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Abstract

Graph coloring is one of the most studied NP-hard problems with a wide range
of applications. In this work, the first solution-driven multilevel algorithm for this
computationally challenging problem is investigated. Following the general idea
of multilevel optimization, the proposed algorithm combines an original solution-
driven coarsening procedure with an uncoarsening procedure as well as an effec-
tive refinement procedure. The algorithm is assessed on 47 popular DIMACS and
COLOR benchmark graphs, and compared with 13 state-of-the-art coloring meth-
ods in the literature. We close one large graph (wap01a.col) by providing its chro-
matic number for the first time. Impacts of the key ingredients of the algorithm are
also investigated.

Keywords: Multilevel optimization; heuristics; k-graph coloring; tabu search.

1 Introduction

Given an undirected graph G = (V, E) with a vertex set V = {1, 2, . . . , n}
and an edge set E ⊂ V × V, a k-coloring of G is a mapping S : V →
{1, . . . , k}. If the k-coloring verifies the condition S(u) 6= S(v) for all edges
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(u, v) in E (this is called the coloring constraint), then it is a legal k-coloring.
Otherwise, the k-coloring is said to be illegal or conflicting. Equivalently, a
k-coloring can be defined by a partition of the vertex V into k subsets (also
called color classes) V1, V2, · · · , Vk, such that ∪k

i=1Vi = V and Vi ∩ Vj = ∅.
A legal k-coloring implies that if u, v ∈ Vi (i = 1, . . . , k), then (u, v) /∈ E.

The graph k-coloring problem (k-GCP) is to determine if a legal k-coloring
of G exists for a given k. The classical graph coloring problem (GCP) is to
find the minimum integer k (chromatic number χ(G)) for which a legal k-
coloring of G exists. k-GCP (decision problem) is known to be NP-complete
while GCP (optimization problem) is NP-hard [1]. In addition to its theoret-
ical importance in graph theory, graph coloring has numerous applications,
such as register allocation [2], timetabling [3], frequency assignment [4] and
scheduling [5].

To enable more applications to be formulated, several graph coloring vari-
ants and generalizations have been introduced, including for instance equi-
table coloring (ECP), weighted vertex coloring (WVCP), bandwidth color-
ing (BCP), and minimum sum coloring (MSCP) [6,7]. The ECP imposes an
equity constraint on the sizes of color classes of a coloring and requires that
the color classes differ in size by one unit at most. The ECP is applied in
garbage collection [8], memory allocation in parallel systems [9], schedul-
ing computer and manufacturing processes with load balancing [10], and
timetabling [11]. The WVCP of a vertex weighted graph is to partition the
vertex set into k disjoint color classes such that the sum of the costs of these
color classes is minimized, where the cost of a color class is given by the
maximum weight of a vertex (representative) in that class. The WVCP de-
generates to the GCP when the vertices have all the unit weight. From a
practical perspective, the WVCP arises naturally in the context of buffer
management in operating systems [12], batch scheduling [13] and manu-
facturing [14]. As another generalization of the GCP, the BCP imposes a
stronger coloring constraint and requires that the difference of the colors
assigned to any two adjacent vertices (u, v) in E must not be smaller than a
given value duv ≥ 1 (the GCP corresponds to the case when duv = 1). The
BCP is notable for its applicability especially in the area of frequency assign-
ment in mobile networks [15]. Finally, the MSCP involves finding a legal k-
coloring that minimizes the sum of the colors (i.e., an integer in {1, . . . , k})
assigned to the vertices. Typical applications of the MSCP include schedul-
ing, resource allocation, and VLSI design [16].

Given the intrinsic difficulty of graph coloring, many efforts have been de-
voted to developing approximate or heuristic algorithms. Comprehensive
reviews on graph coloring algorithms can be found in [17,18,19]. Represen-
tative examples include, but are not limited to, the following algorithms:
constructive algorithms (DSATUR [20], RLF [5]), local search algorithms
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(TabuCol [21], IGrAl [22], VSS [23], PLSCOL [24]) and population-based
hybrid algorithms (HEA [25], AMA [26], MMT [27], MACOL [28], Evo-Div
[29], QACOL [30], HEAD [31]). It is worth mentioning that the population-
based hybrid algorithms represent the state-of-the-art methods, which of-
ten typically employ local search (e.g., TabuCol [21]) as their key local opti-
mization component.

Meanwhile, we notice that even if various approaches have been studied
for graph coloring, the well-known multilevel (also called multiscale) op-
timization approach [32,33] has attracted very little attention in the litera-
ture for this important problem. The basic idea of the multilevel approach
for graph optimization problems is to reduce the complexity of the initial
(large) graph by creating a sequence of intermediate smaller graphs (coars-
ening phase), solving the smallest graph (initial solution phase) and project-
ing the solution back to the initial graph through the intermediate graphs
(uncoarsening phase). This approach has been applied with great success
to many difficult problems including graph partitioning [32,34,35], graph
drawing [36], manifold learning [37], graph clustering [38], segmentation
[39], VLSI design [40], and vertex separator problem [41].

To our knowledge, there is only one early attempt [42] on using the multi-
level approach to solve the graph coloring problem. However, the reported
results are disappointing given that it is just a simple and straightforward
application of the general multilevel method with no dedicated strategies.
In this work, we revisit the multilevel approach for graph coloring by adopt-
ing more advanced strategies and techniques in its key components. We
summarize the main contributions as follows.

First, we propose the solution-driven multilevel algorithm (SDMA) (Sec-
tion 2) that for the first time integrates a special solution-guided coarsening
strategy with an effective local refinement based on a weight tabu search
procedure within the multilevel paradigm. To reinforce its search capac-
ity, SDMA also uses a perturbation-based strategy to iterate the underlying
multilevel process.

Second, we provide extensive computational assessments on well-known
DIMACS benchmark graphs and perform comparisons with state-of-the-
art coloring algorithms (Section 3). We also investigate the impacts of key
components of the proposed algorithm on its performance (Section 4).

In the next section, we present the proposed approach as well as its compo-
nents.
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2 Solution-driven multilevel algorithm for GCP

As explained in [17], GCP can be approximated by solving a series of k-
GCP with decreasing k values where k is the number of available colors.
Specifically, we start with a large k (e.g., the number of vertices of the input
graph G), and try to find a legal k-coloring. Once such a solution is found (k
gives an upper bound of the chromatic number of G), we decrease k by one
and then try to solve the new k-GCP instance. This process is repeated until
no legal k-coloring can be found. Therefore, the proposed SDMA algorithm
is designed to solve the k-coloring problem.

For a given graph G = (V, E), the algorithm explores the search space Ωk
that is composed of all legal (non-conflicting) and illegal (conflicting) can-
didate k-colorings, i.e., Ωk = {{V1, V2, · · · , Vk} : ∪k

i=1Vi = V, Vi ∩Vj = ∅}.
For a candidate solution S ∈ Ωk, its quality is assessed by the objective func-
tion f (S) = ∑k

i=1 |C(Vi)|, where C(Vi) is the set of conflicting edges in color
class Vi (a conflicting edge means that its endpoints are in the same color
class, or equivalently, receive the same color). In other words, this function
counts the conflicting edges in the color classes of S. Thus, a solution for
G is a non-conflicting coloring S with f (S) = 0. The objective of SDMA is
then to minimize f to find a non-conflicting k-coloring.

