detection

This section evaluates the influence of the backtracking scheme on the per-
formance of the proposed algorithm. For this purpose, we compare it with
an IBR variant without the backtracking strategy (named IR). We ran both
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Table 6 Analysis of the influence of the perturbation on the performance of the IBR algorithm.
The BR algorithm is obtained by replacing the perturbation procedure of the IBR algorithm with
a restart strategy. Improved results are indicated in bold.

Instance BR IBR
name |V| |E| k UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 15 82 1858 24.98 1/5 15 82 1854 35.4 2/5
DSJC250.1 250 3218 8 7 116 1010 51.2 1/5 7 120 983 133.56 3/5
DSJC250.5 250 15,668 28 16 75 1740 42.75 1/5 16 75 1740 42.75 1/5
DSJC500.1 500 12,458 12 7 91 767 318.41 1/5 7 79 617 353.06 1/5
DSJR500.1C 500 121,275 85 80 80 3160 153.96 1/5 80 80 3160 153.96 5/5

83 83 3403 1280.19 5/5
DSJR500.5 500 58,862 122 119 119 7,021 46.56 5/5 119 119 7,021 57.1 5/5
queen6 6 36 290 7 7 24 140 1.03 2/5 7 24 140 1.24 3/5
queen8 8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9 9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 9 16 11.86 5/5 4 7 12 287.08 2/5
1-FullIns 5 282 3247 6 6 31 144 1.48 1/5 6 31 144 2.10 2/5
2-FullIns 5 852 12,201 7 7 39 244 27.89 1/5 7 39 244 22.4 5/5
3-FullIns 5 2030 33,751 8 8 47 371 833.14 1/5 8 47 371 396.26 2/5

Table 7 Influence of the backtracking procedure on the performance of the IBR algorithm. IR is
obtained by disabling the backtracking procedure. Improved results are indicated in bold.

Instance IR IBR
name |V| |E| k UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 14 67 1299 21.22 1/5 14 66 1266 11.69 5/5
15 82 1854 35.4 5/5

DSJC250.1 250 3218 8 6 57 335 8.23 1/5 6 51 290 21.45 1/5
7 120 983 133.56 3/5

DSJC250.5 250 15,668 28 13 38 478 1095.26 1/5 13 35 434 947.51 1/5
16 75 1742 43.92 1/5

DSJC500.1 500 12,458 12 6 39 196 73.5 1/5 6 32 159 48.23 3/5
7 79 617 353.06 1/5

DSJR500.1C 500 121,275 85 80 80 3160 153.96 1/5 80 80 3160 153.96 5/5
83 83 3403 1280.19 5/5

DSJR500.5 500 58,862 122 119 119 7,021 31.71 5/5 119 119 7,021 57.1 5/5
queen6 6 36 290 7 7 26 163 0.05 5/5 7 24 140 1.24 1/5
queen8 8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9 9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 9 16 3.52 5/5 4 7 12 287.08 2/5
1-FullIns 5 282 3247 6 6 40 220 2.29 1/5 6 31 144 2.10 2/5
2-FullIns 5 852 12,201 7 7 39 244 46.31 1/5 7 39 244 22.4 5/5
3-FullIns 5 2030 33,751 8 8 47 371 275.60 1/5 8 47 371 396.26 2/5

algorithms 5 times on the 13 selected instances. The experimental results are
presented in Table 7. Compared with IR, IBR obtains smaller k-VCS for 8 in-
stances at the same given k, 6 better lower bounds, and no worse result. This
experiment confirms the value of the backtracking strategy.

6 Conclusion

This paper presented the interated backtracking removal search for identi-
fying small k-vertex-critical subgraph in a general graph. This method ex-
tends the previous removal algorithm by integrating a backtracking strategy
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and a perturbation procedure that complement the intensification-oriented
removal approach. These extensions provide two complementary ways to al-
leviate the problem of misclassifying vertices caused by the use of a heuristic
coloring algorithm.

We assessed the performance of the IBR algorithm on the set of 80 bench-
mark instances from DIMACS and COLOR competitions and presented com-
parative results with respect to the state-of-the-art results. The comparisons
showed that IBR performs very well by discovering several improved best
results (9 smaller sized k-VCS for a given k and 6 new lower bounds for un-
fixed k) and matching the best-known results for the remaining instances ex-
cept one case. This study demonstrates the benefit of the backtracking scheme
and the perturbation procedure for solving the k-VCS problem. These ideas
could be beneficially applied to other problems of identifying irreducible in-
consistent subsets as those indicated in the introduction of this work. Finally,
the k-VCS problem considered in this work and other critical nodes prob-
lems like those studied in [27] share an interesting property that the “critical”
nodes form a stable structure (or subgraph). This property could be advanta-
geously explored by a learning-based search procedure using pattern mining
techniques [28]. We are currently investigating this research direction.
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