2.1 General approach

The proposed SDMA approach (Algorithm 1) starts with an initial solu-
tion S0 (line 3) for the input graph G0. Then, SDMA iterates the multilevel
optimization process (lines 4-15, m represents the current level) and a per-
turbation phase (lines 16-18) to find improved solutions.

(1) Initialization phase: SDMA constructs its initial solution (i.e., a k-coloring
solution with as few conflicts as possible) in two steps: 1) create a k-coloring
solution with as few conflicts as possible by the greedy DANGER algorithm
of [43]; 2) improve the solution by the tabu search procedure of [25]. Basi-
cally, the tabu search procedure progressively reduces the number of color-
ing constraint violations by changing the color of a conflicting vertex once
a time (see Section 2.3).

(2) Coarsening phase: The coarsening phase aims to transform the input
graph G0 into a hierarchy of monotonically smaller coarsened graphs by
merging vertices. Specifically, let m be the current level, then the graph Gm
is transformed into a smaller graph Gm+1 based on the current solution
(i.e., a candidate k-coloring for Gm). Given that the algorithm used to color
each coarsened graph is a heuristic procedure (see Section 2.3), some ver-
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Algorithm 1 The SDMA algorithm for solving k-GCP
1: Input: Graph G0 = (V0, E0), number of colors k, level limit L.
2: Output: the best k-coloring S found
3: S0 ← Initialization(G0)
4: while Stopping condition is not meet do
5: m = 0 /*The lowest level*/

/*Coarsening phase*/
6: while m < L do
7: (Gm+1, wm+1)← Coarsen(Gm, wm, Sm) /*Section 2.2*/
8: Sm+1 ←Weight tabu coloring(Gm+1, wm+1, Sm) /*Section 2.3*/
9: m = m + 1

10: end while
/*Uncoarsening phase*/

11: while m > 0 do
12: (Gm−1, wm−1)← Uncoarsen(Gm, wm, Sm) /*Section 2.4*/
13: Sm−1 ←Weight tabu coloring(Gm, wm, Sm) /*Section 2.3*/
14: m = m− 1
15: end while

/*Perturbation phase*/
16: if search stagnation is observed then
17: S0 ← Perturbation(S0) /*Section 2.5*/
18: end if
19: end while
20: return The best k-coloring found S

tices may wrongly receive the same color and therefore can be incorrectly
merged. To remedy this problem, in the coarsening phase we adopt a coars-
ening strategy that merges non-conflicting vertices in a probabilistic way
(see Section 2.2). The coarsening operation repeats L times (a parameter, set
to 5 by default), leading to L coarsened graphs.

(3) Weight tabu coloring phase: For each new coarsened graph Gm+1, we
first generate a k-coloring Sm+1 by inheriting from the solution Sm. Then
we apply the weight tabu coloring algorithm (see Section 2.3) to amelio-
rate Sm+1. The improved solution is then used to create the next coarsened
graph as explained above.

(4) Uncoarsening phase: When the coarsening phase attains its last level L,
the uncoarsening phase is triggered, which unfolds the current coarsened
graph Gm to the less coarsened graph Gm−1. Then, the solution Sm for Gm
is correspondingly projected back to Sm−1 for Gm−1, which is further im-
proved by the weight tabu coloring algorithm of Section 2.3. As a result, the
uncoarsening phase recovers L intermediate coarsened graphs (up to G0) in
the reverse order of the coarsening phase, while the weight tabu coloring
algorithm is applied to each uncoarsened graph to improve the solution.
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(5) Perturbation phase: When the uncoarsening phase terminates, SDMA
moves to the next round of the multilevel process if the best solution for G0
has been improved during the last rounds of the multilevel process. Oth-
erwise, if the best solution cannot be improved for λ (λ is set to 10 in this
work) consecutive rounds of the multilevel process, the search is judged to
be in a deep local optimum trap. To escape the trap, the perturbation phase
is triggered to change the colors of some specifically identified vertices (see
Section 2.5). The perturbed solution is then used to seeding the next round
of the multilevel process.

In the next subsections, we explain the coarsening phase, the weight tabu
coloring algorithm, the uncoarsening phase and the perturbation phase.

2.2 Coarsening phase

Algorithm 2 The coarsening phase
1: Input: Current graph Gm at level m, solution Sm for Gm, edge weights wm.
2: Output: Coarsened graph Gm+1, edge weights wm.

/*Step 1: Initialize the to-be-coarsened graph Gm+1*/
3: Gm+1 ← Gm
4: Sm+1 ← Sm
5: wm+1 ← wm

/*Step 2: Increase the weight of edges of conflicting vertices vm and um*/
6: for each pair S(vm+1) = S(um+1) and w(vm+1, um+1) 6= 0 do
7: w(vm+1, um+1) = w(vm+1, um+1) + |E|
8: end for

/*Step 3: Collapse the non-conflicting vertices vm+1 and um+1*/
9: for each pair of non-conflicting vertices S(vm+1) = S(um+1) and vm+1 and um+1

do
10: Calculate the score[vm+1][um+1]
11: end for
12: if the rank o f score[vm+1][um+1] is in the top p then
13: vm+1 ← vm+1 ∪ um+1
14: Update the weights of the edges in Gm+1
15: end if

Let Gm = (Vm, Em) be the graph at level m. The coarsening phase coarsens
Gm to Gm+1. Contrary to the classical coarsening strategy that only merges
vertices based on structural information of the input graph, we adopt an
original coarsening strategy that relies on additional information provided
by the current solution.

Specifically, the proposed coarsening phase, as illustrated in Algorithm 2,
performs the following steps.
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Fig. 1. Illustrative example for the coarsening phase.

Step 1: Initialize the to-be-coarsened graph Gm+1 by setting the Gm+1 as
Gm, the solution Sm+1 as Sm and the weight of edge wm+1 as wm (lines 3-5,
Algorithm 2). In the example of Figure 1, G1 is the coarsened graph of G0
with 5 vertices and is initialized to G0 at the first step in Figure 1.

Step 2: Increase the weight of edge between conflicting vertices. In the weight
tabu search algorithm, the weight of edge affects the coloring solution gen-
erated at the mth level. Thus, in the coarsening phase, we adjust the weight
dynamically. In order to avoid the same conflict of the vertices, the algo-
rithm adopts a heuristic strategy, which dynamically adds a large value
(set to be |E|) to the weight of a conflicting edge. In Figure 1 (second step),
the weight of the aggregated edge between 21 and 31 increases by a large
number, w(21, 31) = w(20, 30) + |E| = 8.

Step 3: Merge non-conflicting vertices. If vertices vm+1 and um+1 are not
conflicting, they will be taken as a pair whose score will be calculated then.
Repeat this process until all non-conflicting vertices are traversed. Then,
we collapse probabilistically these non-conflicting vertices according to the
scores and update the weights of the edges that are adjacent to vertices vm+1
and um+1 (line 9-15, Algorithm 2). The merge procedure is decomposed into
three operations:

(a) Score each pair of vertices by using historical information. We define a
function score[um+1][vm+1] to score each pair of vertices um+1 and vertex
vm+1 on the m+ 1th level. Let Record[um+1][vm+1] be the number of times
that vertices um+1 and vm+1 have been assigned to the same color class
in the past solutions. Besides, we define the sum of times that vertices
have been coarsened as sumCoarsen. The scoring function is then given
by score[um+1][vm+1] = Record[um+1][vm+1]/(sumCoarsen + 1).

(b) Choose coarsened vertices. According to the score of each pair of vertices,
we merge the vertices if the rank of their score is in the top p (line 12,
Algorithm 2), where p is an integer from 0 to N (N being the number of
vertices) randomly generated at each coarsening phase.

(c) Update the weights of the coarsened vertices. The weight of the edge
(vm+1, um+1) of the coarsened graph Gm+1 equals the weight sum of the
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edges of the last level graph Gm. Suppose that the coarsened vertex vm+1
is formed by merging vm and um, pm+1 is the result of merging pm and qm,
the weight of the edge (vm+1, pm+1) of the coarsened graph Gm+1 equals
the weight sum of the edges (vm, pm), (vm, qm), (um, pm) and (um, qm) of
the last level graph Gm.

The last step of Figure 1 shows a possible coarsening situation of non-
conflicting vertices in the coarsening procedure. Suppose that vertices 10
and 40 are to be merged according to the coarsening rule, leading to the
coarsened vertex 11 of G1. Then, the corresponding edge weights are up-
dated, i.e., w(11, 51) = w(10, 50) + w(40, 50) = 2, w(11, 31) = w(10, 30) +
w(40, 30) = 2.

After coarsening the graph Gm to Gm+1, we apply the weight tabu coloring
algorithm to improve the solution of the graph Gm+1 (see the Section 2.3).
Normally, the solution Sm+1 that is inherited from Sm has less degree of
freedom.

2.3 Solution refinement by weight tabu coloring algorithm

Recall that the coarsening phase is to obtain a coarsened graph Gm+1 at the
m + 1th level from the graph Gm at the mth level while the uncoarsening
phase is to recover Gm from Gm+1. After the coarsening phase and uncoars-
ening phase, we adopt the weight tabu coloring algorithm (WTS) to refine
the quality of the solution Sm for each new graph. For the reason of clarity,
we use below G

′
= (V

′
, E
′
) to represent the new graph and S

′
to represent

the solution inherited from its original graph.

Given G
′
= (V

′
, E
′
), WTS explores all possible k-colorings (candidate so-

lutions), similar to what is presented at the beginning of Section 2. How-
ever, given that G

′
is a weight graph, WTS adopts an adjusted weight ob-

jective function f
′
(S
′
) = ∑k

i=1 |Cw(V
′
i )| where |Cw(V

′
i )| is the sum of the

weights of conflicting edges in color class V
′
i . Accordingly, a k-coloring S

′

with f
′
(S
′
) = 0 corresponds to a legal k-coloring. For the purpose of op-

timization, WTS extends the popular TabuCol algorithm [21,44,25] to the
case of weight graphs.

Given a conflicting k-coloring solution S
′
= {V ′1, V

′
2, . . . , V

′
k}, the basic idea

of WTS is to move a conflicting vertex v
′

from its color class V
′
i to another

color class V
′
j . To ensure a high computational efficiency of such moves,

we maintain a matrix B of size n ∗ k with elements B[v
′
][i] recording the

number of vertices adjacent to v
′

in color class V
′
i (1 6 i 6 k). The move
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Fig. 2. Illustrative example for the weight coloring of the coarsened graph G1.

gain that represents the change in the objective function is expressed as
∆ f

′
= B[v

′
][j]− B[v

′
][i]. According to an incremental technique, each time

a vertex v
′

is moved to another color class, we just need to update a subset
of values affected by this move as follows. For each vertex u

′
adjacent to

vertex v
′
, B[u

′
][i]← B[u

′
][i]− w[v

′
][u
′
], and B[u

′
][j]← B[u

′
][j] + w[v

′
][u
′
].

At each iteration, WTS selects a best (according to f
′
) eligible vertex to per-

form the move. An eligible vertex is a conflicting vertex, which is not for-
bidden by the tabu list or its move leads to a solution better than any seen
solution. WTS stops when f

′
(S
′
) = 0 or when the objective function cannot

be improved within a given number of iterations.

Figure 2 shows a possible iteration of the WTS procedure. Given the con-
flicting 3-coloring for G1 in the last graph of Figure 1 and suppose that the
vertex 31 is forbidden by the tabu list, the vertex 21 will be colored red,
leading to a new solution with f

′
= 1.

2.4 Uncoarsening phase

The uncoarsening phase is the reverse of the coarsening phase that recovers
the graph Gm−1 from the collapsed graph Gm level by level until the initial
graph G0 is reached from the graph G1. Specifically, the underlying steps
from the mth level to the m− 1th level are described as follows.

(1) Initialize the graph Gm−1 with Gm, the solution Sm−1 with Sm and the
edge weights wm−1 with wm.

(2) Unfold the coarsened vertices and update the corresponding solution
and edge weights. As each pair of coarsened vertices is never adjacent,
when the k-coloring Sm for Gm is extended to Gm−1, we simply assign the
same color to them when the vertices are unfold. Finally, update the corre-
sponding weights of the edges of the unfolded vertices.
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Fig. 3. Illustrative example for the uncoarsening phase.

(3) Increase the weights of the edges between conflicting vertices. If the ver-
tices vm−1 and um−1 are conflicting vertices, we add a big number (|E| in
this work) to the weight of the underlying edge.

As shown in Figures 1 and 2, after the coarsening procedure and the weight
tabu search procedure, the graph G0 is coarsened to the graph G1, which is
colored with the solution S1. An initialization of the uncoarsening phase
is shown in the first step of Figure 3, G0 = G1, S0 = S1, w0 = w1. Then,
vertex 11 of G1 is recovered and its color is passed to the vertices 10 and 40.
Meanwhile, those edges between the vertices adjacent to vertices 10 and 40
are restored and the corresponding weights are updated, i.e., w(10, 30) =
w(10, 50) = 1, w(40, 30) = w(40, 50) = 1. Finally, the weight of the edge
between conflicting vertices 10 and 20 is increased, w(10, 20) = w(11, 21) +
|E| = 8.

2.5 Perturbation process

The above multilevel process combining coarsening, uncoarsening and weight
tabu search is able to progressively improve the initial solution S0. To fur-
ther improve the quality of the solution, we iteratively repeat the multilevel
process until no solution improvement can be reached during 10 consecu-
tive rounds of the multilevel process. At this point, the search is judged to
be trapped deeply. To get rid of the trap, we apply a simple perturbation
before entering the next round of the multilevel process.

The perturbation displaces a fixed number of vertices (set to 0.1 ∗ N, N be-
ing the number of vertices) in the following way. To avoid a too strong de-
terioration of the perturbed solution, the perturbation takes into considera-
tion the objective value and makes sure that the reverse move is forbidden
during tt = f ′ + rand(1000) steps where rand(1000) is a random number
between 0 to 999. The resulting solution from the perturbation procedure is
then used as the new starting solution of the next round of the coarsening
phase.
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3 Experimental results and comparisons

This section is dedicated to an experimental assessment of the proposed
SDMA algorithm. The study was based on 47 conventional benchmark in-
stances that are commonly used in the literature and initially proposed for
the DIMACS and COLOR competitions for graph coloring problems 1 2 .

3.1 Benchmark instances

The 47 benchmark instances are classified into three categories in this paper:
easy graphs, small difficult graphs and large difficult graphs [17,26]. Let
BKV (the best-known value) represents χ(G) (if known) or the best-known
upper bound in the literature.

(1) The first category, easy graphs, contains 19 instances that can be col-
ored with BKV colors by a basic coloring algorithm like DSATUR [20]
(thus by numerous algorithms). This category of graphs includes some
graphs of DSJC*, DSJR*, flat*, le450*, R* and two school* graphs. For
these graphs, modern coloring algorithms can consistently reach the
best-known or the optimal results.

(2) The second category contains 20 difficult instances. These graphs are
much more difficult for which a legal k-coloring with k =BKV or a
slightly larger value than BKV is difficult to detect. This category of
graphs includes the remaining graphs of DSJC*, DSJR*, flat*, le450*, R*
graph and latin* graphs. For several graphs of this category, only few
algorithms can reach the best-known results.

(3) The third category contains 8 large difficult instances whose best-known
results can only be achieved by a few advanced coloring algorithms.
Graphs having wap* in their name fall into this category.

Among these graphs, DSJC* are standard (n, p) random graphs. DSJR* and
R* are geometric graphs, with DSJR* being complements of geometric graphs.
le450* are random graphs generated with a special procedure ensuring known
chromatic numbers. flat* are quasi-random graphs generated by partition-
ing the vertex set into k random classes of almost equal size and then by
adding random edges only between vertices of different classes. latin square 10
and school* are structured graphs from the Latin square problem and school
class scheduling problems. wap* are large structured sparse graphs from
the wavelength assignment problem in real-life optical networks [45]. These

1 http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2 http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
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graphs are highly diverse with very different characteristics (size, topology,
edge density...).

Following the common practice to report comparative results in the col-
oring literature, the performance assessment focuses on the best solution
found by an algorithm corresponding to the smallest number k of colors
needed to reach a legal k-coloring for a graph. It is worth noting that for the
28 difficult graphs, no single algorithm can reach all the best-known results.
As one can observe from the results presented in Section 3.3 (e.g., Tables 3
and 5), even the best performing algorithms miss at least two best-known
results. In fact, these instances have been studied for a long time (over 30
years) and the current best-known k values (BKV) have been attained jointly
by a small number of complex hybrid algorithms under specific and relaxed
conditions (e.g., large run time from several days to one month). Moreover,
for some of these benchmark graphs, even finding a legal k-coloring for a
k value slightly above the chromatic number or the current best-known re-
sult remains difficult. Thus, an algorithm able to attain (or draw near to)
most BKV values can be considered to be interesting. Given these observa-
tions, one understands that it is not suitable to apply statistical tests when
discussing computational results.

3.2 Experiment settings

The proposed algorithm was written in C++ and compiled by GNU g++
4.1.2 with the -O3 flag. The experiments were conducted on a computer
with an Intel Xeon E5-2670 processor (2.5 GHz and 2 GB RAM) running
Ubuntu 12.04.

3.2.1 Parameters

The main parameters of the SDMA algorithm are related to the weight tabu
coloring algorithm. Since the weight tabu coloring algorithm is built up
on the TabuCol implementation of [25], we adopted the parameter setting
in [25] as SDMA’s default setting. Specially, the depth of the weight tabu
coloring algorithm (β) was set to 106. The tabu tenure (ttw) was defined by
rand(10)+ f ′ in the weight tabu coloring algorithm and by rand(10000)+ f ′

in the perturbation phase. In addition, we fixed the level limit (L) to 5 ac-
cording to the experiment reported in Section 4.1. The unimproved consec-
utive rounds for best solution is set 10. For each instance, the initial value
of k was set to a value lightly larger (typically, 1 to 5 more colors) than the
best-known value in the literature. Table 1 gives the descriptions of the pa-
rameters and their settings adopted in our SDMA algorithm..
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Table 1
Settings of important parameters

Parameters Description Section Value

β search depth of weight tabu coloring 2.3 106

ttw tabu tenue of weight tabu coloring 2.3 rand(10) + f ′

tt tabu tenue of perturbation 2.5 rand(1000) + f ′

L level limit of coarsening phase 2.1 5

λ unimproved consecutive rounds for best solution 2.1 10

3.2.2 Reference algorithms

To evaluate the performance of the proposed algorithm, 13 state-of-the-art
heuristic algorithms in the literature are used as the main reference algo-
rithms.

(1) Iterated local search algorithm (IGrAl) [22] (a 2.8 GHz Pentium 4 pro-
cessor and a cut off time of 1 hour);

(2) Variable space search algorithm (VSS) [23] (a 2.0 GHz Pentium 4 pro-
cessor and a cut off time of 10 hours);

(3) Local search algorithm using partial solutions (Partial) [46] (a 2.0 GHz
Pentium 4 and a time limit of 10 hours together with a limit of 2 ∗ 109

iterations without improvement);
(4) Hybrid evolutionary algorithm (HEA) [25] (the processor used is not

available for this oldest algorithm and the results were obtained with
different parameter settings);

(5) TabuCol search refinement (TabuCol) [25];
(6) The basic multilevel algorithm (MLTS) [42] (a DEC Alpha machine

with a 466 MHz CPU and 1 Gbyte of memory with 2048 iteration);
(7) Adaptive memory algorithm (AMA) [26] (the processor applied is not

available and the results were obtained with different parameter set-
tings);

(8) Two-phase evolutionary algorithm (MMT) [27] (a 2.4 GHz Pentium
processor and a cut off time of 6000 or 40000 seconds);

(9) Evolutionary algorithm with diversity guarantee (Evo-Div) [29] (a 2.8
GHz Xeon processor and a cut off time of 12 hours);

(10) Distributed quantum annealing algorithm (QACOL) [30,47] (a 3.0 GHz
Intel processor with 12 cores and a cut off time of 5 hours);

(11) Memetic algorithm (MACOL, renamed simply MA) [28] (a 3.4 GHz
processor and a cutoff time of 5 hours);

(12) The newest parallel memetic algorithm (HEAD) [31] (a 3.1 GHz Intel
Xeon processor with 4 cores used to run in parallel the search processes
with a cut off time of at least 3 hours);

(13) Probability learning based local search (PLSCOL) [24] (A 2.8 GHz Intel
Xeon E5-2760 processor and 2 GB RAM with a cutoff of 5 hours).

We only compare the results of the second category graphs with 12 algo-
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rithms for an overall discussion since most of the reference algorithms did
not report their results on the third category graphs. Then, we compare our
results of the second category and third category graphs with three typical
algorithms: TabuCol (the popular tabu search coloring algorithm), PLSCOL
(the latest learning-based local search algorithm) and MLTS (the basic mul-
tilevel coloring algorithm).

For our comparative studies, we follow the common practice in the liter-
ature on graph coloring and cite the best results reported by the reference
algorithms. Indeed, as indicated in Section 3.1, these results were obtained
on very different computing platforms and under various relaxed condi-
tions (e.g., specific parameter settings, large run time from several days to
one month for the most difficult instances). As such, the cited results can
be considered as the very best results that can be achieved by the reference
algorithms.

3.2.3 Stopping condition

Given the high difficulty of the above challenging benchmarks, the majority
of the reference algorithms allowed long run time limits of at least 5 hours.
We thus adopt the same cut off limit for our experiments. It is worth notic-
ing that in the literature, the main assessment criterion is the quality, i.e.,
the smallest number of colors used to find a legal coloring. Indeed, it is im-
possible to compare computation times in a controllable manner, given that
the reference algorithms were implemented with different programming
languages, and executed under various computing platforms and different
stopping conditions (maximum allowed generations, maximum allowed
objective evaluations, maximum allowed iterations or maximum allowed
time limit). Thus, the timing information, when it is shown, was only pro-
vided for indicative purposes. Given its stochastic nature, SDMA was run
10 times to solve each problem instance.

3.3 Comparison with state-of-the-art algorithms

In this section, we compare the results of the 19 instances in the first cate-
gory, the 28 difficult instances in the second and the third categories.

3.3.1 Comparative results on easy instances

Table 2 reports the results of our SDMA algorithm on the set of 19 DI-
MACS/COLOR easy instances. As our basic reference algorithms, we adopt
TabuCol (the popular tabu search coloring algorithm, which is also the un-
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derlying refinement algorithm for SDMA), PLSCOL (the latest learning-
based local search algorithm) and MLTS (the basic multilevel coloring algo-
rithm). We focus on the criterion of solution quality in terms of the smallest
number of colors used to find a legal coloring.

The first column of Table 2 indicates the name of each instance and the
second column indicates the best results (BKV) obtained in the literature.
The following 9 columns report respectively the best results of TabuCol,
PLSCOL and MLTS (i.e., the smallest number of colors used) over 10 inde-
pendent runs (k), the success rate (SR) (when available) to achieve the best
result over 10 runs and the needed computation time. The last 4 columns
show the results of SDMA for each instance: the best result over 10 runs (k),
the success rate (SR), the average computation time in seconds (t(s)Avg) of
the successful runs to obtain the best result and the minimal computation
time (t(s)Min). Additionally, the rows #Better SDMA, #Equal SDMA and
#Worse SDMA indicate respectively the number of instances for which an
algorithm performs better, equally well or worse as compared with SDMA.
Finally, an entry with ∗ indicates the known chromatic number.
Table 2
Comparison between SDMA and state-of-the-art algorithms (the first category of
instances).

TabuCol PLSCOL MLTS SDMA

Instance BKV k SR t(s)Avg t(s)Min k SR t(s)Avg k t(s)Avg k SR t(s)Avg t(s)Min

DSJC125.1.col 5* 5 10/10 0.00 0.00 5 10/10 < 60 5 8.09 5 10/10 0.01 0.00

DSJC125.5.col 17* 17 10/10 0.28 0.01 17 10/10 < 60 18 7.27 17 10/10 0.26 0.03

DSJC125.9.col 44* 44 10/10 0.02 0.01 44 10/10 < 60 44 5.84 44 10/10 0.03 0.01

DSJC250.1.col 8 8 10/10 0.04 0.02 8 10/10 < 60 9 11.05 8 10/10 0.06 0.01

DSJC250.9.col 72* 72 10/10 1.89 0.61 72 10/10 < 60 75 5.09 72 10/10 2.91 0.28

DSJR500.1.col 12* 12 10/10 125.63 22.15 12 10/10 < 60 12 9.37 12 10/10 0.14 0.04

flat300 20 0.col 20* 20 10/10 0.6 0.4 20 10/10 < 60 20 13.26 20 10/10 0.09 0.05

le450 15a.col 15* 15 10/10 0.35 0.17 15 10/10 < 60 16 14.96 15 10/10 0.36 0.12

le450 15b.col 15* 15 10/10 0.18 0.09 15 10/10 < 60 16 14.96 15 10/10 0.22 0.09

le450 25a.col 25* 25 10/10 0.01 0.01 25 10/10 < 60 25 11.92 25 10/10 0.04 0.04

le450 25b.col 25* 25 10/10 0.01 0.01 25 10/10 < 60 25 8.50 25 10/10 0.04 0.04

R125.1.col 5* 5 10/10 0.72 0.07 5 10/10 < 60 5 5.89 5 10/10 0.00 0.00

R125.1c.col 46* 46 4/10 0.00 0.00 46 10/10 < 60 47 5.58 46 10/10 6.15 3.11

R125.5.col 36* 36 6/10 5.12 0.03 36 10/10 < 60 38 7.10 36 10/10 1.76 0.05

R250.1.col 8* 8 10/10 0.76 0.00 8 10/10 < 60 8 7.40 8 10/10 0.01 0.00

R250.1c.col 64* 67 1/10 159.50 159.50 64 10/10 60 67 11.12 64 10/10 19.95 0.06

R1000.1.col 20* 20 10/10 0.72 0.07 20 10/10 < 60 20 12.18 20 10/10 0.27 0.25

school1.col 14* 14 10/10 0.02 0.01 14 10/10 < 60 14 11.93 14 10/10 0.04 0.03

school1 nsh.col 14 14 10/10 0.05 0.02 14 10/10 < 60 14 12.35 14 10/10 0.04 0.03

#Better SDMA 0/19 0/19 0/19

#Equal SDMA 18/19 19/19 11/19

#Worse SDMA 1/19 0/19 8/19

Table 2 indicates that PLSCOL and SDMA can easily find the best-known
results with a 100% success rate, while TabuCol is less stable on 2 instances
(R125.1c and R125.5), and fails to attain one best-known result (R250.1c).
Besides, MLTS fails to attain 8 best-known results. We notice that SDMA is
computationally efficient by attaining the best-known solutions in less than
20s.
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3.3.2 Comparative results on difficult instances

Table 3
Comparison between SDMA and state-of-the-art algorithms (the 2nd and 3rd cat-
egories of instances).

TabuCol PLSCOL MLTS SDMA

Instance BKV k SR t(s)Avg t(s)Min k SR t(s)Avg k t(s)Avg k SR t(s)Avg t(s)Min

DSJC250.5.col 28 28 9/10 41.88 3.53 28 10/10 4 30 9.21 28 10/10 20.27 3.12

DSJC500.1.col 12 12 10/10 784.94 134.24 12 7/10 43 13 18.25 12 10/10 656.47 8.16

DSJC500.5.col 47 49 10/10 1393.98 147.98 48 3/10 1786 54 15.68 48 1/10 2127.11 2127.11

DSJC500.9.col 126 126 7/10 7150.97 972.45 126 10/10 747 136 12.39 126 9/10 4116.60 584.23

DSJC1000.1.col 20 21 10/10 2.65 1.30 20 1/10 3694 23 27.49 20 7/10 13397.85 6901.68

DSJC1000.5.col 82 89 9/10 3909.42 1941.63 87 10/10 1419 97 26.02 87 4/10 22923.98 15107.20

DSJC1000.9.col 222 225 10/10 4013.43 1377.62 223 5/10 12094 253 24.74 223 5/10 22093.84 13301.7

DSJR500.1c.col 85* 85 10/10 1105.22 113.19 85 10/10 386 90 24.05 85 8/10 788.67 27.40

DSJR500.5.col 122* 126 2/10 3929.72 14.45 126 8/10 1860 134 49.29 124 1/10 1539.74 1539.74

flat300 26 0.col 26* 26 10/10 11.24 51.91 26 10/10 195 34 10.72 26 10/10 23.11 5.31

flat300 28 0 30.col 28* 30 6/10 198.68 6202.80 30 10/10 233 34 10.44 29 3/10 32601.40 10334.20

flat1000 76 0.col 81 88 9/10 5052.25 1175.60 86 1/10 5301 95 25.87 86 3/10 23971.83 17304.90

latin square 10.col 97 100 1/10 11134.60 11134.60 99 8/10 2005 113 20.92 99 3/10 3911.05 1109.18

le450 15c.col 15* 15 1/10 40.12 40.12 15 7/10 1718 22 16.81 15 6/10 150.75 1410.97

le450 15d.col 15* 16 10/10 0.44 4.45 15 3/10 2499 22 13.30 15 1/10 6.19 3423.09

le450 25c.col 25* 25 4/10 1886.15 9178.21 25 10/10 1296 28 17.08 25 10/10 4007.70 316.64

le450 25d.col 25* 26 10/10 0.43 0.32 25 10/10 1704 28 13.01 25 9/10 7820.19 172.18

R250.5 65* 67 6/10 227.93 0.50 66 10/10 705 70 17.63 65 3/10 5610.90 963.19

R1000.1c.col 98 98 9/10 412.10 28.79 98 10/10 256 107 41.16 98 10/10 713.29 116.73

R1000.5.col 234* 250 1/10 17231.80 17231.80 254 4/10 7818 259 156.39 246 3/10 21984.50 14435.40

wap01a.col 42 43 10/10 276.70 11.04 - - - - - 41 1/10 12368.80 12368.80

wap02a.col 41 42 10/10 2366.80 512.13 - - - - - 41 7/10 10786.50 2820.18

wap03a.col 44 45 10/10 4280.36 324.08 - - - - - 44 4/10 16572.03 5275.43

wap04a.col 42 44 10/10 821.55 120.30 - - - - - 42 3/10 16359.17 10538.10

wap05a.col 50* 50 10/10 1.89 0.32 - - - - - 50 10/10 0.40 0.37

wap06a.col 40* 44 1/10 5741.87 5741.87 - - - - - 40 8/10 3490.96 1220.78

wap07a.col 41 42 1/10 2455.08 2455.08 - - - - - 41 1/10 21236.90 21236.90

wap08a.col 41 42 10/10 7743.11 241.71 - - - - - 41 9/10 5607.51 2230.79

#Better SDMA 0/28 0/20 0/20

#Equal SDMA 9/28 16/20 0/20

#Worse SDMA 19/28 4/20 20/20

We first show in Table 3 a comparison of SDMA with the three basic refer-
ence algorithms (TabuCol, PLSCOL and MLTS) in terms of quality on all the
28 instances of the second and the third categories. In this table, we show
the same information as in Table 2, while entries with ”-” mean that the
corresponding results are not available.

From Table 3, we can see that SDMA competes very favorably with the
three basic reference algorithms. Indeed, SDMA reports 11 strictly better
results (indicated in boldface) including 4 better results as compared with
the recent PLSCOL algorithm. In particular, SDMA performs far better than
the previous multilevel algorithm MLTS, which reports the worst results
among the compared algorithms. This provides strong evidences in favor
of our solution-driven multilevel approach.

SDMA performs remarkably well on the family of large structured wap*
graphs by reaching all the best-known results. Importantly, SDMA finds a
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41-coloring for wap01a.col, which improves the current best upper bound
of 42 reported in [48]. Given that the chromatic number of wap01a.col is
lower-bounded by 41 [49] (in fact wap01a.col has a clique of size 41), our
41-coloring 3 closes definitively this graph and proves the chromatic num-
ber of 41. To shed light on SDMA’s good performance on these graphs that
come from the wavelength assignment problem, we show their structural
characteristics in Table 4. The first column indicates the name of each graph.
The following 4 columns report the number of vertices and edges, density,
and maximum/minimum degree. We observe that unlike other DIMACS
instances, the wap* graphs are both large and sparse with 905 to 5231 ver-
tices, an edge density between 0.02 and 0.11 and a large degree variation
(from 9 to 351). As shown in the convergence analysis of Section 4.3, the
search trajectory of SDMA for solving the wap* graphs is eased due to the
structural features of this type of graphs.

Table 4
Main structural properties of the wap* instances from wavelength assignment in
optical networks.

Instances |V| |E| Density Max degree Min degree

wap01a.col 2368 110871 0.0395611 288 14

wap02a.col 2464 111742 0.0368249 294 14

wap03a.col 4730 286722 0.0256366 344 26

wap04a.col 5231 294902 0.0215586 351 26

wap05a.col 905 43081 0.1053170 228 9

wap06a.col 947 43571 0.0972717 230 9

wap07a.col 1809 103368 0.0632090 298 13

wap08a.col 1870 104176 0.0596138 308 13

To further assess the performance of the proposed algorithm, we now present
in Table 5 a comparison of SDMA with 10 other reference algorithms that
are based on various approaches and represent the state-of-the-art meth-
ods on graph coloring. These algorithms altogether cover the current best-
known results ever reported in the literature (shown in the column BKV)
that have been obtained under various conditions. Notice that no single
algorithm can reach all the best-known results even under much relaxed
conditions (e.g., a running time more than several days). Since the results
for the 8 instances of the third category are not available for these reference
algorithms, Table 5 only concerns the 20 hard instances of the second cate-
gory and shows the best results of each algorithm in terms of the smallest
number of colors k used to find a legal k-coloring. Once again, the rows
#Better SDMA, #Equal SDMA and #Worse SDMA indicate the number of
instances for which an algorithm has a better, equal or worse result com-
pared to SDMA.

3 The newly found 41-coloring for wap01a.col is available at
http://www.info.univ-angers.fr/pub/hao/SDMA.html
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Table 5
Comparison between SDMA and state-of-the-art algorithms (the 2nd and 3rd cat-
egories of instances).

Local search algorithms Population-based algorithms

Instance BKV IGrAl VSS Partial SDMA HEA AMA MMT Evo-Div MA QACOL HEAD

2008 2008 2008 Best 1999 2008 2008 2010 2010 2011 2015

DSJC250.5.col 28 29 - - 28 - 28 28 - 28 28 28

DSJC500.1.col 12 12 12 12 12 12 12 12 12 12 12 12

DSJC500.5.col 47 50 48 48 48 48 48 48 48 48 48 47

DSJC500.9.col 126 129 126 127 126 126 126 127 126 126 126 126

DSJC1000.1.col 20 22 20 20 20 20 20 20 20 20 20 20

DSJC1000.5.col 82 94 86 89 87 83 84 84 83 83 83 82

DSJC1000.9.col 222 239 224 226 223 224 224 225 223 223 222 222

DSJR500.1c.col 85* 85 85 85 85 - 86 85 85 85 85 85

DSJR500.5.col 122* 126 125 125 124 - 127 122 122 122 122 -

flat300 26 0.col 26* - - - 26 - 26 26 - 26 - -

flat300 28 0.col 28* - 28 28 29 31 31 31 31 29 31 31

flat1000 76 0.col 81 - 85 87 86 83 84 83 82 82 82 81

latin square 10.col 97 100 - - 99 - 104 101 100 99 98 -

le450 15c.col 15* 16 15 15 15 15 15 15 - 15 15 -

le450 15d.col 15* 16 15 15 15 15 15 15 - 15 15 -

le450 25c.col 25* 27 25 25 25 26 26 25 25 25 25 25

le450 25d.col 25* 27 25 25 25 26 26 25 25 25 25 25

R250.5.col 65* - - 66 65 - - 65 65 65 65 65

R1000.1c.col 98 - - - 98 - - 98 98 98 98 98

R1000.5.col 234* 238 245 238 246 255 - 234 238 245 238 245

#Better SDMA 1/15 4/15 2/16 - 2/13 2/17 4/20 4/16 4/20 6/19 5/15

#Equal SDMA 2/15 9/15 8/16 - 6/13 8/17 12/20 10/16 16/20 12/19 9/15

#Worse SDMA 12/15 2/15 6/16 - 5/13 7/17 4/20 2/16 0/20 1/19 1/15

Table 5 shows that SDMA remains globally competitive as compared with
the reference algorithms. In order to facilitate comparisons, we divide these
reference algorithms into three groups according to whether the results are
better than SDMA.

The first group contains 2 local search algorithms (IGrAI, Partial) and 2
hybrid algorithms (HEA, AMA), which report respectively their results for
15, 16, 13 and 17 out of the 20 instances. Compared to these four algorithms,
SDMA algorithm obtains respectively (12, 6, 5 and 7) better results, (2, 8, 6
and 8) equal results, and (1, 2, 2 and 2) worse results. This indicates that
SDMA competes very favorably with these reference algorithms.

The second group only includes the highly sophisticated MMT algorithm
(column 9), which reports its results on all 20 instances of the second cat-
egory. Table 5 shows that SDMA is worse than MMT for 4 instances, bet-
ter for 4 instances and matches the remaining results, which indicates that
SDMA performs similarly to MMT.

The third group contains the 5 remaining algorithms (VSS, Evo-Div, MA,
QACOL and HEAD). SDMA is less competitive when it is compared with
these algorithms though it shares the same results for many instances. Specif-
ically, SDMA has fewer winning cases than losing cases: 2 vs 4 for 15 in-
stances for VSS, 2 vs 4 for 16 instances for Evo-Div, MACOL 0 vs 4 for the
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20 instances for MA, 1 vs 6 for 19 instances for QACOL and 1 vs 5 for 15
instances for HEAD.

To sum up, the results of Tables 3 and 5 indicate that the proposed algorithm
remains competitive with respect to 8 of the 13 leading reference coloring
algorithms, and is less competitive than 5 of them. Moreover, SDMA tends
to be more suitable for coloring large structured (sparse) graphs such as
the wap* instances while other leading algorithms are more appropriate
for coloring random or quasi-random instances. As such, SDMA can be
considered to be a complementary alternative that enriches the toolkit for
graph coloring.

4 Analysis

This section performs additional experiments to deepen the understanding
of some important features of the proposed SDMA approach: the number of
level for multilevel and the coarsening strategy. The experiments are based
on 15 graphs with different characteristics. Each algorithm was run 10 times
respectively on each instance with a time limit of 9000s (2.5 hour) per run
unless otherwise stated.

4.1 Influences of the number of the coarsening levels

The proposed SDMA algorithm uses the parameter L to control the number
of coarsened graphs, which was set to 5 by default. We now present a study
to assess the influence of the number of the levels on the algorithm. For this
purpose, we test two alternative values L = 3, 7.

In this experiment, we ran the algorithm 10 times to solve each selected
instance with a cutoff time of 9000 seconds. The results are presented in
Table 6 with the same information as before. Columns δ1 and δ2 indicate
the color difference between SDMA (with its default value L = 5) and the
two other values (L = 3 and L = 7) (a negative value indicates that SDMA
reports a better result). We note that the best results are obtained with L = 5,
which justifies the default setting for this parameter.

4.2 Effectiveness of the coarsening strategy

The coarsening phase uses a historical information based probability proce-
dure (Section 2.2) during the coarsening process. In this section, we discuss
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Table 6
Influences of the number of the levels L on the algorithm.

SDMA (L = 3) SDMA (L = 5, defaut value) SDMA (L = 7)

Instance k SR t(s)Avg t(s)Min k SR t(s)Avg t(s)Min k SR t(s)Avg t(s)Min δ1 δ2

DSJC1000.5.col 88 4/10 5169.41 1397.90 88 5/10 3775.84 655.07 88 5/10 5015.70 552.59 0 0

DSJC1000.9.col 224 1/10 4072.58 4072.58 224 2/10 4633.51 4230.82 224 2/10 5400.58 3407.85 0 0

DSJC500.5.col 49 10/10 758.20 151.13 49 10/10 1599.93 75.90 49 10/10 1127.31 7.11 0 0

DSJC500.9.col 126 6/10 3030.90 389.67 126 4/10 3538.56 2911.30 126 5/10 2218.92 679.11 0 0

DSJR500.1c.col 85 1/10 1159.28 1159.28 85 1/10 1029.30 1029.30 86 2/10 659.46 28.74 0 -1

flat1000 76 0.col 87 5/10 4563.49 2103.53 87 5/10 4696.42 2643.76 87 4/10 3302.04 237.23 0 0

flat300 28 0.col 30 3/10 5829.91 3523.22 29 1/10 6136.43 6136.43 30 4/10 1540.71 78.37 -1 -1

le450 25c.col 25 3/10 2820.42 85.99 25 2/10 231.31 129.59 25 1/10 2594.13 2594.13 0 0

le450 25d.col 25 2/10 5924.27 5847.12 25 4/10 3435.04 303.92 25 1/10 241.46 241.46 0 0

R1000.5.col 249 3/10 5109.91 4400.25 248 2/10 5648.30 5513.54 249 1/10 3463.03 3463.03 -1 -1

wap01a.col 42 9/10 2142.89 197.63 42 7/10 907.225 411.52 42 7/10 1017.67 432.13 0 0

wap05a.col 50 9/10 7.66 0.37 50 10/10 5.65 0.36 50 10/10 95.97 0.44 0 0

wap06a.col 40 6/10 1826.09 447.60 40 7/10 2335.37 220.32 40 8/10 828.25 280.31 0 0

wap07a.col 41 2/10 3431.62 1146.24 41 2/10 3016.67 2503.04 41 5/10 3703.32 1228.83 0 0

wap08a.col 41 4/10 2785.52 1742.16 41 4/10 3411.05 1280.35 41 5/10 4375.18 726.57 0 0

how this strategy contributes to the overall performance of our SDMA al-
gorithm.

For this study, we create SDMA variant that is a SDMA variant where
we coarsen all the vertices without the probability test (i.e., all the non-
conflicting vertices with the same color are merged). We run SDMA variant
under the same stopping condition as in Section 4.1 (i.e., if a legal k-coloring
is found or the maximum allowed run time of 2.5 CPU hours is reached).
Each tested instance is solved 10 times.

Table 7 displays the comparative results between SDMA and SDMA variant,
based on the same indicators adopted in Table 6. From this table, we ob-
serve that SDMA outperforms SDMA variant, achieving better values for
5 out of 15 instances and equal results for the remaining 9 instances. More-
over, for the 9 instances with equal results, SDMA always obtains a higher
successful rate than SDMA variant. These observations confirm the use-
fulness of the probability strategy of the coarsening procedure based on
history information for the SDMA algorithm.

4.3 Convergence analysis

This section shows a convergence analysis of the SDMA algorithm. For this
purpose, we carried out an experiment to obtain the running profiles of the
algorithm on 4 representative instances (DSJC1000.5.col, flat1000 76 0.col,
R1000.5.col, wap01a.col) with the k values reported in the literature. To
eliminate the possible influence of randomness, we ran SDMA 10 times on
each instance with a cutoff time of 3600 seconds per run. Given this reduced
cutoff time, we limited accordingly the search depth of weight tabu coloring
β to 104.
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Table 7
Influences of the coarsening strategy on the algorithm.

SDMA variant SDMA

Instance k SR t(s)Avg t(s)Min k SR t(s)Avg t(s)Min δ

DSJC1000.5.col 88 2/10 4653.98 1738.86 88 5/10 3775.84 655.07 0

DSJC1000.9.col 226 1/10 1769.46 1769.46 224 2/10 4633.51 4230.82 -2

DSJC500.5.col 49 5/10 2782.48 225.36 49 10/10 1599.93 75.90 0

DSJC500.9.col 126 1/10 4605.12 4605.12 126 4/10 3538.56 2911.30 0

DSJR500.1c.col 88 2/10 4.29 0.32 85 1/10 1029.30 1029.30 -3

flat1000 76 0.col 86 1/10 7799.25 7799.25 87 5/10 4696.42 2643.76 1

flat300 28 0.col 30 2/10 4110.15 3172.38 29 1/10 6136.43 6136.43 -1

le450 25c.col 25 1/10 1447.73 1447.73 25 2/10 231.31 129.59 0

le450 25d.col 25 1/10 1813.77 1813.77 25 4/10 3435.04 303.92 0

R1000.5.col 254 1/10 8010.04 8010.04 248 2/10 5648.30 5513.54 -6

wap01a.col 42 2/10 4167.23 3366.09 42 7/10 907.225 411.527 0

wap05a.col 50 4/10 53.36 0.39 50 10/10 5.65 0.36 0

wap06a.col 40 1/10 6033.32 6033.32 40 7/10 2335.37 220.32 0

wap07a.col 42 5/10 1843.35 496.25 41 2/10 3016.67 2503.04 -1

wap08a.col 41 1/10 6345.52 6345.52 41 4/10 3411.05 1280.35 0
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Fig. 4. Convergence charts (running profiles) of SDMA on four representative in-
stances (DSJC1000.5.col, flat1000 76 0.col, R1000.5.col, wap01a.col).
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For each run, we collect the following statistics. For each multilevel opti-
mization iteration (lines 4-15, Algorithm 1), we record the best objective
value and 2× L current objective values corresponding to the objectives of
L coarsening iterations (lines 6-10, Algorithm 1) and L uncoarsening iter-
ations (lines 11-15, Algorithm 1), where L is the level limit (see Algorithm
1 and Table 1). Figure 4 shows the running behaviors of SDMA where the
X-axis indicates the numbers of multilevel optimization iterations for each
graph and the Y-axis shows the average best objective values and average
current objective values along the multilevel iterations.

From Figure 4, we observe the following general trends. The algorithm im-
proves its solution quality significantly and quickly in the beginning of
the search. Then the improvement slows down and the algorithm progres-
sively converges to its best solution. For the three random (dense) graphs
(DSJC1000.5.col, flat1000 76 0.col, R1000.5.col), the quality of the current so-
lution fluctuates greatly during the multilevel iterations, allowing the algo-
rithm to escape many local optimal solutions to reach solutions of increas-
ing quality. For the sparse wap01a.col graph from real wavelength assign-
ment, due to its specific structures, the improvement of both the average
best objective value and the average objective value is more regular and
the search fluctuates much less. This provides an interesting indicator for
the high performance of the SDMA algorithm on this graph (and the other
graphs of this family). Note that due to its large size and structure, the num-
ber of multilevel iterations performed by the algorithm within 3600 seconds
on this graph is much smaller than on the other graphs.

These convergence profiles are typical and representative for the tested
graphs, even if the exact curves and convergence points vary according to
the studied instances, as the four curves show.

5 Conclusions and perspectives

We investigated the first solution-driven multilevel approach for solving
the well-known graph coloring problem. Contrary to the conventional mul-
tilevel approach where the coarsening phase is performed based on struc-
tural information of the given graph, we adopted an innovative coarsening
strategy that merges vertices based on the solution provided by the refine-
ment procedure. Another new feature of the proposed algorithm is to ap-
ply the refinement procedure to improve each coarsened or uncoarsened
graph. This ensures that the solution is continually ameliorated all along
both the coarsening phase and the uncoarsening phase. Finally, for solution
refinement, we devised an effective weight tabu coloring algorithm that
generalizes the popular TabuCol procedure to the case of weight graphs.
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We presented extensive computational assessments on 47 well-known bench-
mark graphs and extensive comparative studies with 13 reference algo-
rithms in the literature. The computational results showed that the pro-
posed SDMA algorithm is particularly effective for solving structured (sparse)
graphs while other leading algorithms are more suitable for (large) random
instances. As such, SDMA provides a promising alternative that enriches
the toolkit for graph coloring and could contribute to a portfolio approach
with an ensemble of solvers and an intelligent decision-maker on the basis
of instance structures.

Finally, given that the underlying optimization procedure (i.e., weight tabu
coloring procedure) is rather simple compared with the leading state-of-
the-art algorithms, this work suggests that the proposed approach could be
further improved by adopting more powerful refinement procedures. Al-
though the multilevel approach has been applied to many problems, this is
the first work demonstrating the potential of using solutions to guide the
coarsening process. As such, one promising direction for future work is to
investigate this solution-driven multilevel approach to other applications
including those that have been solved with the conventional multilevel ap-
proach.
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O. Günlük, G. J. Woeginger (Eds.), Integer Programming and Combinatoral
Optimization - 15th International Conference, New York, USA, Proceedings,
Vol. 6655 of Lecture Notes in Computer Science, Springer, 2011, pp. 261–273.

26


	Introduction
	Solution-driven multilevel algorithm for GCP
	General approach
	Coarsening phase
	Solution refinement by weight tabu coloring algorithm
	Uncoarsening phase
	Perturbation process

	Experimental results and comparisons
	Benchmark instances
	Experiment settings
	Comparison with state-of-the-art algorithms

	Analysis
	Influences of the number of the coarsening levels
	Effectiveness of the coarsening strategy
	Convergence analysis

	Conclusions and perspectives
	References